Last active
June 13, 2020 16:43
-
-
Save entron/7183fb433958b2906cb60fb6fc7e7a2f to your computer and use it in GitHub Desktop.
simple gpu benchmark code with pytorch for common CNN netoworks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"SqueezeNet(\n", | |
" (features): Sequential(\n", | |
" (0): Conv2d(3, 96, kernel_size=(7, 7), stride=(2, 2))\n", | |
" (1): ReLU(inplace=True)\n", | |
" (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", | |
" (3): Fire(\n", | |
" (squeeze): Conv2d(96, 16, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (squeeze_activation): ReLU(inplace=True)\n", | |
" (expand1x1): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (expand1x1_activation): ReLU(inplace=True)\n", | |
" (expand3x3): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", | |
" (expand3x3_activation): ReLU(inplace=True)\n", | |
" )\n", | |
" (4): Fire(\n", | |
" (squeeze): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (squeeze_activation): ReLU(inplace=True)\n", | |
" (expand1x1): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (expand1x1_activation): ReLU(inplace=True)\n", | |
" (expand3x3): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", | |
" (expand3x3_activation): ReLU(inplace=True)\n", | |
" )\n", | |
" (5): Fire(\n", | |
" (squeeze): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (squeeze_activation): ReLU(inplace=True)\n", | |
" (expand1x1): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (expand1x1_activation): ReLU(inplace=True)\n", | |
" (expand3x3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", | |
" (expand3x3_activation): ReLU(inplace=True)\n", | |
" )\n", | |
" (6): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", | |
" (7): Fire(\n", | |
" (squeeze): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (squeeze_activation): ReLU(inplace=True)\n", | |
" (expand1x1): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (expand1x1_activation): ReLU(inplace=True)\n", | |
" (expand3x3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", | |
" (expand3x3_activation): ReLU(inplace=True)\n", | |
" )\n", | |
" (8): Fire(\n", | |
" (squeeze): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (squeeze_activation): ReLU(inplace=True)\n", | |
" (expand1x1): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (expand1x1_activation): ReLU(inplace=True)\n", | |
" (expand3x3): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", | |
" (expand3x3_activation): ReLU(inplace=True)\n", | |
" )\n", | |
" (9): Fire(\n", | |
" (squeeze): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (squeeze_activation): ReLU(inplace=True)\n", | |
" (expand1x1): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (expand1x1_activation): ReLU(inplace=True)\n", | |
" (expand3x3): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", | |
" (expand3x3_activation): ReLU(inplace=True)\n", | |
" )\n", | |
" (10): Fire(\n", | |
" (squeeze): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (squeeze_activation): ReLU(inplace=True)\n", | |
" (expand1x1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (expand1x1_activation): ReLU(inplace=True)\n", | |
" (expand3x3): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", | |
" (expand3x3_activation): ReLU(inplace=True)\n", | |
" )\n", | |
" (11): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", | |
" (12): Fire(\n", | |
" (squeeze): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (squeeze_activation): ReLU(inplace=True)\n", | |
" (expand1x1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (expand1x1_activation): ReLU(inplace=True)\n", | |
" (expand3x3): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", | |
" (expand3x3_activation): ReLU(inplace=True)\n", | |
" )\n", | |
" )\n", | |
" (classifier): Sequential(\n", | |
" (0): Dropout(p=0.5, inplace=False)\n", | |
" (1): Conv2d(512, 1000, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (2): ReLU(inplace=True)\n", | |
" (3): AdaptiveAvgPool2d(output_size=(1, 1))\n", | |
" )\n", | |
")" | |
] | |
}, | |
"execution_count": 1, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import torch\n", | |
"import torch.nn as nn\n", | |
"from torch.utils.data import DataLoader\n", | |
"\n", | |
"import torchvision.models as models\n", | |
"import torchvision.datasets as datasets\n", | |
"import torchvision.transforms as transforms\n", | |
"\n", | |
"\n", | |
"model = models.squeezenet1_0()\n", | |
"criterion = nn.CrossEntropyLoss()\n", | |
"optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)\n", | |
"\n", | |
"dataset = datasets.FakeData(\n", | |
" size=1000,\n", | |
" transform=transforms.ToTensor())\n", | |
"loader = DataLoader(\n", | |
" dataset,\n", | |
" num_workers=1,\n", | |
" pin_memory=True\n", | |
")\n", | |
"\n", | |
"device = 'cuda:1'\n", | |
"\n", | |
"model.to(device)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Done\n", | |
"CPU times: user 9.62 s, sys: 947 ms, total: 10.6 s\n", | |
"Wall time: 9.84 s\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"for data, target in loader:\n", | |
" data = data.to(device, non_blocking=True)\n", | |
" target = target.to(device, non_blocking=True)\n", | |
" optimizer.zero_grad()\n", | |
" output = model(data)\n", | |
" loss = criterion(output, target)\n", | |
" loss.backward()\n", | |
" optimizer.step()\n", | |
" \n", | |
"print('Done')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment