I hereby claim:
- I am favonia on github.
- I am favonia (https://keybase.io/favonia) on keybase.
- I have a public key ASCGlfRtcmUII_C0EtGiRXoRtwG21ECCnZ504VtZajdUJwo
To claim this, I am signing this object:
| #include <stdio.h> | |
| #include <ft2build.h> | |
| #include FT_FREETYPE_H | |
| #include <freetype/ftsnames.h> | |
| int main (int argc, const char *argv[]) { | |
| if (argc != 2) return -1; | |
| FT_Library lib; | |
| memset(&lib, 0, sizeof lib); |
| import Control.Monad | |
| import Data.List | |
| import Data.Ord | |
| type Cell a = (Integer,[a]) | |
| type Row a = [Cell a] | |
| lcs :: Eq a => [a] -> [a] -> [a] | |
| lcs [] _ = [] | |
| lcs _ [] = [] |
| -- Released under CC0. | |
| import System.IO | |
| import Control.Applicative | |
| type Code = [Cmd] | |
| data Cmd = L | R | I | D | P | G | W Code deriving Show | |
| data CodeZipper = CZ Code [(Code,Code)] deriving Show | |
| data DataZipper = DZ [Int] Int [Int] deriving Show |
| {-# OPTIONS --type-in-type #-} | |
| -- Burali-Forti's paradox in MLTT-ish without W-types | |
| -- I was following Coquand's paper "An Analysis of Girard's Paradox" | |
| -- and Hurkens's paper "A Simplification of Girard's Paradox". | |
| -- Code is released under CC0. | |
| -- Σ-types | |
| record Σ (A : Set) (B : A → Set) : Set where |
| -- released under CC0 by favonia | |
| import System.Environment | |
| quotes :: [String -> String] | |
| quotes = map q $ cycle [("「", "」"), ("『", "』")] | |
| where q (l,r) str = l ++ str ++ r | |
| warn :: (String -> String) -> String -> String | |
| warn q str = concat ["分享", q str, "難判定有無違法,盡量不要分享", q str, ",以免觸法。"] |
I hereby claim:
To claim this, I am signing this object:
| import bool | |
| import s1 | |
| import isotoequiv | |
| let not/equiv : equiv bool bool = | |
| iso→equiv _ _ (not, (not, (not∘not/id/pt, not∘not/id/pt))) | |
| let not/path : path^1 type bool bool = | |
| ua _ _ not/equiv |
| import path | |
| let cube/2loop | |
| (A : type) (a : A) | |
| (sq : [i j] A [∂[i j] → a]) | |
| : [i j k] A [ | |
| | ∂[i] → sq j k | |
| | ∂[j] → sq i k | |
| | ∂[k] → sq i j | |
| ] |
| import Data.Char | |
| import Data.List | |
| import Control.Applicative | |
| up :: String -> String | |
| up = map toUpper | |
| convertWord :: String -> String | |
| convertWord = intercalate "\\ls " . map pure . up |
| AGDA_FILES=$(wildcard *.agda) | |
| TEX_FILES=${AGDA_FILES:.agda=.tex} | |
| PDF_FILES=${AGDA_FILES:.agda=.pdf} | |
| MONO_FONT=DejaVu Sans Mono # FreeMono is another choice | |
| PYGMENTS_STYLE=tango | |
| GRADED_XOPP_FILES=$(wildcard *-graded.xopp) | |
| GRADED_PDF_FILES=${GRADED_XOPP_FILES:.xopp=.pdf} | |
| .PHONY: all |