- Probabilistic Data Structures for Web Analytics and Data Mining : A great overview of the space of probabilistic data structures and how they are used in approximation algorithm implementation.
- Models and Issues in Data Stream Systems
- Philippe Flajolet’s contribution to streaming algorithms : A presentation by Jérémie Lumbroso that visits some of the hostorical perspectives and how it all began with Flajolet
- Approximate Frequency Counts over Data Streams by Gurmeet Singh Manku & Rajeev Motwani : One of the early papers on the subject.
- [Methods for Finding Frequent Items in Data Streams](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.9800&rep=rep1&t
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Copyright (c) 2009-2017, Farooq Mela | |
* All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* | |
* 1. Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* 2. Redistributions in binary form must reproduce the above copyright |
Let's say contributor
has submitted a pull request to your (author
) project (repo
). They have made changes on their
branch feature
and have proposed to merge this into origin/master
, where
origin -> https://github.com/author/repo.git
Now say you would like to make commits to their PR and push those changes. First, add their fork as a remote called