Skip to content

Instantly share code, notes, and snippets.

View eustin's full-sized avatar
🐗

Justin Evans eustin

🐗
View GitHub Profile
relevance_grades = tf.constant([
[3.0, 2.0, 2.0, 2.0, 1.0],
[3.0, 3.0, 1.0, 1.0, 0.0]
])
query_1 = "dog"
bing_search_results = [
"Dog - Wikipedia",
"Adopting a dog or puppy | RSPCA Australia",
"dog | History, Domestication, Physical Traits, & Breeds",
"New South Wales | Dogs & Puppies | Gumtree Australia Free",
"dog - Wiktionary"
]
sum(true_prob_dist * np.log(true_prob_dist / true_prob_dist))
sum(true_prob_dist * np.log(true_prob_dist / predicted_prob_dist))
raw_relevance_grades = tf.constant([3.0, 1.0, 0.0], dtype=tf.float32)
true_prob_dist = tf.nn.softmax(raw_relevance_grades)
print(true_prob_dist)
ordered_scores = np.array([scores_dict[x] for x in xlabs]).astype(np.float32)
predicted_prob_dist = tf.nn.softmax(ordered_scores)
print(predicted_prob_dist)
np.exp(scores_dict['shirt']) / sum(np.exp(list(scores_dict.values())))
prob_of_permutation = first_term * second_term * third_term
print(f"probability of permutation is {prob_of_permutation}")
second_term_numerator = np.exp(score_obj_pos_2)
second_term_denominator = np.exp(score_obj_pos_2) + np.exp(score_obj_pos_3)
second_term = second_term_numerator / second_term_denominator
print(f"second term is {second_term}")