This gist is part of a blog post. Check it out at:
http://jasonrudolph.com/blog/2011/08/09/programming-achievements-how-to-level-up-as-a-developer
| """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" | |
| " => General | |
| """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" | |
| " Sets how many lines of history VIM has to remember | |
| set history=300 | |
| " Enable filetype plugin | |
| filetype plugin on | |
| filetype indent on |
| #!/usr/bin/env python2 | |
| from nltk.corpus.reader import TaggedCorpusReader | |
| from nltk.tokenize import RegexpTokenizer | |
| from shogun.Kernel import CommUlongStringKernel | |
| from shogun.Features import StringUlongFeatures, StringCharFeatures, RAWBYTE | |
| from shogun.PreProc import SortUlongString | |
| from scikits.learn.cluster import affinity_propagation | |
| import numpy as np | |
| def read_reviews(): |
| import XMonad | |
| import Data.List | |
| import XMonad.Hooks.ManageHelpers | |
| import XMonad.Util.EZConfig | |
| import XMonad.Config.Gnome | |
| import XMonad.Config.Desktop (desktopLayoutModifiers) | |
| import XMonad.Layout.NoBorders (smartBorders) | |
| import XMonad.Layout.PerWorkspace (onWorkspace) | |
| import XMonad.Layout.CenteredMaster (centerMaster) | |
| import XMonad.Layout.SimpleFloat (simpleFloat) |
| #!/usr/bin/env python2 | |
| import random | |
| import nltk | |
| from sklearn.linear_model import LogisticRegression | |
| import numpy as np | |
| from sklearn.feature_extraction.text import CountVectorizer | |
| from nltk.corpus import movie_reviews | |
| documents = [(movie_reviews.raw(fileid), category) |
| from sklearn.datasets import load_svmlight_file | |
| from sklearn.naive_bayes import MultinomialNB | |
| from sklearn.svm.sparse import LinearSVC | |
| from sklearn.cross_validation import StratifiedKFold | |
| from sklearn import metrics | |
| import numpy as np | |
| X, y = load_svmlight_file("fr.vec") | |
| y[y == -1] = 0 | |
| kf = StratifiedKFold(y, k = 10, indices=True) |
| from sklearn.datasets import load_svmlight_file | |
| from sklearn.naive_bayes import MultinomialNB | |
| from sklearn.cross_validation import StratifiedKFold | |
| from sklearn import metrics | |
| X, y = load_svmlight_file("mpqa_en.vec") | |
| kf = StratifiedKFold(y, k = 10, indices=True) | |
| clf = MultinomialNB() | |
| for train_index, test_index in kf: | |
| X_train, X_test = X[train_index], X[test_index] | |
| y_train, y_test = y[train_index], y[test_index] |
| from sklearn.naive_bayes import EMNB, MultinomialNB, BernoulliNB | |
| from sklearn.cross_validation import KFold | |
| from sklearn.datasets import load_svmlight_file | |
| from scipy.sparse import vstack | |
| import numpy as np | |
| X, y = load_svmlight_file("mpqa_en.vec") | |
| y = np.asarray(y, np.int32) | |
| n_labeled = int(0.8 * X.shape[0]) | |
| X_labeled = X[:n_labeled] |
| """http://stackoverflow.com/questions/6282432/load-sparse-array-from-npy-file | |
| """ | |
| import random | |
| import scipy.sparse as sparse | |
| import scipy.io | |
| import numpy as np | |
| def save_sparse_matrix(filename, x): | |
| x_coo = x.tocoo() | |
| row = x_coo.row |
This gist is part of a blog post. Check it out at:
http://jasonrudolph.com/blog/2011/08/09/programming-achievements-how-to-level-up-as-a-developer
| #encoding:utf-8 | |
| from java.io import FileInputStream | |
| from java.io import ObjectInputStream | |
| import sys | |
| jarfiles = ["/opt/lingpipe-segmenter/lingpipe-4.0.1.jar", "/opt/lingpipe-segmenter/zhToksDemo.jar"] | |
| for jar in jarfiles: | |
| if jar not in sys.path: | |
| sys.path.append(jar) |