Created
November 15, 2017 15:44
-
-
Save fedden/121b2faf6abb113c81200c23fe954fe2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Import numerical and graphing libraries! Set the random seed for reproducability and precision for printing floats sensibly and tell the matplotlib backend to plot the graphs autmatically. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"np.set_printoptions(precision=2)\n", | |
"np.random.seed(1)\n", | |
"\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Usually I'd reccoment using ```numpy.random.randint()``` but in this case it easier to explain what is going by being slightly more explicit.\n", | |
"\n", | |
"Here ```elements``` is the set { 1, 2, 3, 4, 5, 6 } of random states that a dice can take when it is rolled. We can assign the probability of each respective state in the ```probabilities``` array. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"elements: [1 2 3 4 5 6] \n", | |
"probability weightings: [ 0.17 0.17 0.17 0.17 0.17 0.17] \n", | |
"sum of weightings is basically one: True\n" | |
] | |
} | |
], | |
"source": [ | |
"elements = np.arange(1, 7)\n", | |
"amount = len(elements)\n", | |
"probabilities = np.array([1.0 / amount for _ in range(amount)])\n", | |
"\n", | |
"print(\"elements:\", elements,\n", | |
" \"\\nprobability weightings:\", probabilities,\n", | |
" \"\\nsum of weightings is basically one:\", np.isclose(1.0, probabilities.sum()))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now we can make the random rolls and draw the histogram and look at the spread of what was actually rolled. The spread isn't absolutely perfect but more or less uniform. \n", | |
"\n", | |
"You can set the value ```normed``` (and in newer versions of numpy ```density```) to ```python \n", | |
"True``` turn the histogram into a probability mass function " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEKCAYAAAA4t9PUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG3JJREFUeJzt3XuUXWWd5vHvQ0Ii2oRruhfm0olDxMbLRCjQXra0CMSo\nSBgbJDQqKGPaC60uFyq206hpnSXjUhxctGOauxcCQtNmNBpRQG1bsCoQCQGDRURTkR4iIKDcjDzz\nx3lLD2VddtXOzqmTPJ+1zqp93v2+u34nC/Jk73efd8s2ERERE7VbpwuIiIjuliCJiIhaEiQREVFL\ngiQiImpJkERERC0JkoiIqCVBEhERtSRIIiKilgRJRETUMrXTBewI+++/v+fNm9fpMiIiusratWt/\naXvmWP12iSCZN28efX19nS4jIqKrSPpZlX65tBUREbUkSCIiopYESURE1JIgiYiIWhIkERFRS4Ik\nIiJqSZBEREQtCZKIiKil0SCRtFjSRkn9ks4aZv97JN0u6VZJ35b05237TpX0k/I6ta39UEnryzHP\nk6QmP0NERIyusW+2S5oCnA8cAwwAvZJW2b69rdstQI/tRyS9DfhfwEmS9gU+BPQABtaWsQ8AnwXe\nAtwErAYWA19v6nNE7MrmnfW1Tpcwqrs//upOlxA0u0TK4UC/7U0AklYCS4DfB4nt69v63wi8vmy/\nArjW9v1l7LXAYkk3ADNs31jaLwOOJ0ESXWqy/0UdUUWTl7ZmAZvb3g+UtpGczh8CYaSxs8p21WNG\nRETDJsWijZJeT+sy1l9vx2MuA5YBzJ07d3sdNiImkcl+RrerXHprMki2AHPa3s8ubU8h6Wjgg8Bf\n2368bezLhoy9obTPHuuYALZXACsAenp6PJEPMFnkf5aImMyaDJJeYIGk+bT+sl8K/G17B0kvBD4H\nLLZ9b9uuNcD/lLRPeb8I+IDt+yU9JOnFtCbb3wh8psHPEBVM9qCLiGY1FiS2t0k6g1YoTAEusr1B\n0nKgz/Yq4BPAnwBfLnfx/tz2cSUw/olWGAEsH5x4B94OXALsQWtOJRPtEREd1Ogcie3VtG7RbW87\nu2376FHGXgRcNEx7H/C87VhmRETUkG+2R0RELQmSiIioJUESERG1JEgiIqKWBElERNSSIImIiFoS\nJBERUUuCJCIiakmQRERELQmSiIioJUESERG1JEgiIqKWBElERNSSIImIiFoSJBERUUuCJCIiakmQ\nRERELY0GiaTFkjZK6pd01jD7j5B0s6Rtkk5oaz9S0rq212OSji/7LpH007Z9C5v8DBERMbrGHrUr\naQpwPnAMMAD0Slpl+/a2bj8HTgPObB9r+3pgYTnOvkA/8M22Lu+1fVVTtUdERHVNPrP9cKDf9iYA\nSSuBJcDvg8T23WXfk6Mc5wTg67Yfaa7UiIiYqCYvbc0CNre9Hyht47UUuHxI28ck3SrpXEnTJ1pg\nRETUN6kn2yUdADwfWNPW/AHgOcBhwL7A+0cYu0xSn6S+rVu3Nl5rRMSuqskg2QLMaXs/u7SNx+uA\na2z/drDB9j1ueRy4mNYltD9ie4XtHts9M2fOHOevjYiIqpoMkl5ggaT5kqbRukS1apzHOJkhl7XK\nWQqSBBwP3LYdao2IiAlqLEhsbwPOoHVZ6g7gStsbJC2XdByApMMkDQAnAp+TtGFwvKR5tM5ovjPk\n0F+UtB5YD+wPfLSpzxAREWNr8q4tbK8GVg9pO7ttu5fWJa/hxt7NMJPztl++fauMiIg6JvVke0RE\nTH4JkoiIqCVBEhERtSRIIiKilgRJRETUkiCJiIhaEiQREVFLgiQiImpJkERERC0JkoiIqCVBEhER\ntSRIIiKilgRJRETUkiCJiIhaEiQREVFLgiQiImppNEgkLZa0UVK/pLOG2X+EpJslbZN0wpB9v5O0\nrrxWtbXPl3RTOeYV5TG+ERHRIY0FiaQpwPnAK4GDgZMlHTyk28+B04AvDXOIR20vLK/j2trPAc61\nfSDwAHD6di8+IiIqa/KM5HCg3/Ym208AK4El7R1s3237VuDJKgeUJODlwFWl6VLg+O1XckREjFeT\nQTIL2Nz2foBhnsE+iqdJ6pN0o6TBsNgP+JXtbRM8ZkREbGdTO13AKP7c9hZJzwKuk7QeeLDqYEnL\ngGUAc+fObajEiIho8oxkCzCn7f3s0laJ7S3l5ybgBuCFwH3A3pIGA3DEY9peYbvHds/MmTPHX31E\nRFTSZJD0AgvKXVbTgKXAqjHGACBpH0nTy/b+wEuA220buB4YvMPrVOAr273yiIiorLEgKfMYZwBr\ngDuAK21vkLRc0nEAkg6TNACcCHxO0oYy/C+APkk/ohUcH7d9e9n3fuA9kvppzZlc2NRniIiIsTU6\nR2J7NbB6SNvZbdu9tC5PDR33H8DzRzjmJlp3hEVExCSQb7ZHREQtCZKIiKglQRIREbWMGSSS3iVp\nhlouLGtjLdoRxUVExORX5YzkzbYfAhYB+wBvAD7eaFUREdE1qgSJys9XAZ+3vaGtLSIidnFVgmSt\npG/SCpI1kvak4iKLERGx86vyPZLTgYXAJtuPSNoPeFOzZUVERLcYMUgkHTKk6VmtVdwjIiL+YLQz\nkk+Oss+0ngsSERG7uBGDxPaRO7KQiIjoTqNd2nrtaANt/+v2LyciIrrNaJe2XjPKPgMJkoiIGPXS\nVu7MioiIMVVZImUvSZ8qz0/vk/RJSXvtiOIiImLyq/KFxIuAh4HXlddDwMVNFhUREd2jyhcS/4vt\nv2l7/xFJ65oqKCIiukuVM5JHJf3V4BtJLwEerXJwSYslbZTUL+msYfYfUVYT3ibphLb2hZJ+IGmD\npFslndS27xJJP5W0rrwWVqklIiKaUeWM5K3AZW3zIg8Ap441SNIU4HzgGGAA6JW0qu3Z6wA/B04D\nzhwy/BHgjbZ/IumZtNb7WmP7V2X/e21fVaH2iIho2KhBImk34CDb/1XSDICypHwVhwP95RnrSFoJ\nLAF+HyS27y77nrIIpO0727Z/IeleYCbwKyIiYlIZ9dKW7SeB95Xth8YRIgCzgM1t7wdK27hIOhyY\nBtzV1vyxcsnrXEnTRxi3bPBOs61bt47310ZEREVV5ki+JelMSXMk7Tv4arwyQNIBwOeBN5VQA/gA\n8BzgMGBf4P3DjbW9wnaP7Z6ZM2fuiHIjInZJVeZIBie639HWZuBZY4zbAsxpez+7tFVSLqV9Dfig\n7Rt//4vte8rm45Iu5o/nVyIiYgcaM0hsz5/gsXuBBZLm0wqQpcDfVhkoaRpwDXDZ0El1SQfYvket\nNe2PB26bYH0REbEdVLm0NSG2twFnAGuAO4ArbW+QtFzScQCSDpM0AJwIfE7ShjL8dcARwGnD3Ob7\nRUnrgfXA/sBHm/oMERExtiqXtibM9mpg9ZC2s9u2e2ld8ho67gvAF0Y4Zp6DEhExiYx4RlK+eMhI\nd0VFRETA6Je2zis/f7AjComIiO402qWt30paAcySdN7Qnbbf2VxZERHRLUYLkmOBo4FXAGt3TDkR\nEdFtRnuw1S+BlZLusP2jHVhTRER0kSq3/94n6RpJ95bX1ZL+6E6riIjYNVUJkouBVcAzy+v/kgdb\nRUREUSVI/tT2xba3ldcltFbijYiIqBQkv5T0eklTyuv1wH1NFxYREd2hSpC8mdaSJf8J3AOcALyp\nyaIiIqJ7VFm08WfAcTugloiI6EKNLdoYERG7hgRJRETUMmaQlOeJjNkWERG7pipnJFcP03bVMG0R\nEbELGnGyXdJzgOcCe0l6bduuGcDTmi4sIiK6w2hnJAfRWrhxb+A1ba9DgLdUObikxZI2SuqXdNYw\n+4+QdLOkbZJOGLLvVEk/Ka9T29oPlbS+HPO88sjdiIjokNEWbfwK8BVJf2l73M8kkTQFOB84BhgA\neiWtsn17W7efA6cBZw4Zuy/wIaAHMLC2jH0A+CytILuJ1tMXFwNfH299ERGxfVR51G6/pH8A5rX3\nt/3mMcYdDvTb3gQgaSWwBPh9kNi+u+x7csjYVwDX2r6/7L8WWCzpBmCG7RtL+2XA8SRIIiI6pkqQ\nfAX4HvAt4HfjOPYsYHPb+wHgRTXGziqvgWHaIyKiQ6oEydNtv7/xSrYzScuAZQBz587tcDURETuv\nKrf/flXSqyZw7C3AnLb3s0tbnbFbyvaYx7S9wnaP7Z6ZM7NYcUREU6oEybtohcmjkh6S9LCkhyqM\n6wUWSJovaRqwlNZzTapYAyyStI+kfYBFwBrb9wAPSXpxuVvrjbQuvUVERIeMGSS297S9m+09bM8o\n72dUGLcNOINWKNwBXGl7g6Tlko4DkHSYpAHgROBzkjaUsfcD/0QrjHqB5YMT78DbgQuAfuAuMtEe\nEdFRY86RSDpiuHbb3x1rrO3VtG7RbW87u227l6deqmrvdxFw0TDtfcDzxvrdERGxY1SZbH9v2/bT\naN3WuxZ4eSMVRUREV6nyPJLXtL+XNAf4dGMVRUREV5nIMvIDwF9s70IiIqI7VZkj+QytZUqgFTwL\ngZubLCoiIrpHlTmSvrbtbcDltr/fUD0REdFlqsyRXFq+B/Ls0rSx2ZIiIqKbVLm09TLgUuBuQMAc\nSadWuf03IiJ2flUubX0SWGR7I4CkZwOXA4c2WVhERHSHKndt7T4YIgC27wR2b66kiIjoJpUm2yVd\nAHyhvD+Fp07AR0TELqxKkLwNeAfwzvL+e8A/N1ZRRER0lSp3bT0OfKq8IiIinmLMORJJx0q6RdL9\n41xGPiIidgFVLm19GngtsN62x+ocERG7lip3bW0GbkuIRETEcKqckbwPWC3pO8Djg422M2cSERGV\nguRjwK9pPYtkWrPlREREt6kSJM+0PaEnEkpaDPxvYApwge2PD9k/HbiM1rfk7wNOsn23pFN46gO1\nXgAcYnudpBuAA4BHy75Ftu+dSH0REVFflTmS1ZIWjffAkqYA5wOvBA4GTpZ08JBupwMP2D4QOBc4\nB8D2F20vtL0QeAPwU9vr2sadMrg/IRIR0VlVguRtwDckPTrO238PB/ptb7L9BLASWDKkzxJaC0IC\nXAUcJUlD+pxcxkZExCQ0ZpDY3tP2brb3sD2jvJ9R4dizaN3xNWigtA3bx/Y24EFgvyF9TqK1SGS7\niyWtk/SPwwQPAJKWSeqT1Ld169YK5UZExERUmSNB0j7AAloT7gDsiGXkJb0IeMT2bW3Np9jeImlP\n4Gpal74uGzrW9gpgBUBPT09uXY6IaEiVb7b/d+C7wBrgI+Xnhyscewswp+397NI2bB9JU4G9aE26\nD1rKkLMR21vKz4eBL9G6hBYRER1SZY7kXcBhwM9sHwm8EPhVhXG9wAJJ88sTFpcCq4b0WQWcWrZP\nAK4b/OKjpN2A19E2PyJpqqT9y/buwLHAbURERMdUubT1mO3HJCFpuu0fSzporEG2t0k6g9YZzBTg\nItsbJC0H+myvAi4EPi+pH7ifVtgMOgLYbHtTW9t0YE0JkSnAt4B/qfJBIyKiGVWCZEDS3sC/AddK\negD4WZWD214NrB7Sdnbb9mPAiSOMvQF48ZC235AnM0ZETCpVlpH/b2Xzw5KupzWP8Y1Gq4qIiK5R\n6a6tQba/01QhERHRnapMtkdERIwoQRIREbUkSCIiopYESURE1JIgiYiIWhIkERFRS4IkIiJqSZBE\nREQtCZKIiKglQRIREbUkSCIiopYESURE1JIgiYiIWhIkERFRS6NBImmxpI2S+iWdNcz+6ZKuKPtv\nkjSvtM+T9KikdeX1f9rGHCppfRlzniQ1+RkiImJ0jQWJpCnA+cArgYOBkyUdPKTb6cADtg8EzgXO\nadt3l+2F5fXWtvbPAm8BFpTX4qY+Q0REjK3JM5LDgX7bm2w/AawElgzpswS4tGxfBRw12hmGpAOA\nGbZvtG3gMuD47V96RERU1WSQzAI2t70fKG3D9rG9DXgQ2K/smy/pFknfkfTStv4DYxwzIiJ2oHE9\nancHugeYa/s+SYcC/ybpueM5gKRlwDKAuXPnNlBiRERAs2ckW4A5be9nl7Zh+0iaCuwF3Gf7cdv3\nAdheC9wFPLv0nz3GMSnjVtjusd0zc+bM7fBxIiJiOE0GSS+wQNJ8SdOApcCqIX1WAaeW7ROA62xb\n0swyWY+kZ9GaVN9k+x7gIUkvLnMpbwS+0uBniIiIMTR2acv2NklnAGuAKcBFtjdIWg702V4FXAh8\nXlI/cD+tsAE4Algu6bfAk8Bbbd9f9r0duATYA/h6eUVERIc0OkdiezWwekjb2W3bjwEnDjPuauDq\nEY7ZBzxv+1YaERETlW+2R0RELQmSiIioJUESERG1JEgiIqKWBElERNSSIImIiFoSJBERUUuCJCIi\nakmQRERELQmSiIioJUESERG1JEgiIqKWBElERNSSIImIiFoSJBERUUuCJCIiakmQRERELY0GiaTF\nkjZK6pd01jD7p0u6ouy/SdK80n6MpLWS1pefL28bc0M55rry+tMmP0NERIyusUftSpoCnA8cAwwA\nvZJW2b69rdvpwAO2D5S0FDgHOAn4JfAa27+Q9Dxaz32f1TbulPLI3YiI6LAmz0gOB/ptb7L9BLAS\nWDKkzxLg0rJ9FXCUJNm+xfYvSvsGYA9J0xusNSIiJqjJIJkFbG57P8BTzyqe0sf2NuBBYL8hff4G\nuNn2421tF5fLWv8oScP9cknLJPVJ6tu6dWudzxEREaOY1JPtkp5L63LX37U1n2L7+cBLy+sNw421\nvcJ2j+2emTNnNl9sRMQuqskg2QLMaXs/u7QN20fSVGAv4L7yfjZwDfBG23cNDrC9pfx8GPgSrUto\nERHRIU0GSS+wQNJ8SdOApcCqIX1WAaeW7ROA62xb0t7A14CzbH9/sLOkqZL2L9u7A8cCtzX4GSIi\nYgyNBUmZ8ziD1h1XdwBX2t4gabmk40q3C4H9JPUD7wEGbxE+AzgQOHvIbb7TgTWSbgXW0Tqj+Zem\nPkNERIytsdt/AWyvBlYPaTu7bfsx4MRhxn0U+OgIhz10e9YYERH1TOrJ9oiImPwSJBERUUuCJCIi\nakmQRERELQmSiIioJUESERG1JEgiIqKWBElERNSSIImIiFoSJBERUUuCJCIiakmQRERELQmSiIio\nJUESERG1JEgiIqKWBElERNTSaJBIWixpo6R+SWcNs3+6pCvK/pskzWvb94HSvlHSK6oeMyIidqzG\ngkTSFOB84JXAwcDJkg4e0u104AHbBwLnAueUsQfTesb7c4HFwD9LmlLxmBERsQM1eUZyONBve5Pt\nJ4CVwJIhfZYAl5btq4CjJKm0r7T9uO2fAv3leFWOGRERO1CTQTIL2Nz2fqC0DdvH9jbgQWC/UcZW\nOWZEROxAUztdQFMkLQOWlbePS7qtk/XUtD/wy04XMUHdXDuk/k7r6vp1TnfXDxxUpVOTQbIFmNP2\nfnZpG67PgKSpwF7AfWOMHeuYANheAawAkNRnu2diH6Pzurn+bq4dUn+npf7OktRXpV+Tl7Z6gQWS\n5kuaRmvyfNWQPquAU8v2CcB1tl3al5a7uuYDC4AfVjxmRETsQI2dkdjeJukMYA0wBbjI9gZJy4E+\n26uAC4HPS+oH7qcVDJR+VwK3A9uAd9j+HcBwx2zqM0RExNganSOxvRpYPaTt7Lbtx4ATRxj7MeBj\nVY5ZwYpx9p9surn+bq4dUn+npf7OqlS/WleSIiIiJiZLpERERC07dZB0+3Iqki6SdG833rosaY6k\n6yXdLmmDpHd1uqbxkPQ0ST+U9KNS/0c6XdN4ldUgbpH01U7XMhGS7pa0XtK6qncPTRaS9pZ0laQf\nS7pD0l92uqaqJB1U/swHXw9JeveoY3bWS1tlOZU7gWNofXGxFzjZ9u0dLWwcJB0B/Bq4zPbzOl3P\neEg6ADjA9s2S9gTWAsd3y59/WWHhGbZ/LWl34N+Bd9m+scOlVSbpPUAPMMP2sZ2uZ7wk3Q302O66\n72FIuhT4nu0Lyh2mT7f9q07XNV7l79EtwIts/2ykfjvzGUnXL6di+7u07mbrOrbvsX1z2X4YuIMu\nWoXALb8ub3cvr675V5ek2cCrgQs6XcuuRtJewBG07krF9hPdGCLFUcBdo4UI7NxBkuVUJomyqvML\ngZs6W8n4lEtD64B7gWttd1P9nwbeBzzZ6UJqMPBNSWvLShXdYj6wFbi4XFq8QNIzOl3UBC0FLh+r\n084cJDEJSPoT4Grg3bYf6nQ942H7d7YX0lpB4XBJXXF5UdKxwL2213a6lpr+yvYhtFb7fke51NsN\npgKHAJ+1/ULgN0A3ztFOA44DvjxW3505SKos0RINKnMLVwNftP2vna5nosplietpPdKgG7wEOK7M\nMawEXi7pC50tafxsbyk/7wWuoXW5uhsMAANtZ7BX0QqWbvNK4Gbb/2+sjjtzkGQ5lQ4qk9UXAnfY\n/lSn6xkvSTMl7V2296B108aPO1tVNbY/YHu27Xm0/ru/zvbrO1zWuEh6RrlJg3JZaBHQFXcv2v5P\nYLOkwQUPj6K1Ske3OZkKl7VgJ179d6QlWjpc1rhIuhx4GbC/pAHgQ7Yv7GxVlb0EeAOwvswzAPxD\nWZmgGxwAXFruWtkNuNJ2V95G26X+DLim9e8RpgJfsv2NzpY0Ln8PfLH8I3YT8KYO1zMuJbyPAf6u\nUv+d9fbfiIjYMXbmS1sREbEDJEgiIqKWBElERNSSIImIiFoSJBERUUuCJGIcJH1Y0plle7mkoxv6\nPe+W9PTt1S+iSQmSiAmyfbbtbzV0+HcDVQKiar+IxiRIIsYg6YOS7pT078BBbe2XSDqhbB8m6T/K\n80t+KGnPsujjJyT1SrpV0h99uat8g/trZdxtkk6S9E7gmcD1kq4v/T4rqa/92Sgj9Fsk6QeSbpb0\n5bLWWUSjdtpvtkdsD5IOpbXMyEJa/7/cTOvZKu19pgFXACfZ7pU0A3gUOB140PZhkqYD35f0Tds/\nbRu+GPiF7VeXY+1l+8HyLJEj257F8UHb95dv2n9b0gtsn9feT9L+wP8Ajrb9G0nvB94DLG/kDyei\nSJBEjO6lwDW2HwGQNNx6bQcB99juBRhc5VjSIuAFg2ctwF7AAqA9SNYDn5R0DvBV298boY7XlaXU\np9JavuVg4NYhfV5c2r9flhaZBvxgHJ81YkISJBHNEfD3tteM1MH2nZIOAV4FfFTSt20/5QxC0nzg\nTOAw2w9IugR42gi/71rbJ2+3TxBRQeZIIkb3XeB4SXuU1WhfM0yfjcABkg4DKPMjU2ktGPq2spw+\nkp499AFHkp4JPGL7C8An+MNy4w8De5btGbSeafGgpD+jtbw3w/S7EXiJpAPLsZ8h6dk1PntEJTkj\niRhFeeb8FcCPaD0psXeYPk9IOgn4TFly/lHgaFqPuZ0H3FyW1d8KHD9k+POBT0h6Evgt8LbSvgL4\nhqRf2D5S0i20lrHfDHy/bfzQfqcBl5c5GWjNmdxZ6w8hYgxZ/TciImrJpa2IiKglQRIREbUkSCIi\nopYESURE1JIgiYiIWhIkERFRS4IkIiJqSZBEREQt/x8DmJ/roExNUAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f12c41365f8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"amount_rolls = 24000\n", | |
"random_rolls = np.random.choice(elements, \n", | |
" amount_rolls, \n", | |
" p=probabilities)\n", | |
"_ = plt.hist(random_rolls, bins=6, normed=True)\n", | |
"_ = plt.xlabel(\"dice state\")\n", | |
"_ = plt.ylabel(\"amount of rolls\")\n", | |
"_ = plt.xlim(0, 7)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment