[TOC]
a = 2 # integer
b = 5.0 # float
c = 8.3e5 # exponential
d = 1.5 + 0.5j # complex
# Hive | |
``` | |
``` | |
# Oracle | |
``` | |
val oracle_db = sqlContext.load("jdbc", Map("url" -> "jdbc:oracle:thin:user/passwd@//server.com:1526/serviceID.com", "dbtable" -> "table")) |
sorting files by user
ls -l | sort -k3,3
find ignore errors
find / -name livy_server 2>/dev/null
from IPython.display import FileLink
FileLink(file_name)
array([[ 1.9247e-01, 7.2496e-04, 3.7586e-05, 2.4820e-05, 8.0483e-01, 1.4839e-03,
3.4440e-06, 4.3349e-04],
[ 7.4949e-02, 2.5567e-04, 9.0141e-05, 2.7097e-04, 3.8967e-01, 8.0172e-04,
4.2277e-04, 5.3354e-01],
[ 7.3892e-02, 8.5835e-04, 4.3923e-05, 8.5646e-04, 4.6396e-01, 4.9485e-05,
1.5451e-03, 4.5879e-01],
[ 8.8657e-01, 2.1959e-03, 9.6101e-05, 3.6997e-04, 6.2324e-02, 1.6894e-05,
3.1924e-05, 4.8398e-02]], dtype=float32)
source: https://www.cs.utah.edu/~cmertin/dogs+cats+redux.html
First, we need to calculate the predictions on the validation set, since we know those labels, rather than looking at the test set. In [19]:
vgg.model.load_weights(latest_weights_filename)
In [20]:
Keras comes with very convenient features for automating data augmentation. You simply define what types and maximum amounts of augmentation you want, and keras ensures that every item of every batch randomly is changed according to these settings. Here's how to define a generator that includes data augmentation: In [26]:
dim_ordering='tf' uses tensorflow dimension ordering, which is the same order as matplotlib uses for display. Therefore when just using for display purposes, this is more convenient
gen = image.ImageDataGenerator(rotation_range=10, width_shift_range=0.1,