Created
September 21, 2019 02:09
-
-
Save fehiepsi/b9ff5cb6df8b110172471084df1cbe99 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import time\n", | |
"\n", | |
"from jax import random\n", | |
"import jax.numpy as np\n", | |
"from jax.config import config; config.update('jax_platform_name', 'gpu')\n", | |
"\n", | |
"import numpyro\n", | |
"import numpyro.distributions as dist\n", | |
"from numpyro.mcmc import MCMC, NUTS" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"N, dim = 10000, 100\n", | |
"data = random.normal(random.PRNGKey(0), (N, dim))\n", | |
"true_coefs = random.normal(random.PRNGKey(1), (dim,))\n", | |
"logits = np.dot(data, true_coefs)\n", | |
"labels = dist.Bernoulli(logits=logits).sample(random.PRNGKey(2))\n", | |
"\n", | |
"def model(labels):\n", | |
" coefs = numpyro.sample('coefs', dist.Normal(np.zeros(dim), np.ones(dim)))\n", | |
" logits = np.dot(data, coefs)\n", | |
" return numpyro.sample('obs', dist.Bernoulli(logits=logits), obs=labels)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"sample: 100%|██████████| 2000/2000 [02:11<00:00, 15.17it/s]\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"DeviceArray(127698.93, dtype=float32)" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"tic = time.time()\n", | |
"mcmc = MCMC(NUTS(model), num_warmup=1000, num_samples=1000, num_chains=1000, chain_method='vectorized')\n", | |
"mcmc.run(random.PRNGKey(0), labels, collect_fields=('z', 'num_steps'), collect_warmup=True)\n", | |
"toc = time.time()\n", | |
"# leapfrogs / s\n", | |
"mcmc.get_samples()[1].sum() / (toc - tic)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.9" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment