Skip to content

Instantly share code, notes, and snippets.

@fabianp
Created October 28, 2012 18:16
Show Gist options
  • Save fabianp/3969347 to your computer and use it in GitHub Desktop.
Save fabianp/3969347 to your computer and use it in GitHub Desktop.
lars ill conditioned
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "Untitled0"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn import linear_model\n",
"import numpy as np\n",
"from scipy import linalg"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"X, y = [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], [5, 0, 5]\n",
"for model in (linear_model.LassoLars(.1), linear_model.Lasso(.1)):\n",
" coef_ = model.fit(X, y).coef_\n",
" pobj = (1./ (2. * 3.)) * linalg.norm(y - np.dot(X, coef_)) ** 2 + .1 * linalg.norm(coef_, 1)\n",
" #print coef_\n",
" print('Objective function given by %s: %s' % (model.__class__.__name__, pobj))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Objective function given by LassoLars: 8.33333333333\n",
"Objective function given by Lasso: 0.571155501407\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# fitted by R Lars\n",
"# > X <- array(c(10, 10, 0, 1e-32, 0, 0, 0, 0, 1), dim=c(3, 3)) \n",
"# > y <- c(5, 0, 5)\n",
"# > lars(X, y)"
],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment