i) create config file
$ jupyter notebook --generate-config
ii) create password
| import matplotlib.pyplot as plt | |
| from datetime import date | |
| #data | |
| logic_tuple = [(1936, 3), (1937, 6), (1938, 3), (1939, 5), | |
| (1940, 2), (1941, 2), (1942, 7), (1943, 1), | |
| (1944, 2), (1945, 2), (1947, 2), (1948, 4), | |
| (1949, 7), (1950, 3), (1951, 2), (1952, 5), |
| from sklearn import linear_model | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| # generating fake linear data. | |
| # Where x = square meter, y = house price | |
| cond = False | |
| while not cond: |
| import numpy as np | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| from matplotlib import rc | |
| sns.set_style("darkgrid") | |
| # for using latex in plt it requires one installation: | |
| # $ sudo apt install dvipng | |
| rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}) |
| # strided_slice( | |
| # input_, | |
| # begin, | |
| # end, | |
| # strides=None, | |
| # begin_mask=0, | |
| # end_mask=0, | |
| # ellipsis_mask=0, | |
| # new_axis_mask=0, | |
| # shrink_axis_mask=0, |
| # range_input_producer( | |
| # limit, | |
| # num_epochs=None, | |
| # shuffle=True, | |
| # seed=None, | |
| # capacity=32, | |
| # shared_name=None, | |
| # name=None) | |
| # Produces the integers from 0 to limit-1 in a queue. |
| import numpy as np | |
| import tensorflow as tf | |
| NUM_THREADS = 4 | |
| data = np.array([[0.2, 0.3], [0.4, 0.9], [0.8, -1.2], [-1.3, -0.2]]) | |
| target = np.array([1, 0, 1, 0]) | |
| queue = tf.FIFOQueue(capacity=3, | |
| dtypes=[tf.float32, tf.int32], |
| #code adapted from http://tillbergmann.com/blog/python-gradient-descent.html | |
| %matplotlib inline | |
| import numpy as np | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| import matplotlib.animation as animation | |
| from scipy import stats | |
| from sklearn.datasets.samples_generator import make_regression |
| import numpy as np | |
| import random | |
| import unittest | |
| from math import isnan | |
| def softmax(x): | |
| """ | |
| Compute the softmax function for each row of the input x. | |
| It is crucial that this function is optimized for speed because |
| import tracemalloc | |
| tracemalloc.start() | |
| # ... run your application ... | |
| snapshot = tracemalloc.take_snapshot() | |
| top_stats = snapshot.statistics('lineno') | |
| print("[ Top 10 ]") |