Created
July 17, 2014 19:14
-
-
Save fccoelho/a62923cb69b9ac41511d to your computer and use it in GitHub Desktop.
experimentos de classificação de artigos do MediaCLoud
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:c6716d2a8111d83df5a2d9ed0f53bba477bb57e99255143da939a9b2b98e9fdc" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#Classifica\u00e7\u00e3o de artigos do MediaCloud usando GMM e DPGMM\n", | |
"\n", | |
"Neste Notebook vamos aplicar um classificador n\u00e3o supervisionado a uma cole\u00e7\u00e3o de artigos extra\u00edda do \u00edndice do MediaCloud, usando Dirichlet Process Gaussian Mixture models, do Scikit-Learn.\n", | |
"http://scikit-learn.org/stable/auto_examples/mixture/plot_gmm.html#example-mixture-plot-gmm-py\n", | |
"\n", | |
"Vamos tamb\u00e9m explorar t\u00e9cnicas de Deep learning usando word2vec do pacote gensim:\n", | |
"http://radimrehurek.com/gensim/models/word2vec.html\n", | |
"\n", | |
"uma explica\u00e7\u00e3o mais detalhada da metodologia do word2vec pode ser encontrada aqui:\n", | |
"https://code.google.com/p/word2vec/\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import pysolr\n", | |
"import json\n", | |
"import os\n", | |
"import gensim\n", | |
"import nltk # para tokeniza\u00e7\u00e3o de senten\u00e7as\n", | |
"from pymongo import MongoClient\n", | |
"from string import punctuation, digits\n", | |
"import bs4\n", | |
"from sklearn import mixture" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 72 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Primeiro vamos definir uma fun\u00e7\u00e3o para busca no \u00edndice:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def solr_query(index_name, query=\"\"):\n", | |
" \"\"\"\n", | |
" Perform a query in Solr server and return the documents stored in the index as JSON\n", | |
" \"\"\"\n", | |
" try:\n", | |
" assert index_name in ['mediacloud_articles', 'mediacloud_feeds']\n", | |
" except AssertionError:\n", | |
" return json.dumps({\"error\": \"Bad index name: {}\".format(index_name)})\n", | |
"\n", | |
" options = {\n", | |
" 'hl': 'true',\n", | |
" 'hl.fragsize': 10,\n", | |
" }\n", | |
"\n", | |
" server = pysolr.Solr(os.path.join(\"http://200.20.164.152:8983/solr\", index_name))\n", | |
" results = server.search(query, rows=1, **options)\n", | |
" hits = results.hits\n", | |
" print \"{} resultados encontrados\".format(hits)\n", | |
" full_results = server.search(query, rows=hits, **options)\n", | |
"\n", | |
" return json.dumps(full_results.docs)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"res = solr_query(\"mediacloud_articles\",\"copa\")\n", | |
"res = json.loads(res)\n", | |
"# retemos apenas as entradas que cont\u00e9m sum\u00e1rios\n", | |
"res = [d for d in res if 'summary' in d]\n", | |
"print \"{} resultados retidos\".format(len(res))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"24283 resultados encontrados\n", | |
"19820 resultados retidos" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n" | |
] | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"res[:3]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 9, | |
"text": [ | |
"[{u'_id': u'539fa8cbdcccdd3dc652dd11',\n", | |
" u'_version_': 1471123149631258624,\n", | |
" u'language': [u\"{u'code': u'pt', u'name': u'PORTUGUESE'}\"],\n", | |
" u'link': u'http://www.opovo.com.br/app/colunas/henriquearaujo/2014/06/12/noticiashenriquearaujo,3265569/minhas-copas.shtml',\n", | |
" u'links': [u\"{u'href': u'http://www.opovo.com.br/app/colunas/henriquearaujo/2014/06/12/noticiashenriquearaujo,3265569/minhas-copas.shtml', u'type': u'text/html', u'rel': u'alternate'}\"],\n", | |
" u'published': u'2014-06-12T04:30:00Z',\n", | |
" u'title': u'Minhas copas'},\n", | |
" {u'_id': u'539abb48dcccdd0c04f49f38',\n", | |
" u'_version_': 1470784514674393088,\n", | |
" u'language': [u\"{u'code': u'pt', u'name': u'PORTUGUESE'}\"],\n", | |
" u'link': u'http://www.otempo.com.br/opini%C3%A3o/tost%C3%A3o/j%C3%A1-temos-copa-1.862945',\n", | |
" u'links': [u\"{u'href': u'http://www.otempo.com.br/opini%C3%A3o/tost%C3%A3o/j%C3%A1-temos-copa-1.862945', u'type': u'text/html', u'rel': u'alternate'}\"],\n", | |
" u'published': u'2014-06-12T06:00:00Z',\n", | |
" u'title': u'J\\xe1 temos Copa'},\n", | |
" {u'_id': u'53a6689adcccdd2bfa85fee1',\n", | |
" u'_version_': 1471586954084614144,\n", | |
" u'language': [u\"{u'code': u'pt', u'name': u'PORTUGUESE'}\"],\n", | |
" u'link': u'http://redir.folha.com.br/redir/online/mercado/rss091/*http://www1.folha.uol.com.br/colunas/henriquemeirelles/2014/06/1474213-depois-da-copa.shtml',\n", | |
" u'links': [u\"{u'href': u'http://redir.folha.com.br/redir/online/mercado/rss091/*http://www1.folha.uol.com.br/colunas/henriquemeirelles/2014/06/1474213-depois-da-copa.shtml', u'type': u'text/html', u'rel': u'alternate'}\"],\n", | |
" u'published': u'2014-06-22T05:00:00Z',\n", | |
" u'summary': u'As emo\\xe7\\xf5es da Copa s\\xf3 aumentar\\xe3o nas pr\\xf3ximas semanas. Ap\\xf3s o torneio, no entanto, o foco deve se voltar \\xe0 Olimp\\xedada do Rio, e \\xe9 importante usarmos as li\\xe7\\xf5es do Mundial para uma organiza\\xe7\\xe3o vitoriosa em 2016.\\nO principal desafio da organiza\\xe7\\xe3o da Copa foi o n\\xfamero excessivo de participantes na constru\\xe7\\xe3o de est\\xe1dios, vias de transporte etc. Isso criou situa\\xe7\\xe3o complexa e, algumas vezes, confusa. Existem arenas de clubes e de governos estaduais, com fontes diversas de financiamento.\\nA mobilidade urbana envolve munic\\xedpios e Estados. As comunica\\xe7\\xf5es envolvem operadoras de telefonia e outras empresas. J\\xe1 o governo federal cuida dos aeroportos, do trafego a\\xe9reo e de outras responsabilidades.\\n<a href=\"http://redir.folha.com.br/redir/online/mercado/rss091/*http://www1.folha.uol.com.br/colunas/henriquemeirelles/2014/06/1474213-depois-da-copa.shtml\">Leia mais</a> (06/22/2014 - 02h00)',\n", | |
" u'title': u'Depois da Copa'}]" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Vamos agora construir um corpus s\u00f3 com os sum\u00e1rios" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"docs = [d['summary'] for d in res]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Antes de poder aplicar o word2vec, precisamos criar um banco de frases que s\u00e3o a mat\u00e9ria prima do word2vec. Vamos armazenar estas frases em um banco Mongodb para facilitar a itera\u00e7\u00e3o sobre as frases." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Cada Documento dividido em frases se converte na seguinte lista:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"nltk.tokenize.sent_tokenize(docs[0])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 22, | |
"text": [ | |
"[u'As emo\\xe7\\xf5es da Copa s\\xf3 aumentar\\xe3o nas pr\\xf3ximas semanas.',\n", | |
" u'Ap\\xf3s o torneio, no entanto, o foco deve se voltar \\xe0 Olimp\\xedada do Rio, e \\xe9 importante usarmos as li\\xe7\\xf5es do Mundial para uma organiza\\xe7\\xe3o vitoriosa em 2016.',\n", | |
" u'O principal desafio da organiza\\xe7\\xe3o da Copa foi o n\\xfamero excessivo de participantes na constru\\xe7\\xe3o de est\\xe1dios, vias de transporte etc.',\n", | |
" u'Isso criou situa\\xe7\\xe3o complexa e, algumas vezes, confusa.',\n", | |
" u'Existem arenas de clubes e de governos estaduais, com fontes diversas de financiamento.',\n", | |
" u'A mobilidade urbana envolve munic\\xedpios e Estados.',\n", | |
" u'As comunica\\xe7\\xf5es envolvem operadoras de telefonia e outras empresas.',\n", | |
" u'J\\xe1 o governo federal cuida dos aeroportos, do trafego a\\xe9reo e de outras responsabilidades.',\n", | |
" u'<a href=\"http://redir.folha.com.br/redir/online/mercado/rss091/*http://www1.folha.uol.com.br/colunas/henriquemeirelles/2014/06/1474213-depois-da-copa.shtml\">Leia mais</a> (06/22/2014 - 02h00)']" | |
] | |
} | |
], | |
"prompt_number": 22 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#criando um banco com as frases:\n", | |
"client = MongoClient()\n", | |
"db = client.word2vvec\n", | |
"frases = db.frases\n", | |
"for n,doc in enumerate(docs):\n", | |
" frases.insert({'doc': n, 'frases':nltk.tokenize.sent_tokenize(doc)})\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 21 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Agora vamos escrever um gerador que retorne uma frase de cada vez, como uma lista de tokens. mas antes vamos reduzir as palavras para min\u00fasculas." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def get_sentences():\n", | |
" for doc in frases.find({}):\n", | |
" for f in doc['frases']:\n", | |
" f = bs4.BeautifulStoneSoup(f).get_text()\n", | |
" yield [w.strip().strip(punctuation).strip(digits).lower() for w in f.split() if w]\n", | |
" " | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 63 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"sentences = get_sentences()\n", | |
"model = gensim.models.Word2Vec(sentences, min_count=15, size=2000, workers=8)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 150 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"model[u'maracan\u00e3']" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 151, | |
"text": [ | |
"array([ -2.15475768e-04, 2.41578033e-04, 2.09647973e-04, ...,\n", | |
" 1.02956292e-04, -9.20899838e-05, 3.91921458e-05], dtype=float32)" | |
] | |
} | |
], | |
"prompt_number": 151 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"model.most_similar(positive=[u'futebol', u'est\u00e1dio', 'copa' ], negative=['sp'], topn=10)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 152, | |
"text": [ | |
"[(u'mundo', 0.07574747502803802),\n", | |
" (u'pol\\xedtica', 0.07265618443489075),\n", | |
" (u'publicado', 0.06495336443185806),\n", | |
" (u'galeria', 0.06415452808141708),\n", | |
" (u'lucro', 0.06115793064236641),\n", | |
" (u'feita', 0.05765655264258385),\n", | |
" (u'pa\\xedses', 0.053224772214889526),\n", | |
" (u'seu', 0.05046949163079262),\n", | |
" (u'dia', 0.04996431991457939),\n", | |
" (u'ponto', 0.048819612711668015)]" | |
] | |
} | |
], | |
"prompt_number": 152 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"model.syn0" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 153, | |
"text": [ | |
"array([[ -4.14889982e-05, 1.10162247e-04, -2.49942823e-04, ...,\n", | |
" 1.64366429e-04, -2.34501014e-04, 2.23364128e-04],\n", | |
" [ 3.84889245e-05, 1.87694372e-04, 5.42827183e-05, ...,\n", | |
" -2.13279913e-04, 3.98685224e-05, 1.16758507e-04],\n", | |
" [ -7.05769853e-05, 7.68757382e-05, 3.32957025e-05, ...,\n", | |
" -2.36904496e-04, 2.25413998e-04, 3.49588227e-05],\n", | |
" ..., \n", | |
" [ 9.40111859e-05, -1.19246251e-04, -2.29892801e-04, ...,\n", | |
" -2.27589524e-04, 1.93915097e-04, -2.05169839e-04],\n", | |
" [ 1.17708085e-04, -9.00297382e-05, -1.95830537e-04, ...,\n", | |
" -1.84344288e-04, 4.59398279e-06, -5.01395880e-05],\n", | |
" [ -5.19479618e-05, -2.41005764e-04, 7.04437334e-05, ...,\n", | |
" -9.56029398e-05, -1.95253131e-04, -3.42280473e-05]], dtype=float32)" | |
] | |
} | |
], | |
"prompt_number": 153 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"scatter(model.syn0[:,1],model.syn0[:,2]);" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEACAYAAAB78OvLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG2hJREFUeJzt3XmUlPWd7/F30c0mGhEXoAGDERfUcYkR8SYm7RrUDC7E\nOM7EJd5RE5fcXDMZ3O61vblz1WQSE8UYjzoOJ7kOkxlNDpOQKHEsx3jHhUTUGImAIpuCGImCEBqo\n+8f3absouruqu35V3djv1zl1upbn9zxfH7vrU7/lKUCSJEmSJEmSJEmSJEmSJEmSqjIFWAAsBKZ3\nss1t2evPAUdU0Pbr2bbzgUeAcWlLliT1RQ3AImA8MJAIgYkl25wKzMnuHw08WUHbXYraXwnck7Zs\nSVItDKiy/SQiGJYArcAs4PSSbaYCM7P7TwHDgVFl2r5b1H5nYE2VdUqS6qCxyvZjgGVFj5cTvZFy\n24wBmsq0/TvgPOA9YHKVdUqS6qDankqhwu1yPdj3dcDewD8Ct/agvSSpzqrtqaxg20n0cUSPo6tt\nxmbbDKygLcD9tM/JvG/fffctLF68uAclS1K/thiYUKudV9tTmQfsR0y2DwLOAWaXbDMbOD+7PxlY\nC6wq03a/ovanA8+WHnjx4sUUCoU+f7vhhht6vQbrtM4duc4docYdqU5g3yrf97tUbU9lM3AF8BCx\nmute4CXg0uz1u4hexqnEpPx64Atl2gLcBBwAbCFS9UtV1ilJqoNqQwXg59mt2F0lj6/oRluAz1Zb\nlCSp/qod/lIZzc3NvV1CRawzLetMZ0eoEXacOmutJ6uy+opCNj4oSapQLpeDGr7321ORJCVjqEiS\nkjFUJEnJGCqSpGQMFUlSMoaKJCkZQ0WSlIyhIklKxlCRJCVjqEiSkjFUJEnJGCqSpGQMFUlSMoaK\nJCkZQ0WSlIyhIklKxlCRJCVjqEiSkjFUJEnJGCqSpGQMFUlSMoaKJCkZQ0WSlIyhIklKxlCRJCVj\nqEiSkkkRKlOABcBCYHon29yWvf4ccEQFbb8JvJRt/yCwa4I6JUk1Vm2oNAAziHA4CDgXmFiyzanA\nBGA/4BLgzgraPgwcDBwGvAxcU2WdkqQ6qDZUJgGLgCVAKzALOL1km6nAzOz+U8BwYFSZtnOBrUVt\nxlZZpySpDqoNlTHAsqLHy7PnKtmmqYK2ABcBc6qsU5JUB9WGSqHC7XI93P91wCbg/h62lyTVUWOV\n7VcA44oejyN6HF1tMzbbZmCZthcS8zEndHbwlpaW9+83NzfT3Nxcad2S1C/k83ny+XzdjtfTHkSb\nRuD3xBv/SuBpYsL9paJtTgWuyH5OBr6T/eyq7RTgW8CngDWdHLtQKFTaUZIkAeRyOaj+vb9T1fZU\nNhOB8RCxmuteIhQuzV6/i5gPOZWYlF8PfKFMW4DbgUHEhD3AfwKXVVmrJKnGapZWdWBPRZK6qdY9\nFa+olyQlY6hIkpIxVCRJyRgqkqRkDBVJUjKGiiQpGUNFkpSMoSJJSsZQkSQlY6hIkpIxVCRJyRgq\nkqRkDBVJUjKGiiQpGUNFkpSMoSJJSsZQkSQlY6hIkpIxVCRJyRgqkqRkDBVJUjKGiiQpGUNFkpSM\noSJJSsZQkSQlY6hIkpIxVCRJyRgqkqRkDBVJUjIpQmUKsABYCEzvZJvbstefA46ooO3ZwIvAFuCj\nCWqUJNVBtaHSAMwgwuEg4FxgYsk2pwITgP2AS4A7K2j7AnAm8B9V1idJqqNqQ2USsAhYArQCs4DT\nS7aZCszM7j8FDAdGlWm7AHi5ytokSXVWbaiMAZYVPV6ePVfJNk0VtJUk7UAaq2xfqHC7XJXH6VBL\nS8v795ubm2lubq7FYSRph5XP58nn83U7XrWhsgIYV/R4HNHj6Gqbsdk2Ayto26XiUJEkba/0A/eN\nN95Y0+NVO/w1j5iAHw8MAs4BZpdsMxs4P7s/GVgLrKqwLdSolyNJSq/anspm4ArgIWI1173AS8Cl\n2et3AXOIFWCLgPXAF8q0hVj5dRuwB/Az4FnglCprlSTV2I7cCygUCpVO6UiSAHK5HNTwvd8r6iVJ\nyRgqkqRkDBVJUjKGiiQpGUNFkpSMoSJJSsZQkSQlY6hIkpIxVCRJyRgqkqRkDBVJUjKGiiQpGUNF\nkpSMoSJJSsZQkSQlY6hIkpIxVCRJyRgqkqRkDBVJUjKGiiQpmcbeLkDqbfPnz+eJJ57gySef4t//\nfR7vvrsGaGXQoGHsu++H+fzn/4KzzjqLlpYWHn74EZqaRnHIIX/GM888x9Kly9m4cTNNTXtx3313\ncOyxx7Jx40buueceVq58g5Ej9+T++3/EK6+sYty4sVx00Wd5+ukX2LjxPT75yaMZMmQIo0ePZujQ\nodx5510sXbqahoYB7LPP3hx11OFcdtmXGDRoUG+fIqliud4uoAqFQqHQ2zVoB/biiy9y+eVf5vHH\nn2Dr1gIwCGgACsAYYClwFvAW8BgwCWgG7gS2AK3AZmAE8EdgALkcDBmSY/PmSbS2Hg18P9vua8Du\nwFeAccDrwEBgbfazAdia3cYCK7I6/sTxxx/PRRddxLRp0xgyZEiNz4o+6HK5HNTwvd9QUb/0+OOP\nc+KJU9m06XxgDfAgESpnEEFyKXAzcGHW4hIiFG4C5gGTgcOBE4DhwL8C3wYWAF/N2j0KLCcC6kPA\ni8BGYCgwGNgHeD477p3AX2X7/hRwJLABWEaEzCsMGzaI+fN/xYQJE2pwRtRfGCqdM1TUY4cddizP\nP38ZcC7wZeBu4GJgJ+AfgF2B/0v0TgC+BzxHBMi9RBC8A3yGCIu7gG8B/5Ftvwn4E7AbESI/Be4D\n3gTeBp4CdiF6Me8AS4jgATge2Bf4JPB/gNHA5cBchg59gDVrXmOnnXZKeTrUj9Q6VJyoV7/0+utv\nAB8BLgB+SAxrzQIOBM4mhrOmE72Yl4keymLgfuAOYjhrCPCLbNuW7OdyoG3fBeAPxJ/ZycAE4N+I\nULk0+7k628/ewD8Tw2HPZ+3uy/b3IDANuJMNG8YwZ86cGpwRKQ0n6tUvHXDAh3nzzYuJN+3fA3tm\nPz9GzG9cBMwlhq4GZM/PJ3ock7O9LAN+QPRI3s3af5sIoj8QIXQzMBs4jAiprUCeGNq6gwilTxJB\n8vHs2AD/jRge+0x2jCuJD5eNrF69Ou3JkBIyVNQvfe1rX+ZXvzobOBhYBwwDDiCGv/4HcBDwEDHM\nlQN+SwRC26jBPxJDYk3AC1n7nxPDaZOJUPkpMIcYHtsF+B1wBPA0Mbw2gggUgEOJIa+PEEF3AdHz\n2Rn4G+CZbPsFnHHGGWlPhpSQcyrql9asWcOeezYRn6tGAOuJyfgZxJzJ5URwHApcTwTBcqJH81Vi\nuOtyYvjq+9leW4lw2Snb55tED+fRoiMPB/4L8E3gKODJ7BhLsm3nEavDjiAWAjxKLBx4DHiVAQM2\ns2XL+nQnQv3OjjCnMoVY8rKQ6N935Lbs9eeIv5ZybUcQYw8vAw8Tf4lSMsOGDSMC5QEiLB4lAmUL\nMXF/KvDnwIeJ0FhMzL1cDHydWJ01heiJLMv2eg3RA3kReIWYvH+GCAqIBQADgf8Ejs7uHw98AjgE\nuAEYTwyBHUzMsTwGfDfbx55s3bqB9esNFfVd1YZKA/GXOIUYLzgXmFiyzanEDOV+xEfBOytoezUR\nKvsDj2SPpWRuvfVWYmjplOyZw4lfw9uJ1VivExPtAK8RS4DPBK4jwuU3xKT+VcSv7W7EHMmniXkY\niF/pjcQigKFE6LxLhFmBmFc5Jnv+YOIz1DvEnMu/ER8m98n21Uj0aBpZtqwtxKS+p9pQmQQsIvru\nrcTymdNLtpkKzMzuP0X0OkaVaVvcZiZx8YCUzC23fJcY8vpt9szrRO/ifxO9lbeJFVc3EL2J3Ypa\n70n8yh4A/BMx17Ke6GD/MmsLMSfT1m4AMUcyMNv/E8Tw2C7A32V1/BOwBzE5v4WYz7mWCJqHgMeB\nBtasWZPkHEi1UG2ojKG97w/tV3pVsk1TF21HAquy+6uyx1Iy69ZtIK4LOQY4juiptK3OGkwExlHA\nq8RE/h+AzxNzKScSn4neIUZ0BxK9lBXAecSE+58RobQROJ+YL2kkPk+dTywh3hX4RraPp4lVY48R\ngTKQ6M18L2tzJdErynH44YfX4IxIaVS7+qvSmfJKJoVyneyv0NlxWlpa3r/f3NxMc3NzheWovxsw\noJGtWzcSE+sbiOB4ieg9jCB6Lj8m/kT+RIzaPkBcOd9IhMB/JSb1txJXwUNMwG8l5kEGEyHx0ey5\njxLTh3cT8ytTiSGyocTwF0TIjSC+Gqb4z2YTMZfTys4775zsPOiDL5/Pk8/n63a8akNlBbFUpc04\nosfR1TZjs20GdvD8iuz+KuLj2RvE5cQdLswvDhWpO8aMGclrr60j5i9OJOZC4vu74C+Bvyc+yzxF\nXLj490S4LCE6ztcTQ1iDid7IYcQFjVcT16UUsufbwmIAERLHE+G0hZhuPJsInMVED2c+8B4RNJuy\n215E+NxHhI1UudIP3DfeeGNNj1ft8Nc8YgJ+PDEAfA7xF1VsNtHfh1jAv5YIja7aziYW6pP9/EmV\ndUrbOOSQfYkhr9uAzxJXrT8I/C+ih/IvxAWQXyf+TN4hfkVHEeFwJfBr4nPREmIy/3FiYn01cCyx\nEOAqYnL+iWybK4lf96HAF7P7BWK4bDIRcHcT04gbiPmZ7xHLm78INLB58+b0J0RKpNpQ2QxcQcwi\n/o5YA/kS8ZHt0mybOcQM6CJijeVlZdpCXIZ8ErEc5vjssZTM+vWtxPd0LSJWVbU5gvjc89+JoagD\nid7I1URotGbb5YnOdgsxPbgXEUBDs+eHExP6r2avfZr4OpaHs/YF4mr6/YnezADis9eLwGnEUuRc\ntr+pRO9oLrCVWbNmpTkJUg2kuKL+59mt2F0lj6/oRluIWdETq6xL6tReezURvYS5xNDTCcSb/k3E\nG/xPiZ4MxLBY2/zLSGLF1utE2FxFLFz8DvAsMZR1AvD/iN7N+cQQ2pXE56xmIsw2EYF2CtFpv4eY\no5lNfJZaR/R0diZCqi3MGnnnnXeSngspJb9QUv3S5MmH0v5voSwlhq2aiJ4DxFejfIJY7rsTMQ34\nDLHkdx2xemswcV3LQcTw1deJUPgXovO9C/HNxW2rzEYT17ecQAxr7UkEzGgiVMYTS4snZHUcTYwU\nv0CE2RZgK9OmTUt9OqRk/O4v9UuzZv2UGHZ6kljJvoJ4859EXNw4jbio8Vpi8nwwcS3KaCKEhhGB\n8m0iGB4gRnnb/pXGnYnhqy3EXMoFxJDZKGIIbA3tq7tWZ8cfTEzSr8r2Pzer6UPA3wJzGDz4CXbb\nrfiaGalvsaeifumVV14lhp/OIq5TaftXGS8HPgd8ifavwx9IzHN8hQibYdlephHfMtRKDGfdQEzu\nbyWmAkcTF1OeSPRKjiR6OouJr4X5HTHE9jpxXcwniPmc3YhQer6o4meACTQ07MzKlSsTngkpLUNF\n/VJj40BijuNHxMqqrxJXtLct5W2znlhK/F3iAsafEau5IP4Rrz2JlVoHEN8VtoIYAHiW6MF8hZif\nWZft52PA/yR6RHsTq89GE72Ua7PjbSB6PNcQ/4LknxNDaiexefMfGTnSa4HVdzn8pX5pwoQJvPHG\nIUXPHExc+Pg4cV3K1URQtBA9lZeIa0ryxCVVexFDWJuJbxf6GvDXRC+mgfZlw2T3hxPzMh8jekht\nFhPzOqOJCyqPIj7rjScCZjUx0b8T8DmuvPIyhg4ditRX+dX36pdmzLiT6dPv4b33HgAaGTToTDZt\n+h1wC3F1/FXEkNNmohexhbgo8gVijuQYogeyO7E6bAPxxj+YGL5aQfSELiSuf/lm9toLxIWSzcT8\nyn1E0HyLuBjy0Gz/y2m/lvhDwDqGDGlg+fJF7L777rU6LeoH/DfqO2eoqMcKhQLXXtvC7bfPoFAo\ncMklF9Pauok77vgHYvnwEOA9Bg/+EMcddzS53AB+85v5rF79FoXCVmArU6eexh57NPHggz9jw4aN\nbNq0liFDmigU3ua44z7OL37xOO2/oq1AgQEDdiOXew/YypYt72XHgRgaG8jJJ3+Kiy/+a/bff39u\nuukmZs/+Ja2tmznggAP48Y9/yIQJE+p8pvRBY6h0zlBRcoVCgS1bttDY2EihUGj7A9zGpk2bGDhw\n4HavrVu3jqVLlzJmzBh23XXX7dqtXr2atWvXMm7cOBYuXEhDQwMTJ05k48aNDB48mIaGhu3aSKkZ\nKp0zVCSpm3aEf/lRkiTAUJEkJWSoSJKSMVQkSckYKpKkZAwVSVIyhookKRlDRZKUjKEiSUrGUJEk\nJWOoSJKSMVQkSckYKpKkZAwVSVIyhookKRlDRZKUjKEiSUrGUJEkJWOoSJKSqSZURgBzgZeBh4Hh\nnWw3BVgALASmV9B+BPAo8C5wexX1SZLqrJpQuZoIhf2BR7LHpRqAGUSwHAScC0ws034jcD3wN1XU\nJknqBdWEylRgZnZ/JnBGB9tMAhYBS4BWYBZwepn27wFPAH+qojZJUi+oJlRGAquy+6uyx6XGAMuK\nHi/PnqukfaGK2iRJvaCxzOtzgVEdPH9dyeMCHYdA6XO5Lrbrdoi0tLS8f7+5uZnm5ubu7kKSPtDy\n+Tz5fL5ux8tV0XYB0Ay8AYwmJtcPLNlmMtBCzKkAXANsBW6poP0FwMeAKzs5fqFQsDMjSd2Ry+Wg\nuvf+LlUz/DWbeOMn+/mTDraZB+wHjAcGAedk7SppX7P/aElSbVTzxj0C+BGwNzER/zlgLdAE3A2c\nlm13CvAdYiXYvcBNZdqTPd6FCKK3gZOJnk0xeyqS1E217qnsyL0BQ0WSuqkvD39JkrQNQ0WSlIyh\nIklKxlCRJCVjqEiSkjFUJEnJGCqSpGQMFUlSMoaKJCkZQ0WSlIyhIklKxlCRJCVjqEiSkjFUJEnJ\nGCqSpGQMFUlSMoaKJCkZQ0WSlIyhIklKxlCRJCVjqEiSkjFUJEnJGCqSpGQMFUlSMoaKJCkZQ0WS\nlIyhIklKxlCRJCVTTaiMAOYCLwMPA8M72W4KsABYCEyvoP1JwDzg+ezncVXUKEmqo2pC5WoiFPYH\nHskel2oAZhDBchBwLjCxTPs3gc8AhwIXAD+ookZJUh3lqmi7APgUsAoYBeSBA0u2OQa4gQgVaA+O\nmytsnwPWZK+3lrxWKBQKVZQvSf1PLpeD6t77u1RNT2UkEQhkP0d2sM0YYFnR4+XZc5W2nwb8mu0D\nRZLUBzWWeX0u0UsodV3J40J2K1X6XK6L7UqfP5jo0ZxUpkZJUh9RLlS6ekNvG7Z6AxgNrO5gmxXA\nuKLHY7PnyrUfCzwInAe82lkBLS0t799vbm6mubm5i3Ilqf/J5/Pk8/m6Ha+acbVvAG8BtxBzJcPZ\nfrK+Efg9cAKwEniamKx/qYv2w4HHiLmYn3RxfOdUJKmbaj2nUs2ORwA/AvYGlgCfA9YCTcDdwGnZ\ndqcA3yFWgt0L3FSm/fVEuCwsOtZJxIR9MUNFkrqpL4dKbzNUJKmb+vLqL0mStmGoSJKSMVQkSckY\nKpKkZAwVSVIyhookKRlDRZKUjKEiSUrGUJEkJWOoSJKSMVQkSckYKpKkZAwVSVIyhookKRlDRZKU\njKEiSUrGUJEkJWOoSJKSMVQkSckYKpKkZAwVSVIyhookKRlDRZKUjKEiSUrGUJEkJWOoSJKSMVQk\nSckYKpKkZKoJlRHAXOBl4GFgeCfbTQEWAAuB6RW0nwQ8m92eB86pokZJUh1VEypXE6GwP/BI9rhU\nAzCDCJaDgHOBiWXavwAcCRwBnAzcke1nh5TP53u7hIpYZ1rWmc6OUCPsOHXWWjWhMhWYmd2fCZzR\nwTaTgEXAEqAVmAWcXqb9BmBrdn8o8EdgSxV19qod5RfNOtOyznR2hBphx6mz1qoJlZHAquz+quxx\nqTHAsqLHy7PnyrWfBLyY3a6qokZJUh01lnl9LjCqg+evK3lcyG6lSp/LdbFd8fNPAwcDBwK/APJE\nj0WS9AG1gPbAGZ09LjWZCIU219A+WV9Je4j5liM7eH4R7WHkzZs3b94quy2ij/oG7QFxNXBzB9s0\nAouB8cAgYD7tE/WdtR9Pew/qw8BS4EPpypYk9UUjgF+y/ZLgJuBnRdudAvyeSMdrKmj/eeC3xJLi\np4mVY5IkSZJUf7W6kPIkYB5xEeU84LiiNkcS18QsBL7bizWOAB4F3gVuL9lXPttX28Wge/TROrt7\nLmtZJ0SPeGHW7uSi5/NUfj47O26x27LXnyOuq6pFzeXUs87xxJL/tvP3vV6u82xihegW4KMl++rJ\n+axnjePpW+fym8BL2fYPArsWvdbT381e9Q3gb7P70+l4fqaBGEIbDwxk+/mZjtofTvtigIOJJc1t\nniaWLgPMofwwW61q3An4OHAp279ZP8r2fyzl9Ead3T2XtazzoGy7gVm7RcSqQ6j8fHZ13DanEv+t\nAEcDTyauuZLl/vWuczzx4aG7alXngcTF06X/X3tyPutd43j61rk8ifZzdDPV/272ugW0X6cyio5X\ngh3DtivJrqb9KvxK2ueAt4iTM5pI5TZ/AXy/l2u8kI5DpaOVb32pzp6cy1rWWbzCkKz95Ox+peez\nq+O2+T7bfoVQ22rG1DX3pTrH07M3wlrV2ab0Dbsn57PeNY6nb55LgDOBH2b3u30u+0ri1PJCyjbT\ngF8TV/aPYdtey4qiffVWjYVOjjuT6B5fX6a+3qqzJ+eylnU2ldSzPHuuTSXns6vjltumKVHNlZzD\netcJsA9x/vLAJyqosZZ1dqYn57PeNULfPZcX0d7T6fa5LHfxY0q9dSElxNDXzUQXr6/W2JG/AlYC\nOwMPAOcBP+iDdXamr9XZ2fksd9zO5Mpv0uOaK6mh3nWuBMYBbxOfun9C/G29W2bfKevsqXI11LvG\nvnourwM2Aff3tIZ6hkpXb+iriDefN4jhlNUdbLOC+J/QZmz2XLn2Y4mJp/OAV4v2NbaDfX2xl2rs\nzMrs5zrif/Ik4k2wt85lRzo7l/RSnV216ex8ljvuOLb9tNbZcZYTw6spa+5KvevclN0AfkNcg7Zf\ndr9edXbUttzxKjmf9a6xL57LC4n5mBPK7KuS381eV6sLKYcTqxk6+rLLp4hJrByVT9TXosY2F7Lt\nXEUD7auTBgL/ClxSpsbeqBO6fy5rWWfbxOIgYnhhcVZXd85nV8dtUzwZOpn2ydCUNZdT7zr3oP0b\nwz9CvCF1tmqvHnW2KZ0r68n5rHeNfe1cTiFWqZWuiOzp72avq9WFlNcTn0qfZftlpG3LYBcRy+96\nq0aIb3F+i+j6LiNWjOxELIN+jrgY9FYq+59Z7zqh++ey1nVem22/APh09twwunc+OzrupdmtzYzs\n9efYdhI2Vc2VqGedZ9F+YfKvgdN6uc4zid/DDUSv6udFr/XkfNazxmn0rXO5EHiNjpc49/R3U5Ik\nSZIkSZIkSZIkSZIkSZIkSZIkqff9fwK0cO6Kr1tSAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7f3d2e1cea10>" | |
] | |
} | |
], | |
"prompt_number": 154 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"len(model.vocab)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 155, | |
"text": [ | |
"701" | |
] | |
} | |
], | |
"prompt_number": 155 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"model.syn0.shape" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 156, | |
"text": [ | |
"(701, 2000)" | |
] | |
} | |
], | |
"prompt_number": 156 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"model.vocab" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 120, | |
"text": [ | |
"{u'': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6d10>,\n", | |
" u',': <gensim.models.word2vec.Vocab at 0x7f3d32b91990>,\n", | |
" u'-': <gensim.models.word2vec.Vocab at 0x7f3d2e697750>,\n", | |
" u'.': <gensim.models.word2vec.Vocab at 0x7f3d2efcd210>,\n", | |
" u'/': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3a90>,\n", | |
" u':': <gensim.models.word2vec.Vocab at 0x7f3d315f87d0>,\n", | |
" u'a': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6f50>,\n", | |
" u'abertura': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3f90>,\n", | |
" u'abril': <gensim.models.word2vec.Vocab at 0x7f3d2f033050>,\n", | |
" u'acompanhar': <gensim.models.word2vec.Vocab at 0x7f3d2d183850>,\n", | |
" u'acontece': <gensim.models.word2vec.Vocab at 0x7f3d2defa210>,\n", | |
" u'aconteceu': <gensim.models.word2vec.Vocab at 0x7f3d32b9afd0>,\n", | |
" u'acordo': <gensim.models.word2vec.Vocab at 0x7f3d3148cf50>,\n", | |
" u'adidas': <gensim.models.word2vec.Vocab at 0x7f3d31b64d90>,\n", | |
" u'aeroportos': <gensim.models.word2vec.Vocab at 0x7f3d305d3990>,\n", | |
" u'afirmou': <gensim.models.word2vec.Vocab at 0x7f3d317d6090>,\n", | |
" u'afp': <gensim.models.word2vec.Vocab at 0x7f3d3099e710>,\n", | |
" u'agora': <gensim.models.word2vec.Vocab at 0x7f3d317d60d0>,\n", | |
" u'ag\\xeancia': <gensim.models.word2vec.Vocab at 0x7f3d31b64290>,\n", | |
" u'ainda': <gensim.models.word2vec.Vocab at 0x7f3d2d452250>,\n", | |
" u'alegre': <gensim.models.word2vec.Vocab at 0x7f3d30208dd0>,\n", | |
" u'alemanha': <gensim.models.word2vec.Vocab at 0x7f3d2e6973d0>,\n", | |
" u'algumas': <gensim.models.word2vec.Vocab at 0x7f3d32b91f90>,\n", | |
" u'alguns': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6950>,\n", | |
" u'almo\\xe7o': <gensim.models.word2vec.Vocab at 0x7f3d32733f50>,\n", | |
" u'al\\xe9m': <gensim.models.word2vec.Vocab at 0x7f3d30001390>,\n", | |
" u'amigos': <gensim.models.word2vec.Vocab at 0x7f3d31075d50>,\n", | |
" u'amistoso': <gensim.models.word2vec.Vocab at 0x7f3d2f7f3c10>,\n", | |
" u'ano': <gensim.models.word2vec.Vocab at 0x7f3d305d3510>,\n", | |
" u'anos': <gensim.models.word2vec.Vocab at 0x7f3d2f5d63d0>,\n", | |
" u'antes': <gensim.models.word2vec.Vocab at 0x7f3d30357f50>,\n", | |
" u'anunciou': <gensim.models.word2vec.Vocab at 0x7f3d332f7250>,\n", | |
" u'ao': <gensim.models.word2vec.Vocab at 0x7f3d3074c810>,\n", | |
" u'aos': <gensim.models.word2vec.Vocab at 0x7f3d305d3e50>,\n", | |
" u'apenas': <gensim.models.word2vec.Vocab at 0x7f3d2fca4f90>,\n", | |
" u'apesar': <gensim.models.word2vec.Vocab at 0x7f3d306c9d50>,\n", | |
" u'apoio': <gensim.models.word2vec.Vocab at 0x7f3d2d6d8f50>,\n", | |
" u'apresentou': <gensim.models.word2vec.Vocab at 0x7f3d2e1ce250>,\n", | |
" u'ap\\xf3s': <gensim.models.word2vec.Vocab at 0x7f3d335df3d0>,\n", | |
" u'aqui': <gensim.models.word2vec.Vocab at 0x7f3d32bbc890>,\n", | |
" u'arena': <gensim.models.word2vec.Vocab at 0x7f3d332f7e90>,\n", | |
" u'argentina': <gensim.models.word2vec.Vocab at 0x7f3d2e6971d0>,\n", | |
" u'argentinos': <gensim.models.word2vec.Vocab at 0x7f3d3148c510>,\n", | |
" u'artigo': <gensim.models.word2vec.Vocab at 0x7f3d2cd6da10>,\n", | |
" u'as': <gensim.models.word2vec.Vocab at 0x7f3d332a9fd0>,\n", | |
" u'assim': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff4d0>,\n", | |
" u'assistir': <gensim.models.word2vec.Vocab at 0x7f3d32d68790>,\n", | |
" u'associa\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d32ba2550>,\n", | |
" u'assunto': <gensim.models.word2vec.Vocab at 0x7f3d3148c210>,\n", | |
" u'at': <gensim.models.word2vec.Vocab at 0x7f3d317d62d0>,\n", | |
" u'atacante': <gensim.models.word2vec.Vocab at 0x7f3d2fe77f50>,\n", | |
" u'atl\\xe9tico': <gensim.models.word2vec.Vocab at 0x7f3d315595d0>,\n", | |
" u'ato': <gensim.models.word2vec.Vocab at 0x7f3d31ae7e50>,\n", | |
" u'atrav\\xe9s': <gensim.models.word2vec.Vocab at 0x7f3d2f033dd0>,\n", | |
" u'atr\\xe1s': <gensim.models.word2vec.Vocab at 0x7f3d2d4522d0>,\n", | |
" u'atual': <gensim.models.word2vec.Vocab at 0x7f3d2db89050>,\n", | |
" u'atua\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2f477d50>,\n", | |
" u'at\\xe9': <gensim.models.word2vec.Vocab at 0x7f3d305e7c50>,\n", | |
" u'aumento': <gensim.models.word2vec.Vocab at 0x7f3d3088d950>,\n", | |
" u'autor': <gensim.models.word2vec.Vocab at 0x7f3d2de76490>,\n", | |
" u'autoridades': <gensim.models.word2vec.Vocab at 0x7f3d2e7a3190>,\n", | |
" u'avenida': <gensim.models.word2vec.Vocab at 0x7f3d2efbdad0>,\n", | |
" u'a\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2f04dd90>,\n", | |
" u'b': <gensim.models.word2vec.Vocab at 0x7f3d2e6bcd90>,\n", | |
" u'barcelona': <gensim.models.word2vec.Vocab at 0x7f3d2e6bc650>,\n", | |
" u'beira-rio': <gensim.models.word2vec.Vocab at 0x7f3d2d60ed90>,\n", | |
" u'belo': <gensim.models.word2vec.Vocab at 0x7f3d32da7d50>,\n", | |
" u'bem': <gensim.models.word2vec.Vocab at 0x7f3d31075b90>,\n", | |
" u'bilh\\xf5es': <gensim.models.word2vec.Vocab at 0x7f3d2f230310>,\n", | |
" u'blog': <gensim.models.word2vec.Vocab at 0x7f3d315c13d0>,\n", | |
" u'boa': <gensim.models.word2vec.Vocab at 0x7f3d305d3fd0>,\n", | |
" u'bola': <gensim.models.word2vec.Vocab at 0x7f3d30357fd0>,\n", | |
" u'brasil': <gensim.models.word2vec.Vocab at 0x7f3d317d61d0>,\n", | |
" u'brasil-': <gensim.models.word2vec.Vocab at 0x7f3d2feab0d0>,\n", | |
" u'brasileira': <gensim.models.word2vec.Vocab at 0x7f3d315c1910>,\n", | |
" u'brasileiras': <gensim.models.word2vec.Vocab at 0x7f3d317d6e10>,\n", | |
" u'brasileiro': <gensim.models.word2vec.Vocab at 0x7f3d334d8950>,\n", | |
" u'brasileiros': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6110>,\n", | |
" u'brasileir\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d310d26d0>,\n", | |
" u'bras\\xedlia': <gensim.models.word2vec.Vocab at 0x7f3d317d6050>,\n", | |
" u'brito': <gensim.models.word2vec.Vocab at 0x7f3d2cfbd490>,\n", | |
" u'cada': <gensim.models.word2vec.Vocab at 0x7f3d2fca47d0>,\n", | |
" u'camaqu\\xe3': <gensim.models.word2vec.Vocab at 0x7f3d332b7810>,\n", | |
" u'camar\\xf5es': <gensim.models.word2vec.Vocab at 0x7f3d2e5ba190>,\n", | |
" u'camisa': <gensim.models.word2vec.Vocab at 0x7f3d304412d0>,\n", | |
" u'campanha': <gensim.models.word2vec.Vocab at 0x7f3d332f7890>,\n", | |
" u'campeonato': <gensim.models.word2vec.Vocab at 0x7f3d335dfe50>,\n", | |
" u'campe\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d32baded0>,\n", | |
" u'campe\\xf5es': <gensim.models.word2vec.Vocab at 0x7f3d2debff10>,\n", | |
" u'campo': <gensim.models.word2vec.Vocab at 0x7f3d332f7450>,\n", | |
" u'campos': <gensim.models.word2vec.Vocab at 0x7f3d3074c2d0>,\n", | |
" u'capital': <gensim.models.word2vec.Vocab at 0x7f3d2efbdb90>,\n", | |
" u'carlos': <gensim.models.word2vec.Vocab at 0x7f3d32ba2ed0>,\n", | |
" u'carta': <gensim.models.word2vec.Vocab at 0x7f3d32761210>,\n", | |
" u'casa': <gensim.models.word2vec.Vocab at 0x7f3d2e668dd0>,\n", | |
" u'caso': <gensim.models.word2vec.Vocab at 0x7f3d2f7c2fd0>,\n", | |
" u'casos': <gensim.models.word2vec.Vocab at 0x7f3d33272810>,\n", | |
" u'castel\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2e959610>,\n", | |
" u'categoria': <gensim.models.word2vec.Vocab at 0x7f3d2d452bd0>,\n", | |
" u'causa': <gensim.models.word2vec.Vocab at 0x7f3d2df22c90>,\n", | |
" u'cbf': <gensim.models.word2vec.Vocab at 0x7f3d30f61e90>,\n", | |
" u'cear\\xe1': <gensim.models.word2vec.Vocab at 0x7f3d2ec85dd0>,\n", | |
" u'central': <gensim.models.word2vec.Vocab at 0x7f3d304200d0>,\n", | |
" u'centro': <gensim.models.word2vec.Vocab at 0x7f3d2debf210>,\n", | |
" u'cerca': <gensim.models.word2vec.Vocab at 0x7f3d31fe3910>,\n", | |
" u'chave': <gensim.models.word2vec.Vocab at 0x7f3d30791090>,\n", | |
" u'chegar': <gensim.models.word2vec.Vocab at 0x7f3d2feabd50>,\n", | |
" u'chegou': <gensim.models.word2vec.Vocab at 0x7f3d320e1bd0>,\n", | |
" u'chelsea': <gensim.models.word2vec.Vocab at 0x7f3d32a3de50>,\n", | |
" u'chile': <gensim.models.word2vec.Vocab at 0x7f3d306c9b10>,\n", | |
" u'cidade': <gensim.models.word2vec.Vocab at 0x7f3d2fe17d90>,\n", | |
" u'cidades': <gensim.models.word2vec.Vocab at 0x7f3d305d3050>,\n", | |
" u'cidades-sede': <gensim.models.word2vec.Vocab at 0x7f3d316c4910>,\n", | |
" u'cinco': <gensim.models.word2vec.Vocab at 0x7f3d2d6d8190>,\n", | |
" u'civil': <gensim.models.word2vec.Vocab at 0x7f3d32741050>,\n", | |
" u'classifica\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d3303e2d0>,\n", | |
" u'clima': <gensim.models.word2vec.Vocab at 0x7f3d31ae7210>,\n", | |
" u'clube': <gensim.models.word2vec.Vocab at 0x7f3d30942810>,\n", | |
" u'cl\\xe1ssico': <gensim.models.word2vec.Vocab at 0x7f3d300be350>,\n", | |
" u'cobertura': <gensim.models.word2vec.Vocab at 0x7f3d332f7090>,\n", | |
" u'coluna': <gensim.models.word2vec.Vocab at 0x7f3d2d452ed0>,\n", | |
" u'col\\xf4mbia': <gensim.models.word2vec.Vocab at 0x7f3d2e7a3210>,\n", | |
" u'com': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6850>,\n", | |
" u'comando': <gensim.models.word2vec.Vocab at 0x7f3d335dfad0>,\n", | |
" u'coment\\xe1rios': <gensim.models.word2vec.Vocab at 0x7f3d2da76f50>,\n", | |
" u'come\\xe7a': <gensim.models.word2vec.Vocab at 0x7f3d2d9ddd10>,\n", | |
" u'come\\xe7ou': <gensim.models.word2vec.Vocab at 0x7f3d300014d0>,\n", | |
" u'comiss\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2ebc0f90>,\n", | |
" u'comit\\xea': <gensim.models.word2vec.Vocab at 0x7f3d2ed63e90>,\n", | |
" u'como': <gensim.models.word2vec.Vocab at 0x7f3d2ffebd10>,\n", | |
" u'competi\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d316c4c10>,\n", | |
" u'completa': <gensim.models.word2vec.Vocab at 0x7f3d306c9810>,\n", | |
" u'confedera\\xe7\\xf5es': <gensim.models.word2vec.Vocab at 0x7f3d305d30d0>,\n", | |
" u'confira': <gensim.models.word2vec.Vocab at 0x7f3d3074cd50>,\n", | |
" u'confronto': <gensim.models.word2vec.Vocab at 0x7f3d30001190>,\n", | |
" u'conquista': <gensim.models.word2vec.Vocab at 0x7f3d2e6bc090>,\n", | |
" u'constru\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2efcd650>,\n", | |
" u'conta': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6a10>,\n", | |
" u'conte\\xfado': <gensim.models.word2vec.Vocab at 0x7f3d2e1ce290>,\n", | |
" u'continua': <gensim.models.word2vec.Vocab at 0x7f3d2e5bad10>,\n", | |
" u'contra': <gensim.models.word2vec.Vocab at 0x7f3d32b91ed0>,\n", | |
" u'convocados': <gensim.models.word2vec.Vocab at 0x7f3d30f61450>,\n", | |
" u'copa': <gensim.models.word2vec.Vocab at 0x7f3d317d6950>,\n", | |
" u'copas': <gensim.models.word2vec.Vocab at 0x7f3d335df890>,\n", | |
" u'corinthians': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3290>,\n", | |
" u'costa': <gensim.models.word2vec.Vocab at 0x7f3d3303ef10>,\n", | |
" u'craque': <gensim.models.word2vec.Vocab at 0x7f3d32ed3c50>,\n", | |
" u'cristiano': <gensim.models.word2vec.Vocab at 0x7f3d2f766f50>,\n", | |
" u'cro\\xe1cia': <gensim.models.word2vec.Vocab at 0x7f3d30e50510>,\n", | |
" u'cruz': <gensim.models.word2vec.Vocab at 0x7f3d2c03b190>,\n", | |
" u'cruzeiro': <gensim.models.word2vec.Vocab at 0x7f3d31b64bd0>,\n", | |
" u'cultura': <gensim.models.word2vec.Vocab at 0x7f3d30357a50>,\n", | |
" u'curitiba': <gensim.models.word2vec.Vocab at 0x7f3d30f05510>,\n", | |
" u'c\\xe2mara': <gensim.models.word2vec.Vocab at 0x7f3d2d68b4d0>,\n", | |
" u'da': <gensim.models.word2vec.Vocab at 0x7f3d317d6490>,\n", | |
" u'dados': <gensim.models.word2vec.Vocab at 0x7f3d30441e90>,\n", | |
" u'dar': <gensim.models.word2vec.Vocab at 0x7f3d2e961550>,\n", | |
" u'das': <gensim.models.word2vec.Vocab at 0x7f3d305d3a50>,\n", | |
" u'data': <gensim.models.word2vec.Vocab at 0x7f3d335df690>,\n", | |
" u'de': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6390>,\n", | |
" u'decis\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2eae2690>,\n", | |
" u'defesa': <gensim.models.word2vec.Vocab at 0x7f3d2ed639d0>,\n", | |
" u'deixar': <gensim.models.word2vec.Vocab at 0x7f3d334d8890>,\n", | |
" u'deixou': <gensim.models.word2vec.Vocab at 0x7f3d2f04d750>,\n", | |
" u'dentro': <gensim.models.word2vec.Vocab at 0x7f3d30f05390>,\n", | |
" u'depois': <gensim.models.word2vec.Vocab at 0x7f3d305d3e90>,\n", | |
" u'deputado': <gensim.models.word2vec.Vocab at 0x7f3d32b91c50>,\n", | |
" u'derrota': <gensim.models.word2vec.Vocab at 0x7f3d2f7665d0>,\n", | |
" u'derrotar': <gensim.models.word2vec.Vocab at 0x7f3d33030710>,\n", | |
" u'desafio': <gensim.models.word2vec.Vocab at 0x7f3d30f05250>,\n", | |
" u'desde': <gensim.models.word2vec.Vocab at 0x7f3d330bd3d0>,\n", | |
" u'desenvolvimento': <gensim.models.word2vec.Vocab at 0x7f3d2e9614d0>,\n", | |
" u'desporto': <gensim.models.word2vec.Vocab at 0x7f3d2de5ad90>,\n", | |
" u'desta': <gensim.models.word2vec.Vocab at 0x7f3d3074cc90>,\n", | |
" u'deste': <gensim.models.word2vec.Vocab at 0x7f3d30208050>,\n", | |
" u'deu': <gensim.models.word2vec.Vocab at 0x7f3d31ae7a90>,\n", | |
" u'deve': <gensim.models.word2vec.Vocab at 0x7f3d316c4110>,\n", | |
" u'devem': <gensim.models.word2vec.Vocab at 0x7f3d32b91790>,\n", | |
" u'devido': <gensim.models.word2vec.Vocab at 0x7f3d2d9ddc10>,\n", | |
" u'dezembro': <gensim.models.word2vec.Vocab at 0x7f3d2e1c8990>,\n", | |
" u'dia': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3610>,\n", | |
" u'diante': <gensim.models.word2vec.Vocab at 0x7f3d30174650>,\n", | |
" u'dias': <gensim.models.word2vec.Vocab at 0x7f3d305d31d0>,\n", | |
" u'diego': <gensim.models.word2vec.Vocab at 0x7f3d2fc42990>,\n", | |
" u'dif\\xedcil': <gensim.models.word2vec.Vocab at 0x7f3d33030510>,\n", | |
" u'dilma': <gensim.models.word2vec.Vocab at 0x7f3d317d6510>,\n", | |
" u'direito': <gensim.models.word2vec.Vocab at 0x7f3d3239efd0>,\n", | |
" u'direitos': <gensim.models.word2vec.Vocab at 0x7f3d2f766f10>,\n", | |
" u'disputa': <gensim.models.word2vec.Vocab at 0x7f3d316c4c50>,\n", | |
" u'disputada': <gensim.models.word2vec.Vocab at 0x7f3d2debfe50>,\n", | |
" u'disse': <gensim.models.word2vec.Vocab at 0x7f3d2d6d8450>,\n", | |
" u'divulgada': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6b50>,\n", | |
" u'divulga\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d330fced0>,\n", | |
" u'divulgou': <gensim.models.word2vec.Vocab at 0x7f3d2e9599d0>,\n", | |
" u'diz': <gensim.models.word2vec.Vocab at 0x7f3d2ec85c90>,\n", | |
" u'do': <gensim.models.word2vec.Vocab at 0x7f3d317d6110>,\n", | |
" u'dois': <gensim.models.word2vec.Vocab at 0x7f3d3148cad0>,\n", | |
" u'domingo': <gensim.models.word2vec.Vocab at 0x7f3d2e5ba450>,\n", | |
" u'dos': <gensim.models.word2vec.Vocab at 0x7f3d305d3f50>,\n", | |
" u'duas': <gensim.models.word2vec.Vocab at 0x7f3d30288c90>,\n", | |
" u'duelo': <gensim.models.word2vec.Vocab at 0x7f3d33272750>,\n", | |
" u'durante': <gensim.models.word2vec.Vocab at 0x7f3d33602950>,\n", | |
" u'e': <gensim.models.word2vec.Vocab at 0x7f3d305d3450>,\n", | |
" u'edi\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d30357f10>,\n", | |
" u'eduardo': <gensim.models.word2vec.Vocab at 0x7f3d2eae2750>,\n", | |
" u'educa\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2ebc0290>,\n", | |
" u'ele': <gensim.models.word2vec.Vocab at 0x7f3d3239ef10>,\n", | |
" u'eleitoral': <gensim.models.word2vec.Vocab at 0x7f3d328593d0>,\n", | |
" u'em': <gensim.models.word2vec.Vocab at 0x7f3d2e6687d0>,\n", | |
" u'empate': <gensim.models.word2vec.Vocab at 0x7f3d3303e7d0>,\n", | |
" u'empresa': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3390>,\n", | |
" u'empresas': <gensim.models.word2vec.Vocab at 0x7f3d2e959d50>,\n", | |
" u'encontro': <gensim.models.word2vec.Vocab at 0x7f3d315c1710>,\n", | |
" u'enfrentar': <gensim.models.word2vec.Vocab at 0x7f3d2c03bb10>,\n", | |
" u'enquanto': <gensim.models.word2vec.Vocab at 0x7f3d2f5d65d0>,\n", | |
" u'entidade': <gensim.models.word2vec.Vocab at 0x7f3d315c1610>,\n", | |
" u'entre': <gensim.models.word2vec.Vocab at 0x7f3d332f7610>,\n", | |
" u'entrevista': <gensim.models.word2vec.Vocab at 0x7f3d2f7c2c90>,\n", | |
" u'equipe': <gensim.models.word2vec.Vocab at 0x7f3d2febd150>,\n", | |
" u'equipes': <gensim.models.word2vec.Vocab at 0x7f3d316c49d0>,\n", | |
" u'era': <gensim.models.word2vec.Vocab at 0x7f3d2ee77510>,\n", | |
" u'espanha': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff610>,\n", | |
" u'especial': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6890>,\n", | |
" u'espera': <gensim.models.word2vec.Vocab at 0x7f3d32761690>,\n", | |
" u'espn': <gensim.models.word2vec.Vocab at 0x7f3d2fca4290>,\n", | |
" u'esporte': <gensim.models.word2vec.Vocab at 0x7f3d30441750>,\n", | |
" u'esportes': <gensim.models.word2vec.Vocab at 0x7f3d330fc590>,\n", | |
" u'esportivo': <gensim.models.word2vec.Vocab at 0x7f3d3074c950>,\n", | |
" u'essa': <gensim.models.word2vec.Vocab at 0x7f3d32de9b10>,\n", | |
" u'esse': <gensim.models.word2vec.Vocab at 0x7f3d2df22cd0>,\n", | |
" u'est': <gensim.models.word2vec.Vocab at 0x7f3d317d6310>,\n", | |
" u'esta': <gensim.models.word2vec.Vocab at 0x7f3d32ba2210>,\n", | |
" u'estado': <gensim.models.word2vec.Vocab at 0x7f3d30357590>,\n", | |
" u'estados': <gensim.models.word2vec.Vocab at 0x7f3d2f7c2410>,\n", | |
" u'estadual': <gensim.models.word2vec.Vocab at 0x7f3d325f4f90>,\n", | |
" u'estar': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3fd0>,\n", | |
" u'estava': <gensim.models.word2vec.Vocab at 0x7f3d30174e10>,\n", | |
" u'estdio': <gensim.models.word2vec.Vocab at 0x7f3d32e23fd0>,\n", | |
" u'estdios': <gensim.models.word2vec.Vocab at 0x7f3d32e23bd0>,\n", | |
" u'este': <gensim.models.word2vec.Vocab at 0x7f3d303d3890>,\n", | |
" u'estreia': <gensim.models.word2vec.Vocab at 0x7f3d330bde50>,\n", | |
" u'est\\xe1': <gensim.models.word2vec.Vocab at 0x7f3d305d3390>,\n", | |
" u'est\\xe1dio': <gensim.models.word2vec.Vocab at 0x7f3d3303ed90>,\n", | |
" u'est\\xe1dios': <gensim.models.word2vec.Vocab at 0x7f3d2fe17b10>,\n", | |
" u'est\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d320e16d0>,\n", | |
" u'eu': <gensim.models.word2vec.Vocab at 0x7f3d2ee770d0>,\n", | |
" u'evento': <gensim.models.word2vec.Vocab at 0x7f3d305d39d0>,\n", | |
" u'exemplo': <gensim.models.word2vec.Vocab at 0x7f3d3352c150>,\n", | |
" u'facebook': <gensim.models.word2vec.Vocab at 0x7f3d2e607110>,\n", | |
" u'fala': <gensim.models.word2vec.Vocab at 0x7f3d2de763d0>,\n", | |
" u'fase': <gensim.models.word2vec.Vocab at 0x7f3d30208450>,\n", | |
" u'fato': <gensim.models.word2vec.Vocab at 0x7f3d2df22b90>,\n", | |
" u'faz': <gensim.models.word2vec.Vocab at 0x7f3d3303e950>,\n", | |
" u'fazer': <gensim.models.word2vec.Vocab at 0x7f3d2efcd910>,\n", | |
" u'federal': <gensim.models.word2vec.Vocab at 0x7f3d2e5ba2d0>,\n", | |
" u'federa\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d322b3750>,\n", | |
" u'feita': <gensim.models.word2vec.Vocab at 0x7f3d2dedfe90>,\n", | |
" u'feito': <gensim.models.word2vec.Vocab at 0x7f3d2f766450>,\n", | |
" u'felipe': <gensim.models.word2vec.Vocab at 0x7f3d315c1790>,\n", | |
" u'felip\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2db7c1d0>,\n", | |
" u'fernando': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3b90>,\n", | |
" u'festa': <gensim.models.word2vec.Vocab at 0x7f3d334d8b50>,\n", | |
" u'fev': <gensim.models.word2vec.Vocab at 0x7f3d2de76c10>,\n", | |
" u'fez': <gensim.models.word2vec.Vocab at 0x7f3d305e21d0>,\n", | |
" u'ficar': <gensim.models.word2vec.Vocab at 0x7f3d2fe17a10>,\n", | |
" u'ficou': <gensim.models.word2vec.Vocab at 0x7f3d32effc50>,\n", | |
" u'fifa': <gensim.models.word2vec.Vocab at 0x7f3d2fca4750>,\n", | |
" u'filho': <gensim.models.word2vec.Vocab at 0x7f3d3256cf10>,\n", | |
" u'fim': <gensim.models.word2vec.Vocab at 0x7f3d317d6890>,\n", | |
" u'final': <gensim.models.word2vec.Vocab at 0x7f3d2e697450>,\n", | |
" u'flamengo': <gensim.models.word2vec.Vocab at 0x7f3d31a90790>,\n", | |
" u'foi': <gensim.models.word2vec.Vocab at 0x7f3d317d6b50>,\n", | |
" u'folha': <gensim.models.word2vec.Vocab at 0x7f3d32ba2c50>,\n", | |
" u'fora': <gensim.models.word2vec.Vocab at 0x7f3d304417d0>,\n", | |
" u'foram': <gensim.models.word2vec.Vocab at 0x7f3d33602fd0>,\n", | |
" u'forma': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3a50>,\n", | |
" u'fortaleza': <gensim.models.word2vec.Vocab at 0x7f3d332a9f50>,\n", | |
" u'for\\xe7a': <gensim.models.word2vec.Vocab at 0x7f3d3303eb10>,\n", | |
" u'for\\xe7as': <gensim.models.word2vec.Vocab at 0x7f3d2fc42b50>,\n", | |
" u'foto': <gensim.models.word2vec.Vocab at 0x7f3d2db89a50>,\n", | |
" u'fotos': <gensim.models.word2vec.Vocab at 0x7f3d32b918d0>,\n", | |
" u'frente': <gensim.models.word2vec.Vocab at 0x7f3d2eae2050>,\n", | |
" u'futebol': <gensim.models.word2vec.Vocab at 0x7f3d305d37d0>,\n", | |
" u'g': <gensim.models.word2vec.Vocab at 0x7f3d2f7f3310>,\n", | |
" u'gabinete': <gensim.models.word2vec.Vocab at 0x7f3d30357cd0>,\n", | |
" u'galeria': <gensim.models.word2vec.Vocab at 0x7f3d3018ead0>,\n", | |
" u'ganhar': <gensim.models.word2vec.Vocab at 0x7f3d30288990>,\n", | |
" u'ganhou': <gensim.models.word2vec.Vocab at 0x7f3d33030750>,\n", | |
" u'garantiu': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff850>,\n", | |
" u'gastos': <gensim.models.word2vec.Vocab at 0x7f3d306c9dd0>,\n", | |
" u'gazeta': <gensim.models.word2vec.Vocab at 0x7f3d30174890>,\n", | |
" u'gente': <gensim.models.word2vec.Vocab at 0x7f3d2e959e10>,\n", | |
" u'geral': <gensim.models.word2vec.Vocab at 0x7f3d318a0390>,\n", | |
" u'gest\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2d9dd310>,\n", | |
" u'getty': <gensim.models.word2vec.Vocab at 0x7f3d31aa6910>,\n", | |
" u'globo': <gensim.models.word2vec.Vocab at 0x7f3d30441b10>,\n", | |
" u'gol': <gensim.models.word2vec.Vocab at 0x7f3d2eae2c50>,\n", | |
" u'goleiro': <gensim.models.word2vec.Vocab at 0x7f3d2caa0490>,\n", | |
" u'gols': <gensim.models.word2vec.Vocab at 0x7f3d33602bd0>,\n", | |
" u'governo': <gensim.models.word2vec.Vocab at 0x7f3d305d3e10>,\n", | |
" u'grande': <gensim.models.word2vec.Vocab at 0x7f3d2defa5d0>,\n", | |
" u'grandes': <gensim.models.word2vec.Vocab at 0x7f3d305d33d0>,\n", | |
" u'grupo': <gensim.models.word2vec.Vocab at 0x7f3d2fca41d0>,\n", | |
" u'grupos': <gensim.models.word2vec.Vocab at 0x7f3d306376d0>,\n", | |
" u'h': <gensim.models.word2vec.Vocab at 0x7f3d2f5d64d0>,\n", | |
" u'henrique': <gensim.models.word2vec.Vocab at 0x7f3d317d63d0>,\n", | |
" u'hist\\xf3ria': <gensim.models.word2vec.Vocab at 0x7f3d2eae25d0>,\n", | |
" u'hoje': <gensim.models.word2vec.Vocab at 0x7f3d305d3ad0>,\n", | |
" u'holanda': <gensim.models.word2vec.Vocab at 0x7f3d2f830690>,\n", | |
" u'hora': <gensim.models.word2vec.Vocab at 0x7f3d302080d0>,\n", | |
" u'horas': <gensim.models.word2vec.Vocab at 0x7f3d2d452550>,\n", | |
" u'horizonte': <gensim.models.word2vec.Vocab at 0x7f3d2f477950>,\n", | |
" u'h\\xe1': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6650>,\n", | |
" u'ida': <gensim.models.word2vec.Vocab at 0x7f3d30420fd0>,\n", | |
" u'ig': <gensim.models.word2vec.Vocab at 0x7f3d32b91e10>,\n", | |
" u'images': <gensim.models.word2vec.Vocab at 0x7f3d31aa68d0>,\n", | |
" u'importante': <gensim.models.word2vec.Vocab at 0x7f3d30420090>,\n", | |
" u'import\\xe2ncia': <gensim.models.word2vec.Vocab at 0x7f3d2d9dd210>,\n", | |
" u'imprensa': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6750>,\n", | |
" u'informa\\xe7\\xf5es': <gensim.models.word2vec.Vocab at 0x7f3d32effc90>,\n", | |
" u'informou': <gensim.models.word2vec.Vocab at 0x7f3d2e697a50>,\n", | |
" u'inglaterra': <gensim.models.word2vec.Vocab at 0x7f3d305e7110>,\n", | |
" u'ingl\\xeas': <gensim.models.word2vec.Vocab at 0x7f3d3271e210>,\n", | |
" u'ingressos': <gensim.models.word2vec.Vocab at 0x7f3d326b0a10>,\n", | |
" u'instituto': <gensim.models.word2vec.Vocab at 0x7f3d2fe17e50>,\n", | |
" u'inter': <gensim.models.word2vec.Vocab at 0x7f3d3239e790>,\n", | |
" u'internacional': <gensim.models.word2vec.Vocab at 0x7f3d2ffeb750>,\n", | |
" u'internet': <gensim.models.word2vec.Vocab at 0x7f3d31fe3d90>,\n", | |
" u'in\\xedcio': <gensim.models.word2vec.Vocab at 0x7f3d305d34d0>,\n", | |
" u'isso': <gensim.models.word2vec.Vocab at 0x7f3d32b9a510>,\n", | |
" u'italiano': <gensim.models.word2vec.Vocab at 0x7f3d2f8304d0>,\n", | |
" u'it\\xe1lia': <gensim.models.word2vec.Vocab at 0x7f3d31c34e10>,\n", | |
" u'j': <gensim.models.word2vec.Vocab at 0x7f3d2fca4a90>,\n", | |
" u'jan': <gensim.models.word2vec.Vocab at 0x7f3d31a90d50>,\n", | |
" u'janeiro': <gensim.models.word2vec.Vocab at 0x7f3d2f7c2a50>,\n", | |
" u'jogador': <gensim.models.word2vec.Vocab at 0x7f3d3018e390>,\n", | |
" u'jogadores': <gensim.models.word2vec.Vocab at 0x7f3d2db7c610>,\n", | |
" u'jogar': <gensim.models.word2vec.Vocab at 0x7f3d306c94d0>,\n", | |
" u'jogo': <gensim.models.word2vec.Vocab at 0x7f3d302088d0>,\n", | |
" u'jogos': <gensim.models.word2vec.Vocab at 0x7f3d2ffeb050>,\n", | |
" u'jornal': <gensim.models.word2vec.Vocab at 0x7f3d2e256dd0>,\n", | |
" u'jornalista': <gensim.models.word2vec.Vocab at 0x7f3d2debf1d0>,\n", | |
" u'jos\\xe9': <gensim.models.word2vec.Vocab at 0x7f3d2fe17190>,\n", | |
" u'jo\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2d4528d0>,\n", | |
" u'julho': <gensim.models.word2vec.Vocab at 0x7f3d3088d090>,\n", | |
" u'junho': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6090>,\n", | |
" u'justi\\xe7a': <gensim.models.word2vec.Vocab at 0x7f3d2efbd910>,\n", | |
" u'juventude': <gensim.models.word2vec.Vocab at 0x7f3d2de5a090>,\n", | |
" u'j\\xe1': <gensim.models.word2vec.Vocab at 0x7f3d305d3650>,\n", | |
" u'j\\xe9r\\xf4me': <gensim.models.word2vec.Vocab at 0x7f3d2edfe390>,\n", | |
" u'lado': <gensim.models.word2vec.Vocab at 0x7f3d306c9a50>,\n", | |
" u'lei': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3150>,\n", | |
" u'leia': <gensim.models.word2vec.Vocab at 0x7f3d332f7c50>,\n", | |
" u'les\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d330bd5d0>,\n", | |
" u'levar': <gensim.models.word2vec.Vocab at 0x7f3d315f8ed0>,\n", | |
" u'libertadores': <gensim.models.word2vec.Vocab at 0x7f3d2fc42650>,\n", | |
" u'liga': <gensim.models.word2vec.Vocab at 0x7f3d32aa14d0>,\n", | |
" u'lista': <gensim.models.word2vec.Vocab at 0x7f3d30f61910>,\n", | |
" u'locais': <gensim.models.word2vec.Vocab at 0x7f3d305e7210>,\n", | |
" u'local': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6790>,\n", | |
" u'logo': <gensim.models.word2vec.Vocab at 0x7f3d3148c890>,\n", | |
" u'lucro': <gensim.models.word2vec.Vocab at 0x7f3d2f7f34d0>,\n", | |
" u'lugar': <gensim.models.word2vec.Vocab at 0x7f3d30791f10>,\n", | |
" u'luis': <gensim.models.word2vec.Vocab at 0x7f3d32ba2fd0>,\n", | |
" u'luiz': <gensim.models.word2vec.Vocab at 0x7f3d335df6d0>,\n", | |
" u'luta': <gensim.models.word2vec.Vocab at 0x7f3d2e7a30d0>,\n", | |
" u'madrid': <gensim.models.word2vec.Vocab at 0x7f3d3303e5d0>,\n", | |
" u'maio': <gensim.models.word2vec.Vocab at 0x7f3d32d63890>,\n", | |
" u'maior': <gensim.models.word2vec.Vocab at 0x7f3d30441810>,\n", | |
" u'mais': <gensim.models.word2vec.Vocab at 0x7f3d332f7410>,\n", | |
" u'manaus': <gensim.models.word2vec.Vocab at 0x7f3d32de9750>,\n", | |
" u'manh\\xe3': <gensim.models.word2vec.Vocab at 0x7f3d315c15d0>,\n", | |
" u'manifesta\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2d6d8e50>,\n", | |
" u'manifesta\\xe7\\xf5es': <gensim.models.word2vec.Vocab at 0x7f3d2fe77a50>,\n", | |
" u'mar': <gensim.models.word2vec.Vocab at 0x7f3d2debf050>,\n", | |
" u'maracan\\xe3': <gensim.models.word2vec.Vocab at 0x7f3d2e5ba1d0>,\n", | |
" u'marca': <gensim.models.word2vec.Vocab at 0x7f3d2f7c2050>,\n", | |
" u'marcos': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff090>,\n", | |
" u'marcou': <gensim.models.word2vec.Vocab at 0x7f3d3256c110>,\n", | |
" u'mar\\xe7o': <gensim.models.word2vec.Vocab at 0x7f3d2e1ce210>,\n", | |
" u'mas': <gensim.models.word2vec.Vocab at 0x7f3d30441c50>,\n", | |
" u'meia': <gensim.models.word2vec.Vocab at 0x7f3d30942f90>,\n", | |
" u'meio': <gensim.models.word2vec.Vocab at 0x7f3d2fca42d0>,\n", | |
" u'melhor': <gensim.models.word2vec.Vocab at 0x7f3d30357110>,\n", | |
" u'melhores': <gensim.models.word2vec.Vocab at 0x7f3d2d7ffe90>,\n", | |
" u'menos': <gensim.models.word2vec.Vocab at 0x7f3d2d452890>,\n", | |
" u'mercado': <gensim.models.word2vec.Vocab at 0x7f3d31ae7550>,\n", | |
" u'meses': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6910>,\n", | |
" u'mesmo': <gensim.models.word2vec.Vocab at 0x7f3d304cea90>,\n", | |
" u'messi': <gensim.models.word2vec.Vocab at 0x7f3d3018e710>,\n", | |
" u'mil': <gensim.models.word2vec.Vocab at 0x7f3d332f7210>,\n", | |
" u'milh\\xf5es': <gensim.models.word2vec.Vocab at 0x7f3d2f7662d0>,\n", | |
" u'militar': <gensim.models.word2vec.Vocab at 0x7f3d3099eb50>,\n", | |
" u'militares': <gensim.models.word2vec.Vocab at 0x7f3d32d634d0>,\n", | |
" u'minha': <gensim.models.word2vec.Vocab at 0x7f3d2db89790>,\n", | |
" u'ministro': <gensim.models.word2vec.Vocab at 0x7f3d3088d310>,\n", | |
" u'minist\\xe9rio': <gensim.models.word2vec.Vocab at 0x7f3d2d9dd7d0>,\n", | |
" u'minutos': <gensim.models.word2vec.Vocab at 0x7f3d2dedf650>,\n", | |
" u'momento': <gensim.models.word2vec.Vocab at 0x7f3d2efbd790>,\n", | |
" u'moradores': <gensim.models.word2vec.Vocab at 0x7f3d2e959550>,\n", | |
" u'morte': <gensim.models.word2vec.Vocab at 0x7f3d2f04de50>,\n", | |
" u'mostra': <gensim.models.word2vec.Vocab at 0x7f3d3074c650>,\n", | |
" u'mostrou': <gensim.models.word2vec.Vocab at 0x7f3d2ee773d0>,\n", | |
" u'movimento': <gensim.models.word2vec.Vocab at 0x7f3d2df22fd0>,\n", | |
" u'movimentos': <gensim.models.word2vec.Vocab at 0x7f3d2ebc0dd0>,\n", | |
" u'muita': <gensim.models.word2vec.Vocab at 0x7f3d2c03bed0>,\n", | |
" u'muito': <gensim.models.word2vec.Vocab at 0x7f3d2fca4690>,\n", | |
" u'muitos': <gensim.models.word2vec.Vocab at 0x7f3d30001710>,\n", | |
" u'mundial': <gensim.models.word2vec.Vocab at 0x7f3d305d3810>,\n", | |
" u'mundo': <gensim.models.word2vec.Vocab at 0x7f3d317d6f50>,\n", | |
" u'municipal': <gensim.models.word2vec.Vocab at 0x7f3d32ba2050>,\n", | |
" u'm\\xe9xico': <gensim.models.word2vec.Vocab at 0x7f3d305d3f90>,\n", | |
" u'm\\xeas': <gensim.models.word2vec.Vocab at 0x7f3d320e12d0>,\n", | |
" u'm\\xeddia': <gensim.models.word2vec.Vocab at 0x7f3d305e7590>,\n", | |
" u'm\\xfasica': <gensim.models.word2vec.Vocab at 0x7f3d30208c10>,\n", | |
" u'na': <gensim.models.word2vec.Vocab at 0x7f3d317d6d50>,\n", | |
" u'nacional': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3d50>,\n", | |
" u'nas': <gensim.models.word2vec.Vocab at 0x7f3d305d3150>,\n", | |
" u'natal': <gensim.models.word2vec.Vocab at 0x7f3d2fe17c10>,\n", | |
" u'nelson': <gensim.models.word2vec.Vocab at 0x7f3d2df41550>,\n", | |
" u'nem': <gensim.models.word2vec.Vocab at 0x7f3d3239e290>,\n", | |
" u'nessa': <gensim.models.word2vec.Vocab at 0x7f3d335884d0>,\n", | |
" u'nesta': <gensim.models.word2vec.Vocab at 0x7f3d332f7a90>,\n", | |
" u'neste': <gensim.models.word2vec.Vocab at 0x7f3d2e5bae10>,\n", | |
" u'neymar': <gensim.models.word2vec.Vocab at 0x7f3d32ed3250>,\n", | |
" u'nig\\xe9ria': <gensim.models.word2vec.Vocab at 0x7f3d3303e290>,\n", | |
" u'no': <gensim.models.word2vec.Vocab at 0x7f3d317d6b10>,\n", | |
" u'noite': <gensim.models.word2vec.Vocab at 0x7f3d2fca49d0>,\n", | |
" u'nordeste': <gensim.models.word2vec.Vocab at 0x7f3d332f72d0>,\n", | |
" u'norte': <gensim.models.word2vec.Vocab at 0x7f3d320e1090>,\n", | |
" u'nos': <gensim.models.word2vec.Vocab at 0x7f3d3074ce50>,\n", | |
" u'nossa': <gensim.models.word2vec.Vocab at 0x7f3d2c03b250>,\n", | |
" u'nosso': <gensim.models.word2vec.Vocab at 0x7f3d2e1ceb10>,\n", | |
" u'nova': <gensim.models.word2vec.Vocab at 0x7f3d32ed3cd0>,\n", | |
" u'novo': <gensim.models.word2vec.Vocab at 0x7f3d2df220d0>,\n", | |
" u'novos': <gensim.models.word2vec.Vocab at 0x7f3d2efcd850>,\n", | |
" u'nunca': <gensim.models.word2vec.Vocab at 0x7f3d2f246110>,\n", | |
" u'n\\xe1utico': <gensim.models.word2vec.Vocab at 0x7f3d2c03b2d0>,\n", | |
" u'n\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2fca4390>,\n", | |
" u'o': <gensim.models.word2vec.Vocab at 0x7f3d317d68d0>,\n", | |
" u'objetivo': <gensim.models.word2vec.Vocab at 0x7f3d2e5ba910>,\n", | |
" u'obra': <gensim.models.word2vec.Vocab at 0x7f3d30288810>,\n", | |
" u'obras': <gensim.models.word2vec.Vocab at 0x7f3d305d3f10>,\n", | |
" u'oficial': <gensim.models.word2vec.Vocab at 0x7f3d33bc1090>,\n", | |
" u'oitavas': <gensim.models.word2vec.Vocab at 0x7f3d30637110>,\n", | |
" u'on': <gensim.models.word2vec.Vocab at 0x7f3d305e7fd0>,\n", | |
" u'onde': <gensim.models.word2vec.Vocab at 0x7f3d2e108ad0>,\n", | |
" u'online': <gensim.models.word2vec.Vocab at 0x7f3d2e9fa8d0>,\n", | |
" u'ontem': <gensim.models.word2vec.Vocab at 0x7f3d2fca4610>,\n", | |
" u'opera\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2fc42110>,\n", | |
" u'organiza\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d317d66d0>,\n", | |
" u'os': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6210>,\n", | |
" u'ou': <gensim.models.word2vec.Vocab at 0x7f3d33bde390>,\n", | |
" u'outras': <gensim.models.word2vec.Vocab at 0x7f3d33c31cd0>,\n", | |
" u'outro': <gensim.models.word2vec.Vocab at 0x7f3d316c45d0>,\n", | |
" u'outros': <gensim.models.word2vec.Vocab at 0x7f3d330fc4d0>,\n", | |
" u'outubro': <gensim.models.word2vec.Vocab at 0x7f3d2d7ffd50>,\n", | |
" u'para': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6f10>,\n", | |
" u'parceria': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3510>,\n", | |
" u'parte': <gensim.models.word2vec.Vocab at 0x7f3d305d3350>,\n", | |
" u'partida': <gensim.models.word2vec.Vocab at 0x7f3d332f7d10>,\n", | |
" u'partidas': <gensim.models.word2vec.Vocab at 0x7f3d32effbd0>,\n", | |
" u'partido': <gensim.models.word2vec.Vocab at 0x7f3d325f4d50>,\n", | |
" u'partir': <gensim.models.word2vec.Vocab at 0x7f3d334d8bd0>,\n", | |
" u'pas': <gensim.models.word2vec.Vocab at 0x7f3d2fca4ad0>,\n", | |
" u'passado': <gensim.models.word2vec.Vocab at 0x7f3d2f7f3710>,\n", | |
" u'passou': <gensim.models.word2vec.Vocab at 0x7f3d2e959f90>,\n", | |
" u'paulista': <gensim.models.word2vec.Vocab at 0x7f3d2efbda90>,\n", | |
" u'paulo': <gensim.models.word2vec.Vocab at 0x7f3d317d6b90>,\n", | |
" u'pa\\xeds': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6cd0>,\n", | |
" u'pa\\xedses': <gensim.models.word2vec.Vocab at 0x7f3d2e5bab90>,\n", | |
" u'pedro': <gensim.models.word2vec.Vocab at 0x7f3d30507e50>,\n", | |
" u'pela': <gensim.models.word2vec.Vocab at 0x7f3d332f7910>,\n", | |
" u'pelas': <gensim.models.word2vec.Vocab at 0x7f3d33272450>,\n", | |
" u'pelo': <gensim.models.word2vec.Vocab at 0x7f3d317d6e50>,\n", | |
" u'pelos': <gensim.models.word2vec.Vocab at 0x7f3d3256c290>,\n", | |
" u'pernambucano': <gensim.models.word2vec.Vocab at 0x7f3d32296ed0>,\n", | |
" u'pernambuco': <gensim.models.word2vec.Vocab at 0x7f3d316c4950>,\n", | |
" u'perto': <gensim.models.word2vec.Vocab at 0x7f3d3262a310>,\n", | |
" u'per\\xedodo': <gensim.models.word2vec.Vocab at 0x7f3d2f033090>,\n", | |
" u'pesquisa': <gensim.models.word2vec.Vocab at 0x7f3d305e7dd0>,\n", | |
" u'pessoas': <gensim.models.word2vec.Vocab at 0x7f3d33bc1110>,\n", | |
" u'pituca': <gensim.models.word2vec.Vocab at 0x7f3d328599d0>,\n", | |
" u'plano': <gensim.models.word2vec.Vocab at 0x7f3d2e9611d0>,\n", | |
" u'pode': <gensim.models.word2vec.Vocab at 0x7f3d30f053d0>,\n", | |
" u'podem': <gensim.models.word2vec.Vocab at 0x7f3d32aa1750>,\n", | |
" u'poder': <gensim.models.word2vec.Vocab at 0x7f3d3074cd10>,\n", | |
" u'poder\\xe1': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff210>,\n", | |
" u'policiais': <gensim.models.word2vec.Vocab at 0x7f3d2f7c2810>,\n", | |
" u'pol\\xedcia': <gensim.models.word2vec.Vocab at 0x7f3d30001c10>,\n", | |
" u'pol\\xedtica': <gensim.models.word2vec.Vocab at 0x7f3d2e6cee10>,\n", | |
" u'ponto': <gensim.models.word2vec.Vocab at 0x7f3d2e1ceed0>,\n", | |
" u'pontos': <gensim.models.word2vec.Vocab at 0x7f3d330fccd0>,\n", | |
" u'popular': <gensim.models.word2vec.Vocab at 0x7f3d2ed63910>,\n", | |
" u'popula\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d334d82d0>,\n", | |
" u'por': <gensim.models.word2vec.Vocab at 0x7f3d2fca40d0>,\n", | |
" u'porque': <gensim.models.word2vec.Vocab at 0x7f3d2caa0dd0>,\n", | |
" u'porto': <gensim.models.word2vec.Vocab at 0x7f3d30208310>,\n", | |
" u'portugal': <gensim.models.word2vec.Vocab at 0x7f3d2f7660d0>,\n", | |
" u'possibilidade': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6ad0>,\n", | |
" u'pouco': <gensim.models.word2vec.Vocab at 0x7f3d305d3610>,\n", | |
" u'povo': <gensim.models.word2vec.Vocab at 0x7f3d316c4cd0>,\n", | |
" u'praticamente': <gensim.models.word2vec.Vocab at 0x7f3d2f766310>,\n", | |
" u'prefeitura': <gensim.models.word2vec.Vocab at 0x7f3d2d9ddf50>,\n", | |
" u'prepara\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d3303e510>,\n", | |
" u'presidenta': <gensim.models.word2vec.Vocab at 0x7f3d317d6850>,\n", | |
" u'presidente': <gensim.models.word2vec.Vocab at 0x7f3d305e2890>,\n", | |
" u'press': <gensim.models.word2vec.Vocab at 0x7f3d32a3d490>,\n", | |
" u'primeira': <gensim.models.word2vec.Vocab at 0x7f3d332f7990>,\n", | |
" u'primeiro': <gensim.models.word2vec.Vocab at 0x7f3d316c4210>,\n", | |
" u'primeiros': <gensim.models.word2vec.Vocab at 0x7f3d2e1cef50>,\n", | |
" u'principais': <gensim.models.word2vec.Vocab at 0x7f3d32b91f10>,\n", | |
" u'principal': <gensim.models.word2vec.Vocab at 0x7f3d2e1ce3d0>,\n", | |
" u'problemas': <gensim.models.word2vec.Vocab at 0x7f3d330fc1d0>,\n", | |
" u'processo': <gensim.models.word2vec.Vocab at 0x7f3d2e959e50>,\n", | |
" u'programa': <gensim.models.word2vec.Vocab at 0x7f3d2d9ddfd0>,\n", | |
" u'projeto': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6290>,\n", | |
" u'promovida': <gensim.models.word2vec.Vocab at 0x7f3d30357b50>,\n", | |
" u'protesto': <gensim.models.word2vec.Vocab at 0x7f3d2f7f3e10>,\n", | |
" u'protestos': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff710>,\n", | |
" u'pr\\xf3xima': <gensim.models.word2vec.Vocab at 0x7f3d2fc429d0>,\n", | |
" u'pr\\xf3ximo': <gensim.models.word2vec.Vocab at 0x7f3d2eae29d0>,\n", | |
" u'pt': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3450>,\n", | |
" u'publicado': <gensim.models.word2vec.Vocab at 0x7f3d2f5a36d0>,\n", | |
" u'p\\xfablica': <gensim.models.word2vec.Vocab at 0x7f3d306c9e90>,\n", | |
" u'p\\xfablico': <gensim.models.word2vec.Vocab at 0x7f3d30441410>,\n", | |
" u'p\\xfablicos': <gensim.models.word2vec.Vocab at 0x7f3d2e959650>,\n", | |
" u'qual': <gensim.models.word2vec.Vocab at 0x7f3d32b91610>,\n", | |
" u'qualquer': <gensim.models.word2vec.Vocab at 0x7f3d3239e990>,\n", | |
" u'quando': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6e90>,\n", | |
" u'quarta-feira': <gensim.models.word2vec.Vocab at 0x7f3d32e23450>,\n", | |
" u'quartas': <gensim.models.word2vec.Vocab at 0x7f3d304dd210>,\n", | |
" u'quase': <gensim.models.word2vec.Vocab at 0x7f3d305d3690>,\n", | |
" u'quatro': <gensim.models.word2vec.Vocab at 0x7f3d33bc11d0>,\n", | |
" u'que': <gensim.models.word2vec.Vocab at 0x7f3d317d6190>,\n", | |
" u'quem': <gensim.models.word2vec.Vocab at 0x7f3d2d183e10>,\n", | |
" u'quer': <gensim.models.word2vec.Vocab at 0x7f3d2e5baad0>,\n", | |
" u'quinta-feira': <gensim.models.word2vec.Vocab at 0x7f3d2f5a30d0>,\n", | |
" u'r': <gensim.models.word2vec.Vocab at 0x7f3d30420490>,\n", | |
" u'real': <gensim.models.word2vec.Vocab at 0x7f3d3303e650>,\n", | |
" u'realizada': <gensim.models.word2vec.Vocab at 0x7f3d303572d0>,\n", | |
" u'realizado': <gensim.models.word2vec.Vocab at 0x7f3d3074c610>,\n", | |
" u'realizados': <gensim.models.word2vec.Vocab at 0x7f3d2e959ad0>,\n", | |
" u'realiza\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d305d3850>,\n", | |
" u'receber': <gensim.models.word2vec.Vocab at 0x7f3d2defa290>,\n", | |
" u'recebeu': <gensim.models.word2vec.Vocab at 0x7f3d330bd1d0>,\n", | |
" u'recife': <gensim.models.word2vec.Vocab at 0x7f3d327619d0>,\n", | |
" u'rede': <gensim.models.word2vec.Vocab at 0x7f3d305e7610>,\n", | |
" u'redes': <gensim.models.word2vec.Vocab at 0x7f3d30441490>,\n", | |
" u'regi\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d33bc1190>,\n", | |
" u'rela\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d304dd8d0>,\n", | |
" u'reprodu\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2efbda10>,\n", | |
" u'resultado': <gensim.models.word2vec.Vocab at 0x7f3d3303e8d0>,\n", | |
" u'resultados': <gensim.models.word2vec.Vocab at 0x7f3d2fca4910>,\n", | |
" u'reuters': <gensim.models.word2vec.Vocab at 0x7f3d2f04d5d0>,\n", | |
" u'revista': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3490>,\n", | |
" u'rica': <gensim.models.word2vec.Vocab at 0x7f3d2f32eed0>,\n", | |
" u'rio': <gensim.models.word2vec.Vocab at 0x7f3d303570d0>,\n", | |
" u'rodada': <gensim.models.word2vec.Vocab at 0x7f3d2de76210>,\n", | |
" u'ronaldo': <gensim.models.word2vec.Vocab at 0x7f3d2f766610>,\n", | |
" u'rousseff': <gensim.models.word2vec.Vocab at 0x7f3d317d6990>,\n", | |
" u'rs': <gensim.models.word2vec.Vocab at 0x7f3d317d6fd0>,\n", | |
" u'ruas': <gensim.models.word2vec.Vocab at 0x7f3d33602690>,\n", | |
" u's': <gensim.models.word2vec.Vocab at 0x7f3d30441fd0>,\n", | |
" u'salvador': <gensim.models.word2vec.Vocab at 0x7f3d2f7661d0>,\n", | |
" u'santa': <gensim.models.word2vec.Vocab at 0x7f3d32bad710>,\n", | |
" u'santos': <gensim.models.word2vec.Vocab at 0x7f3d30288650>,\n", | |
" u'sa\\xfade': <gensim.models.word2vec.Vocab at 0x7f3d31a902d0>,\n", | |
" u'scolari': <gensim.models.word2vec.Vocab at 0x7f3d2e6bcfd0>,\n", | |
" u'se': <gensim.models.word2vec.Vocab at 0x7f3d305d3b90>,\n", | |
" u'secretaria': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3710>,\n", | |
" u'secret\\xe1rio': <gensim.models.word2vec.Vocab at 0x7f3d306466d0>,\n", | |
" u'secret\\xe1rio-geral': <gensim.models.word2vec.Vocab at 0x7f3d32761050>,\n", | |
" u'sede': <gensim.models.word2vec.Vocab at 0x7f3d315c1250>,\n", | |
" u'sedes': <gensim.models.word2vec.Vocab at 0x7f3d32e23890>,\n", | |
" u'segunda': <gensim.models.word2vec.Vocab at 0x7f3d30208f90>,\n", | |
" u'segunda-feira': <gensim.models.word2vec.Vocab at 0x7f3d320e1dd0>,\n", | |
" u'segundo': <gensim.models.word2vec.Vocab at 0x7f3d32b91710>,\n", | |
" u'seguran\\xe7a': <gensim.models.word2vec.Vocab at 0x7f3d302084d0>,\n", | |
" u'seis': <gensim.models.word2vec.Vocab at 0x7f3d2ed63c50>,\n", | |
" u'seja': <gensim.models.word2vec.Vocab at 0x7f3d2f7c2d90>,\n", | |
" u'seleo': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff190>,\n", | |
" u'sele\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6b10>,\n", | |
" u'sele\\xe7\\xf5es': <gensim.models.word2vec.Vocab at 0x7f3d316c4bd0>,\n", | |
" u'sem': <gensim.models.word2vec.Vocab at 0x7f3d2eae2e10>,\n", | |
" u'semana': <gensim.models.word2vec.Vocab at 0x7f3d2fca4f50>,\n", | |
" u'semifinais': <gensim.models.word2vec.Vocab at 0x7f3d2debf890>,\n", | |
" u'semifinal': <gensim.models.word2vec.Vocab at 0x7f3d3269b2d0>,\n", | |
" u'sempre': <gensim.models.word2vec.Vocab at 0x7f3d31ae73d0>,\n", | |
" u'sendo': <gensim.models.word2vec.Vocab at 0x7f3d2e5bac90>,\n", | |
" u'ser': <gensim.models.word2vec.Vocab at 0x7f3d3074c290>,\n", | |
" u'seria': <gensim.models.word2vec.Vocab at 0x7f3d32de9cd0>,\n", | |
" u'servi\\xe7os': <gensim.models.word2vec.Vocab at 0x7f3d2caa0b10>,\n", | |
" u'ser\\xe1': <gensim.models.word2vec.Vocab at 0x7f3d32bad350>,\n", | |
" u'ser\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d3264d9d0>,\n", | |
" u'sete': <gensim.models.word2vec.Vocab at 0x7f3d2f5d61d0>,\n", | |
" u'setor': <gensim.models.word2vec.Vocab at 0x7f3d2cfcd890>,\n", | |
" u'seu': <gensim.models.word2vec.Vocab at 0x7f3d2fca4050>,\n", | |
" u'seus': <gensim.models.word2vec.Vocab at 0x7f3d2fca4510>,\n", | |
" u'sexta-feira': <gensim.models.word2vec.Vocab at 0x7f3d32f87250>,\n", | |
" u'sido': <gensim.models.word2vec.Vocab at 0x7f3d2f7f3250>,\n", | |
" u'silva': <gensim.models.word2vec.Vocab at 0x7f3d32ba2750>,\n", | |
" u'site': <gensim.models.word2vec.Vocab at 0x7f3d302081d0>,\n", | |
" u'situa\\xe7\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d32b91dd0>,\n", | |
" u'so': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3810>,\n", | |
" u'sobre': <gensim.models.word2vec.Vocab at 0x7f3d305d3a10>,\n", | |
" u'sociais': <gensim.models.word2vec.Vocab at 0x7f3d3074c550>,\n", | |
" u'social': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3090>,\n", | |
" u'sociedade': <gensim.models.word2vec.Vocab at 0x7f3d2f830250>,\n", | |
" u'sorteio': <gensim.models.word2vec.Vocab at 0x7f3d2fe77310>,\n", | |
" u'source': <gensim.models.word2vec.Vocab at 0x7f3d32db5cd0>,\n", | |
" u'sp': <gensim.models.word2vec.Vocab at 0x7f3d2fe17bd0>,\n", | |
" u'sport': <gensim.models.word2vec.Vocab at 0x7f3d332f7850>,\n", | |
" u'sportv': <gensim.models.word2vec.Vocab at 0x7f3d31a90a10>,\n", | |
" u'sua': <gensim.models.word2vec.Vocab at 0x7f3d317d6a10>,\n", | |
" u'suas': <gensim.models.word2vec.Vocab at 0x7f3d30f05cd0>,\n", | |
" u'sucesso': <gensim.models.word2vec.Vocab at 0x7f3d317d6550>,\n", | |
" u'sul': <gensim.models.word2vec.Vocab at 0x7f3d30357650>,\n", | |
" u'su\\xe1rez': <gensim.models.word2vec.Vocab at 0x7f3d2f830950>,\n", | |
" u's\\xe1bado': <gensim.models.word2vec.Vocab at 0x7f3d306c97d0>,\n", | |
" u's\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d317d6250>,\n", | |
" u's\\xe9rie': <gensim.models.word2vec.Vocab at 0x7f3d330fc8d0>,\n", | |
" u's\\xf3': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff390>,\n", | |
" u'tamb\\xe9m': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3310>,\n", | |
" u'tarde': <gensim.models.word2vec.Vocab at 0x7f3d316c47d0>,\n", | |
" u'tem': <gensim.models.word2vec.Vocab at 0x7f3d2defa1d0>,\n", | |
" u'tempo': <gensim.models.word2vec.Vocab at 0x7f3d32ed3110>,\n", | |
" u'temporada': <gensim.models.word2vec.Vocab at 0x7f3d31ae7b90>,\n", | |
" u'ter': <gensim.models.word2vec.Vocab at 0x7f3d3074c0d0>,\n", | |
" u'tera-feira': <gensim.models.word2vec.Vocab at 0x7f3d332f7b50>,\n", | |
" u'terminou': <gensim.models.word2vec.Vocab at 0x7f3d3099e8d0>,\n", | |
" u'ter\\xe1': <gensim.models.word2vec.Vocab at 0x7f3d2efcdc50>,\n", | |
" u'ter\\xe7a-feira': <gensim.models.word2vec.Vocab at 0x7f3d3018ebd0>,\n", | |
" u'teve': <gensim.models.word2vec.Vocab at 0x7f3d306c9fd0>,\n", | |
" u'texto': <gensim.models.word2vec.Vocab at 0x7f3d32bbca10>,\n", | |
" u'the': <gensim.models.word2vec.Vocab at 0x7f3d2d6d8310>,\n", | |
" u'time': <gensim.models.word2vec.Vocab at 0x7f3d2e23f510>,\n", | |
" u'tinha': <gensim.models.word2vec.Vocab at 0x7f3d31ae7c90>,\n", | |
" u'todas': <gensim.models.word2vec.Vocab at 0x7f3d32d68950>,\n", | |
" u'todo': <gensim.models.word2vec.Vocab at 0x7f3d2fca44d0>,\n", | |
" u'todos': <gensim.models.word2vec.Vocab at 0x7f3d2fe17890>,\n", | |
" u'torcedor': <gensim.models.word2vec.Vocab at 0x7f3d32aa1f50>,\n", | |
" u'torcedores': <gensim.models.word2vec.Vocab at 0x7f3d32e235d0>,\n", | |
" u'torcida': <gensim.models.word2vec.Vocab at 0x7f3d315f8350>,\n", | |
" u'torneio': <gensim.models.word2vec.Vocab at 0x7f3d326b06d0>,\n", | |
" u'trabalhadores': <gensim.models.word2vec.Vocab at 0x7f3d2e1c80d0>,\n", | |
" u'trabalho': <gensim.models.word2vec.Vocab at 0x7f3d33030150>,\n", | |
" u'treinador': <gensim.models.word2vec.Vocab at 0x7f3d2f230250>,\n", | |
" u'tribunal': <gensim.models.word2vec.Vocab at 0x7f3d2d6d8810>,\n", | |
" u'tr\\xeas': <gensim.models.word2vec.Vocab at 0x7f3d2e1c8810>,\n", | |
" u'tudo': <gensim.models.word2vec.Vocab at 0x7f3d30f05dd0>,\n", | |
" u'turismo': <gensim.models.word2vec.Vocab at 0x7f3d2e5ba710>,\n", | |
" u'turistas': <gensim.models.word2vec.Vocab at 0x7f3d30357c10>,\n", | |
" u'tv': <gensim.models.word2vec.Vocab at 0x7f3d3074cb50>,\n", | |
" u'twitter': <gensim.models.word2vec.Vocab at 0x7f3d2ffeb090>,\n", | |
" u't\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d2fca4d10>,\n", | |
" u't\\xe9cnica': <gensim.models.word2vec.Vocab at 0x7f3d2f6020d0>,\n", | |
" u't\\xe9cnico': <gensim.models.word2vec.Vocab at 0x7f3d315c17d0>,\n", | |
" u't\\xeam': <gensim.models.word2vec.Vocab at 0x7f3d319980d0>,\n", | |
" u't\\xedtulo': <gensim.models.word2vec.Vocab at 0x7f3d2caa0710>,\n", | |
" u'ufc': <gensim.models.word2vec.Vocab at 0x7f3d328591d0>,\n", | |
" u'um': <gensim.models.word2vec.Vocab at 0x7f3d305d3c50>,\n", | |
" u'uma': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6e10>,\n", | |
" u'unidos': <gensim.models.word2vec.Vocab at 0x7f3d3088dbd0>,\n", | |
" u'universidade': <gensim.models.word2vec.Vocab at 0x7f3d2e5ba290>,\n", | |
" u'uruguai': <gensim.models.word2vec.Vocab at 0x7f3d2ed63590>,\n", | |
" u'vaga': <gensim.models.word2vec.Vocab at 0x7f3d30420ed0>,\n", | |
" u'vai': <gensim.models.word2vec.Vocab at 0x7f3d2fca4110>,\n", | |
" u'valcke': <gensim.models.word2vec.Vocab at 0x7f3d2f830790>,\n", | |
" u'valor': <gensim.models.word2vec.Vocab at 0x7f3d2f7f32d0>,\n", | |
" u'veja': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3f50>,\n", | |
" u'vem': <gensim.models.word2vec.Vocab at 0x7f3d2fca43d0>,\n", | |
" u'vencer': <gensim.models.word2vec.Vocab at 0x7f3d2fc42710>,\n", | |
" u'venceu': <gensim.models.word2vec.Vocab at 0x7f3d2f766390>,\n", | |
" u'venda': <gensim.models.word2vec.Vocab at 0x7f3d31fe3690>,\n", | |
" u'ver': <gensim.models.word2vec.Vocab at 0x7f3d2f5d6490>,\n", | |
" u'vez': <gensim.models.word2vec.Vocab at 0x7f3d3074c690>,\n", | |
" u'vezes': <gensim.models.word2vec.Vocab at 0x7f3d2f766a90>,\n", | |
" u'vida': <gensim.models.word2vec.Vocab at 0x7f3d31b64c50>,\n", | |
" u'visitantes': <gensim.models.word2vec.Vocab at 0x7f3d30420890>,\n", | |
" u'vit\\xf3ria': <gensim.models.word2vec.Vocab at 0x7f3d2d7ff310>,\n", | |
" u'voc\\xea': <gensim.models.word2vec.Vocab at 0x7f3d30791610>,\n", | |
" u'volta': <gensim.models.word2vec.Vocab at 0x7f3d317d69d0>,\n", | |
" u'voos': <gensim.models.word2vec.Vocab at 0x7f3d2efcde90>,\n", | |
" u'v\\xe3o': <gensim.models.word2vec.Vocab at 0x7f3d316c4f90>,\n", | |
" u'v\\xeddeo': <gensim.models.word2vec.Vocab at 0x7f3d2f766cd0>,\n", | |
" u'v\\xeddeos': <gensim.models.word2vec.Vocab at 0x7f3d327332d0>,\n", | |
" u'x': <gensim.models.word2vec.Vocab at 0x7f3d305d3490>,\n", | |
" u'zona': <gensim.models.word2vec.Vocab at 0x7f3d30288190>,\n", | |
" u'\\xaa': <gensim.models.word2vec.Vocab at 0x7f3d30942290>,\n", | |
" u'\\xba': <gensim.models.word2vec.Vocab at 0x7f3d2f230d10>,\n", | |
" u'\\xd7': <gensim.models.word2vec.Vocab at 0x7f3d2ffe1b90>,\n", | |
" u'\\xe0': <gensim.models.word2vec.Vocab at 0x7f3d2e697c10>,\n", | |
" u'\\xe0s': <gensim.models.word2vec.Vocab at 0x7f3d2f5a3050>,\n", | |
" u'\\xe1frica': <gensim.models.word2vec.Vocab at 0x7f3d2f7f3b90>,\n", | |
" u'\\xe9': <gensim.models.word2vec.Vocab at 0x7f3d334d8d50>,\n", | |
" u'\\xfaltima': <gensim.models.word2vec.Vocab at 0x7f3d2fe17b90>,\n", | |
" u'\\xfaltimo': <gensim.models.word2vec.Vocab at 0x7f3d305e7bd0>,\n", | |
" u'\\xfaltimos': <gensim.models.word2vec.Vocab at 0x7f3d317d6bd0>,\n", | |
" u'\\u2013': <gensim.models.word2vec.Vocab at 0x7f3d317d64d0>,\n", | |
" u'\\u2026': <gensim.models.word2vec.Vocab at 0x7f3d304ce390>}" | |
] | |
} | |
], | |
"prompt_number": 120 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"##Criando Clusters de palavras usando o DPGMM" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dpgmm = mixture.DPGMM(n_components=1,n_iter=30, covariance_type='full')\n", | |
"dpgmm.fit(model.syn0)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 157, | |
"text": [ | |
"DPGMM(alpha=1.0, covariance_type='full', init_params='wmc', min_covar=None,\n", | |
" n_components=1, n_iter=100, params='wmc',\n", | |
" random_state=<mtrand.RandomState object at 0x7f3d696cfa80>, thresh=0.01,\n", | |
" verbose=False)" | |
] | |
} | |
], | |
"prompt_number": 157 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dpgmm.converged_" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 147, | |
"text": [ | |
"False" | |
] | |
} | |
], | |
"prompt_number": 147 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot(dpgmm.predict(model.syn0));" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEACAYAAAC3adEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD5ZJREFUeJzt3G+MXNV5x/Hv4LWVEFpct5KNvVstNaa1aZuSNM6mScsQ\nktS4iY1UqdRSBQUpoDZOUP8Q2+EFm1cJtGoQskIQcaNNlMZNaRo5xfxxEaNUVWMgwSbBXvA6uLWh\nLGkjqtZSFSNPX5yz7Dzj2fXunvHuXPP9SFd7z7nnzjx3wfObe+69C5IkSZIkSZIkSZIkSZIkSVJP\n2wCMAkeAbVOMuTdvPwhc2dK/FHgQOAwcAobOXZmSpPmwCBgDBoHFwAFgbduYjcDevP5u4Dst20aA\nm/N6H3DxuSpUkjQ/3gM80tLenpdWXwCub2mPAstJIfDDc1qdJGnWLijcfxVwvKV9IvedbUw/cCnw\nI+BLwPeAB4ALC+uRJBUqDYbmDMfVOuzXB7wD+Hz+eZIzzzYkSfOsr3D/l4CBlvYA6YxgujH9ua+W\nxz6V+x+kQzCsXr26efTo0cIyJelN5yhw2Vx2LD1jeBpYQ7r4vIR0LWFP25g9wA15fQh4DRgHXiFN\nMV2et30AeK79DY4ePUqz2azscueddy54Dda/8HW8Geuvcu3nQ/3A6rl+sJeeMbwObAUeJd2htIt0\n6+mtefv9pDuSNpLuXjoJ3NSy/8eBr5JC5WjbNknSAigNBoCH89Lq/rb21in2PQi8qws1SJK6pHQq\nSWdRr9cXuoQi1r+wqlx/lWuH6tdfov1uoV7UzPNlkqQZqtVqMMfPeM8YJEmBwSBJCgwGSVJgMEiS\nAoNBkhQYDJKkwGCQJAUGgyQpMBgkSYHBIEkKDAZJUmAwSJICg0GSFBgMkqTAYJAkBQaDJCkwGCRJ\ngcEgSQoMBklSYDBIkgKDQZIUGAySpMBgkCQFBoMkKTAYJEmBwSBJCroRDBuAUeAIsG2KMffm7QeB\nK9u2LQKeAb7VhVokSYVKg2ERsJMUDuuALcDatjEbgcuANcAtwH1t228DDgHNwlokSV1QGgzrgTHg\nGHAK2A1sbhuzCRjJ6/uBpcDy3O4nBccXgVphLZKkLigNhlXA8Zb2idw30zGfA24HThfWIUnqktJg\nmOn0T/vZQA34MPAq6fqCZwuS1CP6Cvd/CRhoaQ+QzgimG9Of+36XNM20EXgL8NPAl4Eb2t9keHj4\njfV6vU69Xi8sW5LOL41Gg0aj0ZXXKv2m3gc8D1wDvAw8SboAfbhlzEZga/45BNyTf7a6Cvhz4CMd\n3qPZbHpdWpJmo1arwRw/40vPGF4nfeg/SrpDaRcpFG7N2+8H9pJCYQw4Cdw0xWv56S9JPaAKc/ue\nMUjSLJWcMfjksyQpMBgkSYHBIEkKDAZJUmAwSJICg0GSFBgMkqTAYJAkBQaDJCkwGCRJgcEgSQoM\nBklSYDBIkgKDQZIUGAySpMBgkCQFBoMkKTAYJEmBwSBJCgwGSVJgMEiSAoNBkhQYDJKkwGCQJAUG\ngyQpMBgkSYHBIEkKDAZJUmAwSJKCbgTDBmAUOAJsm2LMvXn7QeDK3DcAPAE8B/wA+EQXapEkFSoN\nhkXATlI4rAO2AGvbxmwELgPWALcA9+X+U8CfAFcAQ8DHOuwrSZpnpcGwHhgDjpE+6HcDm9vGbAJG\n8vp+YCmwHHgFOJD7/xc4DKwsrEeSVKg0GFYBx1vaJ3Lf2cb0t40ZJE0x7S+sR5JUqK9w/+YMx9Wm\n2e8i4EHgNtKZwxmGh4ffWK/X69Tr9RkXKElvBo1Gg0aj0ZXXav/Anq0hYJh0jQFgB3AauKtlzBeA\nBmmaCdKF6quAcWAx8I/Aw8A9U7xHs9mcaf5IkgBqtRrM8TO+dCrpadJF5UFgCXA9sKdtzB7ghrw+\nBLxGCoUasAs4xNShIEmaZ6VTSa8DW4FHSXco7SJdRL41b78f2Eu6M2kMOAnclLe9F/gD4Fngmdy3\nA3iksCZJUoHSqaT54FSSJM3SQk4lSZLOMwaDJCkwGCRJgcEgSQoMBklSYDBIkgKDQZIUGAySpMBg\nkCQFBoMkKTAYJEmBwSBJCgwGSVJgMEiSAoNBkhQYDJKkwGCQJAUGgyQpMBgkSYHBIEkKDAZJUmAw\nSJICg0GSFBgMkqTAYJAkBQaDJCkwGCRJgcEgSQq6EQwbgFHgCLBtijH35u0HgStnua8kaR6VBsMi\nYCfpA34dsAVY2zZmI3AZsAa4BbhvFvtKkuZZaTCsB8aAY8ApYDewuW3MJmAkr+8HlgIrZrivJGme\nlQbDKuB4S/tE7pvJmJUz2FeSNM/6CvdvznBcreRNarXhllY9L5KkSY28lCsNhpeAgZb2AOmb/3Rj\n+vOYxTPYF4Bmc7iwTEk639Vp/dJcq316zq9UOpX0NOmi8iCwBLge2NM2Zg9wQ14fAl4Dxme4ryRp\nnpWeMbwObAUeJd1ltAs4DNyat98P7CXdmTQGnARuOsu+kqQFVDT3P0+azeZML2VIkgBqtRrM8TPe\nJ58lSYHBIEkKDAZJUmAwSJICg0GSFBgMkqTAYJAkBQaDJCkwGCRJgcEgSQoMBklSYDBIkgKDQZIU\nGAySpMBgkCQFBoMkKTAYJEmBwSBJCgwGSVJgMEiSAoNBkhQYDJKkwGCQJAUGgyQpMBgkSYHBIEkK\nDAZJUmAwSJKC0mBYBuwDXgAeA5ZOMW4DMAocAba19P8FcBg4CHwDuLiwHklSodJg2E4KhsuBx3O7\n3SJgJykc1gFbgLV522PAFcDbSeGyo7AeSVKh0mDYBIzk9RHgug5j1gNjwDHgFLAb2Jy37QNO5/X9\nQH9hPZKkQqXBsBwYz+vjud1uFXC8pX0i97W7GdhbWI8kqVDfDMbsA1Z06L+jrd3MS7tOfZ1e6yfA\n33TaODw8/MZ6vV6nXq/P4CUl6c2j0WjQaDS68lq1wv1HgTrwCnAJ8ATwS21jhoBh0jUGSNcRTgN3\n5fYfAh8FrgH+r8N7NJvNmWSLJGlCrVaDOX7Gl04l7QFuzOs3At/sMOZpYA0wCCwBrs/7QQqL20nX\nHDqFgiRpnpWeMSwDvg78POni8u8BrwErgQeA38njrgXuId2htAv4TO4/QgqLH+f2vwJ/3PYenjFI\n0iyVnDGUBsN8MBgkaZYWcipJknSeMRgkSYHBIEkKDAZJUmAwSJICg0GSFBgMkqTAYJAkBQaDJCkw\nGCRJgcEgSQoMBklSYDBIkgKDQZIUGAySpMBgkCQFBoMkKTAYJEmBwSBJCgwGSVJgMEiSAoNBkhQY\nDJKkwGCQJAUGgyQpMBgkSYHBIEkKDAZJUlASDMuAfcALwGPA0inGbQBGgSPAtg7b/ww4nV9PkrTA\nSoJhOykYLgcez+12i4CdpHBYB2wB1rZsHwA+CPxbQR2SpC4qCYZNwEheHwGu6zBmPTAGHANOAbuB\nzS3b/wr4ZEENkqQuKwmG5cB4Xh/P7XargOMt7RO5D1JAnACeLahBktRlfWfZvg9Y0aH/jrZ2My/t\nOvUBvBX4FGkaaULtLLVIkubB2YLhg9NsGyeFxivAJcCrHca8RLqOMGGAdJawGhgEDub+fuC7pKmn\nM15neHj4jfV6vU69Xj9L2ZL05tJoNGg0Gl15rZJv6XcD/wXcRbrwvJQzL0D3Ac8D1wAvA0+SLkAf\nbhv3IvBO4Mcd3qfZbE514iFJ6qRWq8EcP+NLrjF8lnRG8QLw/twGWAk8lNdfB7YCjwKHgL/lzFCA\nqaecJEnzrArz+p4xSNIsLdQZgyTpPGQwSJICg0GSFBgMkqTAYJAkBQaDJCkwGCRJgcEgSQoMBklS\nYDBIkgKDQZIUGAySpMBgkCQFBoMkKTAYJEmBwSBJCgwGSVJgMEiSAoNBkhQYDJKkwGCQJAUGgyQp\nMBgkSYHBIEkKDAZJUmAwSJICg0GSFBgMkqSgJBiWAfuAF4DHgKVTjNsAjAJHgG1t2z4OHAZ+ANxV\nUIskqUtKgmE7KRguBx7P7XaLgJ2kcFgHbAHW5m1XA5uAXwV+GfjLglp6VqPRWOgSilj/wqpy/VWu\nHapff4mSYNgEjOT1EeC6DmPWA2PAMeAUsBvYnLf9EfCZ3A/wo4JaelbV/+ey/oVV5fqrXDtUv/4S\nJcGwHBjP6+O53W4VcLylfSL3AawBfgv4DtAAfr2gFklSl/SdZfs+YEWH/jva2s28tOvU1/rePwMM\nAe8Cvg78wlnqkST1sFEmQ+OS3G43BDzS0t7B5AXoh4GrWraNAT/b4TXGmAweFxcXF5eZLWMsgLuZ\n/JDfDny2w5g+4CgwCCwBDjB58flW4NN5/XLg389VoZKk+bEM+CfOvF11JfBQy7hrgedJ6bWjpX8x\n8BXg+8B3gfq5LVeSJEnSeWe6h+N6wV+T7sj6fkvfdA/+7SAdyyjwoXmqcToDwBPAc6SHDD+R+6ty\nDG8B9pOmKA+Rbn+G6tQ/YRHwDPCt3K5S/ceAZ0n1P5n7qlL/UuBB0kO2h4B3U53af5H0O59Y/pv0\n77cq9c/ZItL00yBp2qn1+kSv+E3gSmIw3A18Mq9vY/LayzrSMSwmHdMYC/8nSVYAv5bXLyJN+a2l\nWsdwYf7ZR7r1+X1Uq36APwW+CuzJ7SrV/yLpw6hVVeofAW7O633AxVSn9lYXAP9B+qJXxfpn5T3E\nO5q20/np6oU2SAyGUSaf6VjB5N1arXdkQTq2oXNd3Cx9E/gA1TyGC4GngCuoVv39pGt1VzN5xlCl\n+l/kzLsJq1D/xcAPO/RXofZ2HwL+Oa93pf5eTozpHo7rZVM9+LeSdAwTeu14BklnP/up1jFcQPom\nNM7ktFiV6v8ccDtwuqWvSvU3ScH2NPDR3FeF+i8l/bWFLwHfAx4A3kY1am/3+8DX8npX6u/lYGgu\ndAFdMHE/8XTbe8FFwN8DtwH/07at14/hNGk6rJ/0JP3Vbdt7uf4PA6+S5ohrU4zp5foB3kv6QnEt\n8DHS9GqrXq2/D3gH8Pn88yRnzkj0au2tlgAfAf6uw7Y519/LwfASac5swgAx8XrVOPHBv1fzevvx\n9Oe+hbaYFApfIU0lQfWOAdLFt4eAd1Kd+n+D9DfHXiR943s/6b9DVeqHNLcN6dv3P5D+PloV6j+R\nl6dy+0FSQLxC79fe6lrS7f4Tf2uuCr/7ItM9HNdLBjnz4nOnB/8mLv4sIZ3GHmXqb4nzpQZ8mTSd\n0aoqx/BzTN518Vbg28A1VKf+VlcxeY2hKvVfCPxUXn8b8C+k+e6q1P9t0sO1AMOkuqtS+4TdwI0t\n7arVPydTPRzXK74GvAz8hHQ95CamfvAP4FOkYxkFfnteK+3sfaSpmANM3va2geocw6+Q5ocPkG6Z\nvD33V6X+VlcxeVdSVeq/lPS7P0C63Xni32hV6n876YzhIPAN0gXpqtQOKYz/k8lwhmrVL0mSJEmS\nJEmSJEmSJEmSJEmSJElS9P953X85JRl+vgAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7f3d2f2edf10>" | |
] | |
} | |
], | |
"prompt_number": 148 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"print dpgmm.means_.shape\n", | |
"plot(dpgmm.means_.T);" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"(1, 200)\n" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEACAYAAACK+7BGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXuUZVV57v2rqq6q7q6qvlQD3U13Q3NpEBTUSBATL6UB\ng+FENGaAl6EcyEnMMMTkfNGIJic2Y+Qo8QzPp9HIIREVjIoaz+dpEy4StPWYiAhRRKCBBhrpW0Ff\nq7rul/398a7XNffcc60119prX6p6PmPsUXvvWmvvtddlPut53mfOCQEBAQEBAQEBAQEBAQEBAQEB\nAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBiwaXAjuAJ4APJCzzt9H/HwRe6rHuIHA38DjwbWCV\n8f53gVHgU9Z3bI8+6yfR44QiPyYgICAgoL3QBewENgPdwE+Bc6xlfgu4PXr+cuBej3U/Bvx59PwD\nwA3R8+XArwPvppZovgv8Sh2/JSAgICCgAeisc/0LEbLYBcwAtwGXW8u8Ebglev4jRJ2sy1jXXOcW\n4E3R83Hg34CphO3pKPpDAgICAgIag3qJZgPwrPF6d/SezzInp6y7FhiOng9Hr01UErbnFsQ2+0uP\nbQ8ICAgIaALqJZqkBt+Gj9LoSPi8iuf3vAN4EfCq6PFOz20LCAgICGggltS5/h5gk/F6E6JM0pbZ\nGC3T7Xh/T/R8GLHX9gPrgec8tmVv9PcY8GXEmvuiucAZZ5xRefLJJz0+KiAgICDAwJPAmUVXrlfR\n3A9sQQr6PcCVwDZrmW3Au6LnFwFHECJJW3cbcFX0/Crgm9Zn2gqpizhl1g38NvCQvbFPPvkklUol\nPEp6fPjDH275NiymR9ifYV+26wM4I5sOklGvopkFrgXuQhr7m4FHkVQYwE1I4uy3kML/GHB1xrog\nKbOvAb+HhAWuML5zFzCAkNObgEuAXwB3IiTThUSj/6HO3xYQEBAQUALqJRqAO6KHiZus19fmWBfg\nEHBxwjqbE96/IOH9gICAgIAWol7rLOA4xtDQUKs3YVEh7M/yEPZle+F463dSifzGgICAgABPdHR0\nQB18ERRNQEBAQEBDEYgmICAgIKChCEQTEBAQENBQBKIJCAgICGgoAtEEBAQEBDQUgWgCAgICAhqK\nQDQBAQEBAQ1FIJqAgICAgIYiEE1AQEBAQEMRiCYAgH374F/+pdVbERAQsBgRiCYAgPvug898Jv96\nV1wBY2Plb09AQMDiQSCaAADm52F2Nv9699wDR46Uvz0BAQGLB4FoAoDiRDM7C9PT5W9PQEDA4kEg\nmgAA5uZgZib/erOzxdYLCAg4fhCIJgCoT9EEogkICEhDIJoAIBBNQEBA4xCIJgAoRjTz8/IIRBMQ\nEJCGQDQBQDHCmJuTv4FoAgIC0hCIJgAQ0siraALRBAQE+CAQTQBQzDrT5QPRBAQEpCEQTQAQiCYg\nIKBxCEQTABSr0QSiCQgI8EEgmgCgWI1Glw8jAwQEBKQhEE0AEKyzgICAxiEQTQAQiCYgIKBxCEQT\nAIQaTUBAQONQBtFcCuwAngA+kLDM30b/fxB4qce6g8DdwOPAt4FVxvvfBUaBT1nf8TLgoeizPlns\npxTHxz4Go6PN/tbyUE+NJhBNQEBAGuolmi7g0whhnAu8DTjHWua3gDOBLcAfADd6rHsdQjRnAfdE\nrwEmgb8E3ufYlhuB34u+Z0v0uU3DTTfBzp3N/MZyEayzgICARqFeorkQ2AnsAmaA24DLrWXeCNwS\nPf8Rok7WZaxrrnML8Kbo+Tjwb8CU9R3rgQHgvuj1rcY6TcHMDIyMNPMby4WOWzY/779OIJqAgAAf\n1Es0G4Bnjde7o/d8ljk5Zd21wHD0fDh6baLi+I7dxus9ju1oKGZnFz7RQD5VE4gmICDAB/USjd3g\nJ6HDcxnX51VyfE/LMDMDR4+2eiuKwyaaV70KpmzdaCEQTUBAgA+W1Ln+HmCT8XoT1crCtczGaJlu\nx/t7oufDiL22H7HFnvPYjo0Jn1WFrVu3/vL50NAQQ0NDGR/th4VunekAmUoeP/oRHDsGvb3J6wSi\nCQhYnNi+fTvbt28v7fPqJZr7kcL7ZmAvcCVS1DexDbgWqcFcBBxBiORgyrrbgKuAv4n+ftP6TFsh\n7QNGgJcjdZp3Ikm3GphEUyYWk3VWqQh5ZCkaJaeFOjLA//2/otwCAgKqYd+EX3/99XV9Xr1EM4uQ\nyF1Iiuxm4FHg3dH/bwJuR5JnO4Ex4OqMdQFuAL6GpMh2AVcY37kLKfz3IAX/S5CI9HuALwDLou+8\ns87flguLyTpTpTI5mb7OQlY0IyNwySXZvzEgIKB+1Es0AHdEDxM3Wa+vzbEuwCHg4oR1Nie8/wBw\nXsL/Go6Fbp0p0czMxMShiuaHP4T162Hz5up1FjLRjI+LEqtUoMOnghgQEFAYYWSAEjA/Lw3WQiYa\ns0ajxKF3+zfdBNu21a6zkIlmYkKOmf7ugICAxiEQTQnQhnaxWGdac1FFMzkJBw7UrlMv0dx9d+tI\nanxc/i5EkgwIWGgIRFMCtLFayIrGJBpb0TSKaP7oj+CRR4qtWy8mJuTvQg0yBAQsJASiKQHa4C4G\nonHVaCYn4eDB2nXqJZqZmdaNDxeIJmCx4/Ofbx/FHoimBPhYZz/4AXznO83ZniIwazTa+PoomiVL\nip/MrYyE20TzqU+1Tl0FBDQCH/gADA9nL9cMBKIpAbOz0NWV3mjecQfcdVfztikvXNaZKpqJiWRF\ns3TpwiQardEo0dx+Ozz6aPLyAQELDdPT7RN2CURTAmZmYHAwvdE8erR9ZKwLRWs0y5YtTKJRRaPb\nPj3d3scnICAvpqfzj8jeKASiKQEzM9DfL8+TOgAuFKJJq9FUrBHnlGiK1jnagWh02wPRBCw2BEWz\nyDA7C93dsGJFcsM5MtLeDZkr3mwqmsnJ2G5SLAZFY0a52/n4BATkwdxc/GgHBKIpATMz2UTT7orG\n1WHTVDQ9PbV1moVMNHaNJiiagMUEPa+DdbaIMDMj6auVK5OTZ+1ONFk1mg0baus0C5lognUWsBDw\nlrcUs6Z1naBoFhF8rLOFQjQzM+6RATZurFU0c3PZRDMyUmu5gdR72oFoTPXWzscn4PjEtm2wxznh\nSTqColmE8LHOFlKNxlQ0c3Pyev36YormhhtkrDQbeqfVaqIJiiagnTE3B7vtGb48EBTNIkSWdVap\ntL+iSarRTE1JX5kTTnDXaJYvT/9d4+Nxo26vC+0zMkAgmmKoVODLX271VixO6GC99RBNUDSLCFnW\n2cREdQPejkgaVHNyUohmzZpiimZ21n1X1ephe+wwQLDOimFyEt7xjva5c15M0Gvk2WfzrxsUzSJE\nlnWmKqedG7L5efkNtnWmRJOkaHyIxnVX1WqimZiQ3xsUTX1Qwnap1oD6oCQRrLMAINs608a0nRuy\n+Xno7Y07bPb1laNoZmaSFc2SJa0lmpUrg6KpF0o0rsBHu+DKK4sV1FsNvRkL1lkAkG2dLQRFMzcn\nfWXUOhsYKE/RJBHN6tVw7Fhs2zUTExNyvJQI5+fb+/i0K8bGqv9moVJp/vF+4AHYtau531kGyiCa\noGgWEVTRpBFNf397N2Tz8zHRzMwI0fgqmrScf5p11tsr6/s2UmVifBxWrZJt1+1v5+OThssug2ee\nac1351U0d98NV1zRuO1xYXoaDh9u7neWgXqsM+2aEBTNIoLWaFauTCaaNWvauyFT60yJpr/fT9Fk\njd6cpGiyyLnRMK0zvSjb+fik4bHH3IOeNgN5ieahh5qvLqan4dCh5n5nGZidjW/w8p6bQdEsQpjW\nWVKN5oQT2rshM2s0ap1NTUmDvGxZ42o07UA0C13RjI+3bgK3NKKZn68dZHbnzubPkTIzs3CJprcX\n1q6FffvyrRtqNIsQPtbZQiAa2zozFU1/v/zPTBepopmbqx3Z2VwmEE1j0a5Ec+ed8M53Vr/35JPw\n3HPJ50sj0EpFU6nAN75RbN25OZnnauPG/PZZUDSLEGqdLV/uvuAWgnVmhgFcNZqODkmimb9PlVx3\nd/JvS6vRtJJoxseFaGZmFoZ1duBAcmPZDkTjqrMdOlTbB2TnTtnWZh7zVtZoxsfhbW8rtq5eIxs3\n5u9LExTNAkSl4p5hUqEN7rJl7v4EC0XRaI3GlToDOenNE1cvhDSiCdZZOfjEJ+DGG2vf1zh6q4hG\nCcZ1gzUxAc8/H7+enpaY8SmniKppBiqV1iqaJEXvg7m5mGiCojkO8MADcNFFyXJfrbMkolloNRqX\nooFiRJNmnWWND9coVCryuxYS0YyPx8rLfh9ar2hcRDM5WU00zzwjjeaGDc2r0+j5qkTz3HOwf39z\nvhvknJqfLxbp1iniN20KRHNcYGxMJH/SnPJqnS1durAVjWmd2akzqCUaveNaaNbZ1FR8vBZK6iyp\nQ2k7E83EhIxlp/t350444ww46aTmKRrdL0o0n/gEfPKTzfluiM/9Ig2+aZ35EM33vw9XXSXPg3W2\nAKEX+Le+5f6/aZ1NTtYqn4VWozFTZzbRmBdMvYpGiabZA2uOj0s9TYegWQiKJmmInDKJ5n//b7j+\n+nzrZBENxKpm504480xJUTWLaHSfaY3m2Webe2OjDX2RBl9v5FatgiNHspf/xCdgxw55HhTNAsTM\njJDItm3J/1+yRB6dnbUNgiqadrm7cCEpdTYxsfhqNBrZ7umJwwAdHe1NNM1QNM88EzdUvhgfh8HB\nZOsMYqJ58snWKJrOzljR7N7d3PNNj1mRa1+ts+XLs8eS27NH2iddLnTYXICYmYFXvhJ+/vNqz1mh\nigbcdZqFWKPp6xOCGBuT3wTpRJPU0CVZZ63ssGkSjSqavr72Pj7NIJqJieQZYpMwPi7ntit1lqRo\nTjqpvBrN3Fw6OU5Pw4kniiKYn5cGuZkKuh5Fo9dXUu3XxM03w9BQ7fQXi0nRXArsAJ4APpCwzN9G\n/38QeKnHuoPA3cDjwLeBVcb/PhgtvwN4vfH+9ui9n0SPE4r8GBe0ZnHxxXDHHe7/pxGNWmezs83t\nP5AHduqsu1teHz3auDBAOxFNuw8RlEQ02sC3mmh8rbOyFc0DD9T21TExPS3Huq9PzrNmK5p6rbOu\nLtn+rJEXbr0V3vveWqJZLIqmC/g0QhjnAm8DzrGW+S3gTGAL8AfAjR7rXocQzVnAPdFrouWujP5e\nCnwG6Ij+VwHejhDZS4HSBuVQInnxi+Hxx93/X7JEnicRzapVctK0y4G3YVtnPT2Ll2i0RqNEMzXV\n/oqmGTWaiQm/WoCJsbF0olmxQohmbk6Gnjn99HJrNBMT6cdtelqO8+CgWHcaUGgW6rXOfBXN88/D\nC1+4eBXNhcBOYBcwA9wGXG4t80bgluj5jxB1si5jXXOdW4A3Rc8vB74SLb8rWv/lxnd10ACoNbZ2\nrVvym9aZnTzTPg5afG7XxszusKmprCNH6q/RtFvqTBWNGQZwKRqd4bBV+OAH433TDOtscrKYojnx\nxOQazSmnSCP4zDOiZJYvL1fRTE2lN+JKNKtXyzhr3d0LR9HoNWLXaK69tvZ4m3VViH/3YiGaDYDZ\nZ3V39J7PMienrLsW0CZ9OHpNtM5ua52Tjde3ILbZX2ZteB6PWBvedevcGXzbOjPHdxoZkca0o8OP\naO65B770Jf9tK6sxtAfVzGOdaVHdBR9Fk7dxqxd2GCCpRnPNNTKMSqvwxS/G86i0c40miWgmJmKi\nefxxOOsseT+tRjM/D1/5SnzOjI2l/7aseYRUnQ8Ows9+JtvQaEXzz/8M/+2/yfOyrDOTaP7+72s7\nkCvRTEzEnVSXLWsfB6VeovFt4nyURkfC51U8v+cdwIuAV0UPp3O7detWtm7dyubNW/nSl7Z7fGzc\n8CYpmjTr7OhRaUzBj2geeAB+8AOvzQJkyPU8yyfBHlSzp0cIJotourrq67CZNGxPI2HXaJKssyNH\nWju8/ORknB5qFtEcO5bvLjgrDGASzdlny/uDg9LY29tcqcCf/im8/e1xn7X/+l/hs59N/n5fRTM4\nKIrmnHMao2je/34JCwE8/bQ8oDzrTI+zhnXM31CpxANwLlkSq/Tly4srmu3bt/+yrdy6dWuxDzGw\npM719wCbjNebqFYcrmU2Rst0O97XefCGEXttP7AeUKHt+ixdZ2/09xjwZcSa+6K9wVu3bmVuTvoL\n+N7ZZBFNWupsfFwaMfAjGu0k6YuDB8tJ8Ng1GlU0hw/XX6NJs858optlw67RJFlnc3OttTrNcyGN\naMqKZutxGBkRqwlitdyRcKuYFgaYnJRe7Q89VK1oOjtlnQMH4GTDj/jkJ+F734PXv17Ux4teBPff\nD+vXJ29zHqL5/vfhv/wX6S+kaqEsfPvb8Gu/Jtt87FgtwdTTj0bblpmZeD+bRDM3J/u0szNuf+pV\nNENDQwwNDf3y9fV5O1hZqFfR3I8U+TcDPUih3u5tsg14V/T8IuAIQiRp624Doj6uXAV803j/rdHy\np0Xr34cECzRl1g38NvBQ0kYfOyZ///Vf/X6kKpa1a8U6s62qtNTZ1JQ02OBHNNpJ0hdTU+UogkbW\naNKsM59CZ9nwjTcnkWSzYBJNUhhgbKx6Sup6oMfBDAR8/evwx3+cvE5W6sxlnUFtnWZsDD7yEfm+\nV71KiGZ6Gh5+OF1VTk9nE013txDN8LBsT19f3AaUhb174888dqyWYOrpRwPxDZkqR/Mm2dX+KNEs\nlhrNLHAtcBfwCPBV4FHg3dED4HbgKaRwfxPwnox1AW4ALkHiza+LXhMt97Xo7x3RZ1WApcCdSHz6\nJ0jt5x+SNnpkRA7cd77jdyDM0Zm1bmH/X60zOwwwOZmPaPIqmqmpcmaoNBWN3gX29spFo0Rjp+bq\nSZ1ljQ/XSNhhgCTrTEm3kUjbP3NzfopGZwqtF3oczPP78OH0kYOzUmennppMNKYSv/lmePWrZZnz\nzxei2bEje0DMPGEAkHHWBgbKrdNMT4s6M4lGj1Ue6+ztb68eE02vL4jtM5eicdWI1TprlxpNvdYZ\nSINv9y65yXp9bY51AQ4BFyes85HoYWIMuCBlG6swMiIXQGen1EQuvDB9efNAqn22yujZk2adTU3F\nDXW7E43ZYVMVDfh12CxqnS1dGg/bk2TPlA1XGKBV1tlf/ZWci+9+d/X7eg74EM3q1eURjX0jNTub\nPnK5HQZ47DGxulaskM9bv14adSUdhaloZmbg4x8XNQMx0fz0p6LW0hRNnjAAyLhhZScdlTCVvIpY\nZ7OzEoL4/OfjG1PT3tN2xVfRTE3VV6MpG8flyACaBLvkEj/7zEU09v/NOw+TKPJaZ60mGrtGA36D\naiY1dFnWWWenNASukYkbBVeNplXW2aFD7kYvD9GUqWjWrasmmpmZZEVRqdSGAf7szyR1pdu+fLk0\n8qedFl8jUD230Q9+IMSjN3ynnioN6Xe+Iyoni2h8azTQGEWzN6oOuxSNL9Hozal5jG1FYxKNrWjs\n5eoNA5SN45JoRkflZBsa8ktsmUTjijgvthqNmTqD4jUaTcOkEQ3Ub5/lVR6u1JlL0TTDOktqKE2C\n0b9JRFNmjcYmmtnZZKKZnpZj2N8v2zc/L9eGNoK6n088sdo2g1jJgixvhgI6OuC882Rmyte+thzr\nbHBQrsM1a8pXNDrNskvR+FpndkdLXce+RvRaN4nS1Y9vscWbFyRU0axc6acGshRNlnW2UBSNK3UG\nxUdvVr85zTqD+onms5+Fv/gL/+VdYYBly2rnDZmba/yFmkU0WWGARisaJRpXXy1Vhp2dcQO3f3/c\nCKYRTW9vTKJmHVNx/vnSYL/2tfUrGk2Mbt4sJNYIRdPdXZ+i0eNsHmPTOtNuAEmKxhUGCIqmhahU\nYqLp7vZrSPJaZ3mJZteuuIFrtXXmqtEU7bCpy6b1o4H6iWZ4WIqxvnCFAXp7a8+HZika1/7R/TE5\nKcdGj4uNsbHyicZMnen3us4xJRqQv8eOybEYGYm3ubdX1Mq551avayoas46pOP98udbOOSeZ6HRd\nH0XzghfAv/2bvNcIRXP66c2xznzCAEHRtAEmJuQgDQzIQfRpSGyiSbPO7NSZD9G8/e1w333yvNVE\nY6fOoLh1pu/5WGcu+++22+Bzn8ve9tHRfPahq0bT01P7O5oRBvBRNGnz5TRD0YDbvhobqyaa3btl\n+dHRWKV0dMBnPgPveEf1ulmK5rWvhauvlvd7epLP8akpIaGkO3c9tiC2Gci1XzbRmCMOmPHmvNaZ\nff65ajRdXelhAD1nFlO8ecHhyBE5SCtW1DacSbBrNFnWmUkU9sRhrsZicjK+G5qaynd3Pz3dOOtM\nt1sbgbxEk3Y352OdPfxw3NvahnmXOzqabx+4UmeqaOw7ynawztJmAC2LaCoV+Z61a7OJ5jvfkbSc\nqWj6+uCpp+S5psw0rbhyZXx9KLIUzdlnw0c/Ks9Xr062z7JGKdbUmYmyJ9vbu1eIJk3RZDX4SYrG\nTp2Nj8sx8rXOgqJpEY4erbbOfO5YTSJphHU2M1NtlfgqmtlZIYhGddjUIS30txUlmrR+NJBMNGNj\nyb/t8svhxz+W53kVjZK/XsTj425F0w5hAB+iKSPerNNbr16dTTS7dgnZ2NaZSTSTkzHRuGArGpto\nTAwOJgcCsib4MhWNolGKpp5+NFnWmVmj0ci4wtWPLyiaFuPIkZhoiiiaLOusCNHMzsYNZR6i0Yus\n7BqNFlCXLq1uAMokGh9FY3ZQs3H0aDzPSV5FYzY+PT3SMLTKOpucdJ+D5kyJejwaqWhUgaxcWRtv\nhuqGfmZGxvIyh1dSolm5MlY0aeRhKhqXdWYiTdEUIZokRfOWt8ATTyRvRxL27oUtW+QzKxX/Gs2x\nYzJ1ASSHAVzW2bp11UTpqneGMECLodbZwEB9YQCzOFlv6sxWNOo7Z6Fsounpke/v6pIkUW9v9V2p\nSTTqi6cNqjkzkzwHjw/RpCmaycn4Yjt2LJ+iMe8ANS3U7tZZ0nw5jSYa3Taz0+bMjDSuBw/WKhpt\ncE3rzIWlS6uj22mktHp1fYrGtu2SwgCPPhr3ifGFpvI0DGCGN8ztcm3fN74Bf/7n8jwp3uyyzmyi\nSeuwGayzFsFWNL5hAFPC2r2n67XOZmdr5/r26cDYCEUzMVEdbEhSNDqQX9r0B7Oz8plZiiZpYM2x\nseR6lTl3Sl5FY16YaYqmnayzpBlA86bOjhyRjso2TKIxU2ezs/LdZkOv3/XII26iGRnJJpre3urf\nmGWdZSmapOOUZJ25FM3YWP5raXhY4turVslnqn3mY53t2RMvn6fD5rp1fmGAoGhaCLNGU8Q6g3jk\nWdf/i6TOZmaqrTPzbxqmpvymefWB1mjGx+Pf0tubTDTmRZA0MsDsrKzfCOvMnDslL9GYClSJxqVo\nWp066+9PJxolwoEB/+3cv19GSLYVsxLDqlW1imbt2lrrDGRUZpNonnkmTl9l1WjyWmdl1miSFE3a\n+ZaEvXulZtLXJ+fg6Gj1sUpTNHv2xN+XlDqz+9H4KpoQb24xTEVTxDqD2juitNRZXkWjd3e+RLN6\ndbmKxrwwbUVj2mA20ST9rqVLk62zrH40vtZZ3jBAHkXTDOvMRcSTk9Lo692pWmcmQUxMxArbV9GM\njsrn2Hf0aTWak05yE83Pf16dOpubq7bO0lSKGQbIss58FE2e1FmZimbfPuknpP3Jnn9erkmbYFzb\nt3dv/H2uGk2Solm7Vs537XsXOmy2IcwaTZF+NCDrmsOMZ1lnWYNq2jUabWCyMDUly05MVPdoLwKt\n0eh2Qj5Fk/S7fKyzNEWTxzozG+Ef/1g8cBdsohkdrc86+4//iIchyYskRTMxEZ8Heg51dlbvSy3G\na38gH2gDa3dwVaLp66se7salaKan5Rp48slqRQP5ajRlhAGy4s2+imZ+vrpDpC8ef1ymHgDZJ/v2\nyXHztc6UaPJ02BwYiDvI6jpm6kzf1xRpO+C4JJp6FU1/f7qiyTtNgKbO5ufluTn3dxq0AbLtuiJQ\nRaPbCek1GvMiSBsZoB7rLEnRqNIYGRFyGRuTRthsbP/932UyKhfM46nnQD3W2cc/Dv/4j9nLuZBm\nna1aJf83Ry4wt0fjxWmDmtrQBlYTewolho6O6oZ4dtataM4+W84Zm2hOPVXeP3rUP97c6DCAj6LR\n8y+vovnqVyVqD9Iu7N8v2+tjnZmKJss6MxXN8uXVyTm7/Tl6VH5zV1dQNC2DXaMpS9GUkTrTZW37\nLQm6vDkSblFojQbiv319cvEo7DCAj3Wmow24/le0RqP75uhRufCWLpXtNBuJpNgw1Coa/VvUOhsf\nj6ce9sEtt8Sfm0U0qmhcQ+TYIxz4IEvRQHUgIIloXvACeW7Gm7u6pH65YoUQWZ54cz3WWdoMo76p\nMz3P8lxHjz0moyG87nXyemBAwgFqnemgslB7jOfmhJRsokkbVFP70fT1VfcFstufkRE5J+yxCVuJ\n445oNJqsnRHLUDSuDlMKm2iSGt2JifiC863RaI92LUTWA5d19rrXyYRUiiLWWZKise1G1wWepGhM\nolEb1CbbsojG50ZkfFwSWD6oVOAP/1AsFlWweYjG3B69u20E0agtOTPjDgOcfbY8NxXNSScJ2QwM\nyFwzeTps1hMG6OvLp2j6+uQ7zfNSr58819GXvgRve1t8Hvf3y3EdGIjrmXqe29v33HPVN0dZ/Wg0\nmak3FyZZ2kRjKppgnbUIzz4rJ4LGcouGAUxFU08/Gr3rGR/PTzT62cuXl0M0Oj+MaSuZ87Wbd0i+\nYYCeHtnXdg2pnhqNOby8Eo29D/ISTT3WmSoan75PR4/Kto2Pp9s+dhggzTpTe8Xn7lWJxrbOzJSY\nSTQuRTM9LSpjzZrqMMDatfLch2iyhqAxkaVo0ojGFQbo6Ki9WcyraCoVsUvNMdzUOuvvj49VUiBm\n716Zo0f73PgOQWMqGt3+JKIJiqaFePZZuRsAaVQh+2CkKZr5eTnpzBNCZ4yEbKLR71ZFowX4vNZZ\nPUSjs1t2dMTpGRfyKhpdxnVnlUU0c3OxrWSvOzEhx04VTX9/raKZmKhP0WiHVF/rbGTEr7OfhgbU\nKgW/MIB3Sf8TAAAgAElEQVRLcZlDwPiqmpER2d8uRWPOqKrnn9YMK5XqxrCnRzopmopm3Tp57ks0\nvkPQZI0MkFfR6Db+8IcyoyXkVzQ6HcKv/Er1Z+7bV0s0rpjxnj0yCZuetxMTtVZ+Uhigry9Z0Sxd\n2p6KpoypnBcUpqZiooG48VSicMGlaExrwZw5UFWBXox26sw+kfXE0oZn6dLaGo3Gd/WO0fwtZdRo\n5udj0tUhZVyoh2hsMs8iGo3u6vOBgfh/k5NSCzCts7m5YorGJBzzd5jR0SxMTEinvUcflcYjDUo0\nqmChuHXmIpq0xh1kf51+erp1Zn6P7qs1a2QkgI0b4/d+//fhJS+R5YaGaokmK97smzrTvj3meaoo\nSjQrV8IVV8jfq6+Orx9fojlyRPaJOf24rWjUOktSNCefHCvxiQlpl9LCAFqjWb68VtGY19LRo6IC\ng6JpMcxGy2dgzTRFY9pmCrPhzFI0egKmWWe33ipT5NooS9FoL3/dxrKIRveb64TP6kejFoF2VDMx\nORmPYGvWaOqxzvR322khX+vsggv86jSqekxFk9aPJit1psV4X0WjRJOUOoPa/dDdXT2wpRbYf//3\n41rNpk3xiAMrVpRrnWndxxyxQJE2aoJuq4tobr1VRgdXVaDnju8N25EjcnxM5LHOTEUzNib7wiYa\n8xpTQpqels+zk4HmtaS/uZ0UzXFHNEuWuBVNGmwyMWs0tqKB6oYzK95sKpokohkZgZ/9rHa7yqrR\n2IqmiHWWNDJAUUWjd+uu4WkmJ+VOtLNTGkyt0RS1zrSO5CIaX+vsZS/zS56Zisa3RpNH0WRhZERq\nA2mKxvwsPU4m0bjqHibyhAEqlWzrDKTxtkmgUskeDt+VOgM5Xhs3ynWjI6CvWpV8Hdk3EYcP1xLN\nwIB8X39/bIMlWWeqaJRoVNGkpc50bDk7gm7XaCDEm1uOVauqicYnEOBSNCbR2CeymTzzVTRpNZpj\nx2DHjtqGpCxFU691ZiaI7N/mU6NxkYkqGlciTRvFFSskXppH0eh0zWpJmBO8mcdHL1BfRdNIokkK\nA5gTj+VVNL7WmR6npDitCwMDfiqlq0s+y7xGkqA2tAm9yUvrmJikaEDO+b4+ub7GxsT+dCmaPXvE\nGjRx5IjUjkxoVwBT0aRZZ6ai8bHOjhyJFWxaGABCGKDlsInGpy+NrVrMg5xknZm2gI+i0YbHpWh0\n2PHHHqteV4vEZdRo9IQuQjQnnlhrxZjL1KtoXNbZ0qWiakyi8Yk360Wp3roqGv19ea2zSiUmGh/r\nbN8++T6fMIA2XGNjyWEAlwpJw+ioKBpf60zPfXOYmySVoFBrOqtepDcoPorGNcyOXltprkSW+lJl\nMD4u53HSlNV2B0+Xdaa/29c6cymatDAAxDcWvoomWGctwsqV1TUaH+ssS9GkWWc+ikaXN60zs+E9\ndkwaxoceql63LOvMrtHktc7WraudowfSazR2ATOtRuOyzpRo9uxxx5uTrDP7WJq/t4h1phOGbdwo\nx8mMvbuwb5809HpjkdSh1TwXjh51KxrteAz5rLNTT5W/5vfa1pldozFVa5ai0W3KIhq9ocoKA+g2\n2YrGh2jSFI1uq3b8TVI0em2a35FUo9G/WakzU9Fo6syHaLIUjRJ2UDQtRhnWWdJBVuQhmpkZ2Z60\nGs3oKJx7bi3RlNVhs6h1pipoxQp5bW9DPfFmVTRJ1pkWRIsqGkW91pluZ0dHdWQ3Cfv2iXWliiYp\nMaX9WrKIZuXK+Hf4KpqVK2s7QdqKxq7RmJ/vU6MBP5Vi1qCylk1TNHnDAAofRaPnpnkT4Us0Luts\nfFw+S/shaRjAHoXbtM66umL3wtxuqL5p0/mhgqJpMYpaZ0mKxid1ljao5uxsTDQTE8k1ml/7tdpA\nQLNrNEmjN3d0SMdOe2DJeqyzrNSZjjScpGjSiMZUoKZ1ZiuatKFNFGYM2yfBuG8fnHFGrGjSiEZv\nOkZG/BSNTz1pdFTWOeGEavssq0aTR9H4Wmc6AKSeI2lIUzRpN4tZNt/KlbIfsxQNZBONbZ1pHzCb\naHbulHNAa0Q+1hnI/tRzLa0NWrYsKJqW40UvgjPPjF9nKZpKJVvRJFlnc3PZY4Lp3WF3t5zwSTWa\nV7wi2Torg2jMGk1e6wzc9pkukxRvziKarBrNihWSxHEpGl/rLI1okqY4MGHWSbKI5tgx+bx166qJ\nJinevHSpHN8kojl6NFY0Sck/E5VKHAe351TKqtGYiqbMGo2qtSy4FFtZ1pkqmhNOqB0FHOJrsYii\n0fPIPMZPPCGjXIN/GADi0bWhuo2wz2klmqBoWoitW+G3fzt+naVotH5hdhTzTZ3phaCF5yRF090t\nDerhw8lEc955YnWYfQnMGk09YQCzRlMkDABuRaP7xsc6Gx+vvsC1j4irRqPWmTayeRWNr3W2dKm/\ndaafldbY79sXT5KVZZ3pbzR7etdbo9He593dcveeRDR2vNlVo/GxznwUzZEj2RYbuJONZRLN2Jic\nT11dtftRzz8zEFCPdZZGNEnxZqhWNKZNm0Q0i03RXArsAJ4APpCwzN9G/38QeKnHuoPA3cDjwLcB\n85B+MFp+B/B64/2XAQ9F//uk78ZnhQGSiER7/aalzmzvOYloliyRdQ4dSiaaFSukTvPww/H79Sqa\nm2+GBx+sts58O2yaSg2KWWf6PV1dspx5kamicdVoTOsM8sWb7eOVFgbISzRZikaJRn+Tr3WWVKMx\nFY2Sw+iou2MjxLYZ1FpnZvIryTozazQ+YYAsAtHf5kM0LiJVEkm7WcyTOuvrc19LRawzsx9NFtGM\njsr/7Y6nNtEsX+6naFQJL6Z+NF3ApxHCOBd4G3COtcxvAWcCW4A/AG70WPc6hGjOAu6JXhMtd2X0\n91LgM4AOAnEj8HvR92yJ/p+JLOvMdVHpoHwaO06yznyIRj9fc/JJNZr+fmkcXIqmKNHccYfYcfX2\no4H6rDOotc9MRZNmnUFjwgBJaSEbRYhGVdrkpJtoZmflmHR350+dfepT8LGPub9fbTPwt87MMIDe\nQbfCOvNVNM89F/9fO3RmkaIqmjSrFvysM91Xaakzm2gOHpTjbB/fNOvMHMLneLDOLgR2AruAGeA2\n4HJrmTcCt0TPf4Sok3UZ65rr3AK8KXp+OfCVaPld0fovB9YDA8B90XK3GuukIss6S7p70zpNWuos\nj6LJss76+5NHhi4ab9ZBK/OMDOAavRnqs86g9reZF35avBnqizcn1WiKWGc+RHPyydmKRgMkmmTz\nDQNMT0tDa07FbGJkJCaBk06qPl5J8WazH00rrbO0Go15s/jqV8PTT8tzPcfs8dFMFFU0hw/Xdtgc\nHIR3vrN6lAkf6+zAAdlX9vHNss5MorGXW2zW2QbgWeP17ug9n2VOTll3LTAcPR+OXhOtszvhs8z3\n9zi2w4kiigZiRZOWOrN7RycpmjTrTGeQdN3d19th0ySaejpsQn7rzHVxuBRNWrzZts50udnZ5JGX\n84QBenrikQSSYKbOfGs0Sp5JRGOOpKyNlGt0aRfRHDqUfNNhWmcXXAD33lv9nUnxZrUXfa2zPPHm\nshWNTusN2WoGqvvRJCkau0ZTqQhB6vmn6OmBz31Onid12BwdleN28snyevlyUTS+RGNaZ2aH33ZX\nNEuyF0mFxwwcQGxvZS3j+rxKju/JxNatW3/5fGhoiCVLhgoRjalobOtM7659FY1aZwcO1BKNRp67\nutxEU491pnPD1zuoJiRbZ0l3Vr6KRnvem9AajWmdmYombVTkPGEA3Rf6O1zIo2gef1wmyjIVjWuc\nLrNeon9tRaMzi+o+NIkmSUmY1tmv/qpsj9Z58sSbsxpwnZvGR9HUU6NxEY0OQqrbmaa8wE/R2NbZ\n+HgckEiCnjczM9XWmRlthljR+FhnSoTglzqrR9Fs376d7du3F1vZgXqJZg+wyXi9iWpl4VpmY7RM\nt+P9PdHzYcRe24/YYuq8Jn3Wnui567OqYBINwA03FLPOzBqN/f/BQRmOxLdGY1pndo1GbTNIts7q\nIZq81lleRaMTc+W1zvTCTyIaVTQdHXEDocvp5/gQTVoYQEMKaVZRnnjzgw/K+XbkSEw0/f3xdj7x\nBFx3HfzN31QTjP41P98MAkA10di1A4VJNL29cOGF8IMfwGWX+dVofDtsdnZKR9qsvjGqaMpInen2\nmkSTtZ1Q3Y8mTdF0dsZE46rP2EhSNKZtBnGNZu3aWjLNUjRZRNPZKdePa3qFLAwNDTFkDPB2/fXX\n5/sAC/VaZ/cjhffNQA9SqN9mLbMNeFf0/CLgCEIkaetuA66Knl8FfNN4/63R8qdF69+HENIIUq/p\nAN5prJOKLOvMPtgKVTQu62zNGrng7aE1shSNq0ZjEo19EejIAGXXaIoomhNPlN9s7kuzRpOlaOxa\nTFqNxrTO+vuFbGxFk1TIty/K178e3vteee5qYLPIw1fRjIxI/eTMM2utM903w8Pwve9Vz3ZpEo7Z\noJq2GcSN1MGD8X6Yn4fvf796G8x1XvMa+T6dSVTPVf0snfytqytfh01wXzM2zKBDFlqpaCYmJDyh\n1lkjiMbHOrv44niiNVUrqprs1Jk5fl871GnqJZpZ4FrgLuAR4KvAo8C7owfA7cBTSOH+JuA9GesC\n3ABcgsSbXxe9Jlrua9HfO6LPUlvtPcBnkXjzTuBOnx9ghwF+/nOZCEnho2jsi0qHVM+jaDQSnYdo\n9PPNucdtPPcc3Hef+39l1mi6uuRiHB6G971PtjMpdabTVxet0WhDvHZtPB+KqWh0OA8fotmwAS66\nSJ7b1pnui7QbEZtokmo0P/sZvPCFsp+SwgBKFMPD2daZOfwMuGs0Tz4Jv/u78TKmogEhmu3b4/PO\n7u+lx6ijI1+HTV/kVTT6/Z/+NHzta9WjWs/Oxp2rixCN3ti46p06sV0eRaPtim2duYhmft5NNLZ1\nds018blqDnmUpGigfSLO9VpnIA3+HdZ7N1mvr82xLsAh4OKEdT4SPWw8AJyXsE4i7H40jz4qZKPI\nqtGsXOm2znyJxuywCbUzbNrWmTk+lX6+2a/H3pbbb4dvfQu+8Y3a35BUoylinYHYZ3/3d/Dxj8Mf\n/mF1GMDcx0ps5uyESTWa2dlk6+yEE+DHP5b3zDtRHfnYTAkdOCDLp92Np1lnSRgfr+7LkrTsgw/C\ni18sz12KRhtJkL5SNtHYYYCjR2sVzeSknB8nnCDvjYwIcalitYnm5S8Xi/ev/1pUuL0fzGNszh9j\n96EqCk2dZc1Kqr9PCeThh8Wa27AhrkXMzsZElJdojh6tHi3cVaPJSzRJiubAAUn8KUwrLEvR2FCi\nsZd705vi78jqJ9gsHHcjA9iw71iHh6sbvKI1GiUa827N1WiZigbSazRJisbs12ND79ZcKNM6AwkE\n/I//IRf32Fhy6sy1blo/mqR4s4nubvkdMzPyf7P2MToqagLyEY2PovEd68wkGlPRmB3rtKF0EY1L\n0dhEo6Six3t0VF7rzYm9ztKl8OY3i+q9557qz9K7cZtodP91+MR7MpDHOjMVzeSkBE9s60wJxje0\nALI/DhyQ87+7O9k6O/HEcqwz+9zVc8dH0djQdsI+p9/wBpm2AhaXolnQsBv/4eHqxjxL0axe7bbO\nDh7MnzqDYtaZvT0mRkaSh653Ec273iWjC7tgE419EaxfL2OyzczIxar7zrbOkojG/G2qaKank+PN\nJjQUoFNim0QzMRF3dPUlGr1r91E0vkTzrqhSaSoas6E0FY02ZDbRKOnaYYDu7ngaYZNoQIhEawym\nogH44hfd+2F6uvo4qXXmU5/xRR7rzFQ0k5NSz9yypbp25SKaLEUzMBBPMgfJYYANGySlB+5Jz2yY\n/WhM68xuE1TR+NRobCQRjYl2iTgHRWPdse7fn0/RuMIAK1fKxT42li91BrVEYzYOSakzqB7o00QW\n0czMVBPN619fPeioiaTRmxV/+qfwhS/Ed4VJ1pmrrpV3ZABXdNYccl0Ta6pypqfj53mss7xhAFeN\nZm5O7Njzz5fXqhj0/ND9YyoaVxggS9Hs3w+bNrmJRl/bRJO2H8xzWxVNWfUZKK5oJiaqFY1ewzbR\n+KTOurri8wyS480nnZTfOpudzVY0JtFkpc5s6OgAaef0YgkDLHjUo2iSwgCdnXIi7t9fTNFoQzQ/\nn61o9ELq708mmiTrTO9asyS6Iss6O+88UUMuoslrnfmM3mzDnERK+5iYllTWHXkR68ye5dJFSk88\nIcEFJQZNyemQQ2aN4cQTq3vLJ8WbXWGA/fulI6DW3bRh1DHNzA6badDfkaRoshpvX/T2ys1AEUXj\na535bOuKFXGDn6RoyqrR2IpGE30+/WhsBEWzgGAXy/LUaJKGoAGxz/buza9otOaidyt5rTMbR4+6\nFU2l4rbO0mDuq7SCsEk0Rawz7TuTFW+2YSoaJRrTktKLMmm7bevMNwyQZZ099RScdVbttmq/Kd0/\nMzPwghfI/+0ajR21doUB9u+vnkzLVjTmEDRpUGWWVqMpA/ZvTIOtaJ5/Xva9TdSQn2hWrkxXNHaN\n5vBhP6LR7TBnUXXdJGm6smgYICiaBQBXGEDvRCBb0bisMxCi2bevlmhcHRdtRaN/XUSTZp0lhQFc\n75t37kWIJu0i0ItVGyr7rsq17pYtkoAC+d06hEZSvDlJ0SjRLFuWTDR5FU29RHPggDRUJsxBVM2G\ncssWORbmeaA3H+b541I0R47Ieaf7YXRUPksVjc5TnwWXdaaKpkzrzFRrWbAVzfy8JM+aoWiKps7G\nx+M6n6loyiQaHTw2abmiYYCbbsqeljwPjnuiMe9YKxW5K1yyJG7QfRSN6yCvWVNLNF1dtWNn2amz\nNKIxG12NxOp3p9VoXJM5mT52o4gmj3WmnQfNsd30N09OVm9/Uo1m1Sq50zetM5Nosu7+ilpnWTUa\njVabMAdRNbezrw9OOaWWaOztcykaqCWaU04RRTM7Kwp7kzmuRgLS4s1lWmf1KJrOTvjFL6qnCSiS\nOgPZjz6KRhteH0WjbYhNNHYnbpDvbpR1VjTefMMN8Nhj+ddLwnFPNPZdYne3nERZRHPCCbBjh/jv\nadaZeRGZo7oqXP1o9G+adWZPqpZGNJVKrf1kDshndthMgynD8xCNyzqz99mpp8p7O3dWN96dnbVD\nouu22FizRhr1LOvMN3XmY53Zg2omKRqbaJYtk+NlK5qeHqlzmTceLqJxhQGglmhOP10Uze7d8TAn\nWXDVaBphnenvKlKj2bRJiCYtDFBmjWblSrlOpqflezduTP9MTQiqddwI68wnDFBU0YyMyKMsHPdE\nY54Ew8NyMZonW9JBfNGL4EMfknhoEtHYYQCoPZlc/Wgg2zqzi4ppYQColcEm0ZgdNtOgy8zP+1tn\n3d1+1llHhwzx/r3vyRw5psVjKrkk2wziOVZsojH7X7TKOnMpGqglmu5uGXTRPA+SFI1tnYGQrUk0\nZ5whiubpp2Hz5uTfYe8Hu0bTCOvMDjykwUxkTUzIbzlwIN0681VfWYpGFXR/v9hmv/gFnHZa+mem\nWWf27zWJRn+jJiZbEQbQkcHLJJrQj8a4Y1WiOXiwWtG4GtSODhkj6yUvqe7pqxgcjIfIMOG6a9HR\nACC+MLKsM/uETQsDrFghn2Nup61ofAfd04vG1Y9G0dcntqFtnR04ILN6XnaZe58q0Tz1lESlFUr8\na9Yk22YgjfnBg3Ftx2WdJdXUwN2PJk/qrLvbnfBLUjRQ24+mp0eG8DGVrWvQT19F8+IXy8CZu3Zl\nN472fnDFm1tpnZmK5rTT5Fzp7ZVzt54wwIoV8XWVpGiWLZNr7NFH5TrK2ububtlO8/zXAE4S0ZiK\nWG/+0jrGNioMoHUfV3tSFMe9ojEbkuFh6d1unmxpDRNI46hJIRODg/LXV9GoT6sn1tKlcoJnWWcK\nVxhA70zWr69tAIvUaCBuFNOURZJ19uST8Pd/n6yGXvMa+Kd/Eqvniivi983fXUTRFA0DFEmd5anR\nQG0/mu5uSaidckr8/yTrzKVobKJRRbNrl7+iyYo3tyoMYCpT/S0uRWPG2etVNJVKfD7198uYdWec\nkf2ZLutMj699ra1eLdugx9c1FqALRRTNK19ZO52HDZ04LyiaEmE2JPv3i6IxO20WvbB07CgfRaOp\nM7MB3bJFOvmZRNPbG/eR8FE0ExNyoa1enW6dFSEac1h5G0kdNicnpdFNUolnnSWN54c+VDsPhzkF\nQBbRaL+EJKJJWj+vdaYx7Kx+NL7W2cxM7WRamzZJ42Bvn28Y4NRTZdmdO+GSS9y/w7UfXCMDNKLD\npvk3DaaiUetM39d9VzQM8Ou/Hl8fa9fKDadak1NT8Tnc3y8jPPgSjW2dJd0k/a//JedDZ6c85ub8\n+rb19sYzySaRkq1oHnkEnnlGbqiToAQTajQlIqlGUy/R5FU0y5ZVL/ua18gQ7ybRdHRUz95p3q25\niEbtlb6+7BqNTxgA8hGNWaOZm5MLTYdkT7Ijf/SjeKgWhQ58CP6KJsk6yxMGsP11G1NT8R2rvb4J\nH+tMO5bad+AbNogKND9/bk72oZ4XkEw0q1bJjcb99+er0czMVN8QdHXJQyf9KgN5wwBKfhCn5+ww\ngD1Bm4+iufTSeJTrVavgN38T/vEf5bVp1fb3w09/mk/RmOeQK9oMcn7b55CvohkbiwnKBTMMUKnI\nOeFSNHNzotYgJphgnZUI2zrTmQGzwgBZUKJxDf7oSpaccgp85jPx+xr3HR2tblD07t4nDKB3va4B\nN5upaLQh1e8cHk6+iE491W0tHD4sz9NqNJo6S4o3F7HO0hSNmTiz11fooJZ6PiiSFE3auaafr+eE\nuZ+0QV29uppoBgYkmvv44/mJxraNe3vlc8uu0fgOQTM1FR/btdHk7ubozVNTcr7nDQPYePe7pR+J\npjX1fBsYEJfBh2g03mxaZ65os428RHPsWPo5YwcRZmfdRHPnnXDllfI8KJoGwBUGMIdDabSiMXvP\n/87vxO+fcYY0Unv31hKNOSCjIk3RuOarqbdGY9YmbKRZZyBBgayLyIRJND7WWSNSZ3v3wl13VS9v\n7wNXjebIETk29neaAQI73pwE3RY7CKD/6+uTc8ImmpNOkmOQFclVuGo0+n5Ww5YHRRSN3mio9WOn\n9kyi8VU0Nl77Wvmee++tPt/6++Wz81pnem2Nj/uFCFS1ZrkMS5fKMU47Hqai0fZheFj+aqgH4O67\n5dqBQDQNgalo9u+vDQM0yzqz0dEhqqZSiTP+EKstO9HmCgNowTjJOtMxmPIQjZKGr6IxrTNtALRT\nrC8GB6sVTdLFumZNnBgs2zrbvl0mnjL9bptoXDUal20G1eEPu1icBN0+V8/03t64LtjXJ42KDi56\n4oliNfnuc/N4mev09pZLNEU6bGrDv3q1bIcdBhgYqE6nFSGazk6xb//pn2qtM8hvnYH8tQfZdcG0\nCH0UTRbRmIpGiUYVzYc/LFOHgxDNoUPSFhw9KudnsM5KRKMUzapV8ZhlJlwjtCZ9/mteI8ubF0uS\ndZalaFxEo0Pp+3bYhPw1GtM6U0Wzf3++fWpbZ0kNU0+P7B+dobKIdTY3F/cTMq2zY8dE1XznO/Hy\nZhBA17eJ5uBBN9GYNTk73pwE/fznnquN1J91FmyLJkLv65N90Ncn5+BJJ/lHmyHuWGw2lBATTZmD\napp/06BhBG34OztlWmOdpkPDAKaiMUeYyIszzpAhe2zrbPXq7CkCoDp1BrKNx475KxofountLaZo\nlGh27IDPflY6ne/fL/tK+89s2hQUTakwGV/vFMsIA3R2yglpX0RmsVI/P+mEes1ralNISdaZq0aT\nRTR9fbFMb3TqzCSaItaZTt6V9r0gjfru3cWIRqcsNmctNIlmYKB6/haXdZZH0ejxs+PNSdDPHx6u\nJZqOjnhitb4+aTh0AM2TTvKvzyh6eqobSn2vVdaZrWhArK0TT6wOA5hEo1NNFMG6dXH61LTOkuZq\nslFU0eS1zo4dS7+WzHjz6Ki8Vuts1y65tq65Bl73urgf2siIhFAC0ZQI0zrT4m4ZYQAQK8O+iGyi\nSVM055wjaSET9uyMCpeiMcMAdo1mejqer75oGCBvjaaodearaEAulv37i411BvHxsa2z0VF4+9tF\nNShp+9RofIimiKLRYrgLNtG89a1wbdJk6infZacDy7bOVDHmqdG4bjSSwgD1KBolGts687HNQH7X\n/HxjFY1vGMBUNJs3x4rm6afhIx+RDr2XXBJbzyMjUs8L1lmJUNmtw7T39pajaAC+/OV4CmFFHkUD\nccc9RZJ1prP4mXfUWfHmeojGto3sbZycjO/QTeusv7++MEAW0axZI3Uts0bjGwaA+Pi4rLPTT4eh\nIennMz8P//zP1aMy56nR2NZZUrzZRJqiMWETzVlnic2UBy7rTBVNWdYZwLnnVoddktDZKcfD1Vg3\ngmi0P41JbP/pP8Ef/7Hf+ibB6N+xsdaHAbZskXPj6FHZT1deKZ2jL7ssnhn46FEhmqBoSoQqGj2h\ntK9KGYrmggtqTxZz9kzIHnnAhpKgHZXs6Ki1yHyss0bUaHSY+5GRWuts0ybp+V8P0WRZZ1CraDo7\n/YjGHnrdts4+9zl44AFRmz/4AXz60/G6Ra2zvGEAH0Xz3HN+DXgSenrcimZsrDxFA9IvJe142tt0\n9Giyopmerg4D6OR5RbB6tfx+HWEbZAQQ7TybBRfRHDtWfrw5bxhg/Xp5/vDDUrfr7ISvflWsMlvR\nBKIpEa64bhlhgCTkVTQ2lAQ1uGDCts80dVZ2jUaHIkm7aPr6ZDnbOtuwoXp6Ax+YRHPoUG3dykQS\n0WgDlLW/06yz/n656/vXf4X3vAe++91qRZOHaOoJA/gomkrFb5KztO9qdI0mL3p7hWhcisYVBqin\nRtPRIdfXM8/4E6G9TVBNOL6Kxjd1ljcMoDdL69bBD39YW7dbs0aur5ERGdR2fLx6SpN6EIgmOknN\nO/iKQUsAABooSURBVHQ73pynUcxCnhqNC7ptu3fX9ouwAwFZ/WiKWmfHjsXqLwl6gdupM93movHm\nPXvS+4Noo27HmwcG6rfOtOFetgz+5E9qFUOeGo0eF2iMooH6iSapRlOmdZYHSYomKQxQj3UGso93\n7SpGNEUVjdqvZVlntqLp75ffde+9tUlEU9GsXi1tTVmTnx33RKMn6UJRNGqduYjGVjQaBii7RjMy\nkn3x6QVu9qMpSjSrV0sisFIRotmwIXnZNEWTl2iUJJVosqyoPDWaiy6C226T576KRrfFR9FAOYqm\nkWGAvEhTNI0gmnXrpGBeJtGUHQbIWs6u0aiiuffeWkWjNRq9QR0YKM8+O+6JJknRKNHkVRxZqFfR\nqHXmQzR5+tHkIZrRUX+i0TGytCHQbc7zm7Vj3uio/O68RDM9HffqzpM6U0Wj1llWw53HOuvsjP3y\nvCMDNINoXDWaVltnWTUaF9EUrdGANMi7dvml4mzoPrKts7JrNOZ3uGDHm5Vodu9OVjR6g7piRXnJ\ns+OeaJIUTRlhABfKUDRpRJMUBkiyznxluiIP0ehgf6Z1ppI8rx2pdZosRbNmTTy8fxFFkxYGyFI0\nSR027XHObGhj4DPWmfZ2T2tAy7TOzO1ptXWWpWimp+P9MjtbjqL5xS9ao2h8rTPzu1yw480DA7Ht\n6qrRqKJZuVLajqBoSoIrRdVM66xIjebwYTlp7TvlvIqmqHXmSzT6u0zrrLdXtrsI0WhPbR1qxYUT\nToi3rR7rzAwDmANZpsFVoxkdrR2XzIavotF9llafgbixLds6a1dFo42zjmiux7CeMADIfp6bK49o\nylY05jxFSUiyziC9RjMwUK51VmKZe2FCGxJT0ZQx1lkS7HhzkdTZE09IKsQmB1cYYOXK+E7URL1E\nk2VJ9PXFv8u0zpYuLU40Dz8saiYthHDyyfEFZBPNkSPZxO4KA8zOVocBkmDXaKanpa6U1biY/WjS\ntk3HRUuzzUCOpc4IWRQ6MsBCqNGY55dOFDc6Gt8oFIU2yGVZZ76KRlNnZSka2zrr7JSbH3u8vDVr\n5GZuyRI5/u1inQ0CdwOPA98GViUsdymwA3gC+IDn+h+Mlt8BvN54/2XAQ9H/Pmm8/5+B54GfRI9r\nfH+E3Y8G2l/RPP642z4yFU2lIhflwEBcczKjilqjKTJ6s28YwLybU0WzdKlEgosQzc9/nm6b6XI6\nr0YZYYB6rDOfdeztzLKluruzFQ3I/i/bOuvpqe7t3mwkKRq1aMfH5fj19EhMtx41AzHR1BNvztth\n00ydlVWjsRXN5s1w9tm1N2yDg1L/UwXeLtbZdQhRnAXcE7220QV8GiGbc4G3AedkrH8ucGX091Lg\nM4DukhuB3wO2RI9Lo/crwFeAl0aPz/n+CFc/mkYqmjJqNPv2uSO+JtHofOU9PXIR2nOhF+2w2dXl\nb52ZiqZe62xwEB56KJtoTNgd+YpaZ2Nj8ThoaaiXaHxmhOzuzlY0UB7R2IoGWh9vdjXWpjXV2ytE\nU08QAGJCb1frTPdD2nIuRfPiF8ukijZWrpRrVYnGNaxVUdRDNG8Ebome3wK8ybHMhcBOYBcwA9wG\nXJ6x/uUIacxE6+0EXg6sBwaA+6LlbjXW6SAmo1xwpc7aWdHoNmYRjd3I2RFnk2jydtgsUqMpwzp7\n6CH/OVXM752Z8U+dmWEAtc4OH/YjDLtGs9AVjatGo/9rBZKsM5DtVEWjRFOWoilinemNm3kNlB0G\n0M7QeRUNuLejo0Nu6LRDdLsomrVANA4ow9FrGxuAZ43Xu6P30tY/OVrOXsd+f4/xWRXgLcDPgK8D\n3s2RK3VW1lhnLpShaCCZaJRM7EbODgRMTcVkMTtbfo2mvz/ZOrvmGnjLW/y+T7F6tUSFiyiaeq0z\nX6KxazRFFI0P0fgomquvliFTiiJpCBrdhlYgyToD2Sad/bO3V45ZvUTT3x8PspsXOtVCIxUNxFNZ\nJ8GlaNKwZk1jrLOsn3I3sM7x/l9YryvRw4b9XkfKcq73ffEt4MuICvoDRCH9hmvBrVu3/vL50NAQ\nZ501VKNodEhyHWiz0YqmLKIxwwA+RKOTRk1N5SearOHS06yzIg2gzgHSLKIxrbPDh/3UgTYSlYo0\nNHmIZmbG71zzVTTve1/2Mlnf44o3Q2vjzaqKbSxZImGPMhWNDkNThGiglmjK7rAJ8nk+iqZS8Tsf\nBweFYLZv3873v7+d558Ho8ksjKyfcknK/4YREtqP2FrPOZbZA2wyXm+M3ktb37XO7uj9jdb7+lmH\njPdvBj6WtNFbrb32/POxolHJ2NERWyiNSJ3ZiqYZ1pndl0ajoGr3NDIMYFtnRVAG0eTpsGlbZz4q\nQovSSlK+RKO2ypIl6Yk68Fc09aIdrTP9fte5p6q5zBoNwMtfLknGIujurq7V2APhJq2Tp2+bD9Fo\n2ElvLNOgimZoaIhnnx3irruEaK6//vrsjUlBPdbZNuCq6PlVwDcdy9yPFO03Az1IkX9bxvrbgLdG\ny58WrX8fQkgjSL2mA3insY6put4IPOL7I1z9aCAunjdirDN79OYyrTMlmrGx9BqNTgWtiiZPh00d\n6ywNZo3GtM58ZlN0odmKxhyCRtN7PjDrND59b3Q77QEsk3D22f6Tb9WDnp7ac7PV1lnaRGm6nWUq\nGoCvfEVG6i4CW9FAuYNq6uf5dNj0PRfXrGlMjaaeJvQG4GtICmwXcEX0/snAPwCXAbPAtcBdSALt\nZuDRjPUfid5/JFr/PcS22nuALwDLgNuBO6P334sQzCxwEIk7e8HVjwbiQEAzajR5482dnW77JEvR\nJFlnOgmaD4r2ozFrNEWwerXc7euwLb7bOj4eD0GjBJ8VBhgdjVVJd7fYDr5D7pt1Gp++N7qdExN+\nltTtt/ttR72wU1MQb18rU2eQrGigfKKpB0WIRs+fPESTtpxeez71GRCiUUIvM3VWD9EcAi52vL8X\nIRnFHdHDd32Aj0QPGw8A5zne/1D0yA1XPxqQhnR0VGwTnznCfWESTaWSX9GsWQP/8A/uddLCADrr\npcKu0fjesedJnbmss6KK5oQTJAWUp5EzFc3SpfFFl6beXNYZ+BONGXHOU6Ox6yGtht3hENpb0XR3\ny41IV1ccBsg7fXXZ0BsVfQ5+1tnEhL915hsG8CWaq66KbfR2SZ0tCqQpmgceEH82bf6TvDCJRjtK\n+tZHQE6+axK6o6aFAZKIpkiNxmdYDh3TTNeZnIwH2CyCM85wZ/+zttUcQyzLZgC3dQb5rLMiROOr\naJqFNEXTrjWa3l4hmzJrNPWgqHXWiDCAL9Gcd148K/CJJ8rrMnDcE01XlzT4Y2O1imb7dikGlgmT\naMqu/9jWmWkdLF+ermjy1Gggm2he9jL4ZlRB6+ry6xWdho4OOPPMfOvYRONTDLVTZ0UUjdZo8iqa\ndiIa3ZZ26rCZVaPR/7ezdZYn3lxGGCCvojFx6qnwhS/kWycJxz3R6PhRdt1h2TIhmgsvLPf7TKIp\newqCZcvihtWlaOyRAcwaTR5Fo9+Vho6OeNBP385qZcPuCJlX0ZjWme9FatdoFrp1ttAUDbQX0dj7\nMU+HzVYomkbhuCcacEd2ly2TSY/KVjTmoJplK5qOjtg+y1ujyUs0eWwJs9d2M2F2hPS1zjR+bvaj\ngWI1mryps3ZSNAutRmMTzZEj7UE0RRRNmakzrY8GomkDdHcL0ZiN5/LlclK8+MXlflcjFQ3E6bI0\noqlU4l7oRWo0kK8TWxnWWRG4rDMfRWPPRwONDQN0dfnHm5uFNOusHRVNd3f8/95eOccXYo0mz1TO\nkG0Hm/HmQDQthitJtWwZvPSl5d9lNrJGA3GdxtWPRolG7/B1UrI8RKMnfxGiaZWiKRoGKGKdFa3R\ntKuiaad4sxb7XcfQVjTQHoqmqHXWqjBAoxCIhmRFU7ZtBo1XNEo0aYrGjBk3KgxgQj+71YomD9EU\ntc4Wc42mHRTNsmXu0RPalWhsReM7Argv0bz61XD++cn/12tAp2duFUq+n16YWLJEkmdm4/mOd9RO\nDFQGmqVo7EbOnCbAJJru7ubUaKD1RONrnZmKRhu1ovFm3w6b7Zo6M/dXq8MAvb3J51A7Eo15o2LG\nr9Oginhuzm8/X311+v9V0TzxhJBSqxCIBnfj+cpXNva7ZmfbR9GMjze+RgOtDQP4ps40DKB3lNow\nNLrD5kKwzlodb1ZF44LeSED7EM3AQHz8TSJMwymnwFNPycCzRQfzNKHXwCOPwLnn1v95RRGsM+Je\nxc26gLQxa4Si8QkD6ICa0Lh4s4lWWmdqQ+SxziYnm9+PpuyhjupFO8absxSNGQaA1ocBbr0VfiMa\nQ37JEr/z/7zzZAbdsbHinZtN6ESFe/c2Z4y8JASiQU6C5cuzZW1ZMJNN7aBoGl2jaaV1piMSaI/x\nZvajyRNv1nXbBe1co3GhHa2z/v74Bs5X0SxdKh2TH3ywnJvQJUtkCvQtW8q/qc2DQDTIAShDpvpC\nG7NG12jMCy2JaIrWaBaKdWbGhusZgiavdaY+u89v1u9oJ0XjUi8apW3WDZlrmxZSjcaEr6IBSbv+\nx3+U0zZ0dcHu3a21zSAQDSAXUzNlttmYNUrRuOLNGgbQKQKgmHWWNX2sjVZaZ0WJxkydnX66f6Ol\n1pnuf59GWfdPuyua5cvhTa4J25uEs86CK65w/2+xEc2xY+VZZxCPX9YqBKJh8SmaI0eqp2qG6rHO\nbOssL9EkRUzT1oHWEI0ZG/axznTkBjN19uST/he9Khrf+oxup67bLnARTXc3fP3rrdkekAFu3/9+\n9/9cYYBmXtNZ8LXOQIhG1ynje6H1iiakzlhciqa/H4aH5W7OJIPly+Xufn7eXaPJSzR50GrrTJVC\nnjBAR0e+UbUVWqMpQjTtpGhcIwO0M0ybUy22MhRBWcijaF7yknideqH7IBBNG6DZiqaRqbOBAdi3\nr7aR6+yU752YcNdo8oQBihJNq6yzPESjUxkUIRmoT9G0E9G4xjprZ9jWWTvZZhDPk+ODVavEri2D\nKJWA8458XjaCdUacOmsW7PG0ykQS0UAcCDCnVF6yRMaFyqNo8u4r3wEFy4Zdo/GxznS5ohe51mjy\nDPmxUKyzdka7E00eRQNw0UXlDBnT0yPTf7f63Fogp1FjYfq7zYBZo2lEGGDfPvc850o0hw/D4KC8\npw1JM6yzdggD+DScvb1xRDkvFpuiWahE0+o+NDby1GgAPv/5cvb9BRfE80K1EgvkNGosWqFozAht\nmRgYEMWSpGjGx+HAgXiumMVONCaZ+1hnulylUuw766nRtPqu00SrO2fmhXmz+MIXwkc/2trtsXHi\niRJm8EVZNx3tYJtBIBpATtJWpc4aEQYw/5rQ5NmBA7B+vbyn3+9rFW3ZAm9+c75t6uyMO0w2E3YD\n/qu/6jctd29v3Ls/L4KiaQ0uvTS+WVy2rLUxbBcuu0wexysWyGnUWLRK0fjOopcH6uum1WgOHIjn\nAs+raDZvhve9L/92dXW1RtFA3IBfcIE8stDbK5ZbEWiNJg/RtHM/mnZKbqVBh3oJaE+EMACt7UfT\niBoNuIuhJtEUtc6KopVEk3cfZ00mlYbF0o+mp6d69OqAgHoQiIbm96OxRwguE8uWCWlkKZpmE03e\nYmhZ3wnFiKbonfxi6UdjTtoVEFAvAtHQ2nhz2RdzR4c0cFlhgDVr5L1mWSQLSdH4ptNcUEXjO6Am\ntKei8Y2CBwT4IBANi2sIGqieB8OEKpqDB1tjnS0kRVMP0UxPy4i5Z53lt047KpqVK2H79lZvRcBi\nQQgDAL/zO/mih/VCicac76RMJBHN8uUyDtrYWJy+aqZ1tlAUTb0dNo8dg5/8BF7xCr912lHRAPzK\nr7R6CwIWCwLRAG94Q3O/T1NNk5ONmS46TdH84hfSWdOcJwMWdxggr1KoV9H88IfSYXYh12gCAspE\nsM5aAFU0Tz8Np51W/uenEc0zz8S2GcR30cE6i1FvGOCpp/JNBR6IJmCxo57mZRC4G3gc+DaQdG9+\nKbADeAL4gOf6H4yW3wG83nj/vwO/AEat7+gFvhqtcy9wau5f00Ro6qxRRHPppe75J1TRmESjjVyj\nwwALKXVWbxgA8hGN7vt2s84CAspCPURzHUIUZwH3RK9tdAGfRsjmXOBtwDkZ658LXBn9vRT4DKBp\n/v8DXOj4nt8DDgJbgP8X+JviP6vxMBXN5s3lf/773w8velHt+y5F0yzr7POfhzPOaOx32NDf1Oww\nAOQjGp2SICiagMWKepqXNwK3RM9vAVyDPlwI7AR2ATPAbcDlGetfDnwlWn5XtP7Lo//dB+zP2JZv\nAG3dT7i3Fw4dgqNH46FgmoG+PqkNtYJoXvva5vcy7+goFrioNwywZQusXZtvvUYFQwIC2gH1NC9r\ngeHo+XD02sYG4Fnj9e7ovbT1T46Wc62TBPN7ZoGjiDXXlujthcceg1NPbXwDb0L7CrWiRtMqFCWa\noormFa+Av/u7/OstWRIUTcDiRdbldDewzvH+X1ivK9HDhv1eR8pyaePlFhxLtz3R2wuPPy53+c2E\nDkujnTWheTWaVqFIA14P0QwOwiWX5F8vKJqAxYysyyntkhlGSGg/sB54zrHMHmCT8Xpj9F7a+mnr\nJGEPcAqwF/lNK4FDrgW3bt36y+dDQ0MMDQ1lfHT50NGBGxEESIMSTSuss1ahSAPeimmAg6IJaCds\n376d7SX22K2nH8024Cqk8H4V4Jpe536kQL8ZIYErkUBA2vrbgC8D/xOxxLYgtRmfbbkX+F0kXOCE\nSTStgqav2oFognVWi3oUTVEEogloJ9g34ddff31dn1dP83IDongeB14XvQapsfxL9HwWuBa4C3gE\niSA/mrH+I8DXor93AO8hts4+htRilkV//yp6/2ZgDRJv/lPcCbi2gXZcbAeiCYqmFq0immCdBSxW\n1HM5HQIudry/FzCn+LkjeviuD/CR6GHjz6OHjSngisQtbTO0k6IJRFOLelJnRXH11fmTagEBCwVh\nCJoWoFVE40qdHQ9hgIWgaP76r5v7fQEBzUQgmhagt1eGiRlscgC7txeuuy6eHA2OjxpN3trHK15R\nvY8CAgLqQyCaFmDzZrjxxubPXtjRAR/9aPV7wTqrxZYt8ggICCgHi7R5aW/09MA73tHqrRAEogkI\nCGg0FmnzEuCLUKMJCAhoNALRHOc4Hmo0gWgCAlqLRdq8BPgiWGcBAQGNxiJtXgJ8cTwQTehxHxDQ\nWizS5iXAF8cD0QRFExDQWizS5iXAF9oIL9YwwDXXwPnnt3orAgKOb4R+NMc5Fruieec7W70FAQEB\ni7R5CfDFYieagICA1iM0L8c5AtEEBAQ0GqF5Oc6x2Gs0AQEBrUcgmuMcQdEEBAQ0GqF5Oc4RiCYg\nIKDRCM3LcY5ANAEBAY1GaF6Oc3R1yfQBgWgCAgIahdC8BPCWt4Te8wEBAY1Dk6feajkqlUql1dsQ\nEBAQsKDQIbM0FuaLoGgCAgICAhqKQDQBAQEBAQ1FIJqAgICAgIYiEE1AQEBAQEMRiCYgICAgoKEI\nRBMQEBAQ0FAEogkICAgIaCgC0QQEBAQENBT1EM0gcDfwOPBtYFXCcpcCO4AngA94rv/BaPkdwOuN\n9/878Atg1PqO/ww8D/wkelyT98cEBAQEBDQG9RDNdQhRnAXcE7220QV8GiGbc4G3AedkrH8ucGX0\n91LgM8Q9Uv8PcKHjeyrAV4CXRo/PFf9ZAb7Yvn17qzdhUSHsz/IQ9mV7oR6ieSNwS/T8FuBNjmUu\nBHYCu4AZ4Dbg8oz1L0dIYyZabyfw8uh/9wH7Hd/TwfE3nE7LES7mchH2Z3kI+7K9UA/RrAWGo+fD\n0WsbG4Bnjde7o/fS1j85Ws61ThIqwFuAnwFfBzZmb35AQEBAQDOwJOP/dwPrHO//hfW6Ej1s2O91\npCyXNtpl1kiY3wK+jKigP0AU0m9krBMQEBAQ0ObYQUxC66PXNi4C7jRef5A4EJC0/nVU13vuJLbO\nFHYYwEQXcCThfzuJSS08wiM8wiM8/B47aRE+Rkwa1wE3OJZZAjwJbAZ6gJ8ShwGS1j83Wq4HOC1a\n366/2ERjqq43A//u/zMCAgICAtoVg8C/UhtPPhn4F2O5NwCPIYz4QY/1AT4ULb8D+E3j/Y8hNZ/Z\n6O9fRe9/BPg5QlD3IEm2gICAgICAgICAgICAxYOkjqMBftiFpPp+gsTMwb/TboD07RoGHjLeK9Jp\nOUDg2p9bkZSqdtx+g/G/sD+TsQn4LvAw4gy9N3o/nJ850YVYcZuBbqprRQF+eBo58Ux8DPjz6PkH\ncNfpAgSvQjoTmw1j0v7TOmU3cs7uJAwXZcO1Pz8M/D+OZcP+TMc64CXR836k1HEO4fzMjVdQnX6z\nk20B2XgaWGO9t4O4/9M63MnDgBibqW4Yk/afmc4EOXcvavTGLUBsppZo/syxXNif+fBN4GJKPD+P\nFxZK6zga4IcKEt64H/j96D2fTrsBySiz03KA4I+BB4GbqQ4ohf3ph82IUvwRJZ6fxwvRVFq9AYsA\nv46cgG8A/gixLkxo3j6gGLL2X9i32bgR6RLxEmAf8PGUZcP+rEU/8A3gT6jtQlLX+Xm8EM0epOCl\n2EQ1IwdkY1/093ng/0PGsRumutPtcy3YroWMpP1nn68bo/cC0vEccYP4WeIBeMP+zEY3QjJfRKwz\nKPH8PF6I5n5gC3HH0SuBba3coAWG5cBA9LwPSZk8hOzDq6L3ryI+QQP8kLT/tgFvJe60vIU46ReQ\njPXG8zcT12/C/kxHB2I1PgJ8wng/nJ8FkNRxNCAbpyEpk58i8Ufdf2mdbgOq8RVgLzCN1Auvplin\n5QCBvT+vAW5FIvgPIo2iWTMM+zMZrwTmketbo+GXEs7PgICAgICAgICAgICAgICAgICAgICAgICA\ngICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgID2wf8PIXTtlZdbmDwAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7f3d33543f90>" | |
] | |
} | |
], | |
"prompt_number": 149 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Agora com o GMM" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"gmm = mixture.GMM(n_components=30, covariance_type='full')\n", | |
"gmm.fit(model.syn0)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 137, | |
"text": [ | |
"GMM(covariance_type='full', init_params='wmc', min_covar=0.001,\n", | |
" n_components=30, n_init=1, n_iter=100, params='wmc', random_state=None,\n", | |
" thresh=0.01)" | |
] | |
} | |
], | |
"prompt_number": 137 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"print gmm.means_.shape\n", | |
"plot(gmm.means_.T);" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"(30, 200)\n" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEACAYAAACK+7BGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm4ZFdZ7/9Za+29q+qc01PmzkSAgIAoMlxAUW5EgiGB\ngKAgg3AFRGRwRMEranz054Be/SEIRm+8BlFigBDCkJAQiCFwmSEkBDLS6aS7SXd6OlNV7b2G+8da\ne9euql116gzd5yTZ3+fpp+tU7bWHqr3Xu973/b7fF2rUqFGjRo0aNWrUqFGjRo0aNWrUqFGjRo0a\nNWrUqFGjRo0aNWrUqFGjRo0aNWrUqFHjQYNzgO8BtwNvG7HN34fPbwSeOMHYY4BrgNuAq4Gtpfc/\nB8wB7x44xnVhX98M/45bycXUqFGjRo2NBQXcAZwBxMC3gMcObHMu8Knw+mnAlyYY+07g98LrtwF/\nGV5PAc8AfpVhQ/M54EmruJYaNWrUqHEEIFc5/ql4Y7EDyIBLgBcMbHM+cHF4/WW8d3LSEmPLYy4G\nXhheLwJfALojzkes9EJq1KhRo8aRwWoNzSnAPaW/7w3vTbLNyWPGngjcF17fF/4uw404n4vxYbN3\nTHDuNWrUqFHjKGC1hmbUhD+ISTwNMWJ/bsLjvAJ4PPBT4d8vTXhuNWrUqFHjCCJa5fhdwGmlv0/D\neybjtjk1bBNXvL8rvL4PH177AbAd2DvBuewO/88D/4EPzf1beYNHPvKR7s4775xgVzVq1KhRo4Q7\ngTNXOni1Hs3XgEfhE/oJ8FLgioFtrgBeFV4/HTiENyTjxl4BvDq8fjVw+cA+Bz0kRY9lFgPPB24a\nPNk777wT51z9b43+/fEf//G6n8OD6V/9fdbf5Ub9BzxyaXMwGqv1aDTwZuDT+Mn+IuC7eFYYwIV4\nxtm5+MT/AvDLS4wFzzK7FHgtnizwktIxdwCb8MbphcDZwE7gKryRUXhq9D+v8tpq1KhRo8YaYLWG\nBuDK8K+MCwf+fvMyxgIcAJ49YswZI95/yoj3a9SoUaPGOmK1obMaD2GcddZZ630KDyrU3+faof4u\nNxYeanUnLsQba9SoUaPGhBBCwCrsRe3R1KhRo0aNI4ra0NSoUaNGjSOK2tDUqFGjRo0jitrQ1KhR\no0aNI4ra0NSoUaNGjSOK2tDUqFGjRo0jitrQ1KhRo0aNI4ra0NSoUaNGjSOK2tDUqFGjRo0jitrQ\n1ADgnOe+jDPPe+HSG9aoUaPGMlEbmhoA7BIpdx+3e+kNB6Be9wTe+LrfPgJnVKNGjQcLakNTAwCL\nwwm7/HHH3sM9e+5besMaNWo8ZFEbmhoAWAdOLt/QIA2ZXcG4GjVqPGRQG5oaHgJYkaHRmFoRu0aN\nGmNQG5oagA+dIczyB0qNrg1NjRo1xqA2NDUAcICTKzM0RtSGpkaNGqNRG5oaALgVhM5uvvEWkJYV\nmKcaNWo8hFAbmhoAWOeW7dHcctN3/dgjcUI1atR40KA2NDU8VuDR3Hr7XQBktampUaPGGNSGpgYA\nDgdSL2vM/r37AerQWY0aNcaiNjQ1AE8GYJmhs9nZOQCsWPvzqVGjxoMHtaGpAQRjsUxDs9DphLE1\n66xGjRqjURuaGkAeOlueoUmzDKCuo6lRo8ZY1IamBpDTm5dnaLT229ceTY0aNcahNjQ1gJWRAbTz\nbLOaDFCjRo1xqA1NDWBlhibXOLMrUH2uUaPGQwdrYWjOAb4H3A68bcQ2fx8+vxF44gRjjwGuAW4D\nrga2lt7/HDAHvHvgGE8Gbgr7etfKLmXl2Pai5/Cal7/paB92zeBZZ8v0aELIzNSssxo1aozBag2N\nAt6DNxiPA14GPHZgm3OBM4FHAa8H3jfB2LfjDc2jgWvD3wAd4B3AWyvO5X3Aa8NxHhX2e9Rw6LTv\ncfv++4/mIdcUnnW2PEOTdwew1DmaGjVqjMZqDc1TgTuAHUAGXAK8YGCb84GLw+sv472Tk5YYWx5z\nMZD3GF4EvgB0B46xHdgEfCX8/f7SmKMDZWivRP14g8CHzqzXL5sQtvBo6tBZjRo1RmO1huYU4J7S\n3/eG9ybZ5uQxY08E8raN94W/yxhcQp8SxufYVXEeRxZS05UP/JX9V770tYm3zc1qrd5co0aNcVit\noZl0hpkkii9G7M8t4zjrB2noPIA1v1wwFnd/fycA4i2P4E//+K/HjsmvtqY316hRYxyiVY7fBZxW\n+vs0+j2Lqm1ODdvEFe/vCq/vw4fXfoAPi+2d4DxOHbGvPlxwwQXF67POOouzzjpriV1PCJXRXUk/\nlw2C3FTsu/+Af7HtXm75zq1jx+S5mdrQ1Kjx4MJ1113Hddddt2b7W62h+Ro+8X4GsBt4KT6pX8YV\nwJvxOZinA4fwhmT/mLFXAK8G/ir8f/nAPgc9pD3ALPA0fJ7ml/BMtyGUDc2aQmq6y0ymbyTkHs3s\n4Xl279wDKiskZkbB8MClN+/euYfnvOFN3Pypy9b7VGrU2HAYXIT/yZ/8yar2t1pDo/FG5NN4FtlF\nwHeBXw2fXwh8Cs88uwNYAH55ibEAfwlcimeR7QBeUjrmDnziP8En/M/GU6TfCPwr0ArHvGqV17Y8\nSE2qHvgezWK3yw3XfxGAjh5/PbmY5gPRo/njC/6K7zz5k+t9GjVqPCSwWkMDcGX4V8aFA3+/eRlj\nAQ4Azx4x5owR738d+JERnx15qIwseuB7NNoavnPzd6EFOpifJ57z82xD8dmr/rN/TLAvbpl9bDYC\n7r//AJyesXvnHk4+fft6n06NGg9q1MoAa4Drr/0CCIeO0vU+lRXDBaOSGcs9uzzhL29o9r0t+7g1\nXhwak7PNHogeTTtLQTi++a0b1/tUatR40KM2NGuAb3/rOwCY+IFraHIY51hY9EYly3MwytBR2dC2\nuXlZaY7mcee+iL/7y/esaOxq0bX+7L/yxcnp3DVq1FgZakOzBrjr7rsBsPFgHekDB0XoTFi6XW8w\ndWFoNN0KI5pLz6w0dPbdM7/B5Z/7/IrGrhZpuN7ce6tRo8aRQ21o1gCH9h8CwCXjWVobGYV3YqFr\nfK4ppwI4pcmSYSOas87cSlln0tBZJ8Za7q0tLLbX5fg1ahxpnPz883jfu/55vU8DqA3NmiCnAbvG\ncB4jxxPP+Xl+9LkvPlqntGy4Ur4lb2Smg9KBUxrdGJ6QHQ5MtHIygDS018vQhOttd/1vd8L55/JT\n57xk3JAaNR5Q2PPYL/Opq69b79MA1oZ19pBHt5uCiaCxMHKbu1tzGzppnhsaQ8+TSXOPJdJQkaMx\nONCtVRma7jobmtT4qz2wbR/797XW5Vxq1DgiUBnabow5p/Zo1gCpNdDeCo05X+xYgUzpYjLfmMgN\njUNji9cAqAzXOjw8QjjIGriVKiKsp6EJ11g8iMpgHsASQjVqDEGlRc+o9UZtaNYA2jpIW+AkF130\ngcptsjjb0BX0Lk/s0/NodPBUXJTC1KEhI2oBdGMVORpNZ52KXLNwznlPHSdrM1PjQQaVFmUL643a\n0KwBtLDgFHRn+OY3b67cxsQpdgOrOxehM+Ew4TQLjyZKIeryN3/TT0W2wnlDswqPJlsnfbgs/Bb5\ntTqlaxXqGg8aXH/tF0DaDdNmvTY0awBr8Tma7jRzaTXF2cadla/8jwLylY9xYMIknOW5l6gLusF3\nb/9+3xiLQ+gEVpqjURlZNJz7ORoY9GhQum7gVuNBg/8KMlIb5Z6uDc0awAiHsArRnWJxxBrCNdob\n2tBQsM4oWGdFqC9KYfZE5l2/UbDCIXSMW2n4S2q0Wh/ZnrxZW0HRVrowsDVqbBREr3kSf/uXg13r\nl8a9O3cDpajEOqM2NGsAC2AlIm0Otf7M4ZI29gGgCWaxhVimLjyaDnJ+GwsDoSUTDA1jwl+/+OJf\n4Vf+x28Nvb975x6QBr1Oago6nHPh0chsw6z+atTIYU69iauu++Kyxx2anQXYMHnHmt68BjAOhFXI\nrEFnlDFpzG9o8cnc27Ki13/OChtivZqoPcP8QKtqJxzCRLgx7RE+bXfS3B8PvZ9rjNl10oczwQsr\nrijK6pbUNTYelOagWL7X3+76Je9GWTrVHs0awEgHVhFljcoum7t37oHm7IYOneWsM4srpGeMtFx7\nzedAN0nSBu0Bz8XikCYa69EYaSuT7Ld+5w6/j3VSUzDhnG2Jwr2R65w2Knbv3MPpzzt/vU/jQYmb\nb7wFgMMrMDR5fdhGuaNrQ7MGMDiEk0Q6quyy+e6/+yc/GW9gj4aiYNP1GppJw1077gXdoKET2gOJ\neydY0tA4YSvrh+7d46nSLlkfCZjco+mRAWpDsxJc+N6LuOe/fZwrP3n1ep/Kgw5f+ZIXfD28Aq8/\nG6yFW2fUhmYN4BxgFbGJ6FYkt793551+uw3c6tnhQCcDhsYyN78AukFLx3QHbngnLNKoStWAHFa6\nSkNz6KCPITNGtudIwioNJi4Vpaa1oVkBbrtjBwCf/sRn1/dEHoS4+/s7AVis0BlcCnmh5kZZ2taG\nZg2ghUNYSWyiyrqQw1mIl250j8YkOOH8hNudwUrDotaQJbSsIh244a1wRFbBGOaYE7ZyAm+322Di\nsbI9RxJOaehs7oX1VLqhC2o3KmaDKOnOXdWKGBsB8aueznnnvmK9T2PZOHx4HoBua/nPSL70qz2a\nBxGsAOEkTRuRVtSFdHIZiI3s0QgHJsYSGpql0zhlyJwFkzDjFGZAWNMJh7ISxpABnHCV1cnttAud\nzRAvFLHoowmrMujMYHBFcdvGlgjamGg7/9svZpOFd3bfvYe/vOBvj+QpDUFv28P9dn3qtVaD2dk5\nAPT0sPzTUigKkcVantHKURuaNYDFezQNKzFxhaERFrqbNnToLPdorHA+QZ62sEqjhUXomGknsM3+\nlZUVDjWBR1M1gWtjQSeQTfHed//vNb+cpeCiDJFOYaTzhAdW3sBtvaFe92Oc89xfXJdjZ+Er69rJ\nvrvnvuHN/NGdlx7BM6qA0iyKDfzsjUCuLO423b/ssTpnkdYezYMHORmg4SSmInHXxsLilo3t0eBA\nxxjh0NIh0iZOajQCYWJmRIxrzfWPEY7YSZCjV4tuhKegrQWroDvNPXvWoflYlCLSJgZXND/byBJB\n42CnDzLn1sdIpiEcnE7oDe6Nu+iZQ0fylIahsgekoelmGhaOhdYh/uXC9y9rbF4LV3s0DyKYkKNp\nOVlJ1+1Kg2g/ADwaG2HxHo3ImrhIk4Zamcc96uEwdbBviBOWyMqxZIBRHo1xnhJOOs2COfrfi4tS\nVNrACMv8nI+Fb2T6+VjEnSJUcrSRt5LoVqSdP3nFVUPFurPNRdzU8kNBq4LK1k28dTXItPbSVnMn\n8KHLr1zW2KJE4Uic2ApQG5o1gBUgrKCBqOyy2ZEW2Z0eG2JadwjfxMwKhxUWmSWgNBkWYSJ+561v\nBmH54//5Z8UQJxyREyDsyPYITlbnaIxz4BQibXmP72gj7hJlDaxwRX7hgaDcUIm4U4RKjjbScNys\nYuX89vf9MxebL/W91505BNP7R94vRwQqo7NOz97unXt45HkvWNFYbf3iT84fwwG3vPMv2qzXobMH\nD2wpdOaiYSpiqjRRt7WxQ2d5lb9wWOmQOsapFC1AmIiTT98O6RR33r6zNMYinAAbcdWV11TveATr\nzArAKGTaWJ+eNFGXSMcYaUlNaIewgT2aFz3vl3jR+a+q/jBeLEIlRxt5S+y0YrHQkRY91R9uNVv2\ngsp4xx/8+VE5PwBkRrpOChTv/rt/4q4nL88byeEXY5JoYTOHxhBuqjDUU2qdURuaCXDzjbfw/OeP\npkdaHNJJGkp5AcoBZEqTpI2x7Kz1hzc0uUcT6dh36CPUygBYxWK3Z0iddCgEmJjbv/f96r1KUx06\nwyFckO1ZD7ZX3CExEQ6HDvmNjUw/vy7ex+fF/qH3L/3AR0DpIlRytJEVHk1FHg6La80Wf7/nf/0T\nzOyDg6ey8/59R+X8du/cA1FKlqyPoTlw6NCKn3sbwsvNzhSzY8LTVciXtBvDzNSGZiL86tsu4BNn\n/tdId98Ih3SCmVYT4mGPJosymjp+wITOnHDe0EQpmXRI2zM02va8MicsAu/R3Hd/NTPGCVuoDpSR\nC5FGWUL3KCdq/eTTITEKK22p+dnGNTRGmkpW3LXX3uA/XydqdmFoKr67TNq+vN7lV38WDm9Hzh/D\nnDs6v/kNQS5fh5D28897Jeed9/KjcmyA2bk5EG5FFH4rACeZyRosLLNo04RnaqMUIdeGZgKkwsHW\nXbz89b9Z+bkJIaRTTjkJouEcjY5TWibe0B6NC60OHN6jia2CKEMLi8o9GqfIjC2NsYVHkyfUhyBt\nZUjKBEp4ZKKjbmguuugDYBIiJ7Gi1xzKbWBmkhW20tDs3e+9nPW6s3IDk1V8d1pYaMzzt3/hG+bt\nlRlq9nhUZ5q5o2TUv/l134jQBqmjG5J9fDEZ9gyPFLqZ90RyOZnlwGLBSjabmM4ERZtPOufnSV7x\nDKCXo1mvkOogakMzAfI45y2N6snUCR86O+ecZ0HcHm55HKdMLVFvsu4QFmGVD51JS2IURF0fOit5\nNOUe5D50BtiIjq527UeFziyAU8Q6pnuUGUG33XonZE2UExhpe2GnDe/RDH+P8zmRYQ2CJD907ovY\n9nPnLGuMlhacqPRocoLCZ2/4vwAciFJa85uJu00WjtKi6769ewFwTf/stpttsujoPYeZ9se65+57\nlj3WOIGwiqaV2IpIySBuOuGegjqee7jO1R7NAwYWIJ3m/hN3Vn8eQmfPOfdnwCou+9DH+z9P2kwv\nUW+y7ggejQ105MQpUF2MtCgXbhOrfNy4GGN9VMxEZKMoyiPqaPLQWWwV2VE2wIfn50E3kU7gpEUL\nfy4bmX7upK1kxWUhv7QWLQ7mVcZia4RnOgJaaWhvLfr7lGHC+R4Ok+3hRpvN3SmaWYOFo5ScPzy3\n4Gn0IVeUTc2hj2JX1ywUsh48OLfElsOwwpMBEgRuiXN+7nNfjn7413Hhey0KNuvQ2QMHBova9Vjc\nMffwc+e/eujz3NAAoFt841s3933uGovMuPH1JusO4ZBG4aT3aHwhpiGTxtfKAFjZN6EVoTOriq6c\nQ5CmMvdhQ+1R06ijusIEaGsNWQOFNzQGB9n0hmYF2hEhyHyda9YgRJIJi5lg5VyGlgYWtxZq2GXk\n782H77UzPcsxOmHKxHSWeZxR+MRlV/LMn33pyM9Tk8HiMdCc5eYbb8FOH6wsqj5SyCMAuZzMssbi\nwEoSWNLQfKVxgGjHk4o5JjcwDyZDcw7wPeB24G0jtvn78PmNwBMnGHsMcA1wG3A1sLX02e+H7b8H\nPKf0/nXhvW+Gf8et5GKqYIRA6ojknh/m22a42MzhPM0XIGtwaHZgm8YCW+IEpDm69QPLgBM+6e+E\nxUnj62N0gyzSXs8MwKr+AI20yEAGGDVFjyIDGCgo4fooU08zvPyNcgIrjV/9pa2N7dGo6tBZVhTm\nrd6jMdJW1oGNg1Ua2d401qPJDY3eso/jXcyMiUkba9OH6M//6f9ww8NvGvl5Zg1kTUin+dt3/gNs\nvg97FLu65oZmobP863X4hoqxk4WnMgoHzvgOj9t7ekFGKgzNso96ZLBaQ6OA9+ANxuOAlwGPHdjm\nXOBM4FHA64H3TTD27XhD82jg2vA3YbuXhv/PAd4L5Gs5B7wcb8ieCCxfIGgEDD5/sXl+CwcrHkRb\nDi/pBovpwE3RmOdxZz4KrBpdb7LeEBbhpBfBlNbfGLqBjlKicJsIpzAlTQsn/HbCRKM9GqUrV+IW\nC8HQHM0HHyAFhE6IIHg0+MloA1ePW6krPcO8YFKvgXyOlgbbWF5/IBNpVHfKt10YgJUa2ltYlJpP\nXnEVbNnDTz/tycw4iWmuTXuITLixnmhKUKBob+bW/Xsh7izbmK4G+YSfZsuPZhgcOEFDSqioz+tD\na5YTXVxsZx9kobOnAncAO/DK1JcAg2Ww5wMXh9dfxnsnJy0xtjzmYuCF4fULgA+G7XeE8U8rHeuI\ncCwsfvU9bWI6cYWhEa73ReoGaWnS/Y9/+xDIjLf81uvH1pusO4RDWhkkYyzKCTAJJukSuV7orO/G\nldZ7PlaNptcKU01vFqIn27NGYZRJkeKFQiPn8zJaBMmdgQnrH//+X9ZFWTrHlhefXUi4OGUqDXZW\nhEhWv3a10iy7bYNTmqjbxFaEP60yMHsC7SjlXe+7GOaP4w//5HfZZCW2VF+zGhjcWE/UOk/bF50Z\n9qgUdOOoNtvLF2Yjc5hjkKvCt+IESvPO1EvP8jVJZaiMbdNTxXZWeq/9waIMcApQplPcG96bZJuT\nx4w9EciVFu8LfxPG3Dsw5uTS3xfjw2bvWOrEz11GfwoTJuFNJiJrDt+kfmIOq36dkJUCSR//2Keh\nu8lX1tvYF3CNwY+d8ws84twXTXxuF77n4rUJx4VrtDKEzhCgE2zS8cYEEFb2aWo5ab1lt2p0BfKI\n3EKheO3kUV1hgpdLEToOORrjPdasMbQy/q0v/isvf/sfHtVzK2P2jJu5c89u/8eIXFe6hitXoww0\nl5dLsFFGI0t824XBz5Qmmt9GJ07ZS4Y6eBIAJ2/eAtMHKvd33We+wMPP/Tmu/ITv2Pn6//Fb/Nkf\n/c3I42eM92gyvMctu1Pc31yE/adDcmSb7T3+3Bex9ed+FugtAPSE6tZlOAArOemEY/s8mvYPfYHP\nfO7z/RvLjKc95YkQddi9c48/rm5umNYXqzU0k17FJJ6GGLE/N+FxXgE8Hvip8O+Xqja64IILuOCC\nC7hy9sM8+anPmmC3IXHtBJucwrSGH0QrLHnkQuiIciBo//wCdKf9HybyBVxj8INkkb3Tk6vbvuVL\nF3L+639j4u1HIjeWwq8QJfj+NI1FokIKVvVPaMKgCGy1UfuVupI2bEJeqyFEpWzPkUQmHNJEnpot\nDUaAyJKhOicTZ77Fw3ohSguPxams0tDkBZNrwTozSkOy4MNcE8JFXVo6rkxWO6VptGfQjQ77oi6t\n+S0AvP0dvwnJwpAi8e6dezjvwj9ix9Mu56/ecxEAH1j8Fv/4jetHHl/jvNc86prwemGq22Jx8wGS\nQycckWZ7My8+m2ee41s1HFIZnbAgDUuxvrKASZGrwp911jMg9vvLlSBmTe/73r1zDyjNc859FpiY\nyz70cZ8fy1orpr1fd911xVx5wQUXrGgfZazW0OwCTiv9fRr9HkfVNqeGbare3xVe34cPrwFsB/aO\n2Vc+Jiz9mAf+Ax+aG8IFF1zAs37qbDg7Zd8JMyMvrAyLX+1vEQpX0YTISeeT4oAwcZ8cR4oF3Qg7\niugM5m8GYEIdy6QwjTYLYvWsLScs0noWFtKHzoROoLFATCl0Vh4kfV5HWDma9aT0SHqzcJKmUpVq\nCkcSmbDB0Aic8h6NrFBucMKur1ZU1CkKMd2IXFcq7XBIc4VwIUd1yX9cXrx38423cNkHrxg9Jk5p\nmQhXkWdzUcZ0t4lpLnC4uciW7hQAj3/C42DxWC7/+NV92z/pzb9C+9g9RHf9N3aFUoDOcbtpj2Fr\nGuHG1j8ZAcIoYp1gjr+bmcVNEC/6ZndriIUT72a/9N9BKnpefK46sRJD44IywEte+WJwgks/8BGu\n+vR1AHRLbSFuuP6LYKX/XnWTb3zrJh9OzBorbhNw1llnbShD8zV8kv8MIMEn6gfvyiuAXA3w6cAh\nvCEZN/YKIOcRvxq4vPT+L4btHx7GfwVPLMhZZjHwfGAkFeVf//USAH6wbTK9JSP8yuInnvokmL5/\nKFRV5DTwIZmsNDllOISOw44iUj0+Vmuk8SvLCeGULsInq4JwKBdyNEr70JmJoDlHTC90Vp7QCs9n\nsL6mDGmgKnQW1BS2TE0vnehcY+T6bd6j0WhpkRXKDaNaHBwN5DI5WW7ao6wyF6GFge7mNVGezhP6\n+w73FlMv/v0/4FUf/f9HD4q6zLio0it1KmOLTrCtOTozhzg+axSficUtHNQ94/SWX3sb9z32/3L2\njh9l28Hj2dfwHo877vukFc0Ec2jhxipuaOc97iSLYXo/m7ME0hn+/QMfHn1NK8HMAbrhuddKF79V\nvlBZSYW+X4z1yiauvfYGDhz00Y6yPuCtt98FNswxusHBw4f9/ZA1NoxQ7GoNjQbeDHwauAX4T+C7\nwK+GfwCfAu7CJ+4vBN64xFiAvwTOxtObnxX+Jmx3afj/yrAvBzSBq/D06W/icz//POqk79t/ALoz\nZKd8d6IwQa5l9od/8rtgGrzj9/+s73Ofq/A3hDRRsYqBcLOYKPwRFQVc447llsN+krqyKnvZyA2N\ntBAMiDAxJAskuRF1sp/GLA1SegM0UqZ+lKEJ+3vkI0/vS3QeDWTCokxE5AROaaxwRDoaVm6Qdk3q\nU8bh3f/rH/nwv39k6P0brv+iP35xLtWsMyMtdDatiaFxwXNYLOmQdYWlO44hFneYsaryN3RRyjYb\nwdRBzLYfcKKIi8/k4ibmSyGvj9x7C8m9j+HTV13CSVmT+S0HuPiyT4DKyMawEo1wYxU3TChEboTF\n3mYbQ3eaXXvXrtneRf/4fpjeTxqMS6YMTuaV+eE8JvCMk1c8o498kucx/U4b7DtwgIWgwFFWPN+z\naw+YuNiunaU4aRChY+5GwFrU0VwJ/BCewvwX4b0Lw78cbw6fPwH4xhJjAQ4Az8bTm5+D94Jy/HnY\n/jF4IwWwADwl7P/xwG8xJq+zaDTMnoCYPZE/e++/LHmBtlwnM38sOw70M6edtN4DAKRRfZLpGZ71\n4nekluwbYqXx7J8J4ZQu4vSrgrBFbxknjQ+dBY2zKP8qnfS05GKMr7fxobMRM/KICdIKh7SCX3jZ\ni4oE5tFCJi2RVURCgNQY4VAmqvBo3BFvhftHN3yU3/ngcPfEL37hq+Fcw/GjrDLprZVBdKfXZOXq\nogyyJu3S5GSkK3TCKhF32CRlYWjO+tmX8JpXvjmcc8oWFCQLMHWA//nWNxfDom6L+XDO/3Lh+9nz\nqK/z1P2eC3SaaGKOu4d7VQbtLZgxZBGDHUsGyA1Ny/pncJuTkE6xaNZupX/Zx/w0lBsao3Shm5ez\nMZc62ocI+BYxAAAgAElEQVQ/8FGyR3+R6z5zQ/GeDfRmoCib6AbL1SntcfbwPITrQyd0rS9REDre\nIJyzh6gyQFtYRNpi0w8exp0j9MvK8Ml+/1XJxc3MDdw2rkQGkFb11TRo4RD5TWAi7BK/vFEGtxxJ\nFpWRrUmhoUMFSRZC6Cz3xHJ6s3ACWzYo0qKE12MaWTAosxEejUMgfFzZJPzLRf++BtcwGXJZnUgI\nULonIjqYC5DVvXTWEmmU0a34/fbs9WHdInSm0srQmVEa0W2tjUcTpTB/XB8BwuKwzepnZPfOPRAv\n8ohTthfJ6i+ctIPPHwxp2rjLdJJAexscOoVn/swzirHKRMUC6R8++nHEwjF8/qpLAfjnf/wbiNvs\n2rKfeNdjMGNqe7RcwtA473FPBb2+U7duRaStvol6tTjg/H2TRxZMlBV5o9zQLOXR3PCFLwNwxx13\nFe/lXr/fuS+bKDqalq55Me0Wi1mhE3RYLEodbxhF8oekoekKh0ybnN6e4cDWpfM0VvYkZlRnmrmB\nOngngxQLoAa8Fi1c4RkIq5ZsuWulWbIKuA9Rhl6LQkNp/TUKC1ITSW9AAGIRDI2V/St8qYmkRDhZ\n+djmbJiqZG0uQQNA1uTWW+9Y8al/6AMf4e+CQvAk0NKgrKShfLjMBg9nSItOmDVhc42Dk7ay1mG+\n7VfxRRg2SisnVKM0Km2sjapBlCIWt/Z1PLW4QidsEJd96ONgI974ltdB1OXmG2/BtOa82jlA1GXb\npk2wuIX48PF9Y2XpOUmlRS32iDknn74due/hdB/xdU44dDxuDEvMLJGjMTJ4NEjImrzznX+CTBtr\n2tV1NhxfhwWiLeXT8qMstVzZvceH8vYf7AVvcrYreAPSxXryBz3vCSDV2helhu1SPLFDhH5LGwEP\nSUPTwSJ1EjpiLl2x6+gZmka3xfzgmFAhD6BMv6HJ6O/nslTfEKuMD5NMCpVi1mKSET7856QBpYml\nRIZVUjPK2wSI/pWZtMRRhLSy8rruuP2uMKwit9CnD9f0QpcrxFsveT8XfHU0M2ro2NIQO0mr2QCV\neY/GSZC2L0bupDviHo0dIS2T2v5kMqpbaUxspImyxtqsXKMuUXumb7VshYPWocrQ5pe/+g3IWgXb\n6d//9UO46YN084k/6vD4xz8W2d7E9PzmvrHKSu+N4Kv3i2ckYOrQsZAscmbWGmnoIOSoxhmanDGK\ngkMneyOWJXTXcKU/Jw2YuBCHtaVFQb4wW+q5nwsNBRcWe96bL9jsGRqNKxitZUOjrSlCZ8LE3uuR\nGhk65m4EPOQMze6de+hKS5QlnrY7wQ1nZY9V1kwbLA4YAidNyaPpPUDgef65ZyBGFDaefc4rCrql\nk6ZIyk6EKK0UNFw2hPNSM9KAyoiVNyAAm1tTYZNBZQBDI46DRzN8Xd/+1nfCdsPfsROuIFCQJXT0\nyinai0skjAdhlCF2im1bN4PKMNL4WiET98XIEeaI52jsiDYKechMi2D8lK6UyHEqI9bx2ng0cZek\n06JbCt3akGx/51+8a2jzQ3NzXroHIJ3i1jvvgpn7yaT197PK+MVXvJi4PcMxgdqcQ5UWXQbX6+Ia\ncGxnBuZO4JUvPA+ah0fm8KywoLKxTQmFk3zmykt4U/Zif2ydrGn78Pm4CwdP8yEzwMXdEussnMcS\nt1EeEstM6bsPdTTgCUWZcHTz+6I0B5mgoO638wtdpwzKqAcVGeABhX/8h4voSkNkfPp+kgfUS8z4\nSbFShiYXocTnM8oehpH9rZCrVjbXnv5tfu+vPYXUKV3ZDnokVFrc4KuCsCiHNwpSs3XTTNHw7LRT\nfZJWWjkgqqlptVpIKzAVWlt33X13se9BWMoeTaN40Mp41Hk/xxnnDSoaDSNTelmUcKsMsRVsP2V7\nyH2EYlUT984ZfI5mDTTExiFnvQ0i/0Uzabn6U58N5zN8jS5KSdbK0EQdmmmDtPRd5kbw1h3DLTI6\nxvQMTdbkvrTtFb+V5tprPge6ycmnb+fXj38W73njG/vG5r2AwOdZBj2aR+smx9z+JF73hleDSSoN\nHfSEO3PveehzYYsF03sufKe/TB1X5sVWik7SITp0PDY3NEmnWBTkv+1S9SxZYPqVWak5YQZ69XmZ\n9OSisqHRoeUzeNZrKsBJ7QkutaFZH3z7O7eSSkOsY++lTOLRlCRmNtlhGZpChBKI7YChwRXqx2Kw\n4DGHyoq49nIMja+16BY3+KoQaoHy0NnWY7cWBIjnPu/ZfhsnBnI0hq3bNiNHeDSHDs4W2w2inPca\nrD3KsT9pc3AEtfYXXvDqYhWbKb2s78AqTYzkvz/zJ0Bm3mMFsBGH9vdi5E5U50/WEk6aymMUqszC\nctttd/o3K75HF6c0rFoeJb4C+b00bRKy0neZT5Tzrmd8nvzcF7PtRc+hi0XoYGh0gwN5riLKuPPO\nnUWh8jv//gKe+7yz+46nSi0ntBg2NFdf9Z/s/9iV/o/2Fm4f0TgsJ0EU3vMA8tBZGbFRfaGn1SJt\nLjC9sLknDhu3i3CxLXltY/eR/97lxoLOkYuqSB2RYr281cJxmFJtkSkRjqSJ0HhCjwrahRsBDzlD\nM6szMqWJrUQJh5ug05/L5fCBGVshQ5MXLhI8mtJDX36IhFW9bo59+zeFbI1T2cQFjDdc/0UQbs0M\nTYTwk5nMeMTDHuY9MRMXbCHpRH/hmdScun07wonKpHm73S72PYhyawWhk14CuQQjzUiiw2XHf4sX\nv/7X/XZRtjxDIzWRE8V12Uj7sKGJmV8oGbYRXS3XEiM9mnyCkrYo0quqF3FRStNEE93H45C3t25a\niS6FIXMjuFg6x4PSMHvsD0gdiMzXb4gs4UC4b02UcXhxAUoFmoOIkAWNX4veYqwSnRnmTPX15RPp\nrntHhdZKnnNAbKI1NTR2epataQuXRzqSdvFb5Quwpe6j/Oq0G/BochJSCJ1l0iIWtvUJ0RooeTSB\n9aoyIlvnaNYNi86SRZqGjZAT5mi8PIt/vbVChqacoyk/QJBTafMG3rK6QliagurposkNTd4PfVks\ntVEQrmdoopSznv2T/rzzFSsM52Kk5od++Ezv0VTc0IXcTpVHU3qIhIkr2wxoZbzUfAVs0mYh1/mK\ns+V9B8pQrJ9Ngo1SHzYcbEktqrtariXcCImenG1mpaWdpb4gr+q7iDu0nFh1i4M7b9sBWZMpq/qa\nn+XXv1gqrrQ47Ja9pNJ6mSL8YmG+uejrXuKUrjE96aUKRFYUnr8plQ9UQXanWBxhGGy47lFitaYU\njcjRsKqyy2b8qqfx7OeObqI2Cm76AMfpGJeEerBkfogMUFXW8Bu/9ns8+xx/vHxhoUvzQ5l1lrP0\nMmVQi5v6DY0DgqGOcjafyoisrOnN64WOtOgopWGln2zGCPLlcNIVhqRShkYaZLhBYif7enPkys+Q\nV9ZX3HF58y3wtRxRd6ICxnv3+G3cWmiFCUsEPmxnFY9/wuP8AxomEsg9Gn/+u3fuAWl44o89oe/9\nMjJj/EqrKuRTyntJExW0zTKM0phR3TejrEjo2qi7rO+gTEfHJLi4E9oiDLSkltXS/GuKURpm9Dya\nrrGQTld3aI3btJxatUdzaG4WdIMGAlsqkMx/13bpOTHCwab7WBDGq0fgw5/d6VnEwVNxcdeff+ne\nGUTkJFbZ4hqjMR6NSlt9RaRl5Iu6UWK15RBtDm9ohr8vveV+Do9s4VeNSz/wEWgd4kTZgLjjPcMS\nE25cp8tP7LyN64/zIcGi3UP53OmxzpRRvgOqNMSdqb5WB1b0CEfSSr9oVZrYidqjWS+0hcHGKQ0n\nUaFgbykULYuhWoYmhGIAYif6DE05vyPsaENT5CjCyvySClmSQcwvhjDPWki45MoAUaeQs4ic7FuV\n+hCZP89vfutGsMrTRZ2o7IeibRAUrQqdCdtnaKpyNFZlo4tXo5ROME4u6S5LL81Jg8pdSxvhkq4v\n3hxsSX1UQmdZ5TF0mHKsND7cmk6N8GjaTDHZfQzwmle8CfXaHxt6f1Fr0A2mULhSgaQTDrqbaA8s\nngDuTzpIHXIDOsZs2Ucyeww27vRr/FWgoNITvI4xhiZKG30eVRn5ProjGov5YusBQ4OsblkddVlu\nbODfPngZLB7LqSd6Veibb/6e/yB8X4UyQEUkYy5KPRWangp3+UlxwhWeXmQVWlq0MrTSpg/PBRhB\nETqLrPIECZV5yn5taNYHHWmxcUoTSSSqV9uDcHmyOMfCVu7Zv7/3tzKoUNQYA660WjLSlirrRxka\n3WuFG268m2+5delryTLIWmtjaKQlEvgKb+NXotGARyOcKGL2t37njoK7P8qjMc55QzMidJZP9tJU\nS/PYSFf2OfEn16UTJl6XtGE5PW2kQeUPvokhDj13BltSS3vkQw8qG1lnRHcGq4ynOmfNIY/mk1dc\nBVLTFBWqBiOw48D92FNuGfKYU2dBJ8xEUZ+MvhMWFrbRLdNpw/nObTrkmU3gRUm37GZmcRqSNikO\nYcZ5ND0RTytNr7leBeIs6TN0ZeQLkWwEPb6v+21A08pigu9D0l62QO1+kyHmj+H8n/tZiBd8bqo7\nUywKXOGpDD8f7bhb1PHlC4usZGp8CYCHL5vwgrvTOoaSool1veJnlbNeVeob+9VkgPVBR2pc0qbp\nBEmsxhZ75XDS9K2KRDYgYSENDRVWFE70FYGa0kPkG4tVHECaXu1NlELW5NDs0h0IM+ugvaWQ/1gV\nhCWRUQid5dIzAkqr0nIu5t49e4pVlBqRozHgDVVl6Ky/yDWroBG7KMWNUu6NumR5XiJpL8/Ylsgb\nmAiSBX+tZtCjqQ5rrSmirBBgLCMrxDI1GnxjtoF6kWuuvA6yKZqqQhB0BLrOJ4r/7IL+ZmKZcAid\ncOYjHgaNXhjKCYdc3EJaJgiE3zrbtqegwCvjF23HZE1oLHpFjODtVF42sufR5J1aR6BhItIRhjRn\n241qLGaF6+VI8/1BdbO9uN2nUzgJ5qTPmZx3/jlgGhx2FjqbezmaMR5Nt7VYhHwL+ZqBc5dFpERi\npMWqjGkbQbxYFBfrUugsLhmaxInao1kvpMobmhaKRhxP5tGUQmcAIm0WkuAASE0S+YcqQfStLl2J\nDDCqsBGlS4amA53NtJfoWwOe0UZnBuL26lsOC0sj7mmyAUFYs2doRCnme+jgbGGQlBMjumha7x1V\nhD2c7CU6lVWVwqAuSkc3RYs6ZPn3nCxAvNA3Cf/4OS/hMedVdyrNRUP9tXqFakUoqB0oSJ0kxv0T\nz3kpz39eZZ+9paHSEWQAC93p0C8nhKGs9CHLgJ279kDWLBQOJkEuL3/H7t197+ehrre+9c0QdX3u\ngeARdKbRSSn5LJyfTI/ZWXg0+f/Hmxgac95wmXGGRhSev1XjPZqmifo8qjJyj2ZUvxcrDGpgmms5\nNWRobr7xFojby1ZC3xd1aObyOekUc9IgOjPF72HHeDR6arYwNLlHXzZIZWZmzma1UUbTSsimeO+7\n/3cxJi/sjK0o8k8R1c/leuChZ2iiDJJFtjabbN60acLQmelbFYksoVueHFTGzLSvfE6c7GNA+Yco\nZ45U04CRBiONv9mlhrRVVACPg29TGxfyH6uCsGydCQ9MMCAxss/QSErJ4Xa7R6lEVLKzTO4RjSAD\nlPXhqmR0XNytrCn65BVXgdJkccadt93lDY2TfPhDvYZd90Rt7hnVqTRvVQ3eqCpNHHI0faHNIE64\nFL5x7G6+Kg8uuV0lorQ6dCYtsjuFVdobAavAxnzj6702S4uZ9363bd08kWcOPXn5+YGkt/doYt9y\nvLuJj17u22c4YYm7LUxf8tkiDpzqmYoF28n/f2KjBUAbU0gYVV52aNEAIXQ2pglvy6o+ynUf8tqd\nEYbGSdvLxwXMxMlQl838+VmuEvrek+/i0fPH+D/SKeakFznNdfPcGHqzm9lfeOK5oSnff7aknhFZ\n4VWho8z3h+pOc0/QR9OldgKRk5g4BZP4HGjNOlsf6DiFxhxPf9qTOWbr1slWggM5miEJC2nYeuxW\nAB9Ci8r00J6RGlXYiMzQ0vDRyz4JuoHQjZEPTt+1EFaN6RR3fn/H0tcxDsJw4gkn+Ndhgmg4gcyq\nczTdLCuFzqrZLVaEOH1VRbuwpYdoRD+buFvZffPaz3w+nGbKP7znIp+nSqf56ld7q/1M2tGrOamJ\nwp2fhxwiIYNEUP92VWGtoeuMNLOtybXaHn7e8/nopR/zf6huZXjDCItMm6B8GwNhIjCx7z0S0HGe\nQnzGGQ8DNVkaO1/AzIsKQ5Mbhs4M+4P2nJOWZtrANnsTsxWOZPZYACLXS0JjFb/5G6+H7gwLkS68\nnCrEUDx7ThmiMV/zlFMjWwU4lflC4hF2yg7mV4FHPOI0vzgp4a6dXvlgOUrozzrnpbjpQ/zd7/4m\nACJtsRClqLQFSrN7556RHs31134BZvYVYe9c4aDsUbtS2C/Bs1ldnNIASKdYCHkpV5KqiXOig0kQ\nztWss/WCbi6CcPziK17MKadunyxHo0zBkAJQOiYtP6gy49Tt2wGYaTX7JkdXWq2VWVt9kBqrDN+/\nY4dPnuuYSQIhWgBGQdZkrrtKQoCwPPHJj/evg0fzp7/2Ol5w6Id7p1lK+uucusxoj8aCN1pV3kqJ\nYjxY5Fogblfmn/bs9is5m3T5/o57PPU3a3FwrpfXMuO6YypNJHNZIH+trSgCq4YkdtwE9HerMjpb\n9i+5HXha+I4nXcNFF1/Kt2/8jqc3j2hoprIGTmVoEQyijZid7Rm0DO9dP/3HnzK5oQm/xcLAb5Jh\nCw9EdKdp54WDwjGlYygVKVtp2RzCRYnNQzYKFo7zRbDpFJ0oHarILyNCFJp+ToaC2RGYRmJHNV9T\nGaTTIyvvfY1b/759eLDD1Z/6TPHebGBwmmV4AN9qHWLz93+kKPwVWYN20vVtwa3ihuu/6J8LEw0Z\nmr9714XQ3QRJOK4aEFElbz/SY7M6pXFRl1hI3+ogL+otKaHHTviwoIn981WHztYHdtN+6M5w8unb\nOevZPzlZyEGaXvMvfDy6j52iMp7y1CcCsP2EE3yeJcApXbRCripszKX0rdIcnJvzHo2J+9gno2AI\n0hNZk84SnTuXhLT85DN/whd+hQTveeefw4c/9n96myCKSTEzto91VuU9FC0SnBjKIfm8l8egbE+B\nEYZmPigOuKTNfJpCd8p/B7p3DmYJjybPqeUtHKanp0IDt/4czUQFvVGGO+7uiWqf3vH7f+oZc9pw\n+WWf8uOrQmfKEGcJLsowWH+eJmKx01vEeAmYpJjocmHWccgNzeLAfZ8JV3ggIm3RDts5YZmxUZ+C\nsxOWpolg4VhPocX/hmJhm99Z2qKbdFF20JfoIRGyCIsWrcNHYMpJ3Ki+UZFnXo76lXyOtP+9k0/f\nDukMl17y8eK9vKGYnpBUcc/duzj4sFv40cWtxXsia5A2Fn23VhPznZu/6xc7ujn03O9NO4jDJ4Gw\nXPqBj/Q8Gvo9mvxbiYNHQ9yhJSJk1ij6BvlOnPmiDVyyCIWWY21o1geb74PuNICXN2fpB9RJ3UcG\niE1EGlYg+QSaP+xnP/e/Q9zuPZSlsICsCDHlyV2rNO0sAxMjTDRR2Vg+kYusWsJlUuzeuQec8A+g\njXqN2gYg6YXOjHO9auRSTUQZvuBMglV85UtfG9iZLSJGVR6NV/9NQZihdtsdY8BKXLJIB4PIWois\n0UfQ8IZmtEczlfj6oDx0dvwJx/apa+cFqZM8qC7y4dg3vPF3l9x2x/4DAKQYdtyxw4+vIlJIQ6Jj\nUClaBBl9G/Wp+2aCXq2KSfiv67+45PEzZYLH0e8zZ6In1S9MVEiiOGl98tkJLnzvRf7chEUhEYdP\nKpL4sZOoxU0AyLSJbrTHGppWHPcMTeSLC0fhhE2bR7cKUBmkzbEeTaUR607z5f338ojnedHWPKQ4\nqRL6W970dkja/Oc/9cQ+pY4xU/NEJgIb84P79vvfVjeG7sVZoVELWyCd5uqrr/cKGCbqY6WWxXxj\nG9iscYdt09PIrFHkiU2p3iZBQnMeTBI8mrWT2lkNHnqGJuoi0pJkuYlHCvIVGKA3x0YVsdzrPnND\nsbIH7wVgFVddeQ2Qr9YCvbmisDFP7rpIe2qlTnwBYyk38IZf/i1e8PxhVlPe60boxqpkz797622Q\ns35sVITEBlEOnVnnIMTnpateOVmCMXKKXbv7e7SXmXwx/UWuAB+7/JOgW6BbnsZbQoaDxWOguUAb\nh0gbQS+t7NGMMRJSs3lLID4Ej+bpT32Sr3MK13fjjd8O205AFolTWDiWe/XSRaOHw4OfIjiU9+Cp\n+u6koWE83dzkyV4T9an7plhfvwJgEu7duXtoP4PIlIZDJ9NN+s/VCNMn/lp0TJUGIYD2Fr5x03f9\n9UqHtHDGvWdyuvEG+zFymifc9zA/PmtiWvNjizBnpqZ64T6VMTqbA69/w6uhMc+3v1nxnIZygNEe\njRnK0QDQnebmH/0M3/+hrwAUC7VJVcBntW8zffLp24v3lI5xU4eIgve5ML8QPJrGkEczKw1Jx4d8\n7z9wwEvpdDf1h9hK9OZEhGtNFvmhxz0KlSVFiUW5nUDkBDRnwUR+7BFWH58UDz1Dg6cnF7BRvzR8\nFaT2leMBiZOFi33vvbuLSvoCusWXv/RN/7r0EFUVNu7fuz+cRop2DmFihFF9obNP7buTT8/sGDot\nE9hIUseVMvuT4u677u4zNGKUoSnRJQ2uV43sRHWeoWBLRRw8OMAAK9G+4xIDKcf3794FaQuypqfx\nlpDhYGEbNOZ8t9SsMeTVWTVGPkZlvkUAIIKx/Mln/kSfuvadt/l7YiL5/ahLdN8j2DtBLU/ejTGV\nlnYachRVRAqlaVpvaLQMlfM26qPxZsKh8loVE09Ue6WjjGjuWLKB5Lo/Ri7+KjHhfi8WBJ1NzJlA\n2Q3afnd98nKu+fQHAfj4Jz7A167yzC2VJbipw2NlZR5xxqkFacaprO/5GoTP+0zz13/17uEPVReZ\nNUYHmpUpwntl/NQdT+a8b59XsM/y52dScdZFZxEDPXYiHcPMPpJwzy+mXZ+j0cnQcz8fp7S6Dcga\nLOjML7S6032sVCd6Xn/ipBftVCmvfe0riXRPGLRcb9MQobwiD53VHs06wfj4ZgEb9eTsR6FU+Q+Q\nlLSS9t6/v8+jASBrsO+AD5E4lRX05qrCxqJ1a5R6AoCOg4Beb5uuNHSP+cHwpQiLNBKp40IraSU4\ndGC239CYUR4NBQvL0As7STEidCZ6obPB77hcsFnl0SxmXV8NnzW9qGQJGQ6ZtsBJFqRG6hhp4j6P\nxo7Lr8iMJz35RwA/qaITTj59e59EUKEGPEmMO+6w+fAxHBqVsC5hLiTAM1xPqbeqMZzSNJ3PY/RC\nZ/0FpZnsJfAxEe3u0h6ViTJaizNDyXVd0hvzIcTeuUVOIDvTzIf3yrVhVVA6hun9lRN8jp85+6d7\nmn5RSmOpqSid8o3WSsjHioqJPIeTunLP13/6Ev6/P/19iBe4+cZbfDShvaXS0Oy55wf89M++rO+9\ntrTIbrPvvcgoiFJvaExEqn3Br9DJUCuIdqPNJtNAZE26WJzSiHSqP0dT0lhsKAWtw5BNcfLp24lN\nVDSoK+sp5oXjwkbek6tzNOuEzpY+yi426snZj0Kp8h8808aE+PLC4uKwodENFtNeWCAJiptljyBH\nNyR3XZSSYREm8pIspTVapjQcu4N/ufD9/YeRDmVVaHa08hvq8OFDJUOjqJYvyM/fPwhO2F6OxlFZ\nmW6c8x2fnCTtDEyCcoBRM/CAd6zzhkY3ikRtDh1qPujOMBdlKB37fh19Hk11Vb+vVbI88ceeEE5D\nQQj/lENnh+e8QvdEYpVxh+3pFO3NSzPP2oGRmArX03erKmiNNC0nIeoEvTwxVFCaCeNpxQAmJjUT\nMOSilM2dFnag1YXvMlqWSgrnIS0CQk4gGBphx3ogkYm8lzfGGD3zZ57RCzGrjGY8Whctv76u6f89\nr7ryGp/THKSll6FGhM6AJzzpRyCb5r3v+mf//Cxuq1QB/9VfeyvXPeGavvfawqAG2iDE4bdIwuJK\n2xC+NfGQIUxbC2w2ESJLyPCEEpH2kwYcPTLATKvpDU3q65RiExXh+3K9zaaW/1wYhZDUrLN1Q2fG\nu7g5rOrJ2Y+C1CRxz5g0kcXKJ82you6kgE5I88kxykhUqJ62wzTgQpY+6mKET8SqIKCXI1O+Gdn7\nP/rJvrEGL6/u3eiV31Bzi73iS6wqwkmDkI5S6EwUOZpNTg1NXJCryvqHLh0QPXQlvbEEMVSYmQZJ\nFJElQ8WrGdYTFjozLDbaxCYK/TpKYQelK1dz133mBjBxEVv3uY+4eJ3HyOfmw4p/idDZ7p17IF7k\nDNHCHrtr7LYAnUYbdOIl38OxqsKOTmU0wkStpfHJXtM/oWalcBc2Qldp0Q/AJl22mQSm+kOZQ1JJ\n+XcpDSqEQHsEATMkVFlGZHIJoyWmF9Pg29+6BaIu2zZtWmLbuK9XC+DHmgSc9CoUFViKOk13mp33\n7UVLh2xvqlQBX9R6qO6mIz0rsIwk/BYNZPg9gCDFMxgeNVOH2eIEItTkuSjzIcCyoSktxk455ST/\nZuYNScMqslxZQfQ6cZ5x2ml+OxuFxo516GxdILpTQ4YmW2olqDKfvAxoOokNydRU9+pJimPohCw3\nNCpluuld7LJHkCMzNghjdgOLLPICeuXEttLgBLtl/2Ssg8usbES2iljswtxiz6MxUcHJH4Qs5WIc\nFNs9+rTtMHP/0PZl1llmB86v9BANqikApMIissR/lwx6NF6IU6RTpK2FakMTVXs0d919d19OTZYM\njSx5NLmnudSDesm/fwRMzD+9728gWeC3f/0Pxm6vWwtw6BQyEaZG3RgROstIAHSTLHRLFFb19Z7P\nlCbJw5wmKnrYjINL2myzETTm+th8ppTL8CHEsL3w+RhZ9qaWCJ3l5xSPoSwDoBvs2bsPoi6nlZLq\nVWRlOV0AACAASURBVBAV13ffvvtBJwgripzSEJQeSzSgO82C1qTCoDrTlSrgGgtxp+/76oQuvWUk\ngx4NzofOTDx8L27az/bpzchAYnFRisz6Q4BOWK8wD7zwBef6N4MXlTiFLmRuev188m64wig/tvZo\n1gcybRGXcxAmGinI1xuki8p/CKJ8IfGbWTsUOhM67j0UUcrJJ/uKe+WGPRrjrFd7jTqkOKSJggJr\nydBEGex7JPsa/XF1LxgofWX9KjyaLE0pmppbNdLQ+Bs31BuIHr35HX/0eyDN0CRr89ixk0PG3AmD\nCvvyagoDhgaHNLFv8zwYdgjFhSJtYqYPExtFZFVfVbdTWeUEfmj/ob7fS1pZCIeWtegKw7iEofnm\njTdD1vIekm6wd8++sdvb6YNEs8ehZfBo0qnqhG2UEePbNGRx5hWIrcKUWER5Az8gUOInuAeSNtNS\nQXsr/3rRJb3zkiWppPL9Jw0S2VdjVPZGq5CfUzKGDACAjlnodCDq+pzNOFRQ/hc6nVABP0IVHby8\nkBwVPAs1Q8L6HFW3WakCnt+ZH/lQL6KQRhnJQCSjESb7RinM6aSX4ikbkHf83p9BvMgf/tHvhBbN\nzqst67iflSpcQQZ45s88wxvV0LajmUvNkNOgS9uFcKISsvZo1gsyaxQPAuAf3qXkXpRvbZyjKWSh\nUWSdG/ZoTNyjG6suT3vqk/2xGa6Z0ML5up64Hdo+y75+6uCZMFP7TmV+c7+elpEGaeXQJLtcpGnW\n82icGlnRLUqhMwvFmJNP3w5zx3Fz3ts+P29CjsZKzKAxDxMYhPjzwEoyE64yyQ958lP5yvlN+2hY\nFYxtv6GpCknNL/Tn1KSTvcJT21NuyIzx574E3fXw/LzPJYEvqEyXSMjP7Ke5sJlMWP/bZ63qySBK\nSaQCnWDilCifvEoTat7AD/ChmvFH9kgWOG7LZmhv4f5OSb8s0r4Gg8COpOS9QCCoBEOjzJB+WN8h\nwn0xenrPLyBh0WiwEc981jPGbuprewYWHEaDjhFWDiXbC6iMRjL6TGTq61G0NDSzpFIFPFd0zgk+\nAFmU0RpjaDDKj5K+2Lb83H/+xpvg0Ck8/gmP6zX9i7vB0PSHzsr1e+hm0To7caII37uw4OydXAth\nJbGUNRlgvbBlbgvHlDv/jUskklfuZ15FIN/H1DQE70JTYWh0TIbzRYfS+Ip7QJWk0YvDO3yOx8R0\npUFaNVTAaOOUkxa2oAdyADYwghIrJ+b/VyGzpkQGkKM9mpIygC0J+QHIxa1D3QktftJiIOTjB/SU\nAU455aQhBYBUeK+lqimaDo2yVJbA1EESJ4kH8lpEaWWSvaP7c2plj6ZPYsda38Z6CTJAOzQM8xfs\nmUaj8Nu//gcgDa20gZYmGJpm9WQQdZlOEtAxNu56GZUS/Rr8fdEswl3j72MI93Jjnuc/72xke4b5\n0nGdyoqiSVlWSJAaJfL3SnmbMR5Nfk7JUtOLSVjEjm35nEMMMDEBUuv86n2sR5MxFTerP4Oiwl4r\nQ1MnQyrg0JPuX7C931bHKY2BXGaeU2tKVYQ5fRt4Rdle7FOa+PDxgM9nZcJC1CUx0YBHY/tl8LIm\nMsxdcWkRVG4i6E+u4csepJxYbPVI4yFnaPZ97EpuurLUvXKwq+IAfCdJWagIADz+8Y8pkoOm1Asi\nhwirv2uv+RzoRpF4Vs4NrbKLWpOsRUfqnqEpTwJxl5NMAq3DvOaVb+qdeqjQjkdphU2ITOvC0Air\nRvZvFz4x0zvv0naqPcPsgBE10vptnPKeXxmlQroXvuDcPjUF8Cq6kY6QerhXTSYtyqgi19Zw/jvo\nkw+J0soJ3LeX7vdociWEskSQLZq2jX9Qu84VcXPP/Bq9grzptjth7riit0iG831mKkNnXY47bhuY\nBJe0UVYgnOoLj9m465lp+Jj8UjmaC997EdiIl7zyxajOFAui7AH2qvP7pJKkIZLey9Wl98blaJo2\nF4IcD2Fir+YwgaHBqCGPxuc04772FUNQGccdd8zI3UZZTFf4hmLNUFx82Yc+3rdNTrQpsx9N3GVq\n4DlJwmR/7MxML8wpDdKovpD5/qjD1IInPxTRiLhNYvu3G2xPQtYo6Oy+zUJe1zSgUJ01kFYx1aju\nbrseWAtDcw7wPeB24G0jtvn78PmNwBMnGHsMcA1wG3A1sLX02e+H7b8HPKf0/pOBm8Jn72JCCKcq\nk8Y5vvH1m8D2J/1e+9pXgtRc+oGPBOHIfkOTr8LvuWdP0a0Sco+m/1jW4XMdukkaZygriZwoeqGD\nzwdNIRH3P4zv3t/LAXhKqiBx0udxlomHP+98nnnOL2CN7aM3ixGGRglKZADXGwM0OlNFjUhxbQSP\nxslhdV1piAJl3FNdo74HPJUGZVUl0cGErolJYWi8V2ejfkNTVdujnev7vaTr6Z31eTShonup0Fka\n6iT8BVd3Cs1xGINc2Oa13ZT2GmZZMsKj6fC0H38SQse4xiIK0VdICWAbi7To92je9Ia38ZpX/Ubl\n8W+65XafDwTitNknrOmirJBq6SssloZYqVADltfR6LH05tyTiZeYXoSOWAwFjUthqFcQwdMwUaCl\njxgoM8488xEj9xuZmK60GKU9GSKd4stf/UbfNrlHXVbfsI12YeRz5L/F05/+lMLLcoEZWJ5j5loL\nbA005ShXGZGaxKn++UHa/m9QN3yNEnmRcy901u/RJAgrSZrV3W3XA6s1NAp4D95gPA54GfDYgW3O\nBc4EHgW8HnjfBGPfjjc0jwauDX8Ttntp+P8c4L30nNL3Aa8Nx3lU+HxpWOWpuiOwZ9eeocp/L8o3\nzVVXftaHhAZcaBVaEx+an+97iCQM/fBF4WOWkEUZyqohQ0PSZjqKUZ3pvlWoVWHCdXJ0y+Mx2LX1\nfvYo7QkJeXM2K0fmaJTrsVisEIWQH0ArS1gcSOhbYX3jJlvRHiFMYAWyFt/4Vq/Xii8gVP5BHMrR\n+NBZzm5qIQoZ9QJRt/Ih8xptAzmavB1xSSLIWiCrbnFQhtcbC7+xiRjHMD4sDVF7uvBAtXQ+FDJw\njE9ecRUIy9ln/4zvB9SYJ84NTTl4lrRpiZKhEY4P7b6Zy+e+V3n8+bTrBUiBRpbQLjfoi9KS+Kvo\nozcncdyXv0LpsfmXfAIu155VwkRe5HNQWaMC0qrhEGpokyFtzzC+5IWvLj7PCzrLYe9BxDqiKzU2\nynxHyqw5VBiae3JlLT3XWGB6wNDMNBpgIl70C88Hm+dogrRPyUh2Nx3iuHDNiZV04y7oJtIO5HAH\nGy7quOhoGoteSYAdYAEKk6CsZPPM9IPG0DwVuAPYgVctvwR4wcA25wMXh9dfxnsnJy0xtjzmYuCF\n4fULgA+G7XeE8U8DtgObgK+E7d5fGjMW5WrwKswenh8uyIT/x96bx1tWlXfe37XW3vsM99atGaii\nKAERpCjE6VVbFMuACnFoo1ExGmPUQGKMUfN2x7xtdzTpVtvuN5rJBN/Am9gYFYckOIBRWzSagYg4\nggaUmYKCoqrueM4e1uo/1nD2PuO+t27VJaF+nw8f6p67zzn77LvPetbzPL/n94PuFPcfOEghB0tn\nSisyLzFSyWgGpVq0MDZQ5Q3ypIsyoqfU6pEssv2ErYi+foVxUiBWnqKeTHwZRhZojF0cy2SAEWWR\nshqs7iudTecJnT79LO3E/obW0GVOUh7SyxscOHSo96MbIFRaDki3W+tfGWrkTZRrjpauQbw0tCSl\nRbWnpozsKRyUtdzA/u3k+ACeoq0sPAzQj/sxrzIa3bbdSKicAkt46F8Mvv6Vf4K8adUKCktFjoxw\nrLgSGvNsXb/evbe9xp04tQO+Q7BkDMLNYbTyJAyPApZ84JYDVc5oVMZUs1nJaJAFkRi9dEy7v6sf\nHhwFUUR0ZF47o+nfrGSubF1mC37ipL/joosuBuDrX/t7KKJK2bsffh7FRBkJtoS9lFf/Hj5LrZgd\nNufZ2Kx+vhf89Pm0fnRuSWXCGucpXa1k6A172SZtuTA2irxhVTBUn92GH5YN16BIwtxUmalZVtkA\nG5CkkWw+bvO/GVHNE4G7Sj/f7R6rc8z2Mc89HvAqjPe7n3HPuXvEa5Ufv2fIeQzHhECzmHYHBzLB\n3pDa7i/7m+c+o8lNtSyg9KBUSyHsOYg8QSdLRFpapVa3WNiBwAUufuVLbUmuPP0uC2JsLbx/sr4O\njCzQArTpTfmj5cgeTVkNtr9Hs04r0j5ZE43TYOprYgMg8zBfBEDWqEjNFLIgcf2qvP+aOevfhvvS\nTScJDSPDNfjc1dcySuI/WCuUPpMPNGX6uZ1/iEDqsTbZmTA9GZghi2EZi1FKK22QIDEqtyzDIX49\nt911T+hbCOcAamdZek1629if4xU/Z/dTvi+Yxd0gj9SPjtQIV7LZkTdZ2FIS4Yy6tJ11QsVfyJn6\nKSN7j6l8bLZy8kn2q3eSHzIcAamtCvo4y+fesZJcDs9oRJkllyyy5NLKG2/4/kDZux8NrchUho5S\nYkMYoCzDZ9ReW+zeO/dC8xDnnffvKse97tLXsPjx64CSXpwr8/pM5S2/8nZozPOed9tRgNgIisai\nLYv1b0SlpuyQJPLIytyA/e4EPx9d2RyKPEZqyYnbj3/YkAEm/4XHY/KEmMWEya1wzLDXM8t4n4l4\n5zvfGf69Z88eu1Mac3Zpng/NaETapIN29ObqwhxpRaYKm32UvkRKMLCoBPZWHqNb80RGoiAEmss+\neDlEDc47/1zUZVHF09yoAmUkDeTQieZJMCpHY1z5r1Q6G5HR2NJfj95cLp3NGIWeOlQ53orHWgWB\ngT+gLJiZKU2D5wndUt0pj2zN3BhYkFXKqXa9qZa77qecfBIP/sst4Rp8+Ut/B5sZ+iXLEX0ZTS/Q\nlCWCtD+uiLn+H785cleciZJh2IShyYXpWU7YfwIxlrJeSG09YPruiYWlhbBB8YtwZKpzPv/zf/4R\nrGtatXAcKwxDnnRHWih30UF+6TXPvZDrH7yGS3/xLVz2/38A4g6b1s+4a1LOXnJ2bNtG9JPv9TJL\nldFojM5C3vDLr+H3r7yCF7zoopHH2M9mF3lRq3QmB+aECuHJK6UMLMoCO+7+fftg5/jXToyiiDNM\nlNJEWE+ZvrvVf25Ps//D938IpmLe9BuXjP5snoou3X3snnvDbT8BcWK4nxpIdMuW2FW/RFXJhRZA\nFnFwNN123NaeKKmsSgKJIkIayVOe9mT4q5VlNNdddx3XXXfdip47DIcbaO4BTir9fBLVzGLYMTvc\nMfGQxz1/935see0+bFls34TXusf9e9hrVVAONAD8+ZDddgmZLoZmNML5QeQMls6aOuJAsmBZRaUv\nkRW56+/RuMwgj6E5b1lkSIzbld78wx/D6bau7jMlD++10SjN9SwHPtCUG/vCjA40quQ7o0U1o9na\naGGmHqocr4Um0hFCiyGBJrepvYOV+S9layq3JUE96BFiPealpdEawZve/Etc+qa3B3WBe+65zwWa\nYR45piIaqowIPiyq1JsofDlRR9zyw9uGXg+wgcbXzSlN1A89dvM97HjwJBaM7YkUwli5FhcQn3Ph\nK/jq5rvZU5wUAo0/twhh+yRuV//j226HM3qB2g9U6sZi0MPqR1f0As2vvvX1/Prr/ph/uM8VFaIO\nu3fbFmlZAQKZc8ZZp6G+/kW0L8PInA0zMyM/5+5zdvGZ264IHk2jILUii7OaGY0aqDzkzhBOIMK8\nMSolcz8szC9O7P+0tLKDj3GHBGm1x/o2C7m0Gb+fVfvBLbfAY0d/fnCbAmFZZ5HpzbM8IHPi2S3h\nuNgIq2G2sNFaopcJGn1SP7KIwhDsU5/+JLjFfueNGDxOGmGD2V8bvv+dm8aWD4dhz5497NmzJ/z8\nrne9a1nP78fhls6+iW28n4yt4LwCuLrvmKuB17h/Pw04iA0k4557NeC7er8A/HXp8Yvd8ae451+P\nDUiz2H6NAH6+9JyxmNSjsaywwTKBzGyK3b/gArQLZUsYmMqXyN5I1V229ruyIoLmISIjKn7qs90l\ncP45Uelmty+YExmYabeGOlFOhMrRwmBZm14ZQFaHv8qf2dDLaISxjX6Ht7z5EmgdrMh0BPnyET2a\nMx7TYwOJPKnQV3Vk5zpiIwZmhOxwoaCFgHSaU087maZS4RosdDojByEL9xk9dolpnvCQpZ9bB1HT\n+3xOnuahgwcHXsfDBhqX0QxhRnm88Q1vg6mH+M//96+TIDBRagNx0ZvenkWT7fih1clzpTMZ5Fyq\nGc1cmofGPrhpfqHRzYXQq/r+d27iKRf+bDimK3RFfmnj/hO4szXnTOYyLn7VS4FeCdGbvz3h8efY\nLEf1MpoTju9tEobhBS9+wdjfgwsecVov0BgxoH7hVa0r5IWoG45bzNOJgaZhnMpH3KUVNZDlYWuH\nQhawuCn0vuayDDpTEz6b+1u5XqPPVB6KO0wt9DYIiRHQOoDIk8r3y75IgSx9Fbcf2sSJ7r541rOe\nAdKZAkpdsZ2RRanPWkTc5HyE1hKHm9HkwJuAL2A37JcDNwOXut9fBnweyzy7FVgAfnHCcwHeC1yF\nZZHdDrzcPX6Te/wm9/w30iurvRH4c6Dl3rNqyzgCoo96u+d5r+D69ftYvOor9iSHTP6DlULvCu0m\ntvsCjVEUSccOmFVKZ4Mid4WbnpeFgrhDpAWREGF33jEanH9O1DeU6C1wd+9+LFfp4RL1L3vx67h3\naZFvfOFjA78zKrO7YG9Q5q7HqBkJK0HjMpq+Hs15558L12zisg9dyav+/P38+unP7NEuddUewdtX\n+0FWYEBqRqvMLsj00ZZx9FotOGHdOsR+m+Bu3bAhZHXdorBqC0OUePvnnj7z2St7n6+0k9deYkcr\nZucGBUM9PDvOX7tRM1k33H0XQp3MeeefS/I//tCKqEpNM49DRlMAtB9izuljQSmjcZmmLwt1hKn4\nofjSGa1ZjFMqeOtv/g7//LjrwjFdWVQCzcnpFDfsvJlrPvslmGr25r2wPSrfTN++c1t4zB6QctZj\n+8mly4fUEh13UN3xpAGwBBt/D530whcxXShHxJEhCN17hx2u9oQMW40YH2iaSHTSgWSJE7ZuQnYG\nB4QLqWFpfZjT6giD7POiGYBxLD3prNzdfTXXWmDbXG9ao+l+J/LYXuPy+iCqbLKffO5vwr+t5FGT\nr3/lnwbM3aSOeoKmRnH3XZMtxo80VmOO5hrgDCyF+T3uscvcfx5vcr8/B/jWhOcCPARcgKU3Pxeb\nBXm82x3/WGyQ8rgBONv97s11T76s2Atwv8robOy5QdqFaTAeq9xKo/Q3xcF6nOvmostoSmUawcBc\nhu/R+Lp6jLB8fJfRdAzBPyfS0u6uHIzKiKnO9fTjxvQA/7z1zuEfXmWWdQalgc0JgaZSOqseJxY2\n8vX4QQ6d87f8w7e/HyaWhZEVNtatt/wEtKq4E4o+ooOJUxIjiXRvXiD8LrJf3o9+8s/Ql1nXxWc8\n86mQ2GCbYmz5qJQ9/tzLbD192N8rfL6ysZvxgqDRWHVvz44Dx4wa8Y3aG3VpHbDT4O0ohji1ds1G\ngSy49869IRu6P+4Gi2bvUhlJUelFdISu+CopI+yC2DoQelUdCmgd4MZvWrvwTBVByh7glec9C7Pl\ndv70tn+Axd7i50tnP7rlJ6E/GSEwqghZTnmTsFIoLTGNpZFGe2VI//mAA8157mssUmCs2KixFuOf\n/qSdw/KkgbSvRzoMUzKy5mfxIuef/4yeJEwJWhbIxXWBZLEgCuuHNPZ8SxlNaQOTJx2mSutJQs8+\nO6ZPm0wWQVRzKPIGd997ryMN9I579NxmTnHsQrTi7r3/NgLNv2r0U2/nVV5hcNlSy+AXIXIzAMFm\nt4QpFKY577TLejdVLNVAg7pw56BKfYJGnIRGXyq1nR7HUSEHSmeyMtfTj47KR7sGRpmdqLYiZuF6\nVIa/yofL3hchDGOWoBZnOHD2/4Y8oWNMqXRWPe673/7BAMFCFlHQlALbw0iMoIkcYNTZAFt9zQt/\n+jkgNFdd+Skb4LNeoHnLr7ydj55sK6nDlBzCOVAaSLVcbmufPEbdO1eauGSB3D+97rG/PcfmRVsy\n2bR+BuKl3vyDVtz47e+E5x5ozYdykg80TRVVJvaXqAYaaSTdyAmJusyugwGpee97/wDoU3sG3vZb\nb6LxkyfSbSxx/s3PDI9H7jrs3ftAL9AYK5/kPWC2T1BbrgOlFSZZDKXHsceWZ5ykptPouO+XCnTs\nm26280P+Og7TIezHCVs2QfsAGMnLX/3SniRMCYXKibrt8D3qCD3gRdMPGTIaJ1bqKgFG5RWfnqnE\nZa5F7O6/voxmDI2cvMHcwmIYc/D47jWf4OvXXmV/0JFVZ19jHAs0WlQCzaLKoMTgKkb0aOJCkckc\nO4tVXfR2bN4ErUMDGU0SRYMZjVM49rTFBMHWzZtC2afrxCUBIt3nRKkyYmeq5ud6+pHKYqiZk3++\nFjaj8eyWMw9u5bRiuDZUVFKDDcOY5WvSaSPvPRNx/+mkfiraVA3FwLlX9gUa1c/Yijs0pbC7wb7z\nt8OFVfhg++Uvf70n7eICzb1774emZcQNo6OHcyg1YwMb0BlYjULhWEW41x3l9Li08QG2ufr6E594\njjU084uQVvzoB7eGEm5nZn8p0DgKd6tVyWi6siAq+aFII6zXTXc69Ko67tgH5q1cUqayQAn36Hz0\nayx+/Kt86ZqP966D0+Sbm50N975nQt7yw9tqDVjWgTICmnMjB4Srx/bo1YXKyZqLTiHCZXrSsP+A\n/Rv7QJPBxP7Pa197sQ3MLgMY6INiiSlx2gy9r07ftR+GcC+4ErAvnRmVVzZJ246zxABRKLsYq2pG\nE8txgSamU2SMlQQykoX5heG/O4o4FmiMrOgkdZJORUl42EAmODtnVQyISwK87T/+KiQLlvpaem47\nGdTOsr0O0SuRIDh795kQuX4DOshO2On30o0YpT1nwrRllXD7kKp8NPVZZRihMa5hD3DjNZ/ib68d\n7OeAC5SljKY/0Pxfh7Zy/j27AlHC+PKakZWkZv/BgwPBW+o+BYC4QztuEEsGz19lw+VNsib3P7jf\namBlCQjLuOnkGUQpP/jOzbVLZ1rglKedgdUIaNUz1io7U5bxtS9/A7Pldp60w/aTXvKyF9ogH+Uu\no4m4e+/e4Kqqt9wZSqn+vjhu21Y7L+KHB2W1sS+NJG8uwuxxvRKiO3bO6ToXUR6UlcfBK1h0O92w\nIYhdEL5/377hA8wrQKQlNGcr35GRx5YlcFSBbs8GC2NPS1/s2O9MHuzGzcRzPe/8cyGdCky9/j6o\nfb+cZpagfUlS5ST5+NcNCtjS9lH9BqY/G7/4lY6AUUQDrDNkYb9zo1AkpGaCbcMQ08G1wLFA07c4\npM2lClV4WGkMINERuaMH95eQdp+zCzrrmY+yym5tZv304ByNz2iM14cSYSH6/nduoisLVNHTN6qU\nwVTKVMNmHyJrhh1sGZnKg3fOAKKuzWiEYewwkUOj2QuUxk39l/HVaz/B317zUdvYlyaIAtqBuh7m\n5uaGZDR9gSZZYueJ22iJaNCMKkqHDwxmTRaz1E2MR6At48ZbAH/h8192pbPJGU1hTDBtG8tKLC3e\nlmk0GJV+531/CAub+OCf/R7gsq+sTZF0rL6Yjjh4YNbehwuboXUwbG58meXxj9/tBv98RpNX/FAi\nLdDtQ6iFDSAzvvblb9B1C6ZXadZxGqTsx8GTIsozZAo7RDy/MJkyXBcKK82iamU0hIxGqxwzdcBZ\nXPcCjfcQ8vM21rF2chCjOx2sHqwKeJ93UpTTzuOw4UlVTmPCNQhlTunESksZTTn7sD4zVgQzFqK6\nEXXyP6Mg8tgaLKocOS7QjFEUP1p4xAcaqW3a7VG05itUYQ1DS2eJEeSRZW0NnaRfmmEp7lZ2a9tO\n3Baa/OH9hPX79k3aGBFMtP7q058jlQWR2z0NaJpFKcdtsw3msqd75fWjDJJB6rPVgepihHfymHwr\nrJtuh0BpSqZM/VBFTIrLaJxGV5lw0c2ygWuqTM+8zdsjv+RnX2i9avozmrhbVRXwyBp0jHGmaQp0\nxI9u+YlVPgC+f9OPQgY59LyhRN+2Gds4yjI4dpwL0lLLijGZxwMyRx08vvpg1sI0Fu3uVivSTtc6\nJT5kx8E8rdlvQC64YE9FGiaLqv0WhYTp/ZbBlbX52Ec/Rer6Agtu8dJxN0j4j4NlP+WWvRfmeACV\nD9gsHA78ZxtFp6+eU0m1QWXQ3k/uFCKkU29O3cCvL8HmZnQ/roJuOxiKWR26PpajSmnpKHyP0iij\nOeEalMkLcYmtSZQFleeAtI3yjpiqGmimpsfQqIvYbs5KpnUD0GrAAnst8IgPNOXZBADTPggqC/Mg\nBXroDrhhFDrKhvYqAERnim5zsZLRPPFJZ9OvneVLb16iPfFugHmDn9x6O7nUIQhF9EnNqJSnPeWJ\nwJhAk3RDKaWMa6/5on1/T28eI/vusXXLprDj0v2KsSXI3DJ3/EApZYkQnC1B3wKwsdtkdmoWgMsv\nvxKKhPPOP5dTd+4cnBGKunYyug8it1PduXPgREfs37c/UI4Pzh4am9FIx6wCq07dy2hGw0S9Ukj/\nveSxIAqifgpv1sA0FmwTVysWu10KAY25DXaWqUQO8VYTkl7pLFNZxQ9FGaB1yPrYZy327nuQVBWg\nJYteTn76ITbUmGhQWHZhUWqmR042J+2zWTgcRC5A18loPBkBbIaB1HSbi6FHY7yRHAQK+DjiRxki\nbdlSKyMCTZSxTsvwPcpLPkCjYAONvVaVsQaV0ejvu2QtlPFGZeVAk7NpwwZGQeSurymL0aQBM8R0\nsAZOecGL+Y03v2PZzxuFY4HGiKp+1NR+KCK+eM11ABRicE4GrJ2zjtMes6oPqtsmb89XdmtPePw5\n9Gtn+ef73d1U4pqMeYMDh+bJVV7xIveN8a99+RsgdKCZyjyuqMuG14+7kAyaOX332ze597cyWCN6\ndwAAIABJREFUF6N2+WU86pSdvYxmTGbgmTtGGqQxrrfQ+32u9UCgeYxpkm6/lXvv3MuPbvqXMKT6\nqte+DKJO9fyjDs+5aM/A+8q0SUdqq4qslZ2BmZ0Lf9+l1Jc6h9/2kaOjgi+Ziomls3KgkUYMPXZR\n5TTSPpZS3oDWrM2GHOGg8MOfs9tKPTsZhjeV6bHiijil2ScOCpDkCaRNFtLUNrVnt9GJu3bjtG4f\nF//MeFkY+1q2hKgrgUa4GRWzaqUzb0sQ1c5ofJ8jBS3Jpw+inE+rESY4jPpMom6gkWkzKHAn/eVp\ngChlGhk8qHTSqRVochdoymxNoi6NpO/6ZQ2rcaj6yEKiYOtxowdjhXdVlWO053QNB+EhuP20G7j+\nX3607OeNwiM+0EjHwQf43d9+n92tddZbphI+oxn8I04bhd54L/PNxaELl0qbmKkDPXkSXG2+iLnu\nS18Pj3mFY79Ybd7odjB5QqfoWkqqW3QaQoQyUr+pWpTHQfSvDJN0QBirmVbC/Q88aH8vtMtoJt8K\nT3nakysZzSimSzBzEtr6zRtZMT4rhtBOr7js/aAlr73kbRxYWAw1893n7IK8YbMc4LN/bTNNr/FV\ned9uiwVRBAdOtGKh0wkZSaY1hddfGwIrseN7UDZDEcMEQUswUZdGsEAuCU+W0IlSGnl1cRF5Ao05\n28TVEVlhZ7KklqhDx4WMJkGEhV2WNLNsoOn9zXx22cwjyJp0jCGPMtSh48iSLn/0J38BC1t43aWv\nYRJsmaxwzXR3HsrOdo0aYF4JIndLjDNR6x3byzaJMpjdhpnZR6SFK/XpwDbzGc04hmEZMmuEuSVb\nnu7raURdplUMQnPFZR+mWPcQGydcA2WEJe4UMZEo6dlF6YB8j3CBZqrdGshozjjrtNHn7anYKh+t\nPWfkWOuKkWgssDTBSG85OBZoSrMJt+7dCwubIGsy17UL+jB2FcBffugDbP/RU1g682tDF64kS2D6\ngUHfjiLmJ3fcEX7UrtfhG8pnOb0pzygpoiz8rqlUaIz3m6pFhbLeHn0wLt2/+Yc/rjy+4Bg6Rpqg\nTjAJXi/p+9+5aUAxtgxv5mSElcbod0DMxSAbaPvObTT2Pppb1SJ3my5ivuSKmDf50U23APClL1xn\nLZaHIEkbLDpVZOV6NGnWmxRPMbYPMqp0ZqoDqTjq8UhTLYC4SyJ6Gc0wenM3Tmn3BxpXqrH0ZklR\nmjtqzK8Pi29keoFGUWqIJ10apdKlv5otHfVKiFFGMr+evLnAAyZDzg6WG4chEgJkVskI2nFiMxon\nmbQa8MzBuhmNKS3WcnYrTO23GnBO9diXzsrmdXXONcqSQLhJjBi03IhSa3mQTvGFv/0qrN/LC541\n2uMGbODXypaIk6ia0Zxy6s7KsSJvEBlpN5ll1XapbRVkBEShyA0gc6baI5QKJkhsDYNXBh9WIVkp\nVqfY+q8YlnBlL+gsBXJxPbo5T1cPF4/02L5zG/d85jM8+cKXs26IDVSSxRClYWo8QEcc3N+bdzFC\no3QUejQvedkL7Xk5RokuBZoN69YFRly/qVpcRMN9SBoL0F3HbLfKPEuLHnsMBocqR0JHXP+P37Sl\nsxFTy4mWLCVFj3bpSmc/f/GlfGnhXs7QbYaN0J8wt5G96w5yx/QhTrv7Mb1fZE0OLtqyxd59D8DM\n8GG5Zh6zFGVII2wpSSuyoghCpIVj2IkRvaWoxPox2MDRT2QYQNyxizClckkfsqRDe75qJ+znOxIp\ngtV14VhU/272uDA/YXs0PqPpTZibZLHi8OgDU9tEPR2+KGPD/HqWjruTAyonmR8vBBleS0iX0RCy\nl40bZyBK7aJVh8lV530oBdMJiAy9slLUJVmYoYMrvxn7PQqDmqXyZ50ZnaiI7IJNtTwdEHc4+aST\nIG1z28IsLGzibb/7a+M/m+kFmoZzuvQEnJ958fMrx4osJjaSU087GQ7Z9/YW8uMGY6WnYquM47ds\nGX6QVqNtrkfg8suvtMSPYc6vK8SxjKZUjpgVBWppCpE38FXacc1jgG9eexVfufajA4+3wi6077lF\nbCmiDrapbtlmZD29KYqYXBh0lIad6xPO2R0a4/2man6upwy/M2Fui9VMK8EzdEwQBq0faO647c7g\nCTMMMco2VEsDdQb48cED3Hfqd51g5eBi9ei8RefR30S3D/L+X76094usaRlQeMHM4YGmVUR0ozQ4\ncNreh+6VznBZwwgqt19goTffNNS0rfJhO+w80YlyjshoisbSgBtjKNWoKOw6tbQZzZeu/TjXfN7e\nU3GpdBaJkox8Y5GpqKQM7gONFoFeruMum/ImTB3kUNxlaoIQpEcjsk1py7i0571j5w5QqStHrc7+\n1G+uohrLUFQqaxJ1mep4oVkR5p985lnt0Ux+7TiPidxnaiAqc1s2OHS46AUXQNpib9RFHjpu4mtK\nRwdHR4Gt+elPfAaKeEBJOUqbNIzkWT91LqjM9il/cOtE0oUslCMDZOw4afvQY6z8U+9+V284h5e8\n6BfGvu6NN34fgO4qmqYdCzT0MpoFlZN0WwinYwaMbR6PQ6tvDiJAR5Yi6uDnURIjqoFjbiN7VYqJ\nu2H24eJXvRSUnZHIja7QTG2gqWY0l33wctAxotum09dp8GWGIAe/jEDzwIMPoVVBPGLBTrRVXPYO\ngcItwJkw0D44oKDs8b8+9AFI25zy48dXejAib4Tz7xbFSEfGto7IGp1eEHSNUH+aGZb8MOrv2VA9\niSCfyY6jN3saticmKDNcGUC35pnu+7x+IHOq2QSt0EK7c6te0y0qprXPllpkaR6Dxjw7t/UWPO9H\nMoXq0cuTDpu0gsYs86151k+QTfFoNZpBB89vCJ513tMh6tqewKr1aHxGM/lYZURvaj5eCp9FCeeS\nLE0YeA2zUGP+1mXs6E6xfdFmezu3bIaph3jj698GYIODjjjv/HMRWZP97Vka86OZYOXzNVEKWgW2\n5ve+f/PQsu/PybP57Vf+HOc84WzQkhu//R0e2Ld/wCJ+8D2kzdZVzrNGWTL0qVXoLXdyXzpe6X0u\ntYF2WCl+pTgWaEpDcAtRRjO1jcE0NBaHs8omoW1K9NQy+rSzfFO9IUVgFwFsm93EfTMPYZIuDfca\ndtCvxWeu/rwzVevtaBMj7cxMCd+7+RboTlvq84CXh4UlA7CMQKOYm1+0shwjbp/A3HEaTAJLby4w\n0Jy1vjNDvkTbd27jed8/n7/4D79ZeVykTZbcIpKhR7KepoykaCwFq+dy7wOsJe84WnajkYTyTJi3\n6Rs2LcPvUH1QLDt0VtA6xMa+uR+v73X81i0Io9AuSPXfL5/53EeCkrh0U+Bf+/I3IF7kjb/2ht7r\nuWi6odGw9HJhMHGHNhI66+luuYeNNdliM+vWgcptgHUL9Xnnn2vnfUYMMK8EkXuZUfdR5Vjs/Iwf\nO9ig/RCzDKrHuTCQN3pSNTVLZ9+55pP88POfBuCKj/wx8V1n8bn7bU/zW9/+XpCnEVmDzqZ9THcm\nKDfjekqRnRezbM2cAwcODt0kXfGRD/KKn3d2DjrmWzd8z1pTTMholOuFouVovxnTI7Pce+deSOaZ\nGxJA/vHvvsme51kL7EX/XVPHAs2qoTwE10k6TBUJooh7MhY10+9+TPlGZ/8l1qoiJa+dwvGbfvm1\nnPGDnrDhaUWD7rZbIVkMFrsAZC3uuOueAVO1ppHWwKmEuW4XulPIPCEbYoMLgLSss1F9iwFoRbfT\ntYFmRHBKUKVAY5k/BmODBDAvipHX9NprPsYz91QtcmW3yZL0gaZXdurHtFHo5jza2Qjg3FP99c6F\n118bft5T7XZ1Tsj1aEaVzr71re+ERQiozLl4fP87N0HrIBe/7EWVxz0b8XGP3xV2ncb1aEbBs6s+\ncuUnIZ2uLC5eguSnzjvX0stlAY1FppPEKjNvuY2tol7J64TjN1sygOljbeUNp7qwOhlNI5ABJh+b\nSDvM+MVrroO8yYw7L4nr9QhtA2N3OrDTRo0eTMJZD27nrpN+xL137uXgwUM9b6A8xmy5jY01MkOJ\nz2iiwNZcSNOR2XhAEbP3nr1Wn2wis83pso2xqxYle/GPfeRToHLmhjjPXvru9/LVx/wzQNiUDu35\nrhCP+EBTXhzSxhLTWtkdIeXS2fJvVl+TH/gS6agyAOil9F/w7y/kh5/vyfz/xYc+YJkq0/s4rjy0\nlTeYW0otk6pUOmsOEZ9cxHrEyzwa9EGn16Mx9h/1PpiTtDAqGx1ojK1zG1cKEtgvfe4On1PZ0NLZ\nKERZgyU/qIhBFMO/rBsTO5uilXXgFMbOwPjSV8Z4WvbxW7YE5QavauB9Xl7y4l/gSRe+rHL8g4cO\nVUohyvRZ8QK/974/hqzNy1/90srjnr584UXPscHMEEQiR8HLyN9z//3Wb6fyOyCd4k2/cYmjl2tI\nFjjl5JOQS+tAK970K+Nr8x5PefqTnQ4e1b+TMwVbrUDjdfqiGpucWCpQqSWDZE1OnFlvHw+sM0fH\n7rbR3t9nQuAehf/1338Hkyzys5f8ujVPc8FBZQnEHbaMWdg9pMGOIpSyjXFl3wAdMXto3uqTTQo0\nWtpy+bhMtTTD9k/fvBGABXeP3/BPN/KNr/4DALe3D0HbDkx7EkA+SvV9BTgWaMoeJK151hVRRUl4\nXE1/HI53wWHgS1RUMxo71Dj4/O07t5HsPQ2k5hnnPbX3i6xBqnNyqSvKtA2EnZkpoSMMIm3amn2/\n9LkwkDVtj8Yxw2pBKzKtrYz/qBKUb6g6h0CvdeazqIUoHSlsOQxJltBxi0cmDGKEoOELn38BtA9Y\nG2hvuAYhIymkDhnkMDzmsacE5Qa/wfCiqz9IZ/nWrm/wzetvDMcv5XmFmFA2TvO4a//+iteLR6RV\nbw7KWFMvI0efGxBk5Od1PhBoIiNhyS6+UaFIZQ5Rhzf80quJOm2YPWHo7NEw2MHiwmbz5b9TkZDK\n0dnocrFxnbVN6Ld8GIZ2swkqZ77TgTzh7e94CxSxCzSA1ORCI9J2yGiKMRT8cdh9zi623H4WP2gf\nqridegr0qRs2jXs64PpPUbcXlHVkm+uTypdFxGJ3yenMjQ80EVYGa2yJrVQ6O+SYm0uJ7cE89z2/\nxQt+/7cBmD3hDmgd4J479tp+aNqmGKX6vgIcCzSGYN9r2oeYEaqiJOyZQMvFL/3Sz4MRA7t+oaNK\nc9mI0bvY4w9thjypDNmJvEEqjC1rlGimTRSmT9OsIwpU1iDKo6B75VEIIGv3SmfLCDSFKSoT8f1o\nCmFp2DJ3WlR2sfY0427SXdauOMljOs50KveCmUPwuktfA3mTorVAXCp7+XUxF3ps6ezCi54DKrdz\nQoIe60xYtWTW7+XS3353OL5rTDXQMBho5igQS+voh9K9iX8fEMedG/RUlWeFtllKCR9433/h3Jvs\nbEeiJd1GB7I2u84+k6TbRB6qN0MDvcHiFN0XaOyGZbUCzUknWbZenUCzYcbSq9OigLzB7nN2IfY9\nmo1TU0GjrpAakTZDn63oM3pbDjZlTTrNBTJ0UA2I8giW1vPhj/7JxOdLYQMN5UADlXL3UBQx3dwJ\nhE7YjCnt+rJjPqMvWwMsOqZp2rDrxNz0LAdPv57nXvRKWPcAZC3+8zvebUkAc8eh++eJDgPHAk0p\no6E1y/Eb1leUhM0KS2fnnX8udNYPZDSiiCrmWJaZNfz1T8ta0K0uKJaoYKXQywvudJIMaJp10Kgs\nIfaT+iXkaCuNLgo3ObycQIOdZRjxnHbccIFGo4RwCZMJWWLaXKilRODRLCIyl+6nGOQ4ifbFDZh1\nD9odpVEYCDXqHBNKlcNQFjP1GnZSCzTaZoTdaW5avy8cn4reIgQ+46gGmgWhUUNoxbGRoYziWXm6\nz8CqH14aZl4URH2vufucXXz9WuspE6PImotW/h5oZAmNhfUjX3coitj1Y8o9mphcFcvKRsfh/Oc8\n257fKPmUEs44/dGgUtvncz06/ac3c9WnLnfXxZIXZNawtGIglz1VjeVinY7Im4ukEDLoWCvEwe0j\n58fKUAaIF3vXT0d0hZnoj4OOrIJFDQWGyEjbCx33mkaEUn0qtSXItOYByKcPQneaL2/7IfHdZ8Li\nBu5+4EG6KkfOb0QnI+xFVoBjgaY8tR51eMI5uyueFHrCLnMsFtcPZZ3lpYeM0CNr1P/7Cx/nOd+9\noPKYyK1ia+4Vih3O3vUYaMxXjk2dZ0mk5cCMTR5KZwWI4eoHQ2GcyGSc0hzhlXHyyTts0JM5sZJh\nIfUZjW7PWR2xmmjpiCxJ3XlXPX76IZbWwfQ+p4psDdeCyKIsxioa2DdocNtP7nQ9GieUKSCTBe1b\nn0znlG/zW299lz0UKoFmWOlsURZE6SClNdayR2fX1qpi3L0AXm8sZ0Flg9ppJSRaoNuzwWPlnO56\nHt+vHj0JRWxLUX0ZTabyVctozjv/XCiiMPA6Ds+56KdApXbh7+vReRFQLQwqS4L1dxH1TOmWixkU\neuqQDbbepqNQxHMbaz3fl/MCu1IruzGZGGgUuagbaIQNBmNKZ2Wh164xcOhEdNsaxJn193Haj56C\nftS32XZwC6KzjnmjyWRBsrhuoEJyOHjEBxovbfG1L38DVMbFr3qpbbKVpEjG1c3H4an/8hT+01su\nqTwmCjWQ0cgxonf9JmR2xsdY987SjXjpG18PMueTH/2r8FhX5cRFNHTGpsCZg0mvdVY3o5HW7yPq\nsGX98F3y617/KmvcpnIipYKeXCE1pFOYqQPL2hW3jCR3igi5MGMDjepMgTDE0Guy+8/sWWfj/p5F\nzMFDsxhHGrCWvJpM5azrtInueSwfvOMb3HvnXm5tzxJ1e0EkQmD6SpQLKicZEhRsRmMXML8YGFmM\nDYKRBGTBoqPhj0JihL3GLtB8+dqP8fdf+PjI44dCWwXu8oZA6IhC5SvqWY7EgZ2c+dhHTzzs7Mfv\nAq3oCD3Qo5NOhl/LwpoEeop6lJOscInbvmE9TO235BP3d3psNsXj9g8fjOyHv8d6GU3NQFNEaEOF\nWj4KMdJ6TY15TVEyHexIjTp4HEzv542/9DaIunz6v/0u8S1P42wzg+y0WRIFWZTR6jaDiOhq4Fig\nwfZo/vpvPg9Zi+07tzmp8J5l8UpKZwD/eO1VPO+i8yuPSR2FnT24Hs0y/gyyiMgwbmffe563Mv78\nZ78UHktVTlwoEq3C5/HIpUbkDYy0rfK69GZLlwTiJXZ7XbY+WCHMJjTmmGq1QumsEMY6QE49uMxA\nI9BNu7sKgpkj4Bf+GAlGWLky4UoGTn9NjVOzzRO6ee4GaXumbbnKaeiIn5nfzdzWeznxvz+L2ePv\n4Kfne6KHEnrCjw5dldEcQseOkaExLIJJlh4iZtSDEnagtJt0mRrDfEpQ0N6PGBOMJqKIKAYyGhdo\nVimjATB/+GPe9d6acvRFYgkufX0OK8NvezRxEfWYgyobOVQ8Ce95zzsgWbSBzW1svnLtx/nnaz9R\n6/nh71gqndlAMz5LEa40rTU16M1Yj5xxxxkR1Ju7QpMsTYPQfOuuu+DQNs5+wlmkV/4Dn/3clURp\niwVZkEcZ01kDGoP2IivFIz7QSGM5+HffdW+gqsZuUYLJDdrlQuhqRoPUIw3EhkE5xdaFYbvatM39\nB3o6apnKaeqIBAYYJLkwyCwBF2iWk9HkELK/kUjbVoxwuh3Kk4UsUPMb7WdexgLQFhLTsLurrspJ\nRszRACSuOd9QKsjHaGEgnaZwHjljA3uekOo8aLlJZyGcR7bef9WnL+ft7Zdx/F2P4dLu8/irv/lw\neKoqiXJ6dJMu7SFBIdEi7G69QrRRYwysgCRSoHKyxhJTY3axiVMQkPnhBJqYXFb7MaJQ6Dhd8cbr\nsFHEdEQRVBU8YmVp31oW1nXU3et1HUWH4aRTToL5LRyKuwPvVwd+zQjXTyvH2JvQj3JKFKNkmsqI\nkZAsjpUEEloGenMqCjsoPL+Fu+IO0VyVPRenCYsqp4hTZnQM8ULF0uRw8IgPNH6qeK7TDdL0USmj\nMYdROhuGoE/kYCbsYgfO1xEVFpOO3XWUkbZZ1L0SWRFnNLQMJm1laKGReWy/oMthnRllZ3Ly5ljB\nP38tt27ZVAo0mnhpGmBZGc2GuAnNOQAWG0tMj5lF8HL8U81myBRsoGmjfY9m3JsVsZ23cWxDaawD\nqy45I777/b/NfVd/jj+54vcrT60oDPvLkHSZGrJgNJHB1dEbwxmZjz23ZpKAzClac8yMuX5eG09l\nh+EboyNyVVR04UQRoaO1DDQJXVkMZAXNKLaSOVJb11Gf0YwhrNSBWNjAfGOxYvVRF14SqEdvVmSq\nCIoQI9/T+R+ZGtYdiRG2vDUmwxT0bFBSVRAXEXJhPQ+uO0BzoUo0auQJHZWjky4tLSFv8ad99iIr\nxSM+0Ehs+apresNUsVdeZfUzGj8A2HtgPNOoH8oN43VbC6zv2ymLtEmn9NpFlNLQiqaRFaFAsDVg\nVTifjGWQAYSWNtBkw6X6A9zvz9p9JkLYm13LgpZzmqwd2IAXPP98aB7i3jv3krYWmBnzZfVy/NtP\nPCFkClpoF2j0xOstXGnSYNlpvr+ko8m742EZjW4sMjVkIXjf29/KRXvtIJ/wsw6yYFxo8NIwpj3L\nejF68Wu6RU6NyfwmQisKWVRKqkIrTNxd3R7NclDEdFU+sFh7dWQjC+s6qlz2Hnesh9MKoZbWkU7P\nju0Jjnyuf19/n7vrObHsWFiyTeHILOMQYWz2Npbe3JNQymRBXChUZ5r0+NuZ7nN9bRYR3SjDJEu0\nENCd5s577h9/vjXxiA80ypUZMmO1jMDy+j1F0vZQVjPQ9BhtwOTmdB88I66YOsSGfqHGPjtnnXRp\nYWd5+j02ClmEQGNYRu1OSytRMSHQ+Gu56+wzg6qxlgXr3OPLyWhed+lroEh433t+n2LqIBvGiA22\njV2ELrjgmSFT0G5w1Wc0akzZThSRm2mxg7Th3EvipqOgINw3Hro1x9QQm91n7vl3fPZzf2nf00vQ\nqHzsveClYZh+kCftGqFthaOXY60jVgpRRGhVHc4UWmGSztplNLllvfUv1l4dWcvC0pmdZxNxt6Jw\nvVzEnRbFugeJVpDReJuHHhlAunOv0aMR7hs54X7z6unjSmyh/wdkUU5DK5JOCzbcw8aiWhFpFxFZ\n0sUkS7SFhG6b+Wx11AEe8YFGYEtndibCSbfTs3OdWGpZJqSWldKZ3WHXX+iVtoqtZt2DbE2q4n7C\n+ZB4mGSJJoKmEJi4SlXUUtsvkLQdo9oZjZF0VVERAB16XJYE+Q1PBtCqoK0VZK3lL1adGW654y5Y\n9yDb26NnQqacavPzX3RhyBS01MisYbNU75EzCj6jcWQAL5Rpkg7NCeccMZjR0D7E1vb02OcJ42Z9\nZGEZVCNw1u4z7XxSEfNf/9//PPK4k0/eARxeoEErtMoqfyehJcRLaxdodEQWZUG+x8OrIxtVWP00\noS2LNFni+K0jfFpqoJk1Yf3eFcnYxMr130o9Gh3lY4ks/vjCCdBOopHHopctjYTplc7yKCPRKvR2\nN/e9ftso8mQJGgtsnJpGpE26q+Sy+YgPNJaDr60qbSidSau8ig1Cq1k6U6657GFEsaweUGwkWZxC\nY47f+d2qyrHKk4pKs0kWaQvJdKNh2SklFELbqWlZ2GbhMsgAqSgq8yPDIPMk8Pst4cJmNBECFjcu\nfxZjaR0P6QziJX7vA78z8rApLQOpQ2rfo9GILLGMMCf0OQrCyQ/ZwU4/0Gsg7tCUE+YaJNAvWJjM\n88ynP3Xo8eE93awOKh/rzfKM855u/7Ewfpbjda9/lX3rw9AkE25hLJfOpFaQLK1o4V0NiCImj9OB\nxdqrIxuZWzJF3rBW5/EC558/3glzHNqZpUpPCg7DMNW2ZSmffQmjKKJ04rXzGU3ZC2gU/KDruO+S\nKGmd6SijgWDKzSGdPFO9j6aMRDcXoTHHs5/9TGTWDBqDh4tjgQZAFm4wy5sfgXF13tUunSk3RNh7\nYAILqg+xUXSmD8LccYMGSnlEWt5Ru53JyY/aMaAaYGQv0JhlqDcLY0sATKj/yzwOqrLCOSAaZRcC\nsTiz7F2x7La5T6Uwd9xYEsKO9ethzsmthCa7RuUJRtnFaKzMi3Y+7I4EEkRXk0U2T4/PTCKpei6Q\nwBWXfRiEDq6pI9/TK4jLnESOvhesNEyEGKKdVsbuc3ZB1lrxVDwAWmH6MhqpJSQLq7rxWhYKhY67\nAxnNU55mRUBRuTOKS6xFhlEDYqbLwTpvRbCC67hu2lUbQo/Gbl4nZjQlfb5J5eXplut3jtlQlM34\nfPl3nY6gu47//j/fVTl2CoWZ3g9Gcsmv/oIrxa99RrMJ+CLwL8DfAqPu/guBHwK3AOUt+Ljn/5Y7\n/ofAc0uPPwn4nvtdmfLzWuAB4Eb33+vqfggv65F5FhaONuia56uf0YhAnQZAjN9h9yPWAr3xPuT8\noLBfVETBrMi7az7r3KeFAcoyVVGrwg4NytzpetV7fxtoJmc0qohCSi+FzQqMylEGZGeqvi2Bf720\nxf7mAnJ+/G7+yqs+xJ1v+YZ9X7ebM0IT5ZGdGJdFYAQN/XxuoNYLXAb75MY8P3XB+N1xoqJKRvP1\nr/0TpFPj2XmUprdVZl9jHHQ8ID8zFGk7WICvBKJQmD6GmXQbk9VkYS7vnCJ00hnICnafY60WTJza\nBS1PONjtWor9YWDGmxeuYJncFlxX3XONRNfJaFzpzNia/vj32H58eM7I10NgjA80KU0t2VhEiIdO\nHLgvd2zdAuv2Qcey0VQW06EYeM2V4HACzduxgeJ04Mvu534o4I+wwWYX8ErgzAnP3wW8wv3/QuCD\n9IS4/gR4PfAY95+XozXAR4EnuP+uqPshvHxFVpo4byrVayguk348CZGWwWrWvn7RY6jUQIyAmfuI\nFgeFGuMiDmZFl19+JRjJL7/1DWGA8orLPxKODY1Tlbkabl16s1WMnTRbYAONL50RAk1cMJCiAAAg\nAElEQVSMJOouv0cTpQ0WZx4a+rn7cdKpdnrbL+C2HxXZbEPlY6+31NJpohmkMT3vd6iImw7DVLsV\nqLUA+w4cqLXYCZd5obJQchmJIibuTjgGIGuueIbEnpNduEV/RsMQM7+jBKEVprE4XFZGR5gotay9\nIrHmXVmN6zQG67D3b7SCjOaJTzob6PU+hbbMz3FzUv64QtTr0Tz7vHPDc8a9ns9oTLxEA8FVf/b7\nvNEMZtn/8e2/Zst1Thk8ymOrj7YKOJxA8yLgL9y//wJ48ZBjngLcCtyOtQP5GPDvJzz/32ODRuae\ndyvwVGAbsA643h334dJzBLVXyiqksIEmFzrQJjesW2ebrtghutXcwSlk1YVR5URjyiX98LvU5hCX\nv8T7UwDf/8HNkJZKPWmb2++4O/xoZGHlORwZoO7CL7SkiNKJUhpRoXoZjVc1jjJi7FDlcujNYH3d\niy13Dv3co+DLBkYY4iKyfTeZB0bQMAitKKQBYcVOJVAknSBQOQ6bN26olM4Wi6LWYhfKGypn63Gb\nxx+so7HyMwFZk+bhBBqtIEorQcX/e80CTRFBYyGwrSrQEcRL9nd5zIIoJlPwJ+D0HfXVpfvxhMef\nA5S+V1pC3KkdaEyNvunzXngBaDkho6Fn5Zws0VYR2046gT+67H0Dxz72rNNhaWOQLopzSydfDRxO\noDke8CTr+93P/TgRuKv0893usXHP3+6O639O/+P3lF7LAC8Fvgt8AthR90PEUrqMRofBrNPPeHQI\nNMhivGTJMhEZgS6XzmRBMkKcchgSd/MNDGsCielpms0uLAVRRQDSFvPdHsXZyCJYGFhdpfo9Gh2n\nEzOaSKugwSTtoA5GZURGcPbcJnZ1xvc7+pHkMUw/OPRzjz5XYb+0qrCNcZXaOv6Y8pTyA3OuNyeN\nQDcWB/xfhmHnzh3Bzwawar1DBDUHztMTDlTKqY961PiDiyjMCo3D1rtOZ0ey8tKRcDThgR4NrGrP\nctnn1JgbLiujI0iWiKWAImZRFIFiv1K847/8B8haIw3+xsFbLfTIABKSpeFBsgTpsvDCTO7RJI0E\n8uZkMoD/obHA8RvH9/dYmgn37DDV95Vi0gr3ReCEIY//p76fjfuvH/2PiTHHHc5q/hngL7FZ0CXY\nDOn8YQe+853vDP/es2dPCDS51HZxBF7/+lfzX674Tb51w7fdtPbqcSbUQKDJacT1uf5e3XdmyGKT\neH8KYEnraqDJmnRMie3m+iXoyLKyar6/MAIdp6iFmbHHxbqU0RjjFtKMREr+9zUfrfluPTRdGW6m\npu+9P1eDwYiCxChwGc248pTU0rpTuh5NJISVv6mxO37yU54Af5dx75172b5zG11MrcWul9Fk7JnQ\nB0JHTE/wkgfY9zefn3jMOAi3Ay9n876/sFYMIqGVzQqGnYGOoDFLM44RRURHHX6g2b5zG8xvqeUA\nOhRF3OtFaisXM6nfI93mSIuaah15Y6yck/eCuvfOvZAs8NJXTCCmdKaRWYPrrruOzg9vZSlKK2vm\nSjHpjn3OmN/djw1C92HLWvuGHHMPcFLp5x3usXHPH/acu93jO/oe96/1UOnxy4HBvNCh/6J98AN/\nATInl0WYO7C+JE0+ceXfTGweLxcRsipTIgs78V0T3md9gxn80zWNDJpmXWEQpcVRZtbv3cOo3H6B\nnBFbfWUAgYk7E6U0Ei1DoBHO050opbHCAbqWyzY31FhkPWRJrDIM8qmcTRtGz+F4+rkRGmGc/FBr\nDvHQiSOf43He+efC1wQ3fvs7NtCIwtK8J0AYYdXCtRpgEg6gUEOVBlYbwkiIF4cGmrUqnfke6tAM\nQ1vG33S77QJNHubiDgfxgztYv9ISpI5CRmiv59KgtXsfQunMP2cS8mSsUoOfYbvsg5dDFE90WZXd\nFlGWsGfPHraetou71+/nne98J+9617vGPm8SDueOvRrwJuS/APz1kGO+iW3anwwk2Cb/1ROefzVw\nsTv+FPf867EBaRbbrxHAz5eeU866XgTUVoKbnmpb/SjPwvLIWtx+110g89UlA5g+hV+VsWnDhHS2\nBC+psVkOfokaJQWAbolFB3ZSvyOqvaHYSCjiZWY0tgQwiaZp1ZPtlVPGmctFXWamVlbOabnX2jBG\nemXwXB0JQRa2XxF1QWZsOX70EF+gnwuDQti/ffMQsu7uWMd86/rvAjbY15GBkUZYbb1iclCSc5vZ\nKiYfd7gQWoLKK6UzXzJb8Q7/MOHLUCMDDbD1uE1QRKRRWrn/V4r0yr/nK9detbInF3E10DD52klH\nDLFkgBrXuUjGBiSfLX/vpltq9RmjtEnkrlsTuWp2zocxOsx7gauwLLDbgZe7x7cD/x/wfKw31JuA\nL2AZaJcDN094/k3u8Zvc899Ir6z2RuDPgRbweeBa9/ibsQEmB/Zj6c61MDNj9aMKWVT58lmD2cUl\nkHqVM5o+4UWZW6/6mmjFduL+F3/+Zwd+10BgEttbSoXzm/FvU8QVTrxRmf3ja2XN3WoO90kjoDEf\nyoyjkBgBLgsRArvqRymnnly7fVZB232ZXvbii2o/RyKsJYMsaBhhPXKAJz7x7NHPMYJM5RhZIHA7\nMWFqZSYAFDH37r0XsMZzapwbqIPAZTQ1yoLFFTfWO4/DhN9IlANN5Ba+tSqd+UAzdLF29+PTnvIk\n/uBLXyRLUuQyyqxHBFpVWGcwIkiWII0lC9mRgzoZTTyWyOPLx/NpF7qTN3lJ2ggZa1NLdLw6LpuH\nE2geAi4Y8vi92CDjcY37r+7zAd7t/uvHDcCwVeL/cf8tGzt37oDFIRlN3mBJF9CaZdumwZmVlSI2\nPR21e+/cCyqzA2c18etvvoTrP3CQl77rZwZ+10IGV7yu0JXdtMytB3yAyqyEhVZooYmGlOKGQRgJ\njfmJ8wANIxHGs86cxXHU4fxnP7vW+/RjCgnzWyZSjKvn6no0qnCOm7a84hlBwxAZyZLr0SgEngdS\ne3dcxBycs5YGqXC06gkIFOq1XhhLEEP6MX4BWqlr5eHCl4iGXiWtwAiecd7TEV9Q5EmHRg0q/BFF\nqXTmyTaTMhplBLnUtuRbo0QpimSsUKcnmiyhETUYkI9bWI9w2nx247r2gebfBM446zS4IUe7qXUP\nkSfcLbuwsJErPvLHq/Z+ESJYzd56y0+CHlhdPOuCc7n7gr8Z+rvppBEUAKz3RO8rqYrINrnDiWQk\nSpVUeutBOIXiSVPnTURwQpTGfWatbB9jBfjwh97PKy95y7Keo8LEvRuKLRqAGDtAGRk351SSoAGr\nulALOqKT2i9nKvNagUaGQPPw+Tr6BbLMMPP/XuuMZnjpLIK8wfad25BakbXniebql6SPCAo14Esz\naSthJWOs622dkQORR2OHn71FR5d6DMi/+0LP2G2drG9dPQmPeAmaJzz+HKv3FWVV29c84Z7pgzT2\n7VzV91OljOab19841u97udh1xmOC/WrmpuE9okKRiWpvqB1bPTIjdW0ygL/5J9E0r/yD/8FP39eb\nJTBxN2iQrQTbd27jq9cuz47YT/UH2Zm8MTFr8PRz44JT5Kq2dQIGYPsDub3OuSpqyZdIBDrKV/Ve\nOFzIIRlNtMaBxmfRjWFzUFqGHpcd7Fyo/zc7UtBR2KiEIDnh6inHEqstdFvEFc+gfkgDWrie7TJZ\neNd+/qN0P/KNZT1n5Hmsyqv8K4bXjzJxt7LbkHnM4rafsGV+dXdFkcTSbIG79+4NemCrgTf+2utB\npXzu6mtJZWEpxv59BzKalI0bN4QeTe2Mxv1/Uq351MeczGc+cyUAUmAlfWo0u1cT0ps+eeZgSehz\nFAL9XGokvWG42krIOiLT9jrnKq8lbCmN7Zk9nEpnfkNRIQOETcbakgFayeB9JLQK108WElqzK5ro\nX1VoNVA6SyaQWZTPaMTkORqwUkHjWGc20Gk63lF3jfCIDzSAnSVJliraUCKPYdOd7EwPT8aiHwky\nyJQc3H9woi/4crB95zZIp/nUxz9DropKwz7S0jacPVSXM05/tBNPLJaR0dTbmZUhAOKlYCx3tODd\nMVE5kcAKgU7KaDz9XFjpIU8Eiev+nYqI3PXCrP3z5OcJBGaCgdXRxrDSmc9oVpMcsxz4QLd1WM9U\ny3B/Ka2geXDNekkeopzRuHNvxOM3LBJ7z9YdOZB6/GSOwJaPU6knjiQcSRwLNBCmisvLoCwiKGJe\ntueZq/pWTRWFQLPQ6az+LjZtc/+Bg+TKmhx5xEaSq5LgZpTy3J/+KVc6qz/962/+5UxLK7A2BatA\nN10OJFZQM6gBFJMzmkA/d+6S/go26u6OtbK6ZfRk2SeepxGYKJso63M0ETKa0mM+k1mONt9qwpdr\nz9595uAvTSmjMbI3O7WWKNQAvXnr5vHEIuWVzuv2aAo1lphjbS40qSgCbXktcCzQgJsqnq/0aGQR\nIe5/DG/9rV9b1bdaNz1l7VeBbvcI7GLTNku6II/ySn8g0ZLC9YY+/YnPQBFZUzItHZV3eT2aZBmB\nRiIgXjzqpTPhGqHInGYU2yx1knSOd1d1Yqd+Ua2rhCx0FKy6dZTWWuwk2Bmfh1GPJqgAlAYMfUYz\nTivuSEIZAUYMtV2olM4CaWCNMxrT0xTx35szTn/02Of06M31rDtU0cuahr8eILCl9GMZzRpDK2jM\n0yxpjslCMbV/vLz7SrBj27agDJ1pveqBRqQNOmi3m+79eWPTCzQ/+pcfOwYWVl69bzBv7OuvYGjP\na52txqT2cqDcbg6VMT1lJ8YnXe/Y2UYgCmIlw6Ja20RMK3J3bXSc1spoFALiLmIFlsFHCmpI6cyf\nXStem1q/QkDeHM4a1BLhAo0PksvZDB0RaBWun68EXPyq8f44CpvR1JWg2boww3Fjmvy2fKxJo7x+\n+fcI4OGzhVpLFBHIgi3re9IkZ8xuZuoITEA/49lPhRvKgWZ1/wQia9IRGh2ldkjRITEy2FM/uH8/\nbHCLhVEYldf+pGoFGY2/vY92aSiIVcqcDZs3wHw8uXTm6eeyIFIqjArX5euIQqGNl2Xv0Kyxl7MZ\nX+fh1aMJDLPe39n35aZXqO5wuFBGjNScE1piXKD2GU2yqpoey4fQvYxGGEtGmeRNpJAYVdRWVL/j\ns1eP/b2wb85Se5Yd+yfLKB0pHAs0EBaf3aXa77dKfPLVxPNfdCHcAJ+7+lq7IK3y4iKzhK7QmL6y\nTcMZL4HvDZWooElaO9CEpqasH2hCCeAos6qUtydQGac+6lHI70boCVlDoJ9LTSOOUWF4rX6PJveH\nJks0RY1AYwzES8u3tz6CCAyzktZt5P6MGzavzXxKhBxJKBFGho1MtILN0JGAyJNQvpZG1qL3r9eK\nfPogen4GtQqbUOGYl9nG+zj+gQnK4EcQD587ey2hJRgxMa1dNRQNvv6VfyJn9QONyhO6GHTcpVn6\nnsUITGwzmrQoWTFriZF5rXow9Ha47aR+0FDupSdZC6w2FIRAs+eCZyC0Gmt7CyX6ucxptVrMrLd2\nBq3aPRoZMhqSJda3J+/+pWMiTjq3o4n+QUOARNrz233WGWt0TthZqGEwIgQab41ep2x5JPHypbP4\nb298A+AcbGtstJ7z+MdhNt9BsYyRg3FQWLV1Zu7nl1/98slPOEI4FmjAZjRZa2Jau2rIE+7eu9fW\nYVd5cbGueAUkncpuuoHAuN5Qqk246b14Yl0rZ98c3rpptDDlwDm5PsfRXkiFsSrVXhVZlMzYRqHh\n6eeyYGZ6iq1bLEuoPYGWGt5TK/JgNLXA7t2Pnfgcf00fVhkNvkfTQ9v1Zi68aJyo+5FDjBid0ZQ2\nEV6TLVnj5e0jn/yzoJYsEaODZAm/8953wMFtLK7fvyoq2RLIN+6FAzt4+auP0kZ6xHkcg1aHbfu6\nLBQJ84uL1o17tQNNoejKApJFZhq9z9QUIpi55cKExqkwdmGtSwbwGc1Tn/aE+ueknLjmUW52K99v\n8U3iIpoY7JpxbFmBomDzcZs5y5VTt209rtZ7CiPRAq668lMgM17/+ldPfI4UXnjx4ZPR+IWhTAaY\nXjcNWh29DVn/ORnCfdsPoWW4fp4MMN1YuwHFfvgeTR009m+nOP7Hy3ahHQZpgI13kxysd/8eKRwL\nNLgveI3dxqohT+hkmaXBrvIuNi4iMmUDzZmP7VEp23HDzrJgJa4DzVdLiJbZo9FyWbvaWPom7dFd\nSKWnKutS9jahBDbdblsnTplzxmmn8Izzng7zW3lVzd2gKBQ5hmu/cB2k07UW5UCBfThlNL5HUzql\nC5+3B3XnaEHSI40TVMKm+4b3GYQR4f7ywXHn9rUJiMMgjaitZbdxfj00Z8MG5LDe112LdROMCo80\njpEBwC62h+nGtywUMV031rfau9hEK2bjFFSXSy95fXj85JN32Ol8IMeEerbPaGoHGoB8eWXGRtNe\nW3mUMxoJduLe1+61mphVWfq5tXze9bhdbN+5jauf/uHaYqDCWfE+8NBDcFw9dlY0pB+y1vD0dVWS\nTHn5q1+6puWXz37uL0f+ThgZ/Ftid+4v+dnxbpJHExJRm96/PW9xH/VYZ5Pgq7hbV1nhZLl4+NzZ\nawmjEEdTHiWPyTWudLa6f4LEKNLGEmTtSjB47WteCfES99x5L1k50GgfaJZROqtha1xGu2Vv8rqe\nN6uFyAgbNLQPNHLiYv6MZz/V+tYYEVS1X/gz410Jy5DOOG2hyKtW2mPgr/zDKaPxZ7JWw5nLhTAi\n9LgiJ6C6UqXwIwGJGFn268eu9Zvtcw7H3N7BZ3cnrLHqxL+Ou+gIQ+ijG2hEEfV8wVc9oxHkrXlI\nq7vpxz15N+QNPvTBK6yOkrdZNgJUt77W2QoCzdQ6ey6TXDlXG1ZjrdPLaIyceL2f/6ILbXlthX8X\nYQQFTpa95nVSjkL8cMpovMRQUpMEsdYQWobeTGTEwP2/1pAlVtwk/K+P/SkcPHHsxH/t93XM1lc8\n/7mH/VqHdx7HYKeKj+LUuihicowtYa3y4tIwEj11cPhuOmvzw1tuIxe9xrxwulB1y8HSmGWLY+7Y\nZjOrSWZpqw2FqQYaLesxu/LGigdpfUbTFRpRsxwbTMYeVhmNvSGma9CzHw6QRpSk+MXRJffUgEQs\na1MZ73vURCuOOlAIeGgnv/zmNxz2ax0O/nVsV44wLGPl6F0KoRWZMFY5fJUXl6aRMP0g4qGTBn+Z\ntphdXGRJFURuEfR17dr0ZuSys78dJ22DH69BRmOkLYNpW4pQZnLpDLDDrDJf0XtKI9HOaKquLLtf\nflajJr9a8FdpZmaNXSprQhhZ9dBZZtZ9pGEZc/XXmF+aeTrP+umnHfb7XvKSFxJ/eu03MMcCDe4m\nreuguBrv5zMacwQyGgQki8N301mDjtYsxhmN1AUa9/61JWhg2dnfrrPPtIHmqGc0uB6Nm68o1fHH\nIk8g1pOPGwJhBIXQpELXtn/2405H+/qMg2edbT5u8xqfST0II8JG5qmnn8b9P14dC+LVQtNIorQ+\n4eiP/+R/rMr7/uIlr+EXL6lvf36kcCzQAGh5VL0aRCHJhUFjVn1Ir+lF/IbspkXWIBWGTpTRdllJ\nTw6+XqjZYiI2PrBjWee0+5xd8FfiqBtmBUFDl62emDdQ8+vHPcWiiEEdTkYDqdCompsXf10eThlN\n7Gqpu884bY3PpB52Lk0HmaDf+4N383trfD79uOaP/pAf/OCmtT6NNcOxQIPLaI4iI0poO2thWP0G\n8LqGLRmoIeUtkSd00aRJl81dW3uXIaOpt8j97bUfW9mJaXXUA02YQ3B/23+4tqZ+XZ4EK4dlv6cW\naDSp1EQ1WUbeiuDhFGj8OT31GYdfvjka+N41n17rUxiLnaeeyM5T107Ucq3x8MnV1xBCS9RRnPGQ\nWgXW2Wo3gM849VQA1JCyjcwTUmHIkw5T7n0920ywClzKcTBqVZqby4FfLJerSCCKeMW9M+8nksq8\n4nA6Dl6i5+FUOoulXFMVgGP4t4WHz529hhBG1l4UVgPS6WEVwgQv8dXCr731ElcKHPw8Mo/JhKFo\nLjKl/cDm8kpnK4aOGG86u/qIlXu/5f5ti2jlrDNnnZupgrhmgIsjT79++GQ0rXiyG+kxHENdHAs0\nWFppdBQZUVJLCjS6pl3rcrB95zZIp4mG9JxkEZEKjWnOsU6U5MuBI53Q2NLZEX6PPkRO+ma5fTBr\nkLay+0EZ6/meq4LE1As0jdgbdj18As30VPtYoDmGVcOxQANgxFEt6ygtyaUNNEdkSC9tDXXTi/KI\nTGhoH+SEDdZTZLlkgBXDyGW5cq4G2g1P4V5u6SyyHvQrgDLW1XNp5iE216SBt5xywhH/GywD//U9\n7+BJN9RXRDiGYxiHY1sW4FFzG9lojt6lUK5HI8XqZzQApO2hgUbpiI4soDHPb/7Wm4FS6ewoZDTx\nUd6xT01PAcsnXBxuRlOoHH3CLTy12FPrORs2zoTnPlywfec2vnntJ9f6NI7h3wiOBRrg5qPMWFFG\nkMsCLQzxEaBVi7Q5tGwTaclCcwmWNgQdr2A1e6TXOK2OekazyWVtyy6d6cm+NaMgEXSOuxNx4EQu\n+/P313rOxo32PB9OgeYYjmE1cax0tgaQxgkvthZYv4whrroQWZNEDy5akVakrXlY6s2SyKNVMjQy\nqOoeLZy4wzKmlhtopFYrLmkqI2Dz7UztG6LMMAJnPMYyBaMjHu2P4RjWBoezymwCvsj/ae/uY+So\n6ziOv3dnb8u11xxyttxdj+YgbaFXxBpDqfHpIqhtTCjEh0pCUqXBP/AxGEsLEdsECDZRMSH4j5hU\nIqUo6ZOVSm08Y2KQ1ACi57WcoSm90mu1lKDUctdZ//j99nZuOrsz+zS7N/t5JZPb+e38bmZ/Nzff\nnfk9wRHgOaDYROKrgBHgVeCeiPk32e1HAO9ocA8Cx4C3ffuYBeyweZ4HGjc5dgSZXAo37TLRcZYu\nt/ZjrHW+OZ/5Ab8366aZnHuG9LmOqTQnrs6CrhN7oLlu+TKggkBzwan80Zn9jL3vRJ//Y+B9ZnI1\n3dFIUlUTaDZiAsUS4KBd93OARzHBZgC4DVgakn8AWGt/rgIeozBCym5gRcB+1gP/BhYDPwK+X/nH\nqr+Mm8ZNX8DtPMV8p/ajRp/ZuZ8/7n/6ovQ2Nw2dJ3HOFwZKzFdA1/vL9NLD13Pn7Z+v7058Ftk7\nhXLv2swEaRU2BrDluSQVfVDHa98/AG5ajxcksao5t28GttnX24BbArZZAYwCR4EJ4ClgTUj+NcB2\nu/1Rm/8G+94LwMmQY3kGuLHMzxIrhxSTmQloP8uGu++Kbb/ZXBqy/yVzvjDgYL4RQL0bAwz/Zmfs\nk2b1LuyBC5myO8Wa6QQq7bAJvNnH3n2/KC+jm4l95ASRuFQTaC4Hxu3rcbvutwB43bN+3KaVyt9r\ntwvKU4x3P5PAW5hHc00pk0sx0fkveKs71smZsvbPPcszDlr+jqaZmtbWlJspu77FueCETvlczFXZ\nDq45fH35Gd24u7OKxCesydMBoDsg/T7feo7gLn/+tFSJ7Up9p465q199ZUiR6zqGc3wg1v1mbTBp\n9wxPkw8wuWQVcYGbKbv+KZ1LR54Izm/X7m3hGwVxM8Q3I5JIvMICzSdLvDeOCUIngR7gVMA2Y4C3\n+U2fTSuVv1SeYsaAhcAJzGfqBM4Ebbh58+ap14ODgwwODob86trL5NLQdo5ZZVQY10LWXjzbPU2q\n84/MnMTe0ThlBxonl6r5PEGhXAdH9zTSJIaGhhgaGqrZ76umE8ceYB2m4n0dsCtgm0OYCvp+TBBY\ni2kQUCr/HuBJ4IeYR2KLMXUzUY7leeBzmMYFgbyBplHy/Uk6/hfvLICz7AV3tqeiu5lGDK4LN1N2\nYwDHjThBWi3l0qQT/qeQmcP/JXzLli1V/b5q/psextzxHAE+YdfB1LHss68nga8BvwWGMU2Q/xGS\nfxh42v58FriLwqOzrZi6mHb7836b/jjQhWne/C2CW8A1jfyYX5dO1r4PTSntjvle0eEJNM04RH1N\nVXBHk8mlK66jqZibmXq0KZI01dzRnAFuCkg/AXzGs/6sXaLmB3jILn4b7OJ3HvhC0SNtMvk7mq6Y\nBy18j53/fa7n+0X+0Vkq6lzOM01FgSY1NcV1XOYcXcbV/f2x7lMkLhqCpgHylb597XNi3e/Vy5aY\n/c6bN5XmTLU6SyjXKXueFycX/6Oz//yq6NNekRkvsdeXZtaWS8O7s3nkx0E3bfWzfv3ttA9/nAce\nuHcqbarDZpIfnZX5SGqBm6Xv7LzwDUUkEt3RNMDHVn6Q4b+ci332wt6FPbyzY2ha2tSgmrEeSYxy\nDk6Zj8H+sH9HnQ5GpDXpjqYBvrvlO4z9enejDwNg6iKc3A6bas0l0mgKNC3OsRfhpA4cnKqgjkZE\nakv/gS0u3yLLSWigwU0nt+m2yAyhQNPiHNusOZXUR2e5+CdcE5HpFGhaXP7bfjqVzFMh5abrP021\niJSUzKuLRDY1MkBSv/S7aQ2/L9JgCjQtLh9onITe0XSf7qU7pXGRRRpJ/WhaXCZtAkw6ncxAM7Z3\nX/hGIlJXyby6SGTZjPmu0dam7xwiUh8KNC1uVpt5rNSWdkK2FBGpjAJNi2tvN3PiZLOqxxCR+lCg\naXHz39sFwCXt8c6NIyKtQ4GmxfX19QJwyex4Z/sUkdahQNPirlu+DIC5CjQiUicKNC1u0eKrAOjs\nvLTBRyIiSaVA0+J6F/aQGruWa5YtavShiEhCtdrYHLlcTgNfiYiUI2VGEKk4XuiORkRE6kqBRkRE\n6kqBRkRE6kqBRkRE6kqBRkRE6kqBRkRE6kqBRkRE6kqBRkRE6qqaQHMZcAA4AjwHFBvDZBUwArwK\n3BMx/ya7/QjwKU/6g8Ax4G3fPr4EnAZetMsd5X4YERGpj2oCzUZMoFgCHLTrfg7wKCbYDAC3AUtD\n8g8Aa+3PVcBjFHqk7gZWBOwnB2wHPmCXn1X+sSSqoaGhRh9Coqg8a0dl2VyqCa+drb4AAANMSURB\nVDQ3A9vs623ALQHbrABGgaPABPAUsCYk/xpM0Jiw+UaBG+x7LwAnA/aTovWG02k4/TPXlsqzdlSW\nzaWaQHM5MG5fj9t1vwXA65714zatVP5eu11QnmJywGeBvwK/BPrCD19EROKQCXn/ANAdkH6fbz1n\nFz9/WqrEdqVGuwwbCXMv8CTmLugrmDukG0PyiIhIkxuhEIR67LrfSmC/Z30ThQYBxfJvZHp9z34K\nj87y/I0BvBzgbJH3RikENS1atGjREm0ZpUG2UggaG4GHA7bJAP8E+oEs8BKFxgDF8g/Y7bLAlTa/\nv/7FH2i8d123An+K/jFERKRZXQb8joubJ/cC+zzbrQYOYyLipgj5Ae61248An/akb8XU+Uzan/fb\n9IeAv2EC1EFMSzYREREREZHkKNZxVKI5imnV9yKmmTlE77Qrpm/XOPCKJ62STstiBJXnZkwr1XzH\n7dWe91SexV0B/B74O+bJ0Ddsus7PMjmYR3H9QBvT64okmtcwJ57XVmCDfX0PwfV0YnwU05nYe2Es\nVn75eso2zDk7ioaL8gsqz+8Bdwdsq/IsrRtYbl93YKo6lqLzs2wfYnrrN3/LNgn3GtDlSxuh0P+p\nm+CWh1LQz/QLY7Hy87bOBHPurqz3wc1A/VwcaL4dsJ3Kszy7gJuo4fnZKlGoVMdRiSaHabxxCLjT\npkXptCvF1bLTshhfB14GHmd6AyWVZzT9mDvFP1PD87NVAk2u0QeQAB/GnICrga9iHl145dvbS2XC\nyk9lG+4nmC4Ry4E3gB+U2FblebEO4Bngm1zchaSq87NVAs0YpsIr7wqmR2QJ94b9eRrYiRnHbpzp\nnW5PNeC4ZrJi5ec/X/tsmpR2isIF8acUBuBVeYZrwwSZJzCPzqCG52erBJpDwGIKHUfXAnsaeUAz\nzGxgrn09B9PK5BVMGa6z6esonKASTbHy2wN8kUKn5cUUWvpJcT2e17dSqL9ReZaWwjxqHAYe8aTr\n/KxAsY6jEu5KTCuTlzDNH/PlV6rTrUy3HTgBvIupL/wylXVaFsNfnncAP8c0wX8Zc1H01hmqPIv7\nCOBi/r/zTcNXofNTREREREREREREREREREREREREREREREREREREpHn8H4/HPe14bTGPAAAAAElF\nTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7f3d2f5e7550>" | |
] | |
} | |
], | |
"prompt_number": 145 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot(gmm.predict(model.syn0));" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADDxJREFUeJzt3V2MXHUZgPFndpdaCrRFawqy1ZKiCIQvTRAQ7VQBoSnE\neEViRAGxF340QUqhCXZvBEIwVS8kDUQshGAiiKGRFCkyqERqkbaAtUgBEwq1RUgMnxHc8eJ/pjvM\nTjufOzPn7fNLJnNmzunsO0v3mdP/TClIkiRJkiRJkiRJkiRJkiQd0IaBzcC6Ovu+CmwFngQeBU7q\n4VySpA5dAdwJ3Fdn3xnArGz7POCxXg0lSerMKLABWET9M/hqhwM7p3wiSVJDQ00csxpYDow3cexl\nwP0dTSRJ6opGgV8C7CGtvxcaHLsIuBRY0YW5JElT7DrgReAFYBfwJnB7neNOAnYAx+zrgRYsWFAG\nvHjx4sVLa5cd9MBC6q/BfzQb4PQGv76cZ6tWrer3CB3J8/x5nr1cdv5+y/v8pMi3ZaTF4ytfaGl2\nvQb4AenN1Zuz+94FTmt3IElSd7QS+EeyC6SwV3wzu0iSBkgzn6IRUCwW+z1CR/I8f55nB+fvt7zP\n34lGn4zppmw5SZLUrEKhAG222jN4SQrKwEtSUAZekoIy8JIUlIGXpKAMvCQFZeAlKSgDL0lBGXhJ\nCsrAS1JQBl6SgjLwkhSUgZekoAy8JAVl4CUpKAMvSUEZeEkKysBLUlAGXpKCMvCSFJSBl6SgDLwk\nBWXgJSkoAy9JQRl4SQrKwEtSUAZekoIy8JIUlIGXpKAMvCQFZeAlKSgDL0lBGXhJCsrAS1JQBl6S\ngjLwkhSUgZekoAy8JAVl4CUpqGYDPwxsBtbV2fdJ4M/AO8D3uzSXJKlDI00etwzYBhxWZ9+rwHeB\nL3drKElS55o5gx8FFgO3AoU6+18BHgfe7eJckqQONRP41cByYHyKZ5EkdVGjJZolwB7S+nux0y82\nNja2d7tYLFIsdvyQkhRKqVSiVCp15bHqLblUuw74GvAeMB2YCdwDXFzn2FXAG8CP9vFY5XK53OaY\nknRgKhQK0LjVdTVaolkJzAOOBi4Cfk/9uLc9gCRpajT7KZqKyin40ux6DXAEsIl0dj9O+sTN8aSz\neUlSn/TyrNslGklq0VQu0UiScsrAS1JQBl6SgjLwkhSUgZekoAy8JAVl4CUpKAMvSUEZeEkKysBL\nUlAGXpKCMvCSFJSBl6SgDLwkBWXgJSkoAy9JQRl4SQrKwEtSUAZekoIy8JIUlIGXpKAMvCQFZeAl\nKSgDL0lBGXhJCsrAS1JQBl6SgjLwkhSUgZekoAy8JAVl4CUpKAMvSUEZeEkKysBLUlAGXpKCMvCS\nFJSBl6SgDLwkBWXgJSkoAy9JQTUb+GFgM7BuH/t/CjwLbAVO7cJckqQONRv4ZcA2oFxn32LgGODj\nwLeAm7szmiSpE80EfpQU8VuBQp39FwJrs+2NwGxgblemkyS1rZnArwaWA+P72H8U8GLV7Z2kFwVJ\nUh81CvwSYA9p/b3e2XtF7b56SzmSpB4aabD/TNISzGJgOjATuB24uOqYl4B5VbdHs/smKRTGqm4V\ns4skaUIpu3Ruf2fltRYCVwIX1Ny/GPhOdn068OPsula5XPbEXpJaUSgUoLVW79XoDL5WpdBLs+s1\nwP2kuO8A3gQuaWcQSVJ3tfWq0CbP4CWpRZ2cwfs3WSUpKAMvSUEZeEkKysBLUlAGXpKCMvCSFJSB\nl6SgDLwkBWXgJSkoAy9JQRl4SQrKwEtSUAZekoIy8JIUlIGXpKAMvCQFZeAlKSgDL0lBGXhJCsrA\nS1JQBl6SgjLwkhSUgZekoAy8JAVl4CUpKAMvSUEZeEkKysBLUlAGXpKCMvCSFJSBl6SgDLwkBWXg\nJSkoAy9JQRl4SQrKwEtSUAZekoIy8JIUlIGXpKAMvCQFZeAlKahGgZ8ObAS2ANuA6+scczhwL7A1\nO/aEbg4oSWpPo8C/AywCTgFOyrbPqjlmJfAEcDJwMfCTLs8oSWpDM0s0b2XX04Bh4LWa/ccBD2fb\nzwDzgQ93YzhJUvuaCfwQaYlmNynk22r2bwW+km2fBnwMGO3WgJKk9ow0ccw4aYlmFvAAUARKVftv\nIC3LbAaeyq7/V++BxsbG9m4Xi0WKxWLLA0tSZKVSiVKp1JXHKrR4/LXA28BN+znmBeBE4I2a+8vl\ncrnFLydJB7ZCoQCttxpovEQzB5idbR8MnEM6Q682i7Q+D3A58AiT4y5J6rFGSzRHAmtJLwRDwB3A\nQ8DSbP8a4HjgF0AZeBq4bCoGlSS1pq3T/ja5RCNJLZrKJRpJUk4ZeEkKysBLUlAGXpKCMvCSFJSB\nl6SgDLwkBWXgJSkoAy9JQRl4SQrKwEtSUAZekoIy8JIUlIGXpKAMvCQFZeAlKSgDL0lBGXhJCsrA\nS1JQBl6SgjLwkhSUgZekoAy8JAVl4CUpKAMvSUEZeEkKysBLUlAGXpKCMvCSFJSBl6SgDLwkBWXg\nJSkoAy9JQRl4SQrKwEtSUAZekoIy8JIUlIGXpKAMvCQFZeAlKSgDL0lBNQr8dGAjsAXYBlxf55g5\nwPrsmKeBb3RxPklSmwpNHDMDeAsYAf4EXJldV4wBHwCuIcX+GWAu8F7N45TL5XKH40rSgaVQKEBz\nrZ6kmSWat7LracAw8FrN/l3AzGx7JvAqk+MuSeqxZgI/RFp+2Q08TFqqqXYLcALwMrAVWNbNASVJ\n7Rlp4phx4BRgFvAAUARKVftXkl4AisAC4EHgZOD12gcaGxvbu10sFikWi22MLElxlUolSqVSVx6r\n1XWda4G3gZuq7rsf+CHwaHb7IWAF8HjNr3UNXpJaNJVr8HOA2dn2wcA5wOaaY7YDZ2fbc4Fjgefb\nGUaS1D2NlmiOBNaSXgiGgDtIZ+hLs/1rgOuA20jr70PAVUx+I1aS1GNtnfa3ySUaSWrRVH9MUpKU\nQwZekoIy8JIUlIGXpKAMvCQFZeAlKSgDL0lBGXhJCsrAS1JQBl6SgjLwkhSUgZekoAy8JAVl4CUp\nKAMvSUEZeEkKysA3qVv/CG6/5Hn+PM8Ozt9veZ+/Ewa+SXn/TZLn+fM8Ozh/v+V9/k4YeEkKysBL\nUlC9/Ee3twAn9/DrSVIEW4FT+j2EJEmSJEmSBtp5wHbgWWBFn2ep5+fAbuCpqvs+CDwI/AP4HTC7\nat81pOeyHTi3RzPuzzzgYeBvwNPA97L78/IcpgMbSe/TbAOuz+7Py/wAw8BmYF12O0+z/xN4kjT/\nX7L78jT/bOBu4O+k3z+fIT/zH0v6vlcu/yH9/OZlfoaBHcB84CDSD/Fx/Ryojs8Bp/L+wN8IXJVt\nrwBuyLaPJz2Hg0jPaQf9/zTSEUy8CXMo8Azpe5yn5zAjux4BHgPOIl/zXwHcCdyX3c7T7C+QglIt\nT/OvBS7NtkeAWeRr/oohYBfphC03858BrK+6fXV2GTTzeX/gtwNzs+0jstuQXj2r/xSyHjh9qodr\n0W+As8nnc5gBbAJOID/zjwIbgEVMnMHnZXZIgf9QzX15mX8W8Hyd+/Myf7VzgT9m212ZvxflPwp4\nser2zuy+QTeXtGxDdl35Zn+E9BwqBu35zCf9aWQj+XoOQ6Qzk91MLDflZf7VwHJgvOq+vMwOUCa9\nQD0OXJ7dl5f5jwZeAW4DngBuAQ4hP/NXuwi4K9vuyvy9CHy5B19jqpXZ//MYlOd4KHAPsAx4vWbf\noD+HcdIy0yjwedLZcLVBnX8JsIe0frqvv1cyqLNXfJZ0UnA+8G3SkmW1QZ5/BPgU8LPs+k0mrxAM\n8vwV04ALgF/V2df2/L0I/EukNaWKebz/FWhQ7Sb90QjgSNIPMUx+PqPZff12ECnud5CWaCB/zwHS\nm0y/BT5NPuY/E7iQtMxxF/AF0n+DPMxesSu7fgW4FziN/My/M7tsym7fTQr9v8jH/BXnA38l/TeA\n/Hz/GQGeIy0dTGMw32SFyWvwNzKx1nU1k9/kmEb64+Fz9PZvBNdTAG4nLRVUy8tzmMPEpwQOBv4A\nfJH8zF+xkIk1+LzMPgM4LNs+BHiUtBacl/kh/X75RLY9Rpo9T/MD/BL4etXtXM1/PumTHTtIbxIM\nmruAl4H/kt4vuIT0qYIN1P+Y0krSc9kOfKmnk9Z3FmmJYwsTH7c6j/w8hxNJ66dbSB/XW57dn5f5\nKxYy8SmavMx+NOn7voX0EdvKz2de5of0v0DZRPor/b8mvfGap/kPAf7NxAst5Gt+SZIkSZIkSZIk\nSZIkSZIkSZIkSdq3/wMKnOb5agyEEwAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7f3d2ddc79d0>" | |
] | |
} | |
], | |
"prompt_number": 138 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"gmm.converged_" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 134, | |
"text": [ | |
"True" | |
] | |
} | |
], | |
"prompt_number": 134 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment