Skip to content

Instantly share code, notes, and snippets.

View eustin's full-sized avatar
🐗

Justin Evans eustin

🐗
View GitHub Profile
query_embeddings = np.row_stack([query_1_embeddings, query_2_embeddings_avg])
print(query_embeddings.shape)
docs_sequences = []
for docs_list in [bing_search_results, google_search_results]:
docs_sequences.append(tokeniser.texts_to_sequences(docs_list))
docs_embeddings = []
for docs_set in docs_sequences:
this_docs_set = []
for doc in docs_set:
this_doc_embeddings = np.array([embeddings[idx] for idx in doc])
this_docs_set.append(this_doc_embeddings)
for embeddings in docs_embeddings[0]:
print()
print(embeddings)
for embeddings in docs_embeddings[1]:
print()
print(embeddings)
docs_averaged_embeddings = []
for docs_set in docs_embeddings:
this_docs_set = []
for doc in docs_set:
this_docs_set.append(tf.reduce_mean(doc, axis=0, keepdims=True))
concatenated_docs_set = tf.concat(this_docs_set, axis=0).numpy()
docs_averaged_embeddings.append(concatenated_docs_set)
docs_averaged_embeddings = np.array(docs_averaged_embeddings)
print(docs_averaged_embeddings.shape)
NUM_DOCS_PER_QUERY = 5
expanded_queries = tf.gather(query_embeddings, [0 for x in range(NUM_DOCS_PER_QUERY)], axis=1).numpy()
print(expanded_queries)
expanded_batch = np.concatenate([expanded_queries, docs_averaged_embeddings], axis=-1)
print(expanded_batch)
dense_1 = tf.keras.layers.Dense(units=3, activation='relu')
dense_1_out = dense_1(expanded_batch)
print(dense_1_out)