The shortest connect
:
from psycopg2 import connect
psql_conn = connect("dbname=XXX user=XXX password=XXX host=localhost sslmode=require")
psql_conn.close()
CUDA_LAUNCH_BLOCKING=1 | |
CUDA_VISIBLE_DEVICES=0,1,2,3 |
"""Do not let the zen slip through your fingers.""" | |
import this | |
zen = "".join([this.d[x] if x.isalnum() else x for x in this.s]) |
import pandas as pd | |
import pandas.io.sql as pdsql | |
import psycopg2 | |
# Database connection details | |
creds = { | |
"dbname": "mydb", | |
"user": "jsmith", | |
"password": "hello1234", |
word_df.to_csv("words.tsv", sep="\t", header=False, index=False, quoting=csv.QUOTE_NONE, quotechar="", escapechar="\\") | |
vec_df.to_csv("vectors.tsv", sep="\t", header=False, index=False, quoting=csv.QUOTE_NONE, quotechar="", escapechar="\\") |
saved_model_cli show --dir /path/to/saved/model/1521687978/ --all |
#!/bin/bash | |
# | |
# Adds a jupyter kernel for a virtualenv | |
# This makes the virtualenv available for use in a Jupyter notebook | |
# Run this from the directory containing your virtualenv directory and | |
# pass it the directory name for your virtualenv. | |
# | |
# Usage: | |
# $ ./add_jupyter_kernel.sh myvenv | |
# |
export PS1="\[\e[1;34m\]\W\[\e[m\] \\$ " |
# Summary statistics for numeric variables | |
df.describe().transpose() | |
# Summary statistics for categorical/string variables | |
df.describe(include=['O']).transpose() | |
# Info about column names, datatypes, and null values | |
df.info() | |
# Get a sample |
import matplotlib.pyplot as plt | |
plt.rcParams["figure.figsize"] = (20,10) |