Skip to content

Instantly share code, notes, and snippets.

View eustin's full-sized avatar
🐗

Justin Evans eustin

🐗
View GitHub Profile
loss = tf.keras.losses.KLDivergence()
batch_loss = loss(relevance_grades_prob_dist, scores_prob_dist)
print(batch_loss)
relevance_grades_prob_dist = tf.nn.softmax(relevance_grades, axis=-1)
print(relevance_grades_prob_dist)
scores_for_softmax = tf.squeeze(scores_out, axis=-1)
scores_prob_dist = tf.nn.softmax(scores_for_softmax, axis=-1)
print(scores_prob_dist)
scores = tf.keras.layers.Dense(units=1, activation='linear')
scores_out = scores(dense_1_out)
print(scores_out)
dense_1 = tf.keras.layers.Dense(units=3, activation='relu')
dense_1_out = dense_1(expanded_batch)
print(dense_1_out)
expanded_batch = np.concatenate([expanded_queries, docs_averaged_embeddings], axis=-1)
print(expanded_batch)
NUM_DOCS_PER_QUERY = 5
expanded_queries = tf.gather(query_embeddings, [0 for x in range(NUM_DOCS_PER_QUERY)], axis=1).numpy()
print(expanded_queries)
print(docs_averaged_embeddings.shape)
docs_averaged_embeddings = []
for docs_set in docs_embeddings:
this_docs_set = []
for doc in docs_set:
this_docs_set.append(tf.reduce_mean(doc, axis=0, keepdims=True))
concatenated_docs_set = tf.concat(this_docs_set, axis=0).numpy()
docs_averaged_embeddings.append(concatenated_docs_set)
docs_averaged_embeddings = np.array(docs_averaged_embeddings)
for embeddings in docs_embeddings[1]:
print()
print(embeddings)