Last active
April 8, 2019 13:13
-
-
Save fepegar/9343476c3dcd3e2b7eabe5fb4be98ab9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Requirements\n", | |
"\n", | |
"Install [PyTorch](https://pytorch.org/get-started/locally/). I recommend using [`conda`](https://conda.io/en/latest/). This is what I ran:\n", | |
"\n", | |
"```shell\n", | |
"conda create -n demo python=3.6 jupyter -y # TF doesn't like Python 3.7 yet\n", | |
"conda install -c pytorch pytorch torchvision cudatoolkit=9.0 -y\n", | |
"```" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Install the rest of the packages with:" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"```shell\n", | |
"pip install -r requirements.txt\n", | |
"conda install -c conda-forge ipywidgets -y # https://github.com/tqdm/tqdm/issues/375#issuecomment-297209478\n", | |
"conda install -c conda-forge altair vega_datasets notebook vega=1.3 -y # https://github.com/altair-viz/altair/issues/1114#issuecomment-415632954\n", | |
"```" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Setup" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"PUBLISH_VERSION = True\n", | |
"if PUBLISH_VERSION:\n", | |
" %matplotlib inline\n", | |
" %config InlineBackend.figure_format = 'retina'\n", | |
"else:\n", | |
" %matplotlib widget" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import time\n", | |
"import random\n", | |
"from pathlib import Path\n", | |
"from datetime import timedelta\n", | |
"from collections import OrderedDict\n", | |
"\n", | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"import altair as alt\n", | |
"from skimage import io\n", | |
"from tensorboardX import SummaryWriter\n", | |
"\n", | |
"if PUBLISH_VERSION:\n", | |
" from tqdm import tqdm\n", | |
"else:\n", | |
" from tqdm import tqdm_notebook as tqdm\n", | |
"\n", | |
"import torch\n", | |
"import torch.optim as optim\n", | |
"from torch.utils.data import DataLoader, random_split\n", | |
"\n", | |
"from visualization import sample_overlay, batch_overlay, transpose" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Device: cuda\n" | |
] | |
} | |
], | |
"source": [ | |
"DEVICE = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", | |
"print('Device:', DEVICE)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Reproducibility\n", | |
"\n", | |
"For the sake of reproducibility, let's set some seeds manually." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"SEED = 2019\n", | |
"torch.manual_seed(SEED)\n", | |
"random.seed(SEED)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Hyperparameters\n", | |
"\n", | |
"The loss function is the [Dice score](https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient). I implemented it as a $F_{\\beta}$-score with $\\beta = 1$. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from loss import dice_loss, dice_score\n", | |
"\n", | |
"BATCH_SIZE = 8\n", | |
"LEARNING_RATE = 1e-3\n", | |
"USE_BATCH_NORM = True\n", | |
"OPTIMIZER = optim.Adam\n", | |
"LOSS_FUNCTION = dice_loss\n", | |
"METRIC_FUNCTION = dice_score\n", | |
"NUM_EPOCHS = 40" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Data\n", | |
"\n", | |
"### Resection surgery for refractory epilepsy\n", | |
"\n", | |
"About one third of patients with epilepsy are drug resistant. If the epilepsy is focal and the epileptogenic zone has been identified, surgeons can perform a surgery to remove it. In most of the cases, the epileptogenic zone is located in the anterior temporal lobe:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<img src=\"http://www.clker.com/cliparts/D/b/8/y/b/2/anterior-temporal-lobe-md.png\"/>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Image object>" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import IPython.display\n", | |
"IPython.display.Image(url='http://www.clker.com/cliparts/D/b/8/y/b/2/anterior-temporal-lobe-md.png')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The samples in this dataset correspond to patients that had epilepsy surgery at the [National Hospital of Neurology and Neurosurgery](https://www.uclh.nhs.uk/OurServices/OurHospitals/NHNN/Pages/Home.aspx) (Queen Square, London, United Kingdom).\n", | |
"\n", | |
"If you want to know more about what we do, you can watch our video on BBC's [Trust Me, I'm a Doctor](https://www.bbc.co.uk/programmes/articles/n7wgQv2V23qSt55pTTR731/how-a-pioneering-software-system-is-transforming-brain-surgery). Also, here's a paper about imaging and epilepsy surgery: [Brain imaging in the assessment for epilepsy surgery (2016)](https://www.sciencedirect.com/science/article/pii/S147444221500383X?via%3Dihub)." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Training samples\n", | |
"\n", | |
"The resection cavity was segmented on the post-operative T1-weighted MR images. The segmentation was performed automatically using [ALI](https://www.fil.ion.ucl.ac.uk/spm/ext/#ALI) and refined manually.\n", | |
"\n", | |
"For this tutorial, the axial slice at the centroid of the resection was extracted from the MRI and each corresponding segmentation. The MR images have previously been registered to the MNI space and whitened using values inside the MNI brain mask." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Data augmentation\n", | |
"\n", | |
"Since we a small dataset, as is usually the case in medical imaging, we'll augment it by flipping all images in the lateral axis and add these to the original set." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Number of samples in (augmented) dataset: 142\n" | |
] | |
} | |
], | |
"source": [ | |
"from dataset import ResectionDataset\n", | |
"\n", | |
"dataset_dir = 'dataset'\n", | |
"dataset = ResectionDataset(dataset_dir, double_dataset=False, normalize_mask=False)\n", | |
"num_samples = len(dataset)\n", | |
"print('Number of samples in (augmented) dataset:', num_samples)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Visualize one sample\n", | |
"\n", | |
"Let's inspect a random sample in the dataset:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sample type: <class 'dict'>\n", | |
"Fields: ['name', 'image', 'label', 'mask']\n", | |
"Image shape: torch.Size([1, 193, 229])\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAIvCAYAAADauLriAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXm0dVV55vtMREFQQKXvG2lEBRQ0ghqjqRA1dgnGa1X0qklZ6Sp1TUwqScVKUjVyM27GTXe1kkpjlSk1UTMwibGipUYBUSApVECQRnqRRhEVEKVd94+9f2fN/Zz17rn2Ofvs7/vwfcb4xvr22mvNOdecc509n/m8Tem6TolEIpFIJFaDnbZ1AxKJRCKR+G5C/vAmEolEIrFC5A9vIpFIJBIrRP7wJhKJRCKxQuQPbyKRSCQSK0T+8CYSiUQisULkD28ikUgkEitE/vAmEolEIrFC5A9vIpFIJBIrRP7wJhKJRCKxQuQPbyKRSCQSK0T+8CYSiUQisULkD28ikUgkEitE/vAmEolEIrFC5A9vIvFdhFLKHqWU3yqlXF5KuaeU8rVSysdLKa8cce/RpZQ/KqVcMb33O6WUG0op7y2lPG/E/adMr715eu+NpZS3l1KeuJXtTiS2N5TMx5tIfHeglHKwpE9KOmJ66m5Ju0raefr5T7qu++ng3ldIes/0ekm6X9J9knavLvutruv+Y3D/6yS9fVpXJ+lOSXtOv/6WpJd1XfeJZbc7kdgekYw3kfguQCmlSDpTkx+v6yU9u+u6x0p6rKR/L+khST9VSnnjwL17S3qnJj92n5X0LEm7dl33GElHTcuVpLeUUr534P4TJP25Jj+Ufylpv67r9pJ0uKSPafLj/f5Syj7LbHcisb0iGW8i8V2AKWP9W01+qE7uuu4i+/4PJL1J0q2SDuu67r7quzdI+u/Tj4d1XXej3ftISV+Q9ERJ/1/XdW+y7/9O0sslXSjpWV3XPVh995jpvYdI+v2u6968rHYnEtsrkvEmEitAKeX6UkpXSvm+UspBpZQ/LqVcW0q5t5Ry0fSabvrv8FLKsaWUvyyl3DLVND9XSnltVV4ppfybUsqFpZS7Sil3TPXTQ4Mm/Nj0+I/+4zXF72qyBby/pBfYd/tNj1/zH11J6rrufkmXTD/WW88qpewl6cXTj79f/+hO771b0p9MP/7LKcNdVrsTie0S+cObSKwWx0i6SNJPa/KDdv/ANc+U9L8l/StJj9Zki/ckSe8spbx5+uP0l5L+VNIJkoqkx0n6PySdW0p5wkCZ3zc9fmSoUV3XfVnSZdOP/gN2/fT4hKEf9lLKztN2SJOt6BrPkfTI6f8/OlR31aYDJD1pie1OJLZL5A9vIrFa/J6kWzTRKnef6qRumftnks6RdORUC91LPSv8z9N/L5X0WkmP0UTvfK4m262HSvrlurBSyr6S9p5+vEwxvjA9Hm/nPzgtW5L+tpTyzFLKTtOyj5D0V5psM1+qfksaUNatXdd9rVHvTN1LaHcisV0if3gTidXiAUk/0HXdeZzouu5qu+Yrkn6467rrpt/fKelnJV0taTdJb5H0s13Xvbvruvu6CT6libGRtP6H/IDq/zfPaRvf1der67pvSXqJpJskPV3SP0n6dinlbknXSjpd0h9Jek7XdfcGdYf1dl33bUnfGKh7U+1OJLZX5A9vIrFavLPrutsa1/xu13UP1Ce6rntIEu42N0l698B9H58ejyil1Fpr/f9vz6n3nunxMf5F13Wf0WQr9zPTU4+qyn2UpD2m/xxcM6/eqO5NtzuR2B6RP7yJxGpx/ohrPh+c/8r0+IXpD7Gj/kHfq/p/bbC0ITeGUsq/0WRLdz9J/1LSQZroyt+niWb9WkkXTLeeZ27dRL2bbncisT0if3gTidXiqyOuuSU4/+C8781i+JHV/++u/r/bnHr5rr5epZTTNDHkekDSC7que2/XdTd3XfeNruvOkfR8SZdLOlDS/2NlUta8eqO6N9XuRGJ7Rf7wJhKrxYPtS5aOWh89cM51fOc/7Pjl/s+u677oN0113T+efnyZuQRRd1hvKeXR6hl6Xfdm251IbJfIH95E4mGOruu+Kun26ccnz7kUq+Av2HlcfK6bc++10+Ou6v1+67L2D9yc6npn6l5CuxOJ7RL5w5tIfHfgrOnxB4a+LKUcpP7H7eP2NXpyFJxDkg6r/n9X9f9PqfdV/hfBvadPj7dosmVdYzPtTiS2S+QPbyLx3YG/mh5PL6WcOPD9L2hizHSL+h87cPH0+KLpD90MSimPkPSG6cfLpu5HkqSu674p6UPUgf9vde/ukn6KNnbrY9hupt2JxHaJ/OFNJL478AFN/G930iQIxrMkqZSySynlzep13N8YiHdM8I49JH1kGvbykdOwlcdK+htJz5he89aBun9DE9b7TEl/MU26oGkUrL/RhEl/Q9LvLLndicR2iZ3blyQSiR0dXdd109y1pNc7fxoAw9Pr/fnAvedNf+T+X022dc/SxML5fk1CWoI/67ruzwbuv3iaPejtmrgdvaaU4mkBz5hquktrdyKxvSIZbyLxXYKu627SJObzb0u6QpMfrrs0+SF91byctl3X/b6k75H0Dk0iaD0g6RGSvqwJa31R13U/Oef+/yHpVEl/rYm/8aMlfUmTEJMnRbl4N9vuRGJ7RKYFTCQSiURihUjGm0gkEonECpE/vIlEIpFIrBD5w5tIJBKJxAqRP7yJRCKRSKwQ+cObSCQSicQKkT+8iUQikUisEDvUD28p5eBSyn8vpdxcSrm3lHJ9KeUPSymP29ZtSyQSiURiDHYYP95SylGSzpO0ryZh5K7QJATd8yVdKenZXdd9bdu1MJFIJBKJNnYkxvvHmvzo/ruu617Rdd2vdF33Akl/IOlYSf/3Nm1dIpFIJBIjsEMw3lLKkZKukXS9pKO6rnuo+u6xmmQmKZL2rTOjJBKJRCKxvWFHSZLwgunxo/WPriR1XXdXKeXTmuT0fJY2mJOzlHKdJtlXrt9EOxOJRCLx8MThku7suu6IzRa0o/zwHjs9XhV8/0VNfniPUeOHt5TymeCrQzQJ+v74jTQwkUgkEg97LOX3YUfReEkf9s3ge87vtYk67t3EvYlEIpFIjMKOwnhbKNNjU7Duuu7kwQImTPjpy2xUIpFIJBKOHYXxwmj3DL7fw65LJBKJRGK7xI7yw3vl9HhM8P3R02OkAScSiUQisV1gR/nhPWt6PL2UMtPmqTvRsyV9W9IFq25YIpFIJBKLYIf44e267hpJH9XEnPtn7ev/JGl3Se9MH95EIpFIbO/YIQJoSIMhIy+X9D2ahIy8StJpmwkZmcZViUQikWih67rSvmo+dgjGK62x3lMk/YUmP7hvlnSUpLdKOjXjNCcSiURiR8AOw3i3Gsl4E4lEItHCdxXjTSQSiUTi4YD84U0kEolEYoXIH95EIpFIJFaI/OFNJBKJRGKFyB/eRCKRSCRWiPzhTSQSiURihcgf3kQikUgkVoj84U0kEolEYoXIH95EIpFIJFaI/OFNJBKJRGKFyB/eRCKRSCRWiPzhTSQSiURihcgf3kQikUgkVoj84U0kEolEYoXIH95EIpFIJFaI/OFNJBKJRGKFyB/eRCKRSCRWiPzhTSQSiURihcgf3kQikUgkVoj84U0kEolEYoXIH95EIpFIJFaInbd1AxKJRGIsSilben3XdXM/j6lrkXtWAe+Dee1b5Nox9+9IWOW4JeNNJBKJRGKFSMa7hZi3+tvo6mpHXlFuFIuuwpfRR606dtppp5njIx7xiJnPUZv5Hjz44IOSpIceemjmCLwcPtfn/Rovi6M/E/d5m7nO2+LPyvVeflQPWIRxAep85CMfOXP0NvN55513HnxGygH0/wMPPCBJuu+++2Y++zHqk7quiPluhk3XaNUTzRmvd6h+n5/zrl2krdH51pxpzZ3NMPTovWGst5IBJ+NNJBKJRGKFSMa7RESr6qFV32ZXUy1W5wygtUpu1TNv5Tt2tRq12ctusTy/PnrWMYj6IWKDPsaPetSjJEm77babJGmXXXaR1DMymBfXc2RV/a1vfUuSdM8990iS7r//fkn96pv65vV/xHAjJsrR284zRqzP2aSzoxZrbzHwGt6/Ub96//p4eZ0thsR1vhNx7733SpK+853vSFrfN/OeK6ozGp9o/voui5c39v2J7hu6Npo7i6L1bGP/hkTXb6Qt2xLJeBOJRCKRWCGS8S4Rzmq2UmscW/aiK8xF2hG1rbUy98+tZ1yUyS6ySm5pis4K+ezPGDHiXXfddeY+13qdiUX6EgwMRlwzrej5Wm3bfffdJUmPfvSjZ9oC4/Wjs3Cf596Xros665mnj8JkYbqtfo/0adpO/wHKh0F7+V4OfeXnYcBSv3vhOwYR227tTER9swiDrZ9prG5an2td22pzi+lGWKStQ/eNQevvTmq8iUQikUg8TJCMd4nYiMYYlbFRprtVVs9D7WppSZtl2xtlvCDS++pyYFQcYULAtUQAg3IG6/3kDJYj9zsTa7EYt8IdqiPqN9robI8j5bi+OZZ9RAx7jJWo39Nitt4Gr8M12LH6p+88uL7tGvNjHvOYtbKcFbM78Y1vfENSrxPTvy1r8rGW9dH90fgvwnj9GO0IOBbdQRtr17EIFi1jq/52DiEZbyKRSCQSK0Qy3iViKzXdZWGZ1tRjmepGo9+0mG60cuc8GqRb4dZW5zCYyCrWnwG24rpnpE1yH+dbFq1eD6wJtuSstL4ngtdJmVhS03bKRLd0TRcM6cv1dfTlWA2zhvcjGjk6tPejjwdH76+W1uj2Gf7MzvT8vvo5aSNt3meffST1/X7jjTdK6vvf+ymyZG95C0S7Bht5D6N7xtpjtCyvx7LPsVrzUL3R84/dGYjY/DKQjDeRSCQSiRUiGe8SsJXawEY13bHWhNHqecz1Y7XXsXpPtGIfez2fYZvob7AmULPFsQzJmVBkqUvZXp4zKi8P5k15kd/oPKYQMaToHsqGiYFIl26xFde9W6ivi9ie939kGew7AWPbHtXXsgj38Zb6fmROUSYW8WjAe++9tyTp61//uiTp2muvlSR9+9vfHmwjaOmiUZtb82BoHKI55J/9HY18vJ1lRjp2yzran3Xe37mofyK9ehk2OmORjDeRSCQSiRUiGe8SsMwV0lhrv422KVpBtlZ7kUXkPIy1zPa6x/pB43u57777SuqZBMwDRucWxHW5zkDdohdEVsigZX3rK3xneM7cXEMGQ+W3WJ3roZF2OzbyWkuf9vIijW2ojf6ZMYRJuT+0j4fvIER6Hecpj92Rxz72sZL6PmAcALotx9qP9/bbb5e0fsfga1/7mqR+5+XAAw+UJB100EGSpCc+8YmSpC984QuSpC9/+csz99NW5jXHSG+O/Kv9/FAftnYt/HvX5D1GdktPbe1MtHYiovKH7gUtNp6MN5FIJBKJhxmS8S4By1whjbXgHeOLN++6sZbDLb11qOzNMt0oBjAs5vGPf7wk6dBDD5XUMwmuQysbsgD2drgmhT7srM4Zb2t1PHZl7+Wi7Xr7/PqhPm7FKW7BfVXRJGmDR2Tytru1cyvOdP050icBLM/niltQe3nud+sskrkD091jjz0krY9UBiNmV2XPPfecaY/U9883v/lNSdKll14qSbr++utnnuG2226bKYO6n/a0p0mSjj/+eEnSBRdcMFOu70gwV3zcYOO0PYprzXjVc47/e8xw77fIrsIZb6TBe1SvsZovaOnbQ+dafzOHdsS2Csl4E4lEIpFYIZLxLgEt9rgZ39mxlnaRn+FYi+NoBekr2BpR9JqWHhNpU5GODCM44YQTZtrEqhmdjdW6+84C1wml9dbEkY7mz+qRjdySlXKBr/gj3RR4H0bW0zWiXLORJaqPsWcCctbnrDvqf9c4ebYx2n2kvzEelMGuh/vIEi852tnx2M08I0yXuQYTZhw5v9dee81cP+THyzW07Y477pAkffazn5XUR7Kirddcc40k6fDDD5+p85RTTpHUM2euZ7wiNsp4sWPhz+L+3PUzeH9F89Z95Mcy3ui9aWnL0d8Ob0/93vn70NKRfdfJd5+WiWS8iUQikUisEMl4l4CI8c5jvmMjuHgd0fmWBV+rTZEPbSvD0NA1fj5ishGrY9V64oknSpIOOeQQSdJXv/pVSb2GFq1In/CEJ0iSjjzySEn9KpxIQXfffffatbAPzkX+id5G1838GdHZeJY777xTUu+76eWy8nef2qiPaobsYxL5YnqdnoHJNUFYieulHH13gPPOysf4SUa7JM6sYG9PfepTJfVMlGdmjNH5GVfmCt/zbLBCGCxarveFx7N2u4O67ZGvL/MZ5vqlL31JUm8Nfd1110nq2SPz+MlPfrKk9fOfozNhEI3/mF00H49IQ4/+vkTjuZG2zMO8v1eRvUDEmj1y21YiGW8ikUgkEitEMt4lIGKL81ZxYyPrtKyZI+vZyHcv8uMdm+d0iLV7W3zl723w711rfO5znyupt/pkRc+KH/YCq8TS9LTTTpPUMwaPSeyapNQzI+DWr5Hvo2uNbjEKY4IRwbzuuusuSes1M7dIpY1ube0Zf+r/R5bYnmGHNlImLDLauXALV57Vy492CyLdsGZRUdtgtHymn9zS1/VpGCx6K/3PjgNzwucgfQETdubLM7NTUkdFo+6WtkiZ7OQwf2G8zMlbbrlFkrT//vtLkvbbb7/BZ6UtHuWMZ2T8aKtbNde+yi3NlTGLsnP5MbIHGJoDNVr+vN4eMGTVHNmpRH8j3T5jK5CMN5FIJBKJFSIZ7xIQMdt5cUSjMiKNxMuM6m7Fa221NYqZO1R/xJ4dzkq8bFjeK17xCkn9qtvzmHIdlqjPfOYzJfWsE3bk1onoq1iP1joqq13upWy3HKVNPDNsHBZBna5FAtduo2hSfr8ziCGN11f9vtNAv0e6aSsakFumuq+nZzMC7uPJM/lORF0n8HtoK3VdfPHFkvooUEcffbSknq1EjIxynXFheUybiIaGZXL0/tRskXupm3nnWu7jHvc4Sf28pc1HHHHETFu4/tZbb5UkHXzwwZKkAw44YLBPfN579iNn3Bzr3ROP1AV8TrgPtzNbf38Yc7fGjxit19eKPxBFnJPiHTbudUbc2h1cBpLxJhKJRCKxQiTjXQIi3WGePtvSals+sC2LRUfLSjliN1H7hs61osx4G2Azb3jDGyT1DIGVPvfBOvBzdLbCKh0tmNi4l112maReV/V6pZ7herQfmJGzRYf7+7q2hbb4xS9+caatkbblOpP7sVJePT6Rpu5Rm9zq1ftvXoSvui2eKzjKnBRZfg/ZQETxciNWDssjty39giU740dbmQPMMdru4+taPLor17EzAtNGS67bzjykDKyPv/KVr0jq5yf3woDRo5mTWDXDeInh/JSnPEVS/z44W3eW6WyT69wuoUb0d6FlEexzJLI9iT63LOD9uijK3bxn8fP+3niUtGS8iUQikUjs4EjGu0S0NN15/osR043qiNhDZK3c0k5aGHq2llVzFCcXi9E3velNknoWAnvhenw1KY+VP1afMIobbrhBUm+xCgNw9ghbqZkfq9xIc23FanZfVwCLRN9za2bAfbAc4Pop9w/5Lnu84oi5uk7sjMjRsiSN6nG26n3pUb6G6ohsC5zNu56KXQCWwD733F+a+90H2fuf+9mNuemmmyTNjtsxxxwz87weyYoYzbBqyoYRO9NlZwa9Gcb7mc98RpL0vOc9T5J08sknz5z3vMDA2aJbq9fPH41xZPnuOxVj44NHbDT6OxhFm5r3tzWqM4o6Nyb39WaRjDeRSCQSiRUiGe8SEFnDRcehe6OVZCseckvTdR+1KJdqS6/dTLQhZ76/+qu/KqnXws4++2xJvY52+umnz5QLU0AnhdHC/jxrDu3wuLuuD0pxxCrawr3uN0rZRDqCxVMHz0b5vjKnHO7HR5N2wO7RBXlWj3tcl+lj51q4x7KOGGs050C0qwJcM/R4v0M6d2SdHzGpaCcH9ghL9PGMdi7cqtzfC9/h8D6VektrtFf3SWas2bHx+evaMLYNMGbmCLsoH/3oRyVJz3/+8yX12q+zeX8vvf/reeCarZ/3zz6X/D2KGKvX3bJ5aEX6Gzrf8gzx46K7gJtBMt5EIpFIJFaIZLxLRIvh1iuplpbbsiJsWfO1ImO19I8Idb1RRCrPYcrxZ37mZyT1K/33vOc9knpG8PKXv3ymvJtvvlmS9IlPfELS+jjHke8xFsquMQ6t5iNrTLcAhSW45aP7AVOOs3LXKD2DjFvhOhsCQ1lYIqYa+WSOiaxWl9eKrhaV62zS+3bofQCuvTtLi6yeYaRosfSv94X7nXJ0a/bIn30IzBX8xQ877DBJ/XyECVM3bfQdG45uywAD5sj7ce6550rqbSKe+MQnztwfsckhrT2yNna05sZQ9qwarVzR0d8z0GLU9f+jXZPIvmZsH2wGyXgTiUQikVghkvFuAi19FQwxhYh5RjFSx/q1RRqKR20BLV1jHiuK9GFYBiv9V7/61ZJ6vfODH/zgTJte8pKXzNyP9SbXwR49+lDkE+hsKWKz9fM7YAPOtJzlw7h4Zq7jWd2X1TXCyLLSWTuA6dbj6OxtbDzdsSv5ls7mfehWofP6P6oLxkl/+zymHzyWMs/meXm5D8th15vZwWCnwSOYjbF5oB9gmmixMFB2RZ70pCdJki655BJJvV9vxMKJUU5b8SFG+4VpsyOEXQKRsSiHPvEdono8Wkw2sjaP+iW6vjX3WprvmPqcVbc8P8buCi4DyXgTiUQikVghkvEuAS0f3Hmru8iaM4pp6p8jK+WIjY6NhNWyCKzrBrAQ1z1ZcV900UWSehZBfF1W8ldffbWk3lozijgVaTduTe3+rUPxYv15XWN1P0+P60qZsBb368UnE2YGK/HMKe6f6xbhY3TZlqVoNNbRdc4EWhaoPnejXZghONNlrNndgIGeccYZkvrMPZdeeungs7uvamtHxy3BsY6m/z329pB1uY8RYwrzPeqoo2bKYv7TZuqM3n12UWCu9Am+y9dee62kXksmMlZkVe4Me6jO6O/GovYBfn7R+1r3D7HZqO6tZLJjkYw3kUgkEokVIhnvJtDKYevX1YiYaKRHtLTdFsYy3MjvdwjOir0fXvayl82UCYP1LENXXnmlpJ7p4mdLOZ6L1Zks51nhu4Uwmhta2Dxr2pYO6f0De6COaFxhsDwzbSUXKxauru85WxyyBo2YbmuXpBX1LKoz0sh8XFpzrQb3YgHPGDrjPe644yRJxx57rKQ+ahlzy+crnxl7WKPvaHhfeDxqmDjg/nr+eL5bvuNarJDJLoRdAFbKnkcX+Pjg106MZ94n+oCoWtTDzhPgmTwXdV2HYyzzHft3aaM2LCDKWjTPn7flybHo39TNIBlvIpFIJBIrRDLeTSDSdses5qJV2NhV2djvI1Ya6W4t/aNe4XsmH1b8r3/96yX1TPScc86R1LM+/BthFR/5yEckrY8ORfmwHWebrPRhDpHFKtqZl1+XCSKGDwuHlfBsfHb/XOBaI/fBctCAXSNGx3PmFVm9121vWWf6956dxVl3BL/P51q0azBkP+DM1lkjUZvIg+xM1XVMQJ8wB5zl+U6PZ4WKdkSG+sYt2H23g3tdo+XZPMsQYBeANvEMaLvMf/db51n43i3EqWdeXuQxMQmGsFkf2Oj+RbXfuqzonlUyXZCMN5FIJBKJFSIZ7ybQ0g5AFIdZWjxKSrQSj5irW/q6drsZyz/YHazN2QhxhikLv0OYJxGpuN6tkWG0MGn344UJ0A63TCVjjfvijlnZ+vO7zum5aDlPm6NMQDwjfcbRtUVn5/Msg6Oxas1Pt6yOtPoov7Rru2793NIL6znc2gFCC6dMtzKPomJFEci4v2U17n0yT+/2sl1LZ956vzFn0Gxh59zPHOF64nh7bmYYNG2iPbyXfOa9IZ41mnDdX9HYRc8f2Ta0vCgitObOGEQ2Da06VoFkvIlEIpFIrBDJeDeBlt/uGN+3Rf3cxmrDi8bjBVGEpiGmjbUkK3W0WzSoK664QlJv1QkDvfzyy2fOO/OCMbCCh/HyvVu8us7neuyYvohWwy2rb7dEhTHAwqOdDDRez6CEbgeiKFxDz9JiuJx37c+fne8POuggSb3+HFkOe+5a952NfMPrdka+xVFULtcxI+tv1359HJztOyLGO2T17zq86/Ou+brv8qGHHiqpj9zmTJbx8hzNHHkPAYyYceR94X6Ybx33e2weXUeL+bbKHcuEF7V+HlPm2DqWiWS8iUQikUisEMl4NwFnP5GeMaSRRb6QIGLLEdONzrvu6VriWCtBZ6VS74vKihktyvONUjd+jDAo2uKMlqNbTUfRo4BHnXLr6Hkab0tLdV3Oz0dMze/jGdDXXNf2nQWfY2BehJ5oLtCPaO2RFnnCCSdI6v2waeO73vUuSX1e5ChCVUtbG2pnxJAijRb4nHHt3WM8e5t8/KIMNcDHZyjud5Tr18fB5zXzFCtntFyidOG7jGbLeaykee9gyIBy0cnZeXKNWVofQQ2MtW5uRayKymkx4mjXZBE2GzHYyBtgK5GMN5FIJBKJFSJ/eBOJRCKRWCFyq3kTiEJFjtm+HRsacqzA39rmHnt/tBXEs9bbWGxhsVXFlhnJDjy1nqc/Y6vL0/yxbcgWNFvavk3u25K+zRhtcc5zyWkFEPAt4GiL2MEz8SxsywM3xoq2QMe4nUUGYVGSd65jbEmozpY0dR155JGS+qD/Hmzft64jDM1N35b1rXrG1g2VfM5ERla+1bwoIullaLwjmcKNBz0RBNedeOKJkvqAGjyzB1XBOIotZoymomQinPcgI5Qj9a5MPp8jWQdEckPLSNHd7cYaV/nnjQTQaLV9K5GMN5FIJBKJFSIZ7wYQsUI3NhnDhBddZY01Zmh970wqWtn6ChXGJvUraRJ9Aw9E7+nOIncgVr2AuliRw2QjAxBW/r6bMM+1oeWG1XKJcWOrqDye1QPbA3/2VvCKejznuekMfe/XwcQOP/xwST2zhSF5v3vQCnfzAp6IwINa1H0XGb5xHpcZ2kx/UedYxtXaOYh2npy1zjPU83MexMYN6tylCeMp5j/z2gPGfkr4AAAgAElEQVRrRMkpPLEDATKOP/54Sf24YrBWG0z6fHa0/qZ5v/ici0LXRsnoW+OzyN/PscGB0p0okUgkEomHGZLxbgCRjhSFURvSgRYN1dhyGPdVcGvlONYB3Vd/zmqk3k0BTQqm4+n4aKO7CQEPk8iK3xlWK3B9xFY81V79/yikJojY8zytT+oZBCwDbbcOWlBfF2FM2FGHt9FDazrbgIW7BkzfwLii8rmOcWy5uo0pizYSWMRTRrIbEjHQlvtdZGsRXe9uYXX5vgPANa6te11RGw455BBJvc0EO0n0L/M5So5AfR6u9Oijj5Ykfe5zn1v3zFFozOh9aCXE2OhOXuu6FiNeBBGLn/fObRbJeBOJRCKRWCGS8W4CboG5CFosYOzKzVeiizq0RxqNMzlf6UvrE3kTWCEKoAF8Bc511I11rbNQt871EJERW5mnA0WM1XcOokAWEfPl6OEZPYUb9z/+8Y+X1Cd2d+YX1T+vDf4sztI8GAU7EzAl6mR82NFw5uwhEoFrlz6OQ+kZPb2i65a00bXzSPeMrGhBxDZbIRCHnsGfm3nsoRmdbXuwD56V+7ieee797KkosUbn6H3GTpLXVz9XFBwFLGqbElmTjw2c4Z8X+XvZYsWtd3orkIw3kUgkEokVIhnvEtDSZxfxuRy7koz05LHWnWPbGOlVknTcccfNXHvbbbdJWq9BeR2ssFlds5LnM5a/rjX6CtQTFESINM36+UBk/eqMLLJUjXw2PRm538/33g5nVkMr/rE+2FH/MZdI4whT4zxaYJRE3ueOWzn7uA/By3AWR5mMNf3qOif3uV2Aw5lupG2CiAXV7fY2uC2D76JErNL90SmH/vc55vU861nPmin/C1/4giTpqquuktRrvIxzbV8QJeXYKGv0OeK7I625O5ZRz7NA3mgZY7xSNopkvIlEIpFIrBDJeDeARf27hlaNLV+xsVa1fn/LujO63q9zZoZVLtGnJOn000+fqQvL04jVedtgxqzwXeP1iFhuvcxnrD0jNuKr63qFPzYdnDPbsUwYNkL6P7Rcvz6yRvf2uLXvPLiW6FbhXoanNOT7888/X1I/Xl4e9bgu66zTGXYN341wndmTIHA90Zw8albLYtj1bU8v6L7ikd/2UBluVexj5kfvF1g985rrKJf3wtNmHnjggTNHnvGSSy6ZKQftF+Z7++23rz0D/tIgsvJ3jNVio3IWZZetcsaU4ViGhfRYJONNJBKJRGKFSMa7CYxdnS1icTcvIo4URyeKrDAX1WgiC1nXrerv0HZJZ8ZKm/RjsAfYip/n+ogtus+r60RYf3K9M+J50aaiNHDORCOG6lbHUVQoLL8POOCAmbbSB7AWZ5O+G+C7B/X/Ix2f7z3ylOuo+GPDtACJ2b0truF7eaCl79X/51ofe/oXRgbbow3uE+5tdB9vHydnvM6oKJ92DOnVHpGNMXWWHMUB8DH3nRzKY9cE5st4MrfYXWG8ud7LI1IZGn7dD+6fG+3IjNVkF92Ja6GlMY+pI9rtWwWS8SYSiUQisUIk490CLLJy2mi2lI22YWxkHvfnYyWMfiT1q+B/+qd/ktSvyJ/ylKdI6lfkZLNBA77ooosk9ezF2+T6WtRGZzvU52zEGcYQ423543q/0B+Rr6r7ztJvxOH1KFrOZCMfcWfSQ2U5XLeknxgvbyvjQhtc23X/adpEeWMt7Ou5z/O4hbuzxWuvvVaSdOihh0rqdzuwCucZaDN6abSj4bqpt8d9x92vuwZlcPQ2ueW0WzEz1h7pjX6lHDRa33VhxwLmS6QxYqnz3lEfuwZDGcc4RpbXrR20lnfGWKYbMesx0dBa7LxlL5NWzYlEIpFIPEyQjHcJaPn4bWTFFFnbtlaWLdbjbY7YZGQRi4+g1GtGsBRWycSYZYWO/yErc1bgl19+uaT1WVKwVI3YT2RxDJv0nK1gKNazM1q3Wo4Yr2t+wO+D9dA21wjRT6+44gpJ67Vc14KHxjnS3/x8ZI3s1se0ya3Uud5ZkDNj9412hjfkT+1WybBq1/d9bsAuiYFNv9KWW2+9deb6yNcWXdR3U4A/69D76dbGUY5gn5+et5q2urZL+d5WroPxHnHEEZJ6xss4XnrppZL69+60006T1DNoqfflpk7a4ojm1qLsMmK8resXYbwRIr0ftOKnbwbbjPGWUq4vpXTBv1uDe04rpXyolHJHKeWeUsolpZQ3lVK2rocSiUQikVgitjXj/aakPxw4f7efKKW8XNL7JX1H0vsk3SHppZL+QNKzJf3o1jVzXVtmjq0crn7fvLIWjdwSselFo7W0rJopr8696/ok97Lyhq2QD5QV5EEHHTRzPxF1+B6rZ9gNDCJqk0d/cv9eyoFRDPlTO5ONNFuYQOSbCWBSsAnXbmFUt9xyi6TeMtx1aNgNz8azeBSp+rkdPkciBoq2i98nbDGaG24JDNx3dkwUKNcx3bfV3wu0XZgu/ez942zcLd7dP9u13dZOUv0MjJFb13ss8WingTZzHXOR2Mr0kVtLUx7znffFd6Aiho3FvSTdfPPNktbn0h7rBcGztCyGo79zi0bEiq4bc01LX96oxfUYbOsf3m90XfebrYtKKXtI+nNJD0r6vq7rLpye/4+SPiHplaWUV3dd996tbGwikUgkEpvFtv7hHYtXStpH0jv50ZWkruu+U0p5i6SPS/ppSSv54W3pDlHUoXrlFPndRuw58i+M2uQYq/FGq3JW87BRqV/dsgJ3K8koyxDn0aL4Hn3JLVNdl3N9zdmK10t5aMl11CJnFx5TObJydt9UwH0wMtiEW7DSFx5t6Otf//pM2/fdd19JPaNj9wDrXmn9nGhZovpOAc8EY2IHAgYMc3OdG83RmZ1ryPNiNAOf985UXYOH6e6///4z98HS6Uf3ifU5AEOmfo9fHGXnGopdztyhf4nyRr+4buzXe1QudjsY+9Y7S32Mi/tEMycZH2KiP+MZz1hrE3Gd/Z2KcixHu3tg7N+lVvwCv34MC43+tkZlbmWkKse2/uHdpZTyGkmHSvqWpEskfbLrOt8ze8H0+L8GyvikpHsknVZK2aXrunsHrkkkEolEYrvAtv7h3V/Su+zcdaWUN3Rdd0517tjp8SovoOu6B0op10l6sqQjJV0+r8JSymeCr44Lzg+VISlmQX6dM4v6WmcrUezeln7XOj9WQ/HvWdnD3OqoRp4pBi3KNSna7qwBduF5fdGZYFxujRxZK7vFqUcQgiXV+qhbx3Kt93uUOxUmwDPBKtDVYGQebxoWQl9xvVs302Yvv2ZPY3OnOnxngN0MrGDR+Tx6mbM+xgP2GOWX9fbUc58xYczcmtZ3PTyuN/d5m3gG2B05hX1O+vh6hiXqZX64/iqtZ5SUxfPTP1FkKre8pmzmZpR7m/LqmMt1m7mfOcbOEn1Eu+v/u3WzRy2LdvWi2OXU5ZHEFvX3bf3NndemyBJ7q2IpzMO29ON9h6Tv1+THd3dJT5X0p5IOl/ThUsqJ1bV7To/fDMri/F7B94lEIpFIbBfYZoy367r/ZKculfRTpZS7Jb1Z0m9K+uGRxUGBmpv0XdedPFjAhAk/fUxlkQ7rKydfcQ1pvFX9kmKrSrcadESWqhGjbVlTu9Unfqi1Pgoj9eg/7mfozInrXLNldQ3jYpUNS3HfWRgCzNuZn1sqO8usr410Uo+AxLO4Xy39BLOCqfJMXp8zM+BMwLPvEAVsaC758ztL8P5gp4HP9AH96np0pHs6POtUFO2p7nPPQRsxI9ca/V10v150T/qPeeyRx3w3hjnM0a2uuW+ILTrTp03Moeuuu05Sz3iZS9zH/ITNu4+z+2N7LG5npzzbwQcfLKm3VL7xxhsl9VmKpN7jgHnGOxPZnEQ2IXz2WNseoawVdc3/PkVxr4f+jvk9bj/Q0n59By3627sRbI+Rq/5kevze6hyMdk8NYw+7LpFIJBKJ7RLbWuMdwlemx92rc1dKOkXSMZJmNNpSys6SjpD0gKRrtQK09AX3cxxaUflqLIr529JkF81vuahfHKvuww47bOaZ6rpdA4QduC+m63TONmBglMcKHktVZ9YwCF81u8YLC3W/SalnB846fIy5zq8HzvadnXPk2XlWj9Dk7BWtjfMwBc/GM/QMPnfcGtljXDvrwzI48qV1y1cYHyw9YhZD/r0R84miblGXl+WWvD5ePjfcOplxYRy9b6IsVHWdzrCwSqZtZAs677zzJK3XZqnb3xMQ5TWmXtgq9gWUw3vAcWgn4vnPf76kPmORz4lIm42ioYEoa1cra1HEcFsM2f9f3+M7By07ma2wdt4eGe+p02P9I/qJ6fGFA9d/r6TdJJ2XFs2JRCKR2N6xTRhvKeXJkm7puu4OO3+YpP8y/fju6qszJf2OpFeXUt5WBdDYVdJvTa/5r1vb6lgTiCz8/Puh1ZizvrHWyJGu5+VHkWWitnm7WH0fd9zE6Lu2pmVl7cwnWv1GK05nl66rooXxPZGxgMds5jNaGbqea2F1W1s6vfsWA9cWo5U+OwewHxiW63G+ysbSmH733YWhezwCkpft17v27rswlMfRdwU4wkLR5D0HruvaQ/693h+RH3Vk0+CaO/0e6d++C8CcYZy4fwyzc7btcbZ9rhAFjtjYwLMPRawv0tyJguZ2BrQH7wGPYCX1/Q8rZ/eCNkexm4HvTPj74M8A/G+mz0H/2xBFxqrLjXTosVb/W2ntvK22mn9U0q+UUs6SdJ2kuyQdJemHJO0q6UOSfpeLu667s5TyRk1+gM8upbxXk5CRL9PE1ehMTcJIJhKJRCKxXWNb/fCepckP5tM02VreXdI3JH1KE7/ed3W2DOm67u9KKc+T9GuSztDkB/pqSb8g6a1+/Vaipb/6qs+ZhbR+JRitylp+b74C97ZE56M28j2MjNU3+U/ryFU8AytqrCZZlbpG6KtWbzvf77fffpJ660sYA4zL/Yc9Rq77J9J2txSu2+j9FMXdRW+G7XPefZZpo1u2RjlrXbdz62nAuNTtdZ9Tj0ntjAjWwk5ClHHJ8xt75CVnpa7V+/hGuzp1W72uaOcm0hwdrpdGcIblWq9H0hraaeI77nEbD9+tIPqYzxHeo8hv3Xd4vB73p/Yj7WNn4oYbblgrm+eBjfMOcq/nagYt7wi3wI7yTEexD8ZGyKrR8vCIro8+LxPb5Id3GhzjnOaF6+/7tKQXL79FiUQikUisBtujVfN2j5Z2MCYbS0vLjVbYi0aqAq1YqBHjPWIaTxldtV4dwxLQjPgM27v44osl9Sv6lj8cq1wYKmyP2MGs5GGy6G/EM3awaj/22GNn2oelsNSzBZgoTMfj3cK26R9n31zvmWZc3wOMB/fDPqgvYrzO+Oqynfn6tR49C2tamC/jyLN4Wx2u1dN2xsUjNzmG9FEAs/KdB9dw3Wc2ypLjWaW8z5xheVQ1typ3H/L6nLNlyuJdxo/3mmuumXnmE044QVLc/747Eln+ei7dr371q5J6S+WnPOUpkvrxHmK8tJm2+NHHtMV4fbfE62t5gkRzLap3HiJbB69rmX67ju3RqjmRSCQSiYctkvEugJYPmV8XWcjOK9NXW5HVcqT/ROVFbfdVMytOfP1+/Md/XFK/0q0tMN06FWvKKIIOcK3PV7uwj2OOOUZSn5HH8+qecsopknqrZfRanpEoPDBkj8tbl+nRs3he7x+uZwfAI0vxzG4x6jGhgVsrR7snro/XcynyFfbdiyi7k8f69Ww4zrodkZW6W3q7jj1vB4j+om6fGx4RDObp/cf99I1bOdNGWKpbADtT9ihStZWvewI4W+ae97znPTP9QV343Ubxo333y/NUcz1Mls+/93u/J6m3z2DuoiXzntTPwHORrYg63T6gxQqjGNjO0lvZvyItP/o7WNcNInsXjxLongvR/ZtBMt5EIpFIJFaIZLwbQMQaI1Y5L3JVxFDH+pC5L59rW75yjNrhrBPdFNbpEZakfkXPChFdzqMCeRs476zCr+fZnvOc50iSzjnnnJn6oshLbsVJX3A9DFnqmT2szyMZ+YrafVlpu8cn5ohVKLqy67DuE8uzOIN2vXQoYlJkARr5wvq8dGt0yoXltPyBfe6BiM0MMd4oRrbn/nWvAHRMrmeMfbxgidQHO+V6t3723QKezeONS/07Q5mANnzgAx+YaSvzlahwwP9+cD/vl8MZMuOFT7KzU3amYMa8A1Kfm5fnOvvss2fuxb+XMqLdLOA7d747A/w9Y55Hf88cQ397WzuTPo9bniDLRDLeRCKRSCRWiGS8m0AUNad13bx7xurIIGITEeuOyuV7VutvetObZq5n1Yz+J/UrQbSjiAm5jtmKL+2Wp9T5tKc9TZL0xS9+UZL0qU99SpL00pe+VNJ6VkRmGj4feeSRkmZX29zjTCjyK6QtMF3uwyoZVoL261aisAz3Q41y3ro1L31XW5VGbCHaVYmOtAXG5CzP6/PsQ65FtixZ63Ldv9yZfmQ3wbgwPxlzWDttQet1LRdWiO6JPYDvfHC9+zjXWrPncmYOoJOee+65M99Tl/u/+/yHxTMu7j3g43TZZZdJ6rXbN77xjZKkd7zjHTPPRhYwIlxJ6zOL8c598pOflNQzUK5zuwp/b6KMSm7n0bJtcETsdMzfzVZEt2inKDXeRCKRSCR2UCTjXQJaLHOeX5jrbNGqq8USW9e17mMF/6QnPUlS7wPLM7GKrjVeVuywAlbqrKDJ9+krebc0pS0wBsr1CD3oS7AWVvz4IcJoKQd9lZU9Whn31/+HqbpW6/3qGWjcb5c2eZ2wD9fj6AuYl2udUazoepyjvKHRLkg0R2CXHiksskSN4oDD9KJ4vUNsxhmSt8mfkfHCEph5+/d///cz37uVumeHom0eo9mjcUXafN1e7mEOoIO++93vnnkW2oR/uWeaclYYscloJ4moajzTS17yEkn9HLrllltm7hvKOEbdZ5xxhqR+d4lr2SFwxuvjFPn1Ame6LS+NFtOdx3gjH2C3OVhFEMRkvIlEIpFIrBDJeDeAaDUXsdV5mlakG7QyHLk1s18XaSXedhjAgQceKKmPaoOeBOshrmztt4glKLql3/uhD31IUs/SvF/c37eOoSytz+sLDj/8cEk9o/7MZyYpmol45dbOnpO19qX1LDauCbpe6v6jzoyckfFM7gvrEZeoH60yik7kLEiK84q6D2VkDxCxEtfnhvygpfXW6NTnFq3z6o3YOf3h44HPMXG9YXewTXY76H92HJjv9LezecY3yoLkGZbqcaVt6P3/8A//MPMMlIE+ynvj2rCPh8cLj3z+AW3yNj/72c+WJH34wx+euR/WKq23CsdS2+OA8wz0n+v6nlUIRMzY4R4KINKEx+ivrba0Yh0sE8l4E4lEIpFYIZLxLoCWn5ezyXkxQZ1VtNhzFO2ptUqLtBDOo3U99alPnSkXX0NWsu4nKUkHHHCApF5bRffxOLaRT7EfWd2ij6K3+YoetgJLJ7LVBz/4QUnSi1/84plnpH5YUs14XeOmzRw90w9l+UrfGazHdvZYwJFPK33n+ui8uRRZZzrjBc7yfN462/Pxa0Vki/x7fY4OxWr2+ekMFv0fJutsEnbnWXS4D03Y/XNBtJMUMay6b5m3n/3sZyX11sy+e8G85t1zn22HZ76C0Trj9TYSC/qkk06S1L837BKgQdOHUu+hUPu6S9IhhxwiqY+bTpt4FvzUo3jSrShSjhazje6vz7e8TMae3wok400kEolEYoVIxrsAFl2lzbs+8qWMfMgcLevlVlso96ijjpLUa2Scx4IYwBbrOKb8H+tMgB7sbXHm6it1jpTrrDFi6zAn2gjzPfnkkyX1ehTsqV7Zwpp5bpiRWzc7A60tQevrPMYwbaU/PY6yM11HtAqvx7+l60e5UHkWZ32u2UZt8vJ9d8YtsJ151+V7fwLugeGiR8KAOXo2Lx9rvw7G63Oope+5lXU9p2GY//iP/yipZ5LMDc97HP19iDT0VtYn1+CvvvpqSdLxxx8vqZ9rsFl8noesmh0vfOELJfU+9NzDrhfj4mwcRHPJLeXHxkSIdneG0PIJHhvTOf14E4lEIpHYQZGMdwNoxfj0VdsisZojHzMwNloWiLLeoNFgIez+jM4Sb775ZkmzK1R8Jx2XX375zGdnut72iHl5pJ5oV8B9CmG++B6jadGO66+/fq2OU089VVJv9ep5eWkDTMrzkkY+ydzHZ9gFsa+dtbvlb+TPC4ZW+NEccg3YGaj7KANngZG1M99HVs+R1WjNgFtRgjx/MTltGVvGh+xZHlWLOYHFMTs9Hle85WfqFvK8F5L0N3/zN5L6eRhlbWJXxVmz9zNwX2LgOwjuW47tgz+D+93XjDfaYeM9+dM//dOZ8/73wi2qQSunc5SVCIz5m+r1RjtAi0a7SqvmRCKRSCR2cOQPbyKRSCQSK0RuNS+ARcObAQ9AMK9Mvye6LtqC9m3YKP0WqcA8lB4h4iiHtGBsidZbPATMcLCt6vDACsATFUSBRyLDFw+KgFsHofMw0vIk9JL06U9/WpL0ile8YuYatgN5Fg+fSH9w9KD5HnISNw3fUuV+DF48QINvRw5t2Y1NxxcFovfE39E2L9uIHsghMp5rpbgccq+LAsV4vzC2BE0hDCLP4nOI8eA64G5F3g43NPMt5r/6q79aK4ttbN8OdaMq5pb3Q0tW8u1V3053aeDWW2+V1Bt5MceQVdiKriWG1rYqKQwxoKR/2Gr2d78VtCLabm9JcGPQkgBbbVzEWHZRJONNJBKJRGKFSMa7ACLGEAWziFhofS5albVM3CMW2Ao1yaoYh3g+kxQBYwlW0xdddJGkfrV+2mmnqQXYiBv1UCYGMu4mwecogIM/k8ODH8DMPHBGbUzCSvuss86SJL3gBS+YKQt2gsEMbi0kgoDhuosG9/PMsHA+wzK4n9B8UfhGZzfz3In8GmdtEevwfvYAJy0XtogBt1hM/Xz+HkTBPmBxBHQgwIvvNHjgEnYemINRKE43QOMIi3zve98rqTfyqq/xHQb6H5cy39kBUZD+6B32Nkb9//nPf15SHzKSOc2uV71T4ekV65SBkvTa175WkvTrv/7rM3USSKMV2CIysGsx4xZLnYd5oXuHEO0+LjPARjLeRCKRSCRWiGS8G8BYU/l5K6TISTsKz9fSk1vMF6DF4IaBxkiYRYBbBiyRdvzwD/9w+EywAVbLrvkRxACdjJW/pwEE7i7RYgSeus0DObCar+uBIeF6hBvQD/7gD0rq+4sVPdf7mPMsPo60iZB66IAwCa5zrdhdc9z1Z4jxglZIR78uYgLz0lnWzxqVt4heFzGhqI2evMN3SYZS3kn9XHDN3XcoPOg/c/ecc86ZqbcOfBKxOt/Z8QAazvZb4WBBa9eLuXfllVdKkp73vOfN1EP4TObmUP8wL9mZYWfM63ZbkSj8ZbSj02KZ0X3+zEN1jXUXWgXTBcl4E4lEIpFYIZLxLgGLstN5ZSxqzefXReyElejBBx8sqdd3jjjiCEnrAwiggcGMCTjgQRZqnH/++TNluNUs+ijPwirZEwFElo4t7dD1OsD3sJN6Ne4BEbgGzfXEE0+U1FuCugUwbaH/qJt+cgZHyD2ug1F4IALvk3maWCshRpRazbERpjrmfv9+6HPUdmf8zmA5T39HaRq9PBid1898YHeEOXvxxRdL6hMgwLi9b2tQNwyXa5ljnI+SXLTGIdppc13cw2VyHjuPOi0g19AP3OvpMPFouOSSSyT148JODv3WejavF7R07mgnxIOMDNXtaDHaMX+/F0Uy3kQikUgkVohkvFuIeQyh5bPXWvFF90WrOpgVjJfV9tFHHy2pZwwwPw8n50xvCBdeeKGk9TpklJjbEzFElt5eXpRoHRbiwfn5fiiJPP+njaz+P/axj0nqGT/+i6z8PYShs3vfQaCeG264QVLP9kmpSP8TwhM/UZ6J49D88P6CafnOg1v8thhAy3ahZZnf+jyvTMBYMz7MW8aBfvSyPYQn8Gdn/Hw3hWdH/zzvvPNmrvfyhp7L/XcZY1gkmi9wpuqszrVbb6un4gN8dn9er68GZcNcHa973eskSb/0S7800zZ2irARGctkx6L1d7PegfDnGptYofW3eBlIxptIJBKJxAqRjHcBbDZySb3CiixCW9Z8rbZEqzT0HLeefdazniWpX7GywkW7wdqX44/8yI+sqxOW50njPSk8dXgi8NYK1PvGU/W5f7DrdzANVsB1BCvqdq2OfiAy0Y/92I9J6jVx1xA9mUK0Moe5EUEJy1IY8tOf/nRJvZbo2v1QH7WCvkd2AFHqychmIWKsHmUq0ijn+U9G89Z3TWCP++yzj6R+DkVzwlkg9zNepM7zcWAOfeITn5gp1yNp1ZqzR9cCnjgD5un962ze+8YjtXk/00fMb87zLOy2nHDCCTPl18zbk3vQxrvuuktSb4PA3xNvG2UxLrB7RzTeiyYwcAzNMdf5x0a02kok400kEolEYoVIxrsBLGodN7Siinwmo3sjVtJiCqyOSfgO0GK8XLQZmABgBTsEIuN4cnFWybAPNCXq9tiyrSg1UXJ62KlbUvJs9AHaVv0ssBTuIcKU68Xvf//7JfXaFqyd+2Ap7g/qTIkjbaW/aZtrlLQjsuSu2xBZfLbmiGNsYnBn0K0doXlsJqrDdXmsv2G8MCzX+Jh7MC6/n7kHG4QtMh8uvfRSSf04+TwZ0skjC2r3BXbG5e+Ba7nR3xXYJ5HZmCucd0vjyE6jjh3tVuL0PyydssFJJ50kqY9wR1uxjeC+yNvCMdbCOJovQ4jmecvPdysZcDLeRCKRSCRWiGS8C6DFdFsa2JA17UZXVa37qfOAAw6QtD5azgtf+MLB+4g+9dznPldSzxCOO+64sC3nnnuupPU+rb7CZmXt2i6ImJozOdeOYakAjQtWyjO4/iT1/QLLgB1QJpGmYAIf+MAHJEmnn376TF3A/W/dP9SZLzGGYUPo1HngKyoAACAASURBVIzb5ZdfPtgn9bg744z6EYz1F3VE0YOi5PGL+LNHltn0E2PnuxYe99i1dh8PrPoZZ85zPTrojTfeOPNskU49FH3L9Xi3mGZOcR6fep7B43JHWjzvE4yXucOzEGXqyU9+sqT+vWSXBd/0vffee61MGL5bZA/5x0rSy1/+ckm9TYg/k+8UOBb9+xcx3XmMtzX/x9pILBPJeBOJRCKRWCGS8a4A8/wW/XNkUdq6PloJsqoFHsEKoOmi4cAIXB8dAiw58htl9YzuE2XLccYQWaqiG6HPuc6Khgwb8hjOdfQtz4hEW7kHRgszhV18+MMfliR9z/d8z0xfUAcrfpgzbMQjT8FO+B6t0Rkd54di20b62Vjm2rI6jiKytRjvInCm6xa82CjQH25V7m1ytsg4wxK9//GbZoeB/gbeB0P5rr0/XK/3OplTfPZsQcxnjt43blfAfbwXvLMeq5zrseSu4R4J7idNWYzL8ccfP1O3v4v0d2TtH2FsnGVv97z435FfebRTNIZNbxTJeBOJRCKRWCGS8S6AsT61Y1ZrG7WkG6vDsVKFObFCPfXUUwfvY4WPLjqmPX/7t387eJ7Vra8YYdNR5h1fbaPXoTvBEGirP6tnXHJ24rlZh67hMwyJNnPeswwRrQu2AthRoC8ifY9x8QhNfIbhwVaGYgNH/rYRxlrltzTgKLNMyzdzTDsZK/RH71/6wbMIMVfoR4+XjLWzs06yDXl0L58X/nkoS1QrWhb95m1gd4SIbuzceHx0n6Mw19tuu23meuwGPDY0PrjcV/vxus7s5+lXb9PJJ58sqX8f6At2zogIF8Ur8GeL/u5EO4FD90U7O4uy6a1gvsl4E4lEIpFYIZLxLoCNWjX7dUNlLaortPweYQqscmGDrFwvuOACST1TICIT32MxPC8b0T//8z9LWq/foDHxOcpD6gzKM6KwgocJcJ3rdfh0el7fSLOsGW/kM+krclg0OwIw35tuummmjWjqPCvXw7Rgrs7WPboR/U/fcZ3HoR7C2Ji0oLWLsmwrz6E57uNA//mcYb7SP8wZzzIFq/Ty6H9yRt/0Xybjd58m/foITaObadLfO025yQOa1Hu/pvmYtb5PO3Uz96w9r8rM+V20y0yd9z9jNscz896tlNG5XfNljvHs/A3wOOJ8j57NnD7mmGPW2sp84x1mB4Gdn2jsf+7nfk6S9JM/+ZMz52kbbV00U1Z0vqXbzkPLLmYVEayS8SYSiUQisUIk410iWtrWZtDSl53xYtGIXgQTYwVLXliYML6ubpnp1swwN2m9NsvK2uOzepQs13YjvQ1W4z6F6H0e8znKwztPV3Km5ff66ph+gk1g0Q1L4ZlgJ2hcnPe40p7X1X2UYfdRfN4htPzJx+6qLIvZRvXXOw/u38w1sDTmCN/TX27V7JGlXNenf7FOf/Clk3m+ywcnc2u3fzXrF0w9D907nUP3z86lhx6sNN77p3Plodn+hx2vWULvNHmGXbsJc935f0/aeK+mWbymzPnuUyfsHJ9i5gzvMvOfPuFd5zp0Vd4P+sLfh9rzgXnGd77zxTPwjvP3AabMrhP9TN2w9Ch6VsuXdiMYy4KjHZ/NxlqYh2S8iUQikUisEMl4l4jWCqvW2qJ8oV5Wq2xnETAkVqBovaw8Xe972tOeNnOf+846E0TXldb7MnoEJe71OMQeVxd9FF9iWDn3oy+xoufZPBuMW9t6Zhq3lq7LcCtWbyP95pohnykT7ZfvYciu9XobPd60M2A+ey7iGi0/xei40RX9oizF+3gol637utJfHkPbrcI5uq+2MzW3it39g1NG9vppRqCpSQP97lbTG9G7I9/8tVji/2JS6SO7yVx84OPTsS+zbYCl07bDDz9cUr8DxLMyF+kz2Knnv6Zd11xzzdo58nN7zHHPQ8x53xGD8cK2/W+AZ2aKMHZuLrLz0/JfX4W2C5LxJhKJRCKxQiTjHYFFtbFWOfO+a8XXbfnvsuJkhclqDubrDNdjqbIihVl4fVddddW6Op1NeNnutwtbY0V+xRVXSOpX5p7FCKtlZy/OtCOW4u2otWDYAVbDHrmqtSPhGiNtwHKUcmk77J16OUb+oW7FGzGvoXMtS/lWxKoILcYcxTOO/IDntcnLcnbnVrIwXsZ8bRzfOvvsu2mya1L+9bS/d5rUw3jA8NyfdZ7u57slLV9Uv29tfp4+zfl73pQBTy2q0X6/pcmuyO2vmTBgdrN4duYYlske+5k5yfkrr7xyrS34n1MW71IUyctBDPi3v/3tkvqxx9aBPNSriIe8EW+TGtHu4jKQjDeRSCQSiRUiGe8CiJiDs5SxEa7GINKHouuc8cIq0UVZeVKe++A6g8AaEe0RC0tp/UraM5u4tsv1XEdcXFbBsBP0UNgNq+8oPq9rt+7ryveuPUvrowh5XS3LaOp09kadaJT0O/1JG9zS1C292YGgnjHR0Mb67frnlo2CW847fOcjimw1T1PzZ4iswelH2BtzjfNr7+qU6Xb/blrXtGse9eCEMeOXy46CR74a+97VaO2QOQOLIo/t/MLJ3Nh1511nrmdufP1jEx11j5+Z2BHgocCc4v3h/WIO0Zf0VW3zgJ3FUUcdNdMW+sN3K2DV2DJ8//d/vyTpzDPPnLRxqvXyve9SRWhZ5i/CXsfO69R4E4lEIpF4mCIZ7ybgzAssYuk41nfMz3vdrNpY+fM9jOC0006bW56vuj1mMzps7YfnFrYeH5dVrrPrL33pS5L6qE+Uw0rdM8i4duyrZtc9PQrVPKtm+ifqV2dx3iaPoOS6t+8o0HbXIGHaAAtWGO+8DECL6mUbYXH19a5Ht6yoo3Lqelrz3jNTuRZLPzOea/lgNWu17uPIfYwjc5j6IkvkIYz1+4y+d68A4PGmmTP3vWjS9m98eLKrte9vzvrLo/1y5JlgqT73Jem6666T1OeD5hrXvOkn2DTvOiASHuPltg7+XqwimtRG4ywsU9sFyXgTiUQikVghkvGOwEZX8pvxMXO0VoQwKSyA+YyvX6s81258ZY/2U+uHME3PnMPq1/VLrrv++uslrc8Ew32uGfuK39mL66XOjF03rdljZGEK3I8ZeP5RZyscYVIwNI+z6+yE+y655JKZtkd+xvX/W3rYRpjo0PduHe6+35HG7ONT2xO49XDLotT1e/r59o9Odgoeq6nv9xsnvqvMHd99YY75zkWkQ8/bLWix9uizzzn/nn6lv3lPmFOw+miuYF9AZiyPB17vtvCOwmTRej3WNW1kZ+bYY4+daTN5erHjYMyZ59g+bHaXYDMYW+bYv9GLIBlvIpFIJBIrRDLeEVjUj3eRDBmL3hu1wfPvssJ89rOfPViOr4qdCaDp4FtLRKaaLbqlqevDlO1RnVg1s4KnzfgfevlRxpmICTsj8zjHNZzBuMUudbkvMkcYbBTpClZBP3rEJW8j90XPNOTf2lq5R9qs90HrftqEhbwzZH92QL3cx3jX9gLojpG1a+sdXIsAduw0d/N+k7jf+uTksMcbZjVIGJf7uo6td6gdYyMhRbqmP5Nb3POZ/sMWAsbrOw4+blzP+0QfDFn58656nHXf2fF5zt+hl7zkJZKkj33sYzPPUOf+rfvAP2+Frro9IRlvIpFIJBIrRDLeJcBXsNFxCGOjo7R8Al3Dgj0Se9XhrMStZykXjQbGVj9LFJsZFghYDX/5y1+eKYPV8f777z/T5mgVzKp5XVQiY6vOiFuMrEZk1exl0QbaTP/TJzyzR+miHKzP3UKbtpHdCOYRZeOpn99ZiFtqe0Qx7xfXagFsHPsBYv6yk0FWKfefdktuZ7z1PHHm1IqNzPW+E/DAlZP77tFkF+ZbL5ww4EfuNcsKGQ/PlhNZL49hvH7O/ZijY6QbRxbdvqu18/TPuM8h372h/3lmj/Qm9WPNLhYaLmMV2VWQ35jIV4B5zLgyd+r40GOwUb/ezWArWXcy3kQikUgkVohkvAug5f/oGGuxN3QPiFZ0viJnNct5/Bhbvpoc0bpYucJG8esbit3sK2vYn7NDctViQcpKnTygrIqx1qTNsGxnZF6v66TuE8t9bmVdt3UoY079DO4zTF2s4J1d8Kzk64Ud0r+RL6zH1qaP2C0Y8uuN/D5dT0bjc59K6nbdk7bAsBgnIiRRD5o+cbzd8tVztQ7FWXafUvrLI6mBlhW+Tpkcyj6z1uXu9zvWEhzMswmIdqNafy88hzDwtqHNMj70506/OL3vdyeH+3912ELcbSLoY+aq1I8V38F4+XsS2TzQJge7WVhJew7h1vg6toKFRjsN/v08H+5FkYw3kUgkEokVIhnvJrCKGJ+taCtRVBu3HvTyfEUPC2WlC3tBv4tWpnXdbs0MgyJSFedZqR9yyCGSeqYL63FLXvQ44CyH69ChOHKdW0MP5UX2ONCuf3qULvrL+537YHWwFLIVuXZG//uzc/+RRx4500doY/Rt3SYfW8rgXtdW+R7wDG5hHY0LfYD2y7PC8j1nK+W4tW7dD24f4BbtPm+9TY+aJtT1HSDqajHdCJE+W7OgRb0e3NYgitns5UW+4cBtL3yOe4zmoWh0HNl18rzS7rHgNiDU7T79jAtzzO0JWkx3FfGUV2FRnYw3kUgkEokVIhnvAhgbR3mR1fSiqytf6TvjdWtbh1uucj3+eueff76knuk606hX6c6WPQ4rEaoAK21YHEzIWaPHmfaoQlH9vpqGLfnKv2Ypzpic8Ua+kR6Fyf2h3efV85tydP9eruMzLJXyYcpDLMXb6FbEXjZwluLaL3XTn0RAonzqpx5nwJynj10Drr/z+MJciw5JXT6mj7pp0ubHnTbRIvd4/GwUtCi7U/Q++fct6+r62hai/nett+Xfy+4JfbVm3XzfcFYoZ76egUvq+4k5wGc03MMOO0xS/y6zk+PZuGC6zAWu97k4JutWja1gvmP15IxclUgkEonEDopkvCMwVrvZzCpsrGVd1Ja1Va/ltHW4ZTArUZgbLJXv3QK1Zlq00X1YYTrk4qQMWDUWu+4L6HGRXXN0v1DXrNCO6RvPGDS0wncf14gBRdGf3JrZr6PtWIXCUtzXlfO+e+CMmp0MdgHqstyvmTI4RlHKPN50ZOnN97Aa2KjX6yw/8uuu+47n9DF0HZp+cn/qvTSZ78wtvnd/atAaV+Dv2xDTXRaiMqO2udb7qJ+bvqtvm9ojaDqevzycmcl3Yer/++4SOzOcZz7DbNmJcVsQLOEjD4QILRYaWZ9vJRNeZtnJeBOJRCKRWCGS8Y6Ar7Iif7uWz+yYsv382NilrjmST9MR5XWFlTij8KhR9YrW+4PVMNGW3JKRqDZotx6Byi2DAdd5Xl5WzbB99wVFF3Sfw7p8Z9XOip15RjsPkbUtbYKJuUWvx7n2TDTuN0mmmSF9lDZ63mFn5ZFNQjTPI43Ro2m5Vs+cog/cmrcuN4pGBsOPsgZhJ3C4Dp+cf8Ts2Lsm3GK2UR+1djrmldmKuhTV6e+qRxzzzEzgAU2e+d4fn+w87bznrO2E7/LUf898/tMG90PHI4F5je6PBwL+7WjC7GTAjP192ugOwiqtnZeJZLyJRCKRSKwQyXhHYGz8VrDM1ddYFu0WvjABRxTzl5XtjTfeKKlfocKw3DdQ6lfHnGNVjLYLA2J17Dq06z3uf8tKnmcCrl1G8ZIjX8+hsiKLX9oEa0e/juLtAs5zP89M/1Of62xRrGi3cq5ZjjMYj+zllumu2UZR0dzCO7La94xJbpnsLMq1eSmOE821rv0y5oceeujkfk3uv/Pe4WxDkWbvaD3jvEhnrf7yOqOdmEhbdA3ebSrWxv8Nk/Lufcfk/E7/erZd/r7V4+B1O+P1HNrsZriVvj/jWpQtexcXjVDV2gGsz2/PLDgZbyKRSCQSK0Qy3hGIYnRuRtv1a8ZqudH1rCidNTpcJwX447k1KUzN2eTQOXQe2gYrwfKROl2TdC3QGYC32fOLwkaHIlPVz+QMva7TLapd+/Y2eIQfP9J216897nSUbzfaTaE9dTzqSHekbG8T4+XZaZwRR/Gko8xBtI1Yzow75Q/FmQb0q+eeBbBntENiWD/0x5P+uuNVk7nnOxIRw13UayDK9Vz3uVuNRwzW2xDpnNHfBH8veGbmMnjgVdNMTX89sSPY+admtd4hC2Mv220S8O/3Z6Ms15uBv/teXwstG5hFy9vWSMabSCQSicQKkT+8iUQikUisELnVPAeR03zLqGoZ2x3RlnJkCBMZskTwkJIXXHCBpPXBFgBbm0MJBtiOIqwc97It6G4LnpDd3YO4LtqmZUuTICFRgAjgRlb1NrsnAPB+9q12N2xhu9aPHsZxrKN/FDbQn6V+Bje68eASvnXs29ruKub3ezo/toxxLeF6XNgImkCfeRCLoUQF7tblW82ehnGtbH17po7WFrKfd0RuRy2jrLruRbdPx5Q973tP4OGSyr1nTLai733/5LjbL+wWtrPlKsmciJIbRMlUkB0Yt60MfLEjIBlvIpFIJBIrRDLeBTBWyF8kSUJ0b2sF6MH63cDIjYUAhhgOT9AOK8GNwFfTNWAbvoKnTW78E6XU86O7+ngSemf5wBmzf18bocCeWzsKzhJbjNQTfbvrTjQ+Q25b9Xln0vW1fOdlO9Mn3J8bsxHMg/H0NI4eGMOZNMESYDfep25gM881zc/TBg+SghuRhwcd6zbUMqZyBjjPcMqNpKJ0jY5WYJ5WW92tyJOF0Dff0iSoyGPuf8zMfTVL9THy5CEYzrkLmT+zw8fD3b1aiP72Rn2y0XuG7tsKJONNJBKJRGKFSMY7Aq2VU2slO/T9oubwrbBzsBFYIKzGwfcOmIQnQXeGXK/KaQth4lg5E0Yu0hhd2/V0gFESBHcRGWLf9XlnR/RVzXgj5ulwVuJBKtyVyZltpCFH4+l2BexAeGD8+hrX4aMEDp5UgutgqjBfWAlzwtk8RxgW97sO7gk2htxkolR4Hiyl/PaUVWo6P98wOz9bIT1b71uL6UYuP61z877faFt9jjA3GN91c/OV0z47c9JnD/3aepYavYu+2+GuaFEwFuD3udvXRrHI/WOCbmy07EWRjDeRSCQSiRUiGe8IjLWIXOT6sWEmW47jvtKEzcFCwFCSgxru+E55HsqwdrZ3NsaqmHCVrtu5xhulvouYryMaBw9n5yy1tghujUMUGrKl70d6UqQZe9sjtgjTrcfL2YfvdrgG7AnqnVW65WoUOIP+davnKD0kiQv8WYfgc2atDb88G6jkwXdMNfEXzdftWmzS4de1GF1dh9fl1uZj6/TzYCjJhLQ+aYIH1WHu3POayY7Gve+eJlH4jf5nwHdLvI5bbrlFUv+OkyKSut1bAjBX8HyIQq+O/ds61r5mXhmte7yuRWx1WkjGm0gkEonECpGMdwQWXeksog0sqiO0NEFW5p58PArCDzyxAatmt+Kt2WeUcMGtXiO2F2m8rfB9Ebwe9+8dsrhssYzImtgZcGS97Nc5W/E0eJHV9Lw+8DZETIu2kZqN793K2UN5UnfkK+v3waxuvfVWSX0oUddt67kUjQPPRJmupZPs3cc+eq+iBBFjdzDmsZ/IMtrHI0qBF9XVaqPXwzi5pwP9zd+CuzRhq4+8r98B8nfR20wSFb+eMn2nDVA3SRRaVs2bZb6L3LNMJjsWyXgTiUQikVghkvFuAJF+twymO1aL8lWzR3fyVVyk8aLRHHfccZJ6JoCWQz2e3q6+1yNKRZbCkXbbYnctjSXy/VxE14uYqSc1cMbr0ZiiiD4Ry2n5cHoge9fH67LdChwNl7ahr6G1fulLX5LUs0l8NNHpYC985tkYd9qO3kc7qOcrX/nKzH2UNxQw3yOB+WefW+UPp/6gr5r133VNuKWPRn65i1rALnLNRnfQWnOJOUSfMa5ovZ7g4x5NtN49H+xTiLo/ru8Q8D27GK7rRztqaLqeZGFRZjvWFmYzSD/eRCKRSCQeZkjGuwS0rBA3Y9XcqtOjPEVs061jWYGiB+2///6SerbCypQVrqcck/qYvZTtDNYRMVu3mvUoWa5RObsBkcY2JrqNM1jXdl3jdUbsjLfF3r2NnsLPtV60d8ZhKAKZ90+06+Hp+WCwsJgjjzxSUj8niI8MYK60gXooDyZNue4DOsTYvF89EtUaU/396ZzRlP399bSsH5otb6O7UWOjG3k988paVFMc69vvDNiflfFxxrsWoWwa57rWW/3dc0t4//vhdhp878DX3xlvhJZ3AZjnQdKqY+w7uhUacDLeRCKRSCRWiGS8C8BXw2NXphupI0K0woMJRaszdD1WpDBkLFxhO1xX+7pKw0nmYcfOeFv6mPv/RlGynCm5NWwUASvSfKPoQ0PfRf6zUVJ5Z7wepSsat5Ye7RqwZ0saKpN+5EjbYboef5vPjD3sxGNi8yyUw3Uw28svv1ySdMMNN8w8AxpxHW2rLq9uu2uu63YtfnHaH930/I3TfvuHab+9aHPWyd7fi0STiq4d6zvsZbZ8xqP7QOSzvxbp6kUTxnvHh+9Y+26XX5mNn+7+/Mwp/m7cdtttkvp39ElPetJgncwRjmO19UX9ruv7x/r8tmIl+PllYCmMt5TyylLK20op55ZS7iyldKWUdzfuOa2U8qFSyh2llHtKKZeUUt5UShmOljC55yWllLNLKd8spdxdSvmnUsrrlvEMiUQikUisAstivG+RdKKkuyXdJOm4eReXUl4u6f2SviPpfZLukPRSSX8g6dmSfnTgnn8r6W2Svibp3ZLuk/RKSX9RSnlq13W/uKRnWYfNMtkx929UD3I2F2Uf8ggzsB3y8OJz6RarHlWqttpFH/asQa02O9Pi6NFsWpGuPOZwFMN5jMZLm3gmtCgsc2kjdcPi+OyM2TMtRXoz97vO3ULNFl1Td83Vz0f6p8f8ZW5cdtllM3V6vGiPv8sz+NwBQ0zO2+RjGbXdx7oVSznScFu+4z5PhsqPLKYdi/gG1+dbuqd/7/my3d93zd/6B29du2fXj0x3l359+F3mM7sd7H54fG8HO2pcF/2d82M0nlFfbeRv9VbsXLawLI335yUdI2kPST8978JSyh6S/lzSg5K+r+u6n+i67pcknSTpfEmvLKW82u45XNLvavIDfUrXdT/bdd3PSzpB0jWS3lxKOXVJz5JIJBKJxJZhKYy367qz+P+IffBXStpH0ju7rruwKuM7pZS3SPq4Jj/e763u+XFJu0j6na7rrq/u+Xop5bcl/TdJP6XJD/fSMdbnbCNlRphnrVd/dsY7ZH0srbdKhC0+/elPlySdffbZktYzXq+3XvG7RuvsLVrRu27kzDmK9ON6qmvLHqkKRH1V10Ub0CfxY+a8W3uy0ncN1zP2uD7tbYriIkfwXQAp1rb9e/8c+S4D2kRUsyjPrD87+jPPzpzk/JAfb8Rk3erbWRt13Kk7Z9reYoMtC3gvx++bpz1G2uxG9UtHSw91y/woRy7vUc1S6cfH3TeJZuZzyz8zrxmHfffdd7CNvFew7OgZond37N/gui9b/dS6biuxLayaXzA9/q+B7z4p6R5Jp5VSauuRefd82K5JJBKJRGK7xbawaj52erzKv+i67oFSynWSnizpSEmXj7jnllLKtyQdXErZreu6e+ZVXkr5TPDVXF16q9DSdVpwRhUxXtgGGguWqnvttZck6Qd+4AckSe973/skrWc/bu0rrWe8kWboOpxnr3HfVWdUUXxkEMWmdb3Q66/rhuHedNNNkvp+8mfj6G12Bstnj7g0L/Z1/X3Emty3uYZf63qz949bbrsftUcritrkbJTyndnOm9POdP2eiAk96i+mWuQPDc+9FhZlOfPYU0srHKtPbpZ5OZP2vojyI0u9b6/bNLjm6nYWjPmBBx44KWf6TrIzdP3118/U1dLWF90RnIeNWoW3mPJmsC0YL/HJvhl8z/m9NnDPnsH3iUQikUhsF9ge/XhZZiyyvBh9T9d1Jw8WMGHCT7dzoyqPVkKLruLG1OllsuLkGOWu9VyozpjOP38ij7tVtGtqtR7kkYtampVb7lJW6/qxOl1LLwI1A0C/JNoS/eQRqFpxpj0XMVqX+0O7VuZ6qyNivPUzRDsCkcbnDNXHz+9rzW+H7460ImoNtc2ZfcSMdtEuM/ctynTHtGlMOVJbD553b31dy3o5KsevW4vJPN29oU+HcjqDb2ky/3k3/e8JZRPNjJ0097mn7muvvVZS/34tC2N2Bxb5u7tqbAvG22Kne9h1i9xzZ/B9IpFIJBLbBbYF471S0imauB/N6K2llJ0lHSHpAUnX2j17T+853+45QNLukm5q6bsbxTJ9xlpljgUrfLRaEFkwOnvBP/XCCyeG5Vgdui7rjKNeJTtD8swwzu58Je4aovena4V+9PjFkT7oqFk7/ssed9qZLnXBaMlh65a6Q7lma3iuYJ4x6sOWZXh9L8/lvtqu0UaMuLWzEO0wtCzgPW/zkJ+xa7yR5rvG1n97Oi6/OMu4XIv0cYysZMdaMzvm/Q1Y1EK6VXarDf4+0gfkwGXOeRSqehy+qon/+n7fnGSqivzQ8Z3Hn31tB2L6PlDHl7/85Um5FqN5rMVxa9ewNY5j6hh7fplWz9uC8X5ienzhwHffK2k3Sed1XVfvec6750V2TSKRSCQS2y22BeM9U9LvSHp1KeVt+PKWUnaV9FvTa/6r3fMOSf9e0r8tpbwDX95SyuMk/YfpNX+yVQ2exzaG0GIIy2gDgO2xwoyyE0U6G6tiVqqR1S3nYYbSenbokatc/3TGG/mRet3OJmkrbN8Zb8sStrbM9kw9fi917r333pL6jD3uMzxWK3RfVxAxNP/es8XU/492EMZq484yHT6ekbboOxXOmuZpllF2KMZ4rQ2azcqFxTYafYuNj2Ww0X1DFsNjWRloWYu32h7tijjzdQt9P9Zz6XZNYjB//vOflyQ99alPlbQ+UptnDONI/zMuV1555cx5fwaH/10au0uwDFbauneZGZgn0gAAIABJREFUWvFSfnhLKa+Q9Irpx/2nx1NLKX8x/f/t3TSkY9d1d5ZS3qjJD/DZpZT3ahKR6mWauA2dqUkYyTV0XXddKeWXJL1V0oWllPepDxl5sKTf67puS4JnJBKJRCKxTCyL8Z4k6XV27sjpP0m6QdJaLOWu6/6ulPI8Sb8m6QxJu0q6WtIvSHprN7C06LrubaWU66fl/J+abJN/QdJbuq77H0t6jkFEupB/P3ZlOnTtWMtH/4zmyP340TlYgXIdDOLoo4+W1DPmK664YrDNrJ6/9rWvrZXperDH5o2iDUXWl8BX0c5wPTJSxMD881B0oohpekzm/fbbb6bfFt3N8F0Bj1jljBug16KtwxzqTD8tS15nz/SH93MrM5CznUivi/x4IxY/VDdzgkhqPDfjsbf2nikbzZGYwItaYo9lUP4M9eeW/+xYVrbRnTKfw9HuAfCcu5KkyTTXN2+b6MIw4G+fMZl/zH/+7vg7fuONN0rqxwlrZt5dZ77e9paHRIt1LtPuZiutoZcVMvI3Jf3mgvd8WtKLF7zng5I+uMg9iUQikUhsT9ge/Xi3W4xdiY5ZoS66kvMVIawC61rY30knnTRzX+Qr6365WD5GGhbX1StWvnMfYl8F+/Xehig6lFsUo+M5k/I2OntyjbGOm0zZbo1MXWi6rOC97ZEm6+B7yuWzR8BytkLOY5gcOxPz6ohY2Tyf7KE28b1rv66pR5bwkXX5ECOkzsji3fMd764Jg3rMThOmu8ceE49CxjGKJ91iNdF7GGn59fWL5s8FY7XFRf/+RFbmPAvjyK5Cfc1Dh06e5a5DpvlzPz0dqzNmr/P7Pve5z82UTWS8gw46SFIfGc7ncfQsY/t03m7CVlglbxbbwqo5kUgkEonvWiTjnYPNMNoam9EKWtbMaCcwMrQXgMYCc4KN4LfL0X0tvc3OjKV+lYu+FvnhRtbLbt3szIr7PbuN+7p6PljP1MSugDM2qddu3feVyDwwXmeDkX+og/MeYcwtSr2P0HDR1NlpGGK1kVUy/eds3ncIfFeEuhlrZx2Mt7N3t6j3cXV/41pbjGJWR76pZNHZvZvMf/qV98Gz4ICN+OMO3T+0w9HyAx1roes7Q4syXfcK8L4D7iUgrc+ry/zbacrR9txpz5m6/BnwEoBFMydOPXWStfXqq6+W1McRIK8v89v7qmUJv+jO4dC1q7RmBsl4E4lEIpFYIZLxjsBYH81VWsXBNoBHsALnnnuupJ5ZsYIkG4/7SXoWHfffHYrv+oQnPGGmbGeBznD9GFnRep5dt1523dn9FdGR6CuOtcZ7wAEHzJzjXs/k4/oYiCIiAcpFg6Q8xsPZJvWg6dLvrgHXcy2yyOYZ3BrcmS/9R5sYY8+TTHnsIMB8YZuU7+zd4yhTT20vwHPO85Otz3/7NdM8ye+eWoO/ZXIfmiI7PJ6Bp/WOjmWXkZ4+1PaW72n0OSp3UcveyH+YtjM3a7g1PTsM+695i86W7bYJnnmMOXnIIYdI6mOZcx3jhVU0ka7cDmEr0Nqp2Aok400kEolEYoVIxrtEbEZvcPgq1X1lnWUcf/zxkvoVKvkvfeXpuTgjzQpmxorz9ttvX/dMrJydzUX5b91a1hmBW0VH/p+uRTpjA64tukW41DMk+tWtZyN9LIqM5M+C9g5bjBgBz8R5GC99FWVHqv/PXKBOno3xccbrkbyYO+hz3idE74KtwHjdytnZe2QhX+/aeN5XnzORhe79mpS16067zjw7battEobKGWsZHOUcHqP1LqofR5bYkZ/wRn1eKbe22OfvCtor8/E7mrxrZPNirrhHQ7Sr5TtG7vPv2bpoG1bQUQz6jWCs7r+VSMabSCQSicQKkYx3iRi7why6J7KS9YhHrOTxi/M4xqxEWSFGuugQ+xsC5dx2220z90v9ahdLal/FRtbMkRWzMzH3B/U28azOUp3JRXlhpb7fWvGjW/6g3mZ0VY/w4/Fz3Zqa8zwb9UYZmqT10YTQ3PncytVMHW4Zj5ZL29yS3v2pnZlFWY98zkrr2Tj9wti6Lv3ge6Y7B//XhJHtssdslijazq5ISyuMdNhoR2MIUcS2yFMgakOUAzdiuq24xg4vr66PcWCXhB2DR8j633Yk/H1hbJl7tIXxYJyYSzBrGC71stPmfr9RdLohbDYS2FYgGW8ikUgkEitEMt4lYpnagWt6rAwPP/xwSb01LlqMW5QScxkGRVucHboVs2ua3I/fXf1MMCTa5swn0kndijliuqyWnTGs6U7T1XMU/QnMizIVsZNWpiPfmaDN6JauHdM2mCxt9z5yq3G37OZYW7Hji4zPMW1oaeT+2cfF50bkFxz54PpnH5/af9R3Xryf3OcY+Ni73zR94dbhY62Zo+OQ9h/tlniZrTjQY62XF0VrJ0JaP+/px0dqdqfFvQAYJ/5euDU/fyv22WcfSf3Onfv6H3rooTP14PfraPXl0LVgK62VxyIZbyKRSCQSK0Qy3iXAV45jNIWxUW5Y+bESJPuQWwGi+bIChQnDHFzjjTKVeLs8RnBtXYh1a6Q1uX4Jogg7zhrdN5k2Y8Xs1tGOSHscQsT2ai21LsvbDDPwvKUAlg4jcKbmfeZs1TUzLIyl3jeS/hqraUXM15lstEPhn70+99+NIpXV18KEYEZoffTbWp2abUPkZ81cYv56pLCWdhvtiIC6D133bMWL3mxULW9TxOYjJu6RxOprfT52mvUk8LnhNgnus+1tdQ8HxtezprGLw98zx5h3O7qnhfTjTSQSiUTiYYJkvHPQsmBdhVaAhSpMF+3w2GOPlST9xE/8hKTZ+MPSer9I4NqUR07y1bPnN60tUWmLr2pdBwNRZCpnum4lTd1u8euMN/J19XKG8sAC12wjS1Nvs0f+ck3d2+6aJHDtnWeC6WKtC8uVeh3NWchGGVU0F7wcZ76t+LrRrkoN5hdziyMa7VpZr53uZrxr+i7+8qx+GWXi8ahmLSvmVizueRirI0dMNbKRiP4uRVbrUa7jIS3arckfuGFy7b2HTd7xssdsm92TgF0X1+zdap82sKNx8cUXS+r/zjGnsWm56qqrZspZZkzmSAPeyr/zyXgTiUQikVghkvHOwaKaSwtD97V0YRjOc57zHEnSGWdMEmK6tgU+9KEPSepXrliOegafiJ04W8V/lxVsHeXG4zhTRm2tWtfhLMKzD8F0YZHu+0c9Huc4ii40lH2lfjZpvdYdRfCqmb603rrT2YZrV1Gsa/dP9SxRtJ15gNYPE6zb2GJlEbNd1Oozyru8Ub/S+juOzAmyRJElZ43JvnO6u/Hz035/1GzbXU+mHymf6FxRvmrgLLNlIV5jrP9uq/+ieNX+Dkcx0qO2D8G11wc1ZZj3z2q59B/jFOnbwG1M2Enz2My8L8ccc4yknvmy41PH994qrGJHMxlvIpFIJBIrRDLeERi7ct8IQ27dg4/mq171qpnrYaIXXHDBzHXuf+fMy1liFNUIVgnTYCWL1am0Pu4wZUVWnC2mS9keeYrMJTwDDDjK2MOzRH7A9Wo8sjwFUSSxqEz3x4XpslJ37dFzpjpbh9midWHNXFtNj2EyddtbmlcUQ7sVv7jFEJypDV3vGjvPzxxZizGu4ba5XylzyK3CAczNGXJ0jHyj67qjfous791DwT0PWjsZzAVn9ZGfO5g7XjdPn2mfqQ6sWW38mmuukdTbGtAfbpUf5Z/mnab/3Sqa94byKIe/AWMwdocnQmq8iUQikUg8TJA/vIlEIpFIrBC51bwBjHW+3wzYdnrGM54hqU/HxZbOWWedJUm69dZbJfVbmYcddpik3kCJrRru960y305hS4gtZt+arrekoxCQUaqvKH0dW8xuMObbUWxTRYkLfJu2Tjs39Iz1/90torUt6+5Yblziyd49yLu7C1E+bffAKGwx833dnrESx9jQkWPndRQ4xuuJjLeGwi16W5Ej2HJmLnQ/O7l+5z+a9uN/mFzv7lseYpItS8ql3igoSxReMXLdqdseJf+IwozymS3iNZeeIPCI38+z0eYosYD39cw4XDe95oDhrXY3vmKeuzGVu7+5JOMJTLx8/v54yNBW8JH6fHRttHW8SvfRZLyJRCKRSKwQyXhHoLW6Gss4FmHGrBgJnYfZPSvBT3/605L6hPe4XbzmNa+R1K80WRV7CElfuXqbb7nlFklxwPv6eWCwtJnPzng9tSFHd6nBsALGG62qPUCGG2154AxfbQ+di9ibGxD5it2D+DsjgH04K3f3LfqOthMyzw1nhubS2JV5K3ShX9e6PzqCiHHU5yP2TD8xvwm4QH/uPP0T1pXZEIcw2CgRO3PVE3ww5zyJRRR2sWb3UShU5qOnPvQAMr77wfXeFk8mz7N4atCIrXpAjgevqIwNDxkOUOEsm/FwNyHmO8dTTjlFUp/uz10B/Rl496+88kpJ6w0qvT2O+vxYhrqo0dUykIw3kUgkEokVIhnvBrCVIcUok5Ugjuasjq+77jpJ0oUXXiipX9mTtu/MM8+UJL3+9a+faVsr3JxrWjBeD+hQ3wdbYPXrYRM5snKH4XKfsz5WtbAaZ+fAV/y+anaXEQ8GX5fnOloUytGZKdd78H1nznzPOEVuLdzngSPcxQoMaVmt0HdjGWzL7ScKGen1Rm5G8xivgzKYM7gV0Z8kS3hgp0n/MYd8l8SZKztCzE2fo4ybBzYBzlbr/7c0WO/nlr2Fa8TeN8DnecTS57lzRd9RF/3fSshAG44//vj/v713j76lqq9854pG7SgYMCYCBzhweMkBBI68DSIqkFyJmIuJuTfKSLc30RHtTre5ozuJ6djpa4/bt013x9hD76DTarcZYoYxRgwiBOUReai8Di95H96CgAEBhRaq/9h7nqo9f/Xda1Xt2vX7Hc78jHFGnV27aq1Vq6r2b831fSwAwIYNGwAAX/ziF2f6gn1DHxRNLcn7WZrspeSZisoonSkaAiteY4wxZkSseJdAH5tBZFPkiI82Wgau0xalI3naRu655x4A9Uie3qBqO9PzqRSotDnS1xSJQK0aNDG6pjvk99FCAmyDei9HiyywDZo4gOWrzViVbtOuHdm9IrWgZami0nJ4n9ifunygqh0qLtp2dbGLeUkn9HPXRC9Ek3pENtzSBQQixdxUbFG6RJ0B0sQwTKTxbJpVSm0L1QO1DZH3jzML6pfAejTFarTIffN61IYbzQzoMxUt6anlE01go/bWyF9BPbK55F9b21iGPoe6XKgmCWEdVMhsUzPlbHN/5MHd1U7bJ1lRTkXn9vfBitcYY4wZESveDnS16ZYo30idcCR40003AagXnednHRnq6Fe9namcdeEAtQtpsnJdpo4jWKAeveoCAqoa+H20zJwumRelcdTF6VWF6yLbkRpt2usir231Wo7iDqPzqKzuv//+mc+0aTHFp94PjXHW5dW60NUmFSlnklO4pbbhts85la4ewluV6FSt/fgFs7MZ6rOg94fPHMth9AD7n/eJ16Dezrq8YHOfejzzOdXncmuM6lmTNv8DJkr3/mm+Ri5QsMOmHWbapDNFtHdHv0/sO/Wp0IUQmvs02oF1aQpUjbPW3wL6a3Amh+Wyb5opaJttL7XlRmk42yiNMllGikjFitcYY4wZESveBeibdLukTI4sL7zwwplzOcJW+5uqDC6iENlUNH6RI3/ahqN6muXpAgusWzNVRUn81eNX1WS0wL2WT1SVqmcqactcpZ81I1WkwtVzl6qdSpfe5gqvmf2pC0aoTY20qZpS782umdYim67W23cGqNmOaEk79fxV+/6zH5nGtv7R9PxfbbdHaywr7xOVL+vTmQhVmWxHmx9ClL2Mvgt8Xlnnw195GADw2H4TVch3nkqYdT71yOT4V7zmFQDqZ0WVr/qH6IxQ5Gn/NJ7eeg363vMc9TLWWGNeM59fnnfmmWcCADZt2gQgXqRll112memzFcsTSnuWQdfneRGseI0xxpgRseItYGhbWRs6ylJbYS6PqGZxevjhyWiaC0pTJarXodqIaeONvAubi8pHNr+c16uqDlWm0cgzUtI8jqNxze+q7W2idUbeyVqG5pWmImCGnvvuu2/mWtl2te8RzSGssZsl9qko9lLRZynq92hJxFy9ESUxlzn1zueb/bTVJonJ9kWfm6g7xvcSLmu31Qt6atfkeY9hojp3PG3HmXrUQ1/fAyq05v/Vb+K5c5+bqetRTDyCH95t8o7q87pVRU/XfP8xpu/itZO6d3z1pI2a11t9HzSOXmdz+Mz+AD/Yeg3qEa3baKaNqp7w+b3ssstmtozrXbdu3UxbGefL3wJ9f6Lfo5IsgotkEFwWVrzGGGPMiFjxziE3Mhpi5JQb4UcqRu2emrWJo2iOetWjUu2otPcwg4yqIJ7fVGpqg1VP0kg1qiLQNun3SpTpRxfZ1jjINttwLltTLtMX62SmL47UWbfaoVWtq4JTz9OSLDtRW3NxizmlmvNhKM2YpdnAutjQtA71mGc//vD/m/T3T9ww7dfvTfoVfISmIvKFz0zV4ROT7597euqJ/JKpl/LVz0xPm5z4QvmJ5Gcq6p/ET9ZtnarpJ6dS9QlMY4Y3zXpSR/mgV2SDmi6u9exPTL2XXzgp99l/mOb13nM2fl1XOVIbMJ/JBy+c+H98D5PZrR9h5TutRPdMZ3x4vq7+xN+PW265ZXIt09+bQw45ZKbN++yzD4Da9+HWW2+dOV9j+8dUr47jNcYYY7ZRrHhbGErplsTvliqtKCsO7Tc77jix+zAujiPI3XffHUAdT0dvW83ARMWmI1dCZUfbMQDstddeM21TxavrgWpGpJzXsXpYRqu76Kib9ia9Fl0lqbkvsmfqDIPayThDwEw+WicVrSpfXUkpsu2WZtVpa3P0fWmcbZc43LbzSmMy+5Sl8c1q1+Rnon1CdagzD8+dMrlvP/pHs967qtq35tx+YZ1zu/rh1N754OT5e/ShyTMRrZRU6o1OtipXTH0j7prmCZ96JT+776z9lW2m0n346sm7+4OfnrRP7bmLoDmaNSc57wt/R7jaGpUtbb6as/yAAw6YOZ+56lX5zmtTtH9R351FsOI1xhhjRsSKtwN9FcE8m1up3Ysjc478GIf7ildMYvuoeNWT8dRTTwUAnHXWWQDqESeVFUeYjDeNRpJs33e/+92t+ziS15hTVawa36tZhHIe3fxMJav2PY1xZrs0jyzb2VTiGuvIrXp964heM/hoxiT1DNb7R8UV5a/OebG30TVOV4kyi3WtJ3qmI0/UtnP1HG2jziCoj4NmUIrq0dhwXcM5ykbF96TNX0CfQ/Vg78tWe+lLp8p5mp/62RdMbcSPzXpPM6vXU5jG4E5tuc8+0x6TXlJ3NCMUeRfzOafq5u8PZ4aYW15/E3gfOIO37777Aqh/AzhDN89TvvSaSBT7vQyseI0xxpgRseJdgCHn/HPqgSNLjiAPOuggALVi0vVkP/rRjwKoM8lQqXL0zfKo1LgiSrQeLXnkkUe2/p8evLreaLQOq9rZVGHxGtgW2nOoxqkyeR7zUHMbZdDamuWoxctabYZ6/dpPHHFTzajy0WtSpUubFmcq1LZbSvP+RPbo0tjYSFV3yYM7D+2TNlt0Ls+ztk0/c4aH/cpnRRWr3m/2v8bA6nlqe+f+pprVPMQ5BdUn33DzPN0+t8NU8b5w1nYbZV/T8voQKWD+FnBmjugsFO8b36fIj4P3hV7PqnjbrqFv/O6i8eolWPEaY4wxI2LF20JfJbvISCk6V0eQxx57LABgt912A7DSdvLBD34QQO3NTOh1y+N0vV/GFuagkgCA66+/HkC9Mgnz3GrWH1V9OhLniJ9lM3bvjjvuALBypST2Fa+dHtu6wg/t3hx1Rx6xTVQZqbJRr2W9tmZmL6C+b7rOLvuKx0e2zRWxnVPaFG+0jTyDI6Wl+3NeyhGR3a/ElqzH5OxxfObYv7qKkF4L+12zP+lsgT4PmvWp6S/A/7MtnAlS73wSXVtXovcpl9VpCAUXxVnrGtyaE15zO/Nd5We+H/xdYls5u8U+bmYOG+oalGXkcLbiNcYYY0bEincOpfG8fZRuqRczR+SHH344AOCwww4DUI/oOZo+6qijAAB77LFHa3m0TWqWJ+ZmpnqM7FFt64/S9nrFFVcAAA4++GAA9dqmGmtMZawxlIQxwlS6tPWq0uVW4yI5ymbbdSUbtQE3/682PVUR7C8d2fMzFa3WwWvnSJ3embT1qm23dHTdpnijz5HiiVYb6hufO6+Nzc9t1xap36iOyCbO+7B+/fqZ4/hs6bOhK2wpaq/V56CZXU1XCWJb1B+gq82ddL0/JV7k88orIcozEL0vfB+ohHfaaaeZz7rVGSee3xahAMxeY5eIgJJrHBIrXmOMMWZErHhb6JuxZ0gbAcuil+bJJ58MoB6p63qiOvIjHHlyy5Eiz7/rrrtmzi/N39s8h57OW7ZsAVBnc+IoV9foVDsolStj+mjX0TapzViVr+Z21tG42vGaZUdqRG2I6inNa2GZbDNH6DyOMxGcDVA78xBqZKiReaSYc57HUWynUuKBSiJP7Qj2N22Ge+65J4D6vaEfgSowfZbUM14VnT43QLziFGdiNDe59lfO2zhSxLnfl66e4s1jc7kJ1J6seaH1/eFMD31UNCpDbe/aNzyOSpn1tHmIR7HH+n3EMuN5rXiNMcaYEbHi7UBu9Jdjnv1B9/PYQw89FEA9euaIUuNJL7nkEgDA6aefDqAe8Z9//vkAVqpMjs6pVqMsUiXXE+Vopsrm91S+3PJa6ZVMe3OkvnXkrmpI7eLqMamxmM22UY2oXVpzzaryUSWsfcIR/a677jpzvLJIjKHui2Kxc4o1up+likltxl1swJG9magNOFLX6jlMtfmzP/uzAOr7GWWi0ndaM2Dp+8kZKWDlerw8luqM7xhnqaIVdyL6xqVGLDKbEj1b6hOhmcH4mf4e6nOi2b7Y//QL4fH0Xn/wwQdn6l2kT5aZqUqx4jXGGGNGxIq3hb7ecEPaBDhCZIYqKjCqQ470OHrmyP2LX/wiAGDTpk0AgOuuuw5ArbyoJunlSRtJlOFHr60NfqdrA7MubhlLrPl06cVM224ue1aUqYlqkiqHilfz7zbRkTnPpUeqxiFGWYl05SPeL5bHEbs+I1Gu28gzteRZLFW00fea6YhEMa5q9yz1Zm6ztSv6bEUrYWnb9Tz1Oud950xHlHlJ17Oedx9U2apq43PId4/vcs6ju/T3JBcf3eXZye2P7qVuIy9lvh/8/dE4ed7HvffeG0D9/hC+27yf82LCl+X7sAhWvMYYY8yIWPHOIVrXVBnSPqcjbtoGOULkaDpSqps3bwZQjxA5kuSIn+fRtpvL3zrPE1BtuupVzLZGti9e62233TZzXE456WfNlkP7UaTEmjGbarPVOENdrSiK99Tcv2xLFCeqyikXe6vbtljknFpRpatbzZmt9yuaiYjURmTzbbu/uUxVOc9fvbfaJt4fvR+R8uVzoH0U2SyBlb4FfBZYtuaFZpmMV9c2lKpPpatSXmSGTt8bzXnN/qaNncex/+hlzt8l9gG3GzdunClHV/din0dRHUD/6+vqBd0FK15jjDFmRKx4C+g6guyTyYpwZB/ZGqnmVEVqfljakdQrUz2O1Y7XxY6hHsG6Nq2qPI5qubIIR7tsay6WVj9zy75hjCxHx0RtwM3vtSz2X86LWeFIXldq0gxX0TV1jfWed59yila32u+6X+tU+7SqS7Vbqzd5W9tV0eZs2lHGpOj7yCbP+6mzNertzFkApXm/VM0R2i35vOsKSPr+RF7OOvMw1OpRJeh90QgCzXmts038HaMdnJ/5W8CZOVW8vEadUdJ433nvT+nvSWlmsCGw4jXGGGNGxIq3A7mRUB+v5si7lcqJo2NVdRrreuCBBwIATjjhBAB1TKxmuqInpa7qEXnVRu1twtEpy2ZbeQ0ctTL2+N57751pk6qNqC61r7F89ol6MavS1dmD5nWrelYvWtapSli9N3U90a5Zc0r3d5mZoIJSFREpp0jlqYLN+QFo7uJ5bS99/iIixavvl9qA1Rtd1X5OVTbVrXquq9c3j9VsS3yXGanA7yOPbSUXnx0xb1YhV0akgHWrmfP2228/APXMHZXu/fffD2ClnVtt/trmXP7rkrbn/AacucoYY4zZxrHiHYA+KjF3jHoxqw1F6zzyyCNnjmO2Jo7COeKMcjOXZjVqg22kjYrKV22GVLy0dfG8yEZI1HOS1/YzP/MzAOrsQdpHPJ75Yal4m3Zv9dTVmEsdwautV+3GkdKNPIFznvM5u1MbkXpU5ctnQGNUdc1ZQr8DzU8drbus3rslseFq683FHmtZOlNBonIitR+pzsgLvq1OfcdUHbLf+RyzLfRy5jur5XS17ebs5CX+AvpZ+zF6Fvgs8XeIq3TxneWqaldeeeXM8RoPr/ZwzVU/BF1+8xbFitcYY4wZESveFrpmKFnUPtV2DkfatIGo0qJ3oI4sWQ7tnlSHzAr19a9/fW69pbadtrZyZE5lq4pWbVuR5ymJ1vPltVHJUm2qPZwKV5Waep0261a1llN1kU1Xy42IbLc5ZVdShipY3hdu+WypXZMzF9zq+rKaN5ewn6lqND+4trckrr2rjTyyOfJ4zUme84bW+63PSds1qH1Y3121T1LZ8l1Vr2e+N8z8xvsSzRjlmPfedY39Zdv5Dqrq5+wX43j5bvJ4vst8ttgHzMWsXsu8dsb+6+9eWxtJqbfyIv4UpVjxGmOMMSNixTsHVbC5kU+XjDNR7BhHwbTzcMSoCmyXXXaZKZuZqJjbdP/995/5/rvf/S6AWq1ENrBFPLNV8fJzFKOp9rJorVt6K1NJcdSsnsa8Ns4GqN1V62nuI5FNV7dqC1ZllluTVskdN6+8nEqksuUzwGdF1YKua6xeyVRequ7Vs5ufOSNRYkuMnrvIVp6LIY5yYJOcSuR91cxlke0ZWOnAwCYcAAAgAElEQVR1rJ7SUd0ayaAZrlgu+5Oxr3zPoph8JerDNkrff52ZIyxbZ790nV7NpU1lfMABBwCo31XG+l977bUAgHvuuQfAyr7sM9uYU8L2ajbGGGO2cax4C+hib+tapo7IVfHeeOONAIBjjjlm5vx169YBqNUL7T8cWTZjVZvl5nIH52Iz56G5ftXzN+ovKgO2TbPccKSvCkA9Kmkfoq2xJPtUm7237ZzImzlSf1Hsqm67Pltt50XHqpcs40RpJ8t5tEcZr6Jr4QwH+4beuryfUb7lLtcdzShE8fCR30BuJR/N+KYrNvEZb8Y6a//oM8Q2qq2dx6vXvcayqg2d95MKWDPH5VR9H4/56HeL917jonntVKy6+hCVMp8Vzm7xfB5/6aWXAgC+853vzJxXQs5PYIxMVYoVrzHGGDMiVrwtlI4Au46I2rwHI486jiC52hDtc/T2O/TQQwEAl19++cz5d999NwDgiCOOALBy1K1r4fZpew6OtHkNPFe9jzX/qnotc4Sv2YZ0tMtyNT+yqtO2FWVUFet9idSynqc2K51R6Osp2XWU3jxGbbuMn9ZMYdEzmGtzFJf6/e9/H0CtyDhzoZ7AJT4PSi4+uu8MAlEv5px9tllfFCOscdG8Lxo7TrWnXuOa4Y3f8/3gTM99990HoFaXtP1GyreLDTMXz6szAvoesE18f9i2W2+9deYadNbsggsuAFDP/HGWYEhbbp/ZvUWx4jXGGGNGxIp3AJYxQmKZW7ZsAQB84QtfAAC8+93vBlCPyKkSad+hylRFqxlgVLGV2oO6tD3Ks8q20aZFhauxfpEnr8anRrmFo0xKTTWq+9Qep7GYuipKZFPsqmhz/Tuv3Cgr1kMPPQRgpQLKKZ3ovkWe8ITfU9lRgf3cz/0cgNoTv4utt2++3Fwmtly9+jzwWVPbbvOZ07rY33w32a8ayxp5M7McfmZdak+NVu7hTIeu3T2vL/r+luWyavF7+muoL4s+Y/RZueGGGwCsnK2JPMPb6PoMRc/ekL/zVrzGGGPMiFjxFhDF8/YdjXeBI72LLroIALDnnnsCAI4//ngAwB577AGgtpVwdK1oxh3Nt9vHzpGzx0VZnjQ7jSpdXeNTbbVUErQhsh2MeW6L121rV/P/UbxuFAM8L3OR1tFsY2Qry9mfcnGpzX1UOHfeeSeAeJ3XSDWU2klVQemWquX2228HUHuu8j7Py5gUvXM51a371SM7Z7fORRtE19z8Tmdg2GYqXKq+KIZcZ6NU8ep7ET2jvAYqX81Upl7TzevJzYDlbOz6rPFd5zXwHdaZJLaRmak0O9civ7WLRqcMmcHKitcYY4wZEf/hNcYYY0bEU80tRNNcXVNIllCaKIHTheeddx4AYMOGDQBqxxVu6dhyxRVXAKiX3eIyXDpdxakeTUoxb0otdy0aRM+pRYZL7LbbbgBWJkjXVJE6pcb9dEZhGzkdz3o5jcW+0Cm5eVNreg26zS1wr30R7Y+SUSi5hBxNeA+ZTo9OVVFITDTtqnVFCw6QKB0j7wMTPPA+tU01axui5S8joinSKC3ivNSPbfXlzE1t+/Qd02dH64hMJDptW3oe3zN+/73vfQ9A7ZzVVr6mDVWHxciJMJpyZpuY8If3Q52qCBMCEf5ucQpal0hU+jiOlU6r27nKGGOM2Uax4h2BLiOlKJGALrjOxBlvfOMbAdSqkY41dLai4qVDB7c6Gs8lMJiX9CBKBMBQJyZQoIOFpoJk23XZPg3t0OQVLJ/laMICXdS8TWFFzmUsI1rSLbcIQtR/pZ+1ffNCcLiPbVbHFG2rOgpFCi1Sd6qCWF6kejjzQOc3pjxsHh85euWcqXLpLpVcP7MduTAxfTbb9jVTkzbbFKXg1Oe+VL3rIhW6TCfbwX7nzAPb2byfnCWhIuW9K1WF6qzIOulAqaGAUUgale7hhx8OoH6HdWnREkpnSyJluwznWSteY4wxZkSseDswRviQ1sXRKkeABx54IIB6JEn7GUeUVI3RyP6QQw4BAFx11VUA6lCPqP7oc3Mf62Qb9ttvv5k26jJ+PJ77mfqOal5H/BpWwf7XhSCIJjfQlIZNlaL2MZYdJSsYysZLSkOy5ileKhymaqSiIWpT1bASKl2dQVCFzD5h+VqO+gtQLbHNfFZpe4zCvZp1a3/nQphKF4WPnm/dr8lXomQtQKySNQ2iKt3cNWqbWA77Nwrb42dN1MH73HbN9Ltg6tn7778fwMokHNp2VeMMGeTvFt9xPotqQ9blTtkOJoHhIgnLDOXMzZLYxmuMMcZso1jxLkCpd3PJiElHcpoGbuPGjQCAk08+GUDtuapKSO1K9GTkCPKggw4CUHtFU/lq4o1o8fqmouAxLPvggw8GUCdKiJbOU3uQqgrtLz1OR9uqPlQ583str3lMRC4Bg5ZTmoQiZ1MnkQ2+Wb7adrV/VMFqP1OV8D5SMamKZD2PP/44gJUJ61keZwm03/ks0n7IeoD8Mop6XKRso/O6zkAQ9hVnBXJJSJpt5DY6RxNlEPUs1m3OSz16zzRKoO19oDLllsdytoKe6qru9Zo428Vy6MfBz5wtoZLWBU709y83w1TCmDOWOax4jTHGmBGx4p1DzsN3SCKvSY5SafugfYYjx3vvvXfmeLWzceFoqhlu6WHM+F+m98ulEWxeO0fDr371q2fKVGUaLZ2nSkpHvaocokXMtY08ThcUV+XRdm7p97k4xly5pak6o/Kb94newtxqikI+K4T9QsXJZ4A2QFUx3PJ+633RuFBN7akLtHPxBHq3N9sSUapW9JnLeajmUlPqs8RnqK386B5pTKt+jtqqz0g0QxQpXS0/io1uKl5Nz8qUtBp3qylnqWDZX7y3VKz8/WLEA4/X6AGN/eczzGeJ5N6beawF5WvFa4wxxoyIFe+IzPMMVtS+Ro9VVS+0kai3JUeIPI9wBEm73t577w0AuOOOO2bqyyk1oPZcZFYajSOMPB9VObGt6jmscbs6gtfFt9ULWjMGqWdqk8gupl7PUVxpqZdzqT9A7vjmYvb0PFWlS9VBdcLr5mfa3XjfNH43WphBM4tFzwzLV5VIb1w+u8269bPuV3KKNadwIyLvZo11bjuH16tqTonidnXmRp9BnZXS94lqku8V26HvTdsslr6z/L1RpctnTGPI2Rb6edDWy1kVfs9njv4C5NRTT51p6wc+8AEAK2fkumTUI9G7GpW1jJlNYsVrjDHGjIgV7xwWHfGU2CEiZaOKl0t7aeyjjoI1ZlBtI4SerrTL8jNHy9Horzl6p92GtkEd2es5aj/Sa1aPySguMbIZk8g21nY/Vd1FduVchq+cR2lE5LWr7SO8v021SO9ilkU7Gu8podKhaovuW66tOZ8HzaTEz6q8ms9mlL95XqxvSVtzn0szXZXEC+e8i3XmR2cYom1km9Uc5uq9TBh3XeKRrdcdxZGrqud+jd+lT4pGW/B3h3kEqGgJZ0XOOeecmXpIH8UbEdl8l2kDHkTxppROTyn9WUrpkpTS4ymlKqX0meDY9dPvo39nzannjJTSN1NKT6SUHkspXZhSessQ12CMMcaMwVCK94MAXgPgCQD3Ajig4JxrAXyxZf/1bQenlD4C4APT8s8E8CIA7wBwdkrp/VVVfaxHu+eSU6Ndy2kj8mTkfo5WmXtZR7MctardjGoi8haljYa2GKokHXkqzfKYqUrVYKRIqbC41fhEHs/PVN9qU9Ty1buTqPLQdgIrPaMjD2rd5hRUX1tu5Bmri6w3467Vhqq2W80OFNmrSW7lF3oxc6sxnHy22Ic8jm1uu1/RDIJmxSKls1GRzbfrO6z1z4unjuqMZmhUKWtcuipZfRZ1VoD7aZ/l88H3iczLvqXH8FydEVNVTp8RXXFMoTKmJz5zRP/e7/0eAODKK68EsNK2u8gsZOk7OYa381B/eP85Jn8QbwPwegBfLzjnmqqqPlRSeErpWEz+6N4O4Iiqqr4/3f8fAFwJ4CMppS9XVbWle9ONMcaY8RjkD29VVVv/0C7JE+w90+2H+Ud3Wu+WlNJ/AfCHAH4DwB8NUVmpx2POLjREG6hcmbP0wx/+MADggx/8IABg9913BwDceOONAGqFrLYYhSNbqk/aa5kRK7JVNr2qqahUlURqUHMzE6p0qnaidqRo9SKOqnMejxrfCMTrjZYq3K72oZzSzdkUuW3GzmoMpMZDR23T3NU51U21Q5WiXrs6o6FxvtrOtgxiWrd6yPd9t0rPK427jtRpW52Rn0CkdKNYen3ec+v78n3hVu2xbdeqns/0Oua7qevhqkLeZ599Ztqo7zphW/gs8PeLviya5zuKPR5TpQ5Zx2p6Ne+aUvqtlNLvT7eHzDn2xOn23JbvviLHGGOMMWuW1fRqfvP031ZSShcCOKOqqrsb+14KYDcAT1RV9UBLObdOt/uVVJpSujL4qsQunSt70SJCdcIR4le/+lUAtX31jDPOAFDnwWVMJ2M4qT4UXTGIypm5m3NZdIB4XVGiI37NFatKQO2YPF89tDVuUT27o/Vi9by2uoeascnZeksVXM7jFVhpR4ts7lGmr0hFaBs4M0HVozMZfNbUy1ZtkG0zI5GCydl6o9zNXWetcrbfknjgyJarfgP63uhKPXpt0buo1x7FMmscvLa32Xd8V9S3RPNE6zNCXxHadgltuQozYWnUhq54VXo/SojeydKyhpzNXQ3F+xSAfwtgE4Cdpv9oFz4BwAXTP7bk5dPtY0F53P/Tg7fUGGOMGZjRFW9VVQ8B+Ney++KU0kkA/h7AUQDeDeBPuxZdWP+mtv1TJXx4YRl6buvnRWLNoow8VBtnn302AOCaa64BUKvJXXfdFUCteOmtrNCmy1zOHLFyhEpvQh0VN2MvmRWL66vmMvSobZZbtp2jZSorHfFTEXBUropZ1yLW1XHa7FI8Vm3hXRWp0lfpan9H5Tf7WnNSRyv9qALjeXq+tiXKJKY28yjTktqa22ztXfs7usZSW3t0XBTbGsVTN5+bXEy4tlnLiH5Xotjy6FmJFLJ6k2v0AFDbdBlfq5nvdLaCZXLVM23z0UcfjTYeeeQRAMBdd9010wbNQjdEBEnX+Nwx7MZrJnNVVVU/BvBfpx+Pb3xFRdv+FySviI0xxpg1w1rLXPW96XbrVHNVVU+mlO4DsFtKaZcWO+++0+0tQzWi61x+aexml7Jyoy3aYLgGq8ZscsWgKFaT8XYXX3wxgFotUvlypKvtadqhaE9ev349gDpLjY561baq/cT9ug6s2no1jjSy9UZ92HafNKZV8z1HsxlK7t6rWtE26eecimna7jVDVE5p5fIOR3XSQ1Xvj9ouifahejuz3W1tLI1z1jaXrpus5w2hbqI2Rs9SpHT1PH12Iq/o6Hyd6SDMeHbzzTdv3UclqhEGah9mGzijttdee83UwWeFGayUBx98EABwyy2zP9t6H3Pe/kuKomkt+/ni1dwG5yXukP1fm25PaTnnF+QYY4wxZs0yuuJNKR0F4Oqqqp6R/SdikogDADTd5CcAvBPAH6SUvthIoLEewG8DeBrAJ4du6xD2haicviM1VZ5qr+H6vLTR6uofClUqvQxp+73zzjtnytX6gTqe8+67J07ojB9VBaY2wUhlaOajKMaWSoHKV+vTtVOjuMhmndxGnqVdlW5Xpaafc4qvqXhpz9fYR1U8bV7dbW2LVAX7lX4AGhcaza6oPVC92tvq0nOjNqqHcPRs5Z69yDs6On/e+6ttjrJm5Wy60QpN0f3JKW4eT3vqli1bANQREcDKtZWjd5f38DWveQ2AWvly/5577ok2mI+ANmTOmml8cM7uHdH2W5u7Z6V1DKmuB/nDm1I6DcBp04+vmm6PSSl9avr/h6uq+t3p//89gI3T0KF7p/sOQR2H+4dVVV3aLL+qqktTSv8RwL8AsDml9HlMUkb+KoCdAby/ctYqY4wx2wBDKd5DAZwh+/ae/gOAuwDwD+//APA2AEdgMk38kwAeBPCXAD5WVdUlbRVUVfWBlNJmAO8D8JsAngNwFYD/UFXVlwe6jiK6jnyG8JLTkWCU5YYqlN7KXAeTI0rN9czvH3hgYjpnPK+u4drm9ck2MNaPo919952Y3XWdVyVSBjrKVhWq8bqaK1gV2jzVTqIsQKp4S5VsqZduVF+Ops1NY7bpea7ezKoOS9sU2W6bNtomkfd0lHGpSWmsZani7apyothZPa7kfukzoM9tFHer9y2y6UaKN9cezoxQ6Tbvb+7dI/QFOfDAAwGszJJ14ont+Yz4O8NMVerNnPMu70Jfb+YxGCpl5IcAfKjw2D8H8Oc96/k0gE/3OdcYY4xZC6w1r+ZtkpzqmTf67mqzUBuvjoqpbKl4ue7lV74yyaz51re+daY8eiPSu3DdunUA6thc2mLUw7gJ66SHNZUXlZjGHUbXpiN9PS7KvKSr80Qr2bR5geZsfZHyytkzu3rPRrbNSIE1j49Wq4lyAS/qyRutlqP3T7fR7EEbpTMLOZssieyrpV7rWg6Pa848RM93pM6jNmu/ReVE1xK1g/1PlcmZkWZ7eE+j543fH3HEEQBq72XOZvD3JFpHmXkH+LuiK1zl7OBKVxvwWmGteTUbY4wxz2useAtY1Lt5yFFYZANROx69mmlL4aohChWxeiQfcshkzQrmUGXMX7MvNEMRYTYaxgrTHkTUnhPZ/HTEH/WjlqdetPPsVTk7W9cRtxLZS/vGCbcp4Cg+NIrzzNlPI69Y/VyqSkvqKS0jKkvLib7PeRRHn0vPax4TeVLr9zpDE63XG221XH1GdEaEa9+2zepEzw7fpQ0bNgAA9thjDwC1Aubs1imntEV8Aps3bwZQK17mCYie0dz9i1jEj0bJvSeLYMVrjDHGjIgV7xxKYvbajis9r8uxpTYrQtsJY2wZl8stbTGE8bwcDXP1I9p8ab9teghT6TKGjx6NHLEzRo+e0iRa1UgVKok8jiNbr9oeo1WQmtcQ2dXmxQC3EY3co/NyccJ63DxvT1X2Gmerx0Vtj+ze0TPI+iJvXK23Td3mVifq6qGqRH1Qej8jO2vbsblrUBt5ZAPm86wqNKd0FbaHNl3OYrUpXq2D78f69esBAEceeSSA2rbLGbKDDz64tW7WedNNNwEArr/++tZrINF9GkPJ5mzlQ2LFa4wxxoyIFW8Povi5Uo/VtmNLP0ejtcgLl5mr6OV83XXXAVipeE8++WQAtU2Y0LuZSpgZrproqjWEMcVRLGAUj6uKKad4uVVbrypezeXcVofax3J19iVSf11tj000xjtSvLl80RE6s6BKLFo9R3NCl6r8trpzttbce6OqMKeoIzXa9j6W2nT1PVGFm7Ppahtzsd8sl5mq+JvA56RttS7u44zXMcccA6DOvUyly5kx+oQoXN+bfh+cOcvlqSbLUJ2ldS7TQ9qK1xhjjBkRK945LDri6TNa6zoam2dzakJb7w033ACgVrKbNs0uT0xbDZUxczczB/STTz659ViOWjVHMLdUxzyH6+1GXri0S9PDWtVgFA8cqRj15tR43ua+LjGmbcd1VY1dvXLntUuVqM4gqLrIKSWtW8th+RoXrEqaipvH6XrJ8+rObUnOXt2VUqXbVk/0TkZe97m6Ig/jaHZL28TzmaHq2muvBVCvd02a943/5zu4//77AwB22GEHAPU9pF/Hfvvt19oGRkHQp4S/O9GqZ2PYVUtnlcbAitcYY4wZESveAnL2I6WPjaB0RN91pMhRL+06VLK77rorgJWK901vehOAWqXQPsf1MzliBWobrmbA0TbTPsy80NE1UfFy1M26I7WnarUky1PzuBJycbX6ufSZKH2mSp6lyFauClUVU+RFnrN3qo2X6IxCl2xEOTWodeRmDKIVgXJE6rMkQ1ZOsUZ18P5ov+ZsxdoGvT9cs/vqq68GUL+v0X0DakXLd1UjFhivSyXMdb8V2nL5u3HllVfOXGtXH5e+M0yLsExbrxWvMcYYMyJWvB3oqnz1+xLv5tJzc8qKcOTPUS5HolxBiCsL8TM56qijANR5XZkJ67777tt6DG27tOVxq6qDipffRzZXjoapfPl9FJerSle3qkByK880v+vrzZxb6za3X9tBVDU1P7Nf2W/RylWqiLrGsubWN87ZjOfZJkuVTFelk3tvoj4q9Z1oqsdIqUZlR0o3Us7Ru63lcgaKkQzNd7btPM58ACvj95l17qCDDgJQx+RH6+0SzoxdccUVAOqY/iFWHepL6W9m9P2QyteK1xhjjBkRK94WciOgvnaGNg/IodoUHadq8pFHHgFQeznT9qKKl7YcZqrhCJa2HaC2IbHMSElpvmfai6JsTLrykipZEmWm0r6IPFLbyKnAUgXcNd63dDTepsTUy5hof2k/6AxFLkY8+qz3SeOmNc66jcgzva/KyNl2I/tplDUqOr95H6IVvKIyu8btksjeyfvPNW+ZJYqzVtGqUozNBWpFyxzuXIWI3su0/UazG1TZXO3s8ssvB9C+ElLzGnIsYtPt+ywt0+PaitcYY4wZESveDpTGDJaMrLp6W/atUz2GaZdlXB1HtFEOZ3o/U+lS3Tb/z9Est6qAaB+myqbdSHMn59S6Xmu05qeer59L8uxqtqzIgzpS41G50ff6OWcnbFNaOfWmNsWc52hku42O0+M1U1jk0Trv+pVcJq+u71OkMnOKd96zFHkZ57y8czMzkZLmljNKjNfVzHFUupxx4rrZtOsCtfrduHEjgHomjPuj55w2XPqQXHbZZQDq34hIvQ/tndzsoz4RAmNhxWuMMcaMiBVvC33tDn3idociVx5H3bT30NORyveAAw4AsFLxkmOPPRbAbK5mqmiOrGkHZj+wLh538803A6jzuqotUG1kUUxlZAOOlITaQJsqRlVGTsmqImbb1VM7Oj+nZkpnQprXENmicl6xEVqeXpva0tkH3NJLVu+Lel/Pi+fN7Y/UdunxelzOzhp5P7dRGs+cW183QlU43zPaV2+//XYA9QyUXjtXIqMfR1Px8j1/wxveMHMs1XIE80Dz94S23UVn9hYhlwMhOi63fwiseI0xxpgRseJdIqsxyiPRaI2qg7beb3/72wBqmw7VKO2wyimnnLL1/xxRM06X3stUwPxMhaPHMV+0rokbESm5KE43yi3cVC9RVqBcdqtIGec8sUsVb6l3dbMOKk29XrWJ51boKe2LSP1HNk618bb1ReSxm1MppZ6npZ7bJKdGm+VFMw5aV6R4o+P0eL2/9GL+1re+BWBl7nQ+F1xRaMcddwRQv+P08wBqpcuMVTwnQtf7vvTSSwHU+aEXjdsd0qM4esdWAyteY4wxZkT8h9cYY4wZEU81L8Ai4UVDTUN3nVrj1A+nnOlktXnzZgD1MoBve9vbWstrTjsedthhAOqpLoYpcAlBblknp6a5UAOnsTjlVZpyMAqT0fOjhAXzyC14HiWDKE1nGTne6LXmwpjawiY0jEcTZJDcc9v12YymxXltNDXMcx7qm3Ck1Ckt2p9b7i969traGz2/ubC20rbzfvI9Ypgep3dp4lHTC5f4o6MUl/hj2kdOLwPAzjvvDKB+lyO4+AHfZSbM4Od5DnRdKA2t6lJP6TO2aKjaPKx4jTHGmBGx4p1DXyN8H4eAoUdXufM5KmbaR4YgPPTQQwBqp4k99tgjLGP9+vUAgA0bNgCoA/jpRMVRM0foHLHTEYMB/FyQ4WUvexmAWMVouJEuAKEqNJeAQ//fRB23tM5IIelnnl8a+hTdt0hRt52rx+r191WHul+dtVTBaR/q/WlzEOsa2tE1RCRypuq6LXXCax6bW/wg50zFsCEqW4YP0VlRn1UqXc4oMWyISvfNb34zAOCVr3zl1rbmlC654447ANTvOmfMqMJzTlXLSMM4NMtsmxWvMcYYMyJWvAtQGrQ/79zS8JK+3yt6vKpQ2mtpn2Wy9HkB9CeccMLMOUyywZE0wxuofDli55KEHIFTOWuqQVUGkbLqquzajs3Z/HLJKLqmNCxNzBDZnIFYhauKzKWK1DbkVF6UKEPDtvT8tj6OlgxUFa/H6zWU2lmVnBImuRSh8+iqdHkc3xu+V0xEQ8WriTJ0MXumfd17770BAKeddhqAOlkO7bolUF3TN4Tba665BsBK226pD0pfdTlv5qk0ucpqYMVrjDHGjIgVbwurMSLqWmdOceVGeToiZTJz2mpod+Womok12uAIm+fQ1sulxH74wx8CqEfHVEQMsr/66qsB1CNvKmVVUrnUe6q0otH0vL6O7PpdvFvbyonUY2ny+HnB/1HiEZ05iGzlOR8GPU4TnuQWBSj1qm6SU566n20ptZlrOV2V7rxriGY1cnZl9htVI5UsU7FymT+mZaTNl3AGgpEJ9MHgZ9p0OcPUXA6wFC6CQN8QLiuaWwyB5Gz4pQp5EdaCfdmK1xhjjBkRK945dI0pHGO0VkpXj2zaeqlw6Z1IT+MSDjroIAD1qJgjdsIROj2nOcKnhyTjDF/3utfN1B3Z7yLFoHbBebGeOXuneuxGRHY7VbaRSiz1Qm9rp6o+PSZSaZEijVS9tl2JZiBItNRi27mlSrd0f66tpd7RXVRStOB9ZMtlf6lNlzNCN95448z3hDMQXPSAipYpWQ899FAAtY2X6SCpkEvgO00bLxdFYMpZ/n5ElPo+jKFGbeM1xhhjtjOseFvIjZL7jsqWOdLqas+MRpy0uzIzzbp16wDUNpwSuxC9Js8880wA9ch+//33B1Dbh+jtTCXMET1tvFy4gTbkvhmX5t2vnOdupIAim2LkFa1qPecV26W8yN6cU1bR4hKRUtWZhJz3ebQt8QzO3dOcLT5S8blZkqgPyTwFHPkBRMo38l5mbOw3v/lNAHXEQaR0uegBFS4VLT8ffvjhAOp396UvfSm6wlkqbv/2b/8WQD0zVvrbtuisX5ff0DFVdFeseI0xxpgRseJtITcqW3SpqyHpm1WL6CiQ6pM2nE2bNgEA7rrrLjIPRuAAACAASURBVADdPCEZ33veeecBqOMKqaJZpsb3cnkz2qD23XdfAHVu55xnaRd7X84LNvImjlRl6WLmqjZz92XeNWsbNG6X9recAuNxfAaY+Yj9Hl2z1qezBlTQ+j0VW/PYaAZB1XHOmzwqp3SZv+h+az3NbFyR4s/lGOfMD7PH8fmnjZfHqY2c94UzRFS6tPGedNJJAOpYfH7fhSuuuAIAcP/998+0jW3V2RHSNZ49t7+URXInjIkVrzHGGDMiVrwj0NXDeBFKbVMRPI/ZcTS28Mknn9x6bM5WRKXK0TJH9owvpLLS+F56Tl522WUAauXFTDsc6asXb+Q1Om/0nYvXzdlqlXkZptrKydlnS+Kyo3sdqTz2M+8l46yb9xaoZzeYU1vryym7nOdx0xM2l5lKry2ndHV/tBpUdD+1nihWual4c3HmuloT/SaoKundr7ZcnUHgTAHvDxUvZ5Te9KY3AagVbpfIBMJ3j+8mZ8AuuugiAPW7O+Zv29iU+sv0wYrXGGOMGREr3h70je1rOy5SY0ONrvqORGl/pUqluuV+ADjwwAOLynr9618PoI4R5mopVLC07TJDD5UQlfLXvvY1AMCJJ54IANhnn30ArFRifTJV5bI3RQo4Oi+yd+Y8fEuzO2l72sqMZgKi1Zt4jx9//PGZNnE1m6gN0TV0Vb5tx0Q5rLWuSJFGdZbebz0uyo5Wonh5DGcW+A5deOGFAOp+zz1jvK+M1+XMEd+nV7/61QBWrrvbJV6XM12MaqCH9QUXXACgjnoozdzWlWXaYdeCbZdY8RpjjDEjYsU7h7520jHJjeK62mB4HOPzaOPhqFrtT12gTYojfMYZUukyvpc2MKoLKt/zzz8fQK16uJqRriGau9Z5fZaLD1XVGGXHIpGdWcnZeOfFtUZtjpQoj1evZc48ROsXazlav37WvtLymudpmVEdkdKK8noT2kUjz2xtm7YjisFtns/nVs+hdzJX8OHMD2caot8ZVbq02XKmiO8T3yMqXipixvfm4LsOrJzpYn5oxhRHXsxR20tnn5bpzRwdu6y2lGDFa4wxxoyIFW8H+qrHLnaLRUdbXVV6ZKPhyJY5WjmabsZeduUtb3kLAOBzn/scgFqp0lZMuxLtSGyDKt+/+Zu/AVCvtnLAAQcAiON85/VBaWaknP0yUr6R3U4VmCq3nO2szTNbM0LxWL1nqhppK6eyyt1jlsv7osdHqjEqp/n/XHxtlFEsUsy5mYioTbm4X35uzgBxxoa2XK5PzVzLXLVLlTHRe682Xa72RaXLeHhmpuKsFLelXHfddSuugRmqzj333Jlr0uevz7rEJfSdXZwX577ITNjQWPEaY4wxI2LF20JXu2lkl1Oa+3OZklYbtuuWW24B0B63yHhbZsbJQZsi1wdVb8+DDz4YQK0QGOdIL2e2ifu//OUvA6htaMyyRQ9sKrFICbaRU5h6r6n6SuNu1f6p6ianHtuURnR9qtJYR6SI1fs1dw28dlU9msNZ+6iLsohs3dFxRDNe5WztOW9o7VNeE+3iAHD33XcDqG24nKFRW3euDew/2nSPO+44AHWcLr2Z+b5w5qjr+ro33XTTimugbZeRBJyFKvUK12sppXRmbkhKZyKXUbcVrzHGGDMiVrwD0mUUWGpbXFZbcnBkzzg+ZqppehBTeZYqXkJbFTPqUJVQ+dKeTOXLEbmqD47OmU2HNrUjjjgCQG0DUxvmvMxVuj9Sj5EtMLLVRoqXx+kKQJHSnad4tU2cKVDFqQqVbWEbVKFFalIVr/YvFTT3z/OGjmyqkVqM7kPOKz13X3KKl9fMWRZ6/QLAVVddBaB+Lkm0jrF+ftGLXgSgttH+/M//PIBa4dLWS58Gvj+cSepq2+WMFd87oM7BrF7MXe2kpbOGOUpmD6Py1lLcrmLFa4wxxoyIFe8qEdkXxrZ15BQC1SZH8c1sUYzH7QqVaOThS1WisYT8rKqFXqK0WXH9UioD2n6pGJq5a6kyIu/MUiWk+6PjSm3BJbZdEuViVru8qj5VcTyfCk33R/HA7H/OhqjCUzu2Xmvz/6Vr2erMgapptWdHqrP0/nL2gN6+l156KYB6DWmgnhWKPLCjNZnpjc+ZoNe97nUA6gxUfD/4rLI8zijsuuuu6MK1114LoPZgZhQBAHzpS18CUHtgd52ZW5bvyhDxwKXqeQyseI0xxpgRseLtwJB215yy0eOi8/raQEptNlS8tOc2PSf7xvBxBM91Qznipz2Z6oW2K0JvUc2epeqIq+zQRsxYZCqKQw45ZOu5VAu5FY8i9ajkPCVzCiyKD1Yl0ex7VaKqeHPqRG2SGqNKRau2Wq2Xn6nMciqz7dmLVCKP1WuLMk+x7tJ+jhQ3+4CzKMyeRuXbXGFJryHaz+d/5513BgC89rWvBVA/l/rcs218rh944IGZ40vhWrq07fJ94zUB9bsSZR3LoV7kXT3Zu/7GDmnH7erxvghWvMYYY8yIWPEW0DVmrWTUtiy7QqmCjupX9cJRNkfCzBMLrFSHfeEqOFQAtB3TJnvkkUcCAHbffXcAwJVXXgmgHrFTkana1Fy5HPFzBRagVhsbN24EUMdOsixVupHXchQjrP2dU2JKFMfatjpRpAaj2RH2G7eE10K1R69XKlkSxTZzq/bz6LgSIht31L+5mOYoLpd2Wto9OWtCPwO+D1HmqyZsA/uBuZP5DvHZozcybeQ6kxA9e3o/Iphvne8Lr+Hb3/42AODiiy/eeizveVcv5tKY2BxdozpKvJuHLGsorHiNMcaYEbHi7UFpjFofVTuUjaOv7Vg/Uw1xPc5jjz126zEccTO7FW2ofTn66KMB1LZfrlfKUTgVLzP4UI1QwdJWqYpPvXO5GhJQZ+ihimYMMW2/vEba3ZgVizbhnKrrS87rublKjF5fzoNabeFUedpmlqve5FE+aZardk9630b26rbr1P2q/nLxpW2rBzU/87lmH1AN8lnmM8XZEu3jtnbz+qhcGd9O73rG41Lhqi08isNmuXz+maM8B2cqbr31VgC1F/Mdd9wBADj77LMB1Pe/2YbSDFV63lqOnc0xZtuteI0xxpgRSdvyCGVIUkpXAji8uY8j0r722HnnLTqy7NqGnH0tVz8V3xlnnLF138knnwygts1SqVKRDsUnP/lJAPXIXPMa0x5HWxVz5PJ4qps2T1i1g1KtMJ80t7xGqhXan6mAqepycY2lNt6cDb6peHOqTtdQ5QwCVR5VHa+BfaAKV69Z7am65fujyo7Me5ZV4VL9UX3zmjQWnET5oXk+nxEqW2Y9o38B68vF2zfzWzPu9qijjgIA7LPPPgDq2REeG60NrJ7b7AOW+853vhMlsLzLLrsMQG3jpWf2pz/9aQDAli1bAMz3YO76u5TzDC4lV05Ju3KRI6Vt0pmIZ555ZmEHHSteY4wxZkSseKcsQ/E2yl6xrzSOV48vpTRDUq5eQhXTzAf7K7/yKwBqmxNtWvTepAJeFGbaoRcm0dV0qHAZ57h582YAtU2LNq7mCF9XPlIFRfW3ww47AKjtbFQz7A+qGs3eFNlbVR1GRJmv2ryauY9Zh2jL5nVz/6OPPgqgjs1mrDbP57VzS6VLuzevmX2icae8Ju7nceq123adat+knZLXkFO6VPl8Fng+1T1XEKLi1TVyo/ukMxW8tqZfwwknnACgfhaidyynwHjtvLb3v//9KIHXzJzRjNdldq3PfvazAIB77rlnpp4ST+DoWkp9TKJyxqCr4o32W/EaY4wx2yhWvFOWqXgbdRQf0zfTlB5fWnfp983YQdqeTjrpJADAr//6rwOocyHTFrjHHnsAWKmMukLbFD1RqXhZrsZiqmqiFzRtXUCtCql4othXjROliqOqpxpkHDBtwuwDouVF8cBEbZ3qudy8bl4LFQ7tlqr0eS5tvewvjRfVe04lx/tLWz4Vsap+bqmQ+by0xZ+ybm0TbbLcr9fAz7x/vFaqeSpbKl6Ww2ejrT+Blc8W7yOvhStgbdiwYes5Uay1bqN3U9ePfu973zvzfQTt0pwZYlYt2q8/9alPAagVcMn6yIvGtK4lxUsifxfFitcYY4x5nmHFO6WpeNVjcUzFq+RsK0N4/7UdF9XbVCv8PxXQYYcdBgB4+9vfDqDO0KMxr4xrVDhCpw3ymGOOaT3u4x//OICVyoptplriCFW9SZu5iZn/+brrrgNQe0hHMcGaQ1jtorxWekPvu+++AOKc0OrdrJ6/GrdKxdZcGYreqVTybLvG50Zxt5wR0Phb9R7XeFxCNbjbbrsBqBUw7zdnB5jnW1fZadat+aH1M6+Jsx60T6uHNo/LxThr37Bt6qnPZ5azN1ylq/nesC62VVUz7cm8JvYvn19mT3vDG96AEvisUuk++OCDAOpY5LPOOgtA7fPQR+mSsRTvokp73jUtGjnS8LC34jXGGGO2Jax4p6wVG2/f+zF0GyPF21Rk7B/1/KWyOfTQQwEAv/zLvwygVkZUyAcffPBMHVQvVG48P4JKTTMGUf3Qu5PqkCP+ZlwrlRa3tBFybV/mqKYK1zjSKEOSrkRDT28qKfYB1RA/q+cv66Fa4rVR3QD1SJx1qY1R131VxUl1yK22XRWu2l+jWGj13KZK5DWzPc02qVez2nypdLnlM6Cx2iTnPc7nmW2j1zpnb2jDZZt1pqP5LGn/HXTQQQCAV77ylQBqb+Lbb78dQD1D8La3vW2mLTmodJltjZ85a/P5z38eQG3njpTuWvztH9I23DVyJDq/xePeitcYY4zZlrDinTJ25iql1PYxlLdyZOPK0RyV8/+0ZVG1qbJat24dAODXfu3XANR2M65KtP/++xfV3RXa+6gEaOtq2nhVrWksJb+nar7rrrsA1KqcWYE0zjTySs+tI6sqM7IxN+8D1RpnHFSV8f7wuCivdM7jmm2LMl/pjELUF3rNzbIV7TddgUn7iahq51bjcKk6uVIQn03tK22P2tyBWnWzLmaw4nPO96FvfDtzLtMvgbMw3P8Xf/EXAGrv9ii/dInyLf1dGervxxhe0LlrytVlG68xxhizjWLFO2We4o1GvQVlZo/p6uWX+75UEefsPNF5TaWl9jONeVS1QUV86qmnAgCOP/54ALXqoG2Y8Z5DQS9PKgXGdgIrPXkj+2bkdUxbK23CzIxENUglTDWkSlrJxRq2zVCwX9lvbDMVj3rXaq5grVtzMEee1lRWtM3T3hrFys6LRc5l9or6S99NVecae8xn7PDDJ686vZXVM149v1Vh8zhec7M/eN2Mc/7FX/xFALW9OFL3Ed/4xjcA1PG5tOlefvnlAIDzzjsPQP2saf9q7HP0TDUZymckx1pQuqV1WvEaY4wx2yhej3cOpSvHdM2AskjdEX3b0HeljjbU7hWtofrXf/3XAGr7KON+OWKn9ydVCuOB+8J8ulTi9IgFapUSrfDDNqs9m5/pBUs7Nq+dsbU33HDDzDVRrWi2KFKqAJqfqaZpa1VFy7rYv5HdU9V+tJqOehhHttw+NjVVnOqZrYpWvY15LRpbzHWW169fD6DOMKb18FqoZNke9U7nefQ2B+r+1XNKfRh4H+lHQO9nlks/g3POOQcA8M1vfhPASu/yrrNe8+7TsuN6h6LLNayFWV4rXmOMMWZE/IfXGGOMGRE7V01pc66at4xZG2P2Zek03tBTPG0hIDrNp0vj6fe6UDrDK37zN38TQB1+wboY2sH0i7rwQFe4TCBQTwmrYxC3nE6lw0zkUBYtbs7pQ04TMgyJIU5McsBpQvZRlM5Rw2ma52j4W7TgAlFHLg2t4lSzJtzQpBbapihkSkNxmt9HCzOwf/lMcYqYU8h0YOIzwWeFaSt5fJQMhG3h/VEnKraDU8zsa94POtEB9SIEhxxyCADgXe96F7pw/fXXA6gd9DQd5he+8AUAtSOfpkaNpppJl8QZpSlpc5QuTFDanlw9875b1CRo5ypjjDFmG8WKd0qXcKKItdCXpYsoLFo+sFL9RQ5I0dJ6qtSoXt74xjcCADZt2gSgdrLSsBguRk9Vk4NOKM10ixruQ5WhywRS5dGBqZk4oXktVFwagqOOZlRMbJPeJ10EgJ/ZXiZPAGq1RnWsy/upeo6W1ouUqjphqXKNFiLg8Qzp0ZSWzbAaXVBBFS1DpXQBhugZJNqvbKM6iGmykVe96lUzbVSnK35uXsPpp58OoH5eS2HqRypdOmxxNuYv//IvAdThRPpsRgtAKEP8Po3tVLUMB9W+Cy80nESteI0xxphtCSveKSUpI9eirVfpG4bUZ2QapRhUhaTHq+JVWyIVEpPLn3zyyQDqRRWiEBLagGkjVrgwfDNlJEexPJdtp9pgyBMVEhUPVYmmSyS0SfKaeI0kStsXhWCRtkUZVMGqAmKbGcrEcBXaJKMkH6pcNbxIZzR0P5Ufl0SkiuQMRdNWrwkvtGwS2Qz1ndNUkrwmXW6Q57FeLnTPz1GY0UknnQQgftbmwbIuvvhiALWS5ewGE7186UtfmtmvMwt630lJgowmzT4ute32/d1YNEyyS71WvMYYY4wBYMW7lTbFGy38vRYpDZJfNEXlvGOjlIORMlaFTHWo9jt+zyX1mHLywAMPnDmOKpMKi+kAh+Dmm28GUNuHqXyoeKkmVUlFXrqRl60qrMgTuS3dItGZAJahipbXwGuiEqb9WJdTZP8zaYguZUj7LD9TNdIjWK+9Sc4uqYlGdEZAVb56gUczDGyLekFTjbO/jz766Jlr7AM92C+55BIAtZLls3P++ecDqL2bI6/lnNd4qY23zyxX378Xiy7NN0Sdi3pUW/EaY4wx2yhWvFOeb4q3r/fhIrbeqKxombkozldTFqqtmIqKqfje9KY3AahtiFQrPJ/1MUE+bcWLwFSTXHCBdjnahHWhAMJr1WdLk++rZ3IUJwysjAGOlGVkI6TNm/0atZXKVZ8ttZ/qfaba1/vdVGwaCxwl+ldPaj2e+9mmyF6tqSXpPc2UkscccwwWhW3hYga0qXOWhGlEmUI18lrOLSnZ1abbR/ku+ncip3gj2+0QinfRtlvxGmOMMds4VrxTlqF4x0zO3beurraXZrmRss3VFXk3R97R0RJ9vD+0NdKmS7VCj1ONY23ez40bNwIAjjjiiLltL4Xq8dJLLwVQ2+sYL0o1Eym7yKYZKeMmVJaMedV4Us00pTMJkSexepvzs8a0Uj1S7Ws9qkDYHmDlggt67zUTGLeRD4MqZH1mGCd82mmnAahnQ4aA/gDMMMVngp7wjNulrZe2X1XnQ8XpLvK7M9RvVl/F27U9887ve25L3LoVrzHGGLMtYcU7ZRHFG9kSVlPxKsvKZNUss1TxElVxul9tvXp8dBxtnPTCZYwuVQ6VG1DbNfWcI488EkC93N+i0L7HJd1o34s8VzXrVKTomlCJUnlSaeqygFSkPF5VofYr69TYWM2EpbZetTFHccBtdfO+8JxoBkCP0xkBZhKj/f+UU04BUN/nHLn3hjm3gfqe0luZ/U6v5b/7u78DANx2220AVuYBj2Y9Io9sbWPUdtLH5tlVJUbHR4q31N4cHT+kvXqbUrwppVeklN6dUvrrlNJtKaUfppQeSyn9fUrpn6SUWutIKR2bUjonpfRoSumplNLmlNLvpJRe0Hb89Jy3pJQunJb/RErpipTSGYtegzHGGDMWCyvelNJ7AHwcwAMAvg7gbgA/B+CXAbwcwF8BeHvVqCil9Nbp/h8B+ByARwGcCmB/AJ+vqurtLfW8D8CfAXhkes4zAE4HsA7An1RV9bsLXsfzWvGWnjeEF2FpW3I24ihjUqR81WZJxcD9jNHcY489th5Dz2hmLKLypSpmzOrxxx8/s39RVL3wGjiqpkK+5pprANQqimq2mX2L56hXLJUtj6UCU/uoqkdV2+oxrHbqyCbJ7xn7qtm72lQ77zHPUa9uqkPOYmzYsAFAbaOlXX+XXXZZUXYXmOWMql7bw0XoeV+abeNqQt/61rcA1KqY90FjjKNY5Mi2q17NSldFV3JuKX3tqIvOxHWZ0eur4odUvCsj2btzC4BfAvC3VVVtfSJSSr8P4JsA/ndM/gj/1XT/jgDOBPAsgBOqqvr2dP8fAvgagNNTSu+oquqsRlnrAXwEkz/Qr62qast0/x8D+BaAD6SU/qqqqssGuB5jjDFmaSz8h7eqqq8F+7+bUvoEgA8DOAHTP7yYqNRXAvjv/KM7Pf5HKaUPArgAwHsBnNUo7h8DeDGAf88/utNzvp9S+ncA/hzAewCsqT+824L9PGfX6FPGUKPmaKSvMxCRco7UJL1LgTpbE/NC0w5MBcy4XK4cs9dee818z8+lKyRFbSZUdrQtd7Ex01v23HPPBVArXirN973vfQBq1U7vW1WqVMbsJ3rdUskxo5W2WVcjYjYo9i1nE3hcM7MYlSqVJutmm2iP5lq3OrsxFOxDxmlTnfKa2QeauQyovZjZr/xO7fSRks15LQ/FkJ6/Q9iR+9Qbfd9WTqlHdennIVi2VzOzBzQzvZ843Z7bcvzFAJ4CcGxKqRnNP++cr8gxxhhjzJpliKnmVlJKLwTwrunH5h/M/afbW/Scqqp+nFK6E8BGAHsDuKngnAdSSk8CWJdS+qmqqp7SY6RdVwZfrUjsu+gobJkM5cW8iLfzspVuVH6p4o2UL22UQK1KqGjomUqbIRUwFRAVD2Nkr7rqKgC13ZgqjgqOSm0MWKdmkDrhhBMAAHvuuWfr8WuJIfNrl8BZEOZJ5v2nSuWswQMPPACgtr0zYxmPB2qVrjZbfR6jnMu5eN2usfnR+fPe9a6/A129k/uyDLt19DvRtZw+LFPx/r8ADgJwTlVVX23s55zcYytPmdn/0z3O6TbfZ4wxxozMUhRvSumfAvgAgO8AeGfX06fbLsOL4nOqqtrUWkCLV3NY2RKV7qIqsnSUO4Ydo2+8XLS/NHNPZD9t8wbVfeoJzJV76NXKnL70dqb9krGamzdvBlB7CFM577333gBqL1xd/UbzJPeBbWKMKq/lqKOOWrjsbR0qVs5Y0GbPdZfpnczYWs6A8Dza+nm+ZtoCVj5LuZWlouxluVzMpeSUnCrwkrpWc5avjTH8aLYJG29K6bcB/CmAGwG8oaqqR+WQnDrdUY7rcs7jwffGGGPMmmDQzFUppd8B8J8AXA/gjVVVPdRyzGcA/J8A/o+qqj4r370Qkz+yLwLwsqqqnp7u/3sAxwE4VkOGUkq7ALgfwL1VVe2+QNtXKN62DDtrhb7eg13L70NXW1RpbB8/R7l/SW4VpJLc21Hdmh+aipZqk3mSqWBZN9UNz2cc6j777AOg9vjllt7MzLyk2bnmQbs1FS9XFRoqBnlRNFsXULdN+532aipM9iO3zMbFNYRZNhUslS3tr+wT9pFm86LS5UwHZzI0y5Sq1DaieNso7rl0ZmdR1Tlv9mtRO3LXNowZ+RHN/uVmA9Um/+yzz65+5iqSUvqXmPzRvQYTpbvij+4Uhh+d0vLd8QB+CsCl/KNbcM4vyDHGGGPMmmUQxTtNfvHHAK4EcFLL9HLz2B0B3I7J9PBxjQQaL8Hkj+cxAH5NEmjshYmH85MANjUSaOyESQKNDWhRwx2vYZtSvGPRZ3Td1U7UNdOVKtpI8UbbeW2NjtXRsuYzps2W6pKfaRumd7PmU1ZbL+FxVNY8jgqYn4FaHXOdYZaluZOp8vg8M85W42upDmnPVPVOz16qRNZHtck+4feMzVUFzmtpfqeewKoaeS2si9eoWbm4n7Z6bqlwdT+91tlHuvJSiSrt6ouQO34oxVsa2TCvzqG9lofIHzA0kfJdhuJd2LkqTXIl/zEmmaguAfBPWzp1S1VVnwKAqqoeTyn9XwA+D+DClNJZmGSk+iVMU0ZikhJyK1VV3ZlS+r8BfBTAt1NKbSkj11TyDGOMMaaNIXI1fwjAH2UOu6iqqhPkvOMA/AEmCvclAG4D8N8AfLSqqpVJXCfnnArgdzFRpj+BiQPXx6qq+vQCl8CyF1a8Q8e1rlYdpUQ22qHaVGr7jVSr2nbb2hupjejaolhhXVuYWz5DVI1UsFR70XGq5mnb1W2zTKpgtQPTPtnM79ysi6qcypd2TtpJNf65uY5us1yex/r1Wlg+y6NdtnkMM4BRjVP5U23omsKaR1q3Ud5qqnr2DcvV/NMkl0e5Se75L11ftyu5Z7ZEUZcqXi27K11U+FhsU4q3qqoPAfhQj/O+AeAXO55zNoCzu9ZljDHGrBW8Hu+UNsWraqTlnN71bSv9rqPltmteK/aaXAYrXat1iLJVXecy+ejxVIdUdlSFuhYuz+f+ZkYs/j/y1tY2NWNP2+pUZUt7J+2mWg/L05zEkSc2y2+2Q69LM35RsaotOLKTRkpY6855HkcKd55azWWIWpbiJbkMbtrOPqo9qnOo49bS76N60j/33HNrx6vZGGOMMXmWlqvZzGet2Gpzo/Pc9/POWbRNJFd3ru2qWprHl9qaciqiNO8rR81UXFRw2h5VYpFSBuoYWNpUc3HMOoJXBat2UVXIqu6phLU8Vfm6SlSzXPaXzkpEa9bmspOVZjeLiMop9VyeV/dqq7k+SndZGav0fozRN6XPwDLbYsVrjDHGjIgV7wJ0HR02jy/1PNRzu56XYwg7dR9VPESbhhixdm17dM1UZFH8r5LzoIyUVls76U0cZfbqem28llz/ReqvNE57XvldnwF9D0rbHlFq++1yDaVxuhG5ZzWy8ZfGDQ9JNGvV1Wt6mW0qPW4ZbbPiNcYYY0bEincJLKK0FlW+Xdowj0UyVg2tyrvW16ee3DlRHV2Uadv3OdUYxZPO20eba+mMQN+Zi5ya7/IMLZqNqa+qK72vJefnlFLXskvvR2l/D/H+9X3XFp0VG3pWbR5j2JuteI0xxpgRseKdQ25EP8SIaFkjwdI2lnoQ9/HeVJvTsjy5S5VvSR/37Y++9tCuDPHsDaUK9ftclq8+96OrbTB3bTlb8JB+C0Pd69xn9SIfbcUnzQAADhdJREFUqv62skopVel9Zhb6suisypBY8RpjjDEjYsVbwJj2hb4M7dW8yCi5q0fqspVvl3OjtrTFADeP16xNOe/mrkosN3vQRmkborL62hajPuhDTpl2PS86rvS8IZ6xRenrrd7V07jt2KEY2gdlNe3XfbDiNcYYY0bEircHfWPR5o0aS8/ta5fLfd/nmrpmfcqVk7MBdr3mkhF9qcLp+jnnH5CrJ/q+7fzSuNlFZxi6ntfF6zx3bGR7LbVr6rWXxv8u8l4MrXD1c2mccK5PhlCzQ88K5srr07dd38kh6oyw4jXGGGNGxIp3Dl1j1CJWwzbcx4N03vl9jsmN/IewAba1J6d8+1xbX7WnlKpT/X7e/dTr7qoec3Sd2ShVXs3jcjbt0pmFvs99zgO7C8uyDeYUaukzO0R8demMQleWaVcdIz63FCteY4wxZkSseHsw1OhukbojSkf8i6rVIdqQqzsqb9H2zKszUm+LXpO2patdqYu9OnfPF7U/9312uqxDG3mRl7ap1G9gmSqob5mlNt2u9SziiV3aT4v+Fg55P4aa5VvGs2HFa4wxxoyIFe8c1tJoeS3HEPdl6Gvso5RL72nfWNdcW0oVRRelXGpzJaVeslE9uXK72pTbzumrXnL3s9Tu3cUzO2rDooypyIaqo+/s1VrKMrUMrHiNMcaYEbHiLWBRW0Hb+cu2Dy/DizlX11D2y2WPXrvEU0cj9q4qsattPndc8/iunqfR97n1XJVSlb5M+nqPl3pJl55XcsxQfgFDRVtsb5T6AYyBFa8xxhgzIla8C7BIrOeiNquhyl2E0pjUUsWUG4GW2ixL21tyTFc79NCj6JL7vhre9U26erwu8z3pa3MfQrX3ne3o2ubVvt8lLKuty7j20vjzIbHiNcYYY0bEf3iNMcaYEfFUcwHR9MYygr2jupY9zdQnOH/RYPpS56rSKem+U31d2hrtX/RZWGRKNXfvcgkYcm1ZNOFG7vi2c4ZyRistJ+dcVfLe9Z1S7psYI9emZToPlZpkhq679Fmf17bc/jGw4jXGGGNGxIp3QMYMi8nVsWjigYg+I8pS1ZFb7H1RFdT2/dBhPqXfl6rQEpWUW1BgWU5wpW2Nvh8z3Cg3g6R0ffbajh27P0pV5pC/T4vOeg3NthJCZcVrjDHGjIgVbwe6hr2UjGj7jgiXFVaUS7E3Zp25crWfmVg/Yl6yA6rGZdnxh7SHdq2jL6X2z659tkg7+96H3LNBFp0dWCZd1XnOB6LPNfR9H9ZCCNRqzLhEWPEaY4wxI2LFuwS6jOoWTYzRdUS+jEQcyxrFdrVVRrbOkpmKRb1khx49D5G4oU9ZbcePoRRySmrsNIl97rPOACz6XvS12XZNQLNM1pLNdS21xYrXGGOMGREr3gXoGk86j67nrOV0cUPT10t3kbr62vpWw8uz1JbX17M65wHcVY2OaVscihL7Kv8f+QuU9l/f+PQhfoeGZlGbcFTeMsn5NgyBFa8xxhgzIla8Baxmhphcm7QNOfradtfCteViMnPenV1su11V3LJH4iVZn7peS1+7aekzskw/gWU9j119KdriqUuvJaes+vZn6azLIn3YtW1DtX1Icr8jy2yLFa8xxhgzIla8HcgpsdVkLbRhUUo9sUsVcZfY4672nGV4h7eVr+V0yRzWl6EyHy3D5rhasZjRbEqbjbeUtZb1qYRFoyVyrMVrXgZWvMYYY8yIWPEuwCKj7aFyBI9Ns11DjU77ejzqKDuXfYo0430jO9tqeYj2scf2VaCkq3f+srKttdXZNcdyX0qzo/WZRVHWivdxn9mTvv4VZhYrXmOMMWZErHjXGGtthDiEwhjKLpez7UZKOGpHc19UFnP85jyrozqGjrXsonz72hBzcb8lbVmU6F6OpXT7HgesbCOfoUXjQ8eYJcv5UXRtE1nE431oSt9JezUbY4wxzxOseAvgyEdzAZfSx7a1bIb00O6qhIZWwKXldbHPEd7zaFS8mvG72pboc1TmWPbTiGXEVSuLPht93/m2ukrjrYd+poZ8t0sZyjO+tLxFZiQWPa4PVrzGGGPMiFjxLpFFRq5dR6lDe6Au2p4mpXbRRUeYkT1wXqxupP669tui11AagzzkKHyomYdSm1lJHw31LHS13aqy7dP/0XWrjTdX1mrGxC5L5eU857eX+F1ixWuMMcaMiBVvAV3jH6PzVmNU1zXGM2f/K8kZ3Pf7iK6ewV3qyd3bPv0wj65eo7l29ql7Wc/hkPd/aDVeOiOUu+9Kc/+y4nO7tmVbiqFdZkx4V8b0cbDirVm/2g0wxhjz/MeKt+ZxAC8H8DSA7zS/ePbZZ2e2ZnQOmG6/M/coMza+L2sT35flsB6TvxMLk7aF6YixSCldCQBVVW1a7baYGt+XtYnvy9rE92Xt46lmY4wxZkT8h9cYY4wZEf/hNcYYY0bEf3iNMcaYEfEfXmOMMWZE7NVsjDHGjIgVrzHGGDMi/sNrjDHGjIj/8BpjjDEj4j+8xhhjzIj4D68xxhgzIv7Da4wxxoyI//AaY4wxI+I/vABSSutSSv8tpXR/SunplNKWlNJ/TinttNpte74z7esq+Pfd4JxjU0rnpJQeTSk9lVLanFL6nZTSC8Zu/7ZMSun0lNKfpZQuSSk9Pu3zz2TO6dz3KaW3pJQuTCk9llJ6IqV0RUrpjOGv6PlBl/uSUlo/5/2pUkpnzannjJTSN6f35LHpPXrL8q7MkO1+Pd6U0gYAlwL4WQB/g8kalkcC+GcATkkpHVdV1SOr2MTtgccA/OeW/U/ojpTSWwH8FYAfAfgcgEcBnArgPwE4DsDbl9fM5x0fBPAaTPr5XtTruLbSp+9TSu8D8GcAHgHwGQDPADgdwKdSSgdXVfW7Q13M84hO92XKtQC+2LL/+raDU0ofAfCBaflnAngRgHcAODul9P6qqj7Wo92mlKqqtut/AL4KoALwftn/H6f7P7HabXw+/wOwBcCWwmN3BPAQgKcBvLax/yWYDJ4qAO9Y7WvaVv4BeAOAfQEkACdM++8zQ/U9JguH/wiTP7rrG/t3AnDb9JxjVrsf1tq/jvdl/fT7T3Uo/9jpObcB2EnKemR6z9Yvcg3+N//fdj3VnFLaG8BJmPz4/xf5+o8APAngnSmll47cNNPO6QBeCeCsqqq+zZ1VVf0IE5UAAO9djYZti1RV9fWqqm6tpr+6Gfr0/T8G8GIAH6uqakvjnO8D+HfTj+/p2fznLR3vSx/Y5x+e3gvWuwWT38EXA/iNJdVtYBvvidPteVVVPdf8oqqqHwD4BoCfAnD02A3bznhxSunXU0q/n1L6ZymlNwQ2Q96vc1u+uxjAUwCOTSm9eGkt3X7p0/fzzvmKHGMWY9eU0m9N36HfSikdMudY35dVZnu38e4/3d4SfH8rJop4PwAXjNKi7ZNXAfgfsu/OlNJvVFV1UWNfeL+qqvpxSulOABsB7A3gpqW0dPulT9/PO+eBlNKTANallH6qqqqnltDm7Yk3T/9tJaV0IYAzqqq6u7HvpQB2A/BEVVUPtJRz63S735LaaWDF+/Lp9rHge+7/6RHasr3ySQBvxOSP70sBHAzg/8fE3vSVlNJrGsf6fq0effq+9JyXB9+bPE8B+LcANmFiO98JwOsBfB0T+/AFYirzO7QG2N7/8OZI063XTlwSVVX9m6qqvlZV1YNVVT1VVdX1VVW9BxPntn8E4EMdivP9Wj369L3v14JUVfVQVVX/uqqqq6qq+ofpv4sxmam7AsA+AN7dp+hBG2pm2N7/8OZG3DvKcWY8PjHdHt/Y5/u1evTp+9JzHl+gXaaFqqp+DOC/Tj92eYdyitgMwPb+h/fm6TayZ+w73UY2YLM8Hppum9Nk4f1KKb0QwF4AfgzgjuU2bbukT9/PO2cXTO7tvbbvLo3vTbdb36Gqqp4EcB+Al03vgeLfvBHY3v/wfn26PSmlNNMXKaUdMEkK8EMAl4/dMINjptvmD/nXpttTWo4/HhMP9Eurqnp6mQ3bTunT9/PO+QU5xgwPozF0IOr7ssps1394q6q6HcB5mDjy/LZ8/W8wGSn+9+ko0QxMSmljSmnnlv17AmDmnGaqvM8DeBjAO1JKr20c/xIA/8/048eX1NztnT59/0lMEm68L6W0vnHOTgB+f/rxEzC9SSkdlVJ6Ucv+EwH88+lHTTfJPv+DZlrc6T36bUzu2ScHb6zZSlpejPa2QUvKyJsAHIVJ9phbABxbOWXkUkgpfQjAv8Jk5uFOAD8AsAHA/4ZJRqRzALytqqpnGuechskfgR8BOAuTtIW/hEnoyucB/MoSEw88r5j25WnTj68CcDIm6uiS6b6Hq0ZKxz59n1J6P4CPYpIR6XOoU0auA/AnlVNGrqDLfZmGDG0EcCEm6R8B4BDUcbh/WFUVB0bNOv4EwL+YnvN5TFJG/iqAV2CSxc8pI5fJaqfOWgv/AOyOyQjvAUx+GO4C8KcAdl7ttj2f/2ES9vBZTPJj/wOA/4mJXep8AO/CdGDYct5xmPxR/j4mpoDrMBndv2C1r2lb+oeJx3g159+WIfoek3zOF2EysHoSwLcwiS9d9T5Yi/+63BcA/wTAlzHJvvcEJmr1bkwGOT+fqeeM6b14cnpvLgLwltW+/u3h33aveI0xxpgx2a5tvMYYY8zY+A+vMcYYMyL+w2uMMcaMiP/wGmOMMSPiP7zGGGPMiPgPrzHGGDMi/sNrjDHGjIj/8BpjjDEj4j+8xhhjzIj4D68xxhgzIv7Da4wxxoyI//AaY4wxI+I/vMYYY8yI+A+vMcYYMyL+w2uMMcaMiP/wGmOMMSPiP7zGGGPMiPwvnlFzyPdYeLQAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 279, | |
"width": 239 | |
}, | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"one_sample = random.choice(dataset)\n", | |
"image, label, name = one_sample['image'], one_sample['label'], one_sample['name']\n", | |
"print('Sample type:', type(one_sample))\n", | |
"print('Fields:', list(one_sample.keys()))\n", | |
"print('Image shape:', image.shape)\n", | |
"sample_overlay(image, label, name=name);" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"if dataset.normalize_mask:\n", | |
" image, mask, name = one_sample['image'], one_sample['mask'], one_sample['name']\n", | |
" print('Sample type:', type(one_sample))\n", | |
" print('Fields:', list(one_sample.keys()))\n", | |
" print('Image shape:', image.shape)\n", | |
" sample_overlay(image, mask, name=name);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Dataset split\n", | |
"\n", | |
"We'll split the dataset into a training set with 80% of the samples and a validation set with the rest. In theory, a test set should also be generated, but we'll split that for now." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Samples for training: 113\n", | |
"Samples for validation: 29\n" | |
] | |
} | |
], | |
"source": [ | |
"DATASET_SPLIT_RATIO = 0.8 # use 80% of training, rest for validation\n", | |
"\n", | |
"num_training_samples = int(num_samples * DATASET_SPLIT_RATIO)\n", | |
"num_validation_samples = num_samples - num_training_samples\n", | |
"\n", | |
"print('Samples for training:', num_training_samples)\n", | |
"print('Samples for validation:', num_validation_samples)\n", | |
"\n", | |
"training_set, validation_set = random_split(\n", | |
" dataset,\n", | |
" (num_training_samples, num_validation_samples),\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Loaders\n", | |
"\n", | |
"At the beginning of each training epoch, the training set is shuffled. The validation set doesn't need to be shuffled. The batch size can be larger for validation because the gradients don't need to be computed." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"training_batch_size = BATCH_SIZE\n", | |
"validation_batch_size = 2 * training_batch_size\n", | |
"\n", | |
"training_loader = DataLoader(\n", | |
" training_set,\n", | |
" batch_size=training_batch_size,\n", | |
" shuffle=True,\n", | |
")\n", | |
"\n", | |
"validation_loader = DataLoader(\n", | |
" validation_set,\n", | |
" batch_size=validation_batch_size,\n", | |
" shuffle=False,\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Visualize one batch" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Batch shape: torch.Size([8, 1, 193, 229])\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAIICAYAAABZ1r5EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvVeMXdd5Bvrt03udPpwZkkMNi0hJlKlm2aHkbguCS2A59kMebAMOHPgGCPIQwHlxgIu8GLk3CXKN6xixU5DADmxcC7KEOHasKLZ6sUQVSmxDTuOUM6f3dh/G3+J/Fvc+Z0YkJdJeHzA4c/bZZe1V/+9vy+p2uzAwMDAwMDAwMDAwMDBwhuvdLoCBgYGBgYGBgYGBgcH1DkOcDAwMDAwMDAwMDAwMBsAQJwMDAwMDAwMDAwMDgwEwxMnAwMDAwMDAwMDAwGAADHEyMDAwMDAwMDAwMDAYAEOcDAwMDAwMDAwMDAwMBsAQJwMDAwMDAwMDAwMDgwEwxMnAwMDAwMDAwMDAwGAADHEyMDAwMDAwMDAwMDAYAEOcDAwMDAwMDAwMDAwMBsAQJwMDAwMDAwMDAwMDgwEwxMnAwMDAwMDAwMDAwGAADHEyMDAwMDAwMDAwMDAYAEOcDAwMDAwMDAwMDAwMBuCGIk6WZe2yLOsfLctatiyrblnWvGVZ/7dlWcl3u2wGBgYGBgYGBgYGBr+9sLrd7rtdhm3BsqxZAE8CGAHwYwAnAdwJ4H4AbwK4t9vtZt69EhoYGBgYGBgYGBgY/LbiRrI4/T/YIk3/R7fb/VS32/3zbrf7AQD/F4D9AP7Pd7V0BgYGBgYGBgYGBga/tbghLE6WZe0FcAbAPIDZbrfbEb9FAawAsACMdLvd8rtSSAMDAwMDAwMDAwOD31rcKBanD/zm86eSNAFAt9stAvgVgBCAu9/pghkYGBgYGBgYGBgY/PbD824XYJvY/5vPtxx+PwXgIwDmAPy8340sy3rB4afDAErYsmoZGBgYGBgYGBgYGPx2YDeAQrfb3XMlN7lRiFP8N595h995PHEFz3ADSP3mz8DA4DqHZVnq/7fjciyv38n5fJbd9f3uudPnyWfp/zsd2+4zBtXXjeDCbWBgYGBgsENcsYx/oxCnQaC0MHC173a777G9wZYl6varWSgDA4Nrh263+7bIyE7Qjxz1++3tEppBZZH3v5L3tyzLkCMDAwMDA4Md4kYhTrQoxR1+j2nnGRjckJCC8U6E4kFCPP9+myDf2YmwDLqO3+V126n3nbbNTs53KssgS9dO27gfedpJfRoYGBgYGPyu4EYhTm/+5nPO4febfvPpFANlYHDFGCT8vp3fdaHa5drK16ILyZJI8Rqew9+chF0K1K1WC51OT26VGwbXwi3PjnjZ/X4l5MGyLNWmEnrbOT1TtrOTq+B2rEdO5wy61limDAwMDAwMLuFGIU6/+M3nRyzLctmkI78XQBXA0+9G4QyuDE6EQycKANDpdHoEUd2q4na7e/48Hg9cLheazSaq1ao63mq10Gq10O124XK54HK5FKlwuVx9tfeSqOgkxonU2AnIOuHR38fONcupPHZ1qcfHdDqdG444XUkc0SBCsN3r7MjDIItgP3c+p/Zyu92qH7bbbUfC5PQOTmXo9x7bgSFPBgYGBgYGW7ghiFO32z1jWdZPsZU5748B/J34+RsAwgD+X7OH09WDLnTZabn5KQV8nVBQGLQsC16vt0d4529utxvhcBihUAherxeBQACBQADtdhudTqdHcPT7/YhEIgiFQnC5XGi327AsC4lEAkNDQ/B4PIhGo0ilUkgkEohEIvB6vVhZWcGjjz6KF154AS6XC61WC4VCAaVSSZEnkgtJfnhMEhc7AmRXb06B/U5CtV6P+vl295DETH63O8fO8nGjw6mf6r/1q0P5Xa8/O8sPv9vd067+nc7nuOD/Pp8PAFCv17dFcGXbO7nxOfUNWY4rsVgZGBgYGBj8LuGG2AAXACzLmgXwJIARAD8G8AaAuwDcjy0Xvfd2u93MFdz/hk4O8XbdxPRPj8cDn8+nCE4gEMDk5CT27NmDZDKJcDisBKh2u42lpSW02211HQV0r9cLr9erXMTa7TZarRbq9Trq9TpqtRoajYYS5vx+P/x+fw9pqdfraDabirjwvFAoBL/fD4/HA6/Xi0QigUAgoJ4bCoUQj8eRSqUwNDSEcDgMl8uFarWKF198EU888QSy2awqTz6fR6lUUs+RdULiJC0AOpzIihRY+7WHbq1yslLoVifp1ieTBTiRiVarhUajYfsO1yPeTp8m+sUD7eT+g9pOPkv+ppNgj8eDeDyOUCgEn88Hj8eDUCiEWCyGSCQCl8uFWq2GbDaLpaUlFAoFNJtNNBoNRaK2Y3G0K2e/Ob5fH93JswwMDAwMDG4EdLvdK8rWdMMQJwCwLGsKwF8C+BiANIAVAP8fgG90u93NK7z3FRGn7Wi0B10rvzu5EklNtJP1p591SL8///d6vYhEIvD7/XC73QCAvXv34iMf+QjS6TQsy0Kz2UStVkO1WkWtVkOhUMDm5ibK5TLK5TLa7bayANElTgpmJCDtdhuNRgP1el2dD0AdJ6kieWMZPR4PAoGAImTNZhOBQAA33XQTkskkvF7vZe5OsVgMR44cwdjYGNxuN5rNJlZWVvCDH/wAxWIRrVYLtVoNa2triqTp1iZZbl3Q7GeFsLME2An027FG6feUFiT9uN39u92uqt8bAdsZOzs9Z6eubv3O1UmVHfmV7qKxWAx79uzB0NAQgsGgsr7yHCofPB4P6vU6crkcFhYWsLi4iHw+j2azaUuet1NWHXq5r2QNuJHWDwMDAwMDg98p4nQtsRPixJgYJ2FKj4EZZJEYRGwkpDuZw3tsizjxHdxuN/x+P8LhMHw+H/x+P8bHx3H8+HGk02l4PB5YloV2u41isYj19XXU63WUy2UUi0U0Gg0Ui0UsLS2hXC6j1WoBABqNBhqNBizLQjAY7NGsW5alrE4A4PP5FKkpFouo1WqXEUQSp1AoBI/HowhWp9OBx+OB3+9HMpnEvn37EIlE0Gq1UKlUUC6X4ff7MTk5iQ996EPwer3KVe/cuXN47LHHkMlkkMvlUK/XlXVMJ3y01vA3WT4nFzqn49s55tT2uoDe71ny3jcScboSQtPvt7dLnJzc8pxIGccV3U537dqFvXv3Ih6Po9FowO/3IxgMIpVKIR6PY3V1FblcTrmnNhoN1Q8ty8La2hqefvrpnvFl9x7bVdpcCXFy6lsGBgYGBgY3AgxxukrYLnGidcaOONmd2w/93IDsiJa8ThKkfvEN+nfdehMOh5WbXDAYxD333IN9+/bB49kKf8tms1heXlYWJWDL6rW2tobl5WUUCgVUq1U0m82eOqFrHrBFjOLxOMbGxhCNRgEAm5ubKBQKsCwLo6OjCAQCKBQKOH/+fI9wL+vB7Xb3ECfGgrhcLkWeqM0PhUJoNBo98VPRaBR79uzB0aNH4ff70e12US6XUavV8Pd///eo1Wool8s92n1Z5+12W7kPMrFEv7bcrnXJCdtxCZO/DXoey3+jwK5++lnutnO90znbJamDns35IRqNYteuXUilUhgZGUE8Hsfo6ChmZmZQr9cRiUQwPj6uxozb7caTTz6Jp59+Gs1mE/F4HPF4HNFoFNVqFZlMBv/5n/+Jzc1NW8XIIBLjdO6gPmx3D6dnmrXEwMDAwOB6hyFOVwk7IU4yFgdwJkB2Qt52BRVJcuzc83h9P2Ha7rvL5YLf70cikVDJGPx+Pw4fPoxjx46pc9fW1rC2toZaraZc2Ch4r66u4sKFC6hUKpcRCFlmmQQiGAxifHwcIyMjAIBMJoNsNguXy4Xp6Wl4vV6cO3cOGxsbirjwHWWME13x5J8kTXQPZNY8v9+P4eFhlVAiEokgGo0inU5jampKETmPx4Of/OQneOqpp1CtVnsse9JyyLiTWq2m3t2JNDm56el1Ja+Rn4MEdru+IK2bOjqdDqrVqu1v1yv6WeD6ndvvnO1amvrVpdO9GXM3NTWFsbExjI+PY3JyEsPDw5iYmEAkElH9GEAP8e92u1hfX8e3vvUt+Hw+JBIJHDp0SCUxqdfr+Od//mc1PgYpV5zeW54v4/oGkS6773bXmjXFwMDAwOB6hSFOVwnbJU4kHtu438Bztqvh1d2A9Htsx+IkXd1SqRT8fj98Ph+i0SiOHz+OoaEhlUDh3LlzaDQaaDabaLfbaDabqNfrWF9fx+LiInK5XA+54f2l8K67KwJbBCoajSIYDCrS5fV6kU6nAQArKyuoVCrKsqW/n3wn6W7o9XoRDAYRj8cRCAQAAOVyGfV6HS6XS7lFxWIxJJNJRZ54biAQwK233oputwuPx4MTJ07gkUceweLiYo/bFQkhiRNjsUgsJbaTFc1JiHeqP/5m177bdbmqVCo3lGA7SBlgd3yQpW47lhr9nEGukSQ/oVAIc3Nzyro6MzOjLE9erxc+nw+VSgUrKyt4/fXX0W63VUa9973vfQCA119/HS6XCyMjI8q6m8vlAAAPP/wwFhYWesaIE3QibUec5LvI8+2uG/Qsu3q8kfqagYGBgcFvPwxxukrYCXFi9rgB9+vrirfTuAJd+90vrkEXeljmZDKpMtIx7ueOO+5QRPDkyZPKUuRyuVCpVFCpVLCxsdETpM44Hyf3pn7CPbXt/KOlqN1u2xIyqRGX99QFYLrxJRIJ+Hw+tFqtnox8MuZkbm4OMzMzCAQCqNVq8Hq9ykLANOfBYBClUgmPPvoonnrqKbRaLWXN6nQ6KlFGo9FApVJBtVq1TR7Rr02dIOvQziXUzpJlZ23SLVfdbve3iji9XTc9nRQNsgTq99MtwFSmRKNRjI+PY3p6GsFgEB6PB2NjY9i9ezeGhoZQr9fx8MMPKxfZYrGoiBMTSDCT5YEDB+DxeNBqtZDL5ZDL5RAOh1EqlfCP//iP2NzcVOXQx/0gMkg49YNBlmy7e9pZnIwVysDAwMDgeoMhTlcJ18LitF3iZEd4totBgqXX60U4HEYsFlPJH6LRKN773vcq4S6fz2N9fR21Wg3BYBAulwulUgnPPvss8vm8Soqga7mdXMWc3lcK8iRNHo9HWXG4b5O8p5Plxk64pfWJ7UPCxDZjogsA2L17N26//XaVGpp1EY/HMTIygqGhIVVGl8uFtbU1fO9738P8/LyK36I1rlwuo1QqoVKpXEb8WA6nsvcTXvlO+rnbtS7Z3VNPvHG9w4koOfV73Tq0Xdi5R8ox7NSP5R5lwWAQ6XQat956q7KGDg8PY8+ePUgkEnjyyScxPz8Py7JUv2NylWaziUgkgnQ6jXa7jWAwiPvvvx+WZaFYLCKfz2NychJjY2P4t3/7N3z/+993tDrZ9bed9he9j9jdYzsuo/Jzu0oFAwMDAwODa4UrJU43xAa41xP6aaMHCbaDtOU7FfacricxCQQCSKVSCAQCKknC/v37VXrxSqWiBH4mWuA+Sy+//DIymUyP1UYXGAm7GKztCEm8h3R1246Q5yQYk4C1Wi11jsfjUdYtWpMqlQrOnDmDtbU1HDt2DMlkEs1mE36/H16vF6VSCa1WC8FgUFmhpqam8I1vfAPnzp3Dj3/8Y7z88stotVoqIyDrpFwu9+xPpUOvFzuBXW9LJxcxp7qxe+ZO3K7ebWy3jE7CfL+x5eTWqp/H+3BjZHm97KtyLHQ6HXzmM59BNBrFmTNnkMvlsLKyglarBZfLhWw2C5/Ph2q1ilar1eMWy82cXS4XxsbGMDMzo475fD6Mj48jlUrB4/HgoYceQjgcxve+9z00m03H+tD7k1Ndyc2f+a76ewNQx+zq0M6Kp7ub6v3XECgDAwMDgxsNhji9DTgJxXZuUu8EdOGGgeXRaFRtTBuPx7Fv3z4Eg0EAwPz8vPqt3W6jUqkgn88jl8shk8ko8rAd97tBx2XZdPLFfW5Yp7Q62Qlg24F+DUmZ2+1Gp9NBKBQCAJRKJRQKBfzyl79EMplUVoNbbrkFkUhEBe9fvHgRhUIBQ0ND8Pl82L9/P77+9a/jkUcewQ9/+ENUq1UVuyL3VWLd2QmNToKn7oK43fcf1Be36952vWI77np2JEG32rF9WMfsZ7REkvBK1055Lz6DiVJ4js/ng9frxXve8x4kk8me5CGWtZVOnOfH43E1xqiYYFmYfOX8+fMol8t49tlnsW/fPlXO5557DnfffTe8Xi8OHz6M9773vXjmmWdUuXdSRxx7rBtpUe5HLu2Ik50F064v87gkaPK+BgYGBgYG1zsMcXqbGBQ/YOeK9XZc8XT0s8gwe93IyIjKmBcMBnu01ww0r1arSCQSCAQCqFQquHDhAgqFgkrJLfczGuR6ttN3phDr8Xjg9Xrh9XqVYMmkC7xWj+Nwgv4c+X+73Ua1WkWhUEAkElGpnvm++XwewJYA+Mwzz8Dr9eLIkSOIx+PodDoqZXkgEMDevXvh9/vxuc99DseOHcNf/dVfIZfLqbgxkqZarXZZkot+ZdYFze3Wtbymn1vjIEvL9YJ+JE+3Xujn6hsCA1D9jFZBHuMf3VhDoRBqtZpK9809lRjTpxNhy9pytwuFQgiHw9i9ezempqZQKBRQLBbVGJKuau12G5ubm1hfX0c2m1Up/OX2Bkx1v76+jhdeeAGWtZXFk/30l7/8JSYnJ9FsNjE3N4dKpYLXX38dtVrNkZDLBCd0Ww0Gg0gmkzhw4AByuRxOnDiBYrGoSI1TxkhZ97Jfyc9BliipQNnu3GJgYGBgYHA9wMQ4/QbWNmOc3G43fD6ffq3d/dT/TunEHcqh/tetOVIIk+dS+IpEIkilUirt9uzsrBJUSqWS2ly2Wq2iWCwCAMLhsLI20WWP7j9OLni6AGkXpD5IAx6NRhEOh5UQRQG3Vqshl8v1CHB2hMBJSJRlk4I0Bd1UKoV0Oo1wOKwSUpBYtdtteDwehMNhTE1N4QMf+AD27NmjBO9ut4tIJIJ9+/YhGo3C7XZjaWkJ//AP/4CzZ8+i2WyqvaiKxaJyfyR0l0e9DXUh065e+d3OiiATadgRMCa1uF43wR1kJWOb2hF0y7qU4pu/0VLj9XqVVYnn0dJJ4sSsi5LkyHFC61O73YbX60W321XWTJfLpZKScOww1o39xrK2Nn2en5/H5uam2tyWFivem9kmLctCJBLBoUOH4PV6lQuqx+NBNBpFPB6H2+1GtVrFmTNncPbsWdXf+Fz2f1qhw+EwotEokskk0uk04vE4gsEg6vU6XnrpJWxsbADYUjRw3zZagPW+J8e+0/i066+yzXhfXu9EpgwMDAwMDK4WuibG6Z2FnVXATiiQx/tZiQY9yyk+RQrcoVAIIyMjKpYpEong7rvvRq1WUy5B3NeoXq+jXC6rgPRsNot2u41Go6GEs0FxI7rbmV3cgl2ZCQquFJoo4JI80Tqm36uf1YYCtS6I6SSqVCopohYKhRCPx1Gv19FoNHpipIrFIubn5zE1NYXjx49jbm4Obrcb5XIZp06dwq5du5BOpzE+Po6vfvWreOSRR/D0008DAKampnD+/HllsdiOtUcSUiehcxCczrNzr7qe0K+v6L/1s2A6CejyOpJxkolAIADLslCtVhEIBBRBYpKRRCKhrE6SRJCckITWajXU63W1BxiJGZ/d6XSQy+VQLpd7iIh0WyMJo3Ws3W5jfn5eWY9ltshGo4F4PA7LspQFKpfLqXFOd9NYLIZms4np6Wkkk0m43W61MTXJXLPZRCAQUAohEmy5WbK0njr1yX7jVD9PWkldLtdlShpDngwMDAwMrkcY4vQ2YWfp2O75QP84gn7Cra59D4fDmJiYQDAYhGVZCIVCeOCBB1AoFHDq1Cm1L1K320Wj0VCxPfV6/TJSRvclJyHJiSQ5fdetPgRJkxRGKcyRRElNtk4gdUuDJEcso36OJFYULgGorHmJRAKFQgHr6+tKMG02mygWizh37hx27dqFz372sxgeHoZlWZifn0e1WlV1/3u/93tot9t47rnnlLaf6d0lCZRtuF1Co/evnbgv8rMfOXk3oZdrO+RJHpe/6QK93e/SIhMKhRRZIDlirBpd24BL7SQ3RJb3ZB+mtYjxdDyn291KA5/L5RRhk+SFZZJWKFrGGo3GZeOo1WqhUqmojZ8ty8Lw8DDGxsYwNDSk0qGPj4+rrI+WtZUMplAooFKpoNFoKGIHAJFIBJlMRvV7KhcsaysGzG6vMqexpsPOAq1/l+RJt6wbGBgYGBhcLzDE6W3CyVVMLvg7Wfj16wZZbBhfMTo6Cr/fj0AggOnpaXz0ox9FqVRCNptVLnwejwfVahUbGxsoFAqXpfz2eDwqUQRjjCgk6u+sE5h+ZEaSFVl2Zq+T1hWSJ8uylMuTXUpk/bmyXHobMCmEdO+itYsxS9Tup1IpJBIJxONxZDIZ5PN55fpUqVTw1ltv4W//9m/x8Y9/HHfeeSd8Ph86nQ6q1SpSqRTcbjfuvPNOVKtVvPHGG3C73Uin01hZWVFC8Xb6gB3s3JvsftfrxO7+1xtxAvqXy8m6qx+T7c1jMhkEiTgJgW4xlfuKcT+wyclJJJNJFQPETWhZBvYPWmhoraUVhe3OvZgYu0erKp8PQJFr2V/5Lo1GQ+1BpltqSfhcLhei0SgOHDiAffv2IZ1Oq9hBuuJms1l1L7fbrRQDuVwO2Wz2soQYJDMkT1Q49CPu/ea+QZZjp3Y1MDAwMDC4XmCI0w4hF3P9fzvB1Umo7Sck6xYW/Xqfz4dYLIbh4WFFQr72ta+pDTKz2awiA/l8HplMBgsLCygWiz1EScZoeL1eJRBRQBok7Ntp+fm+eswOABVTEgwG1fMsayubGcmg3+9HOByGZVmXBdjrdWdH5OzKJRME0MLUbDZRKpV6nun3+xGLxZBMJlGv11Gr1bC4uIhCoYBGo4FMJoPvf//7ePrpp/Gxj30Mhw4dUq5PwWAQ0WgUn/jEJ1Cv13HhwgUcPnwYxWJRkdV+7W5Xt4MwSIu/k3u9G+hHluyUB3YESx+LJBHyfL0/sK/R4uJyuRAIBFSih0AgoPb2ikajSKVSuOmmm9BqtfD000+rTIqFQgELCwuo1+sqPk6623W7W3FQ+XwepVJJWZRk2fS4N/ZV+TsAVCoVuN1ulQGSpIb1FA6H8elPfxpjY2MqSyWJJBPAcGNnbjtQq9Xw6quvqqQQPp8PPp8P3W4Xfr9fZQdkuYAtskjyZBe/108BZGdplW3Yry8YGBgYGBhcDzDE6SrDzi1Fx3ZcrOxIE8nI2NgY4vG4EnT+8i//UhEd7hEDbBGg06dPY3V1VQltkUgEw8PDKvNXt9tVwhLdjDwejzpfJycsH8slrUuEdGmiJp/CJAVWHtMFMJnWmzFFMk20U11KVypZVywbLWrMlsa64nNyuZxKDhAKhZBMJtVGwb/+9a/x3HPPoVqtolar4ezZs/inf/onvO9978OnPvUpVZZUKgW/348/+IM/wLe+9S14PB7cddddeOKJJy5zPXRqd/13XXB0IufS0uZE6HdC3N4t2JFxO6uTnVuoPE8n7szgSKVBMplUJIIEpVarqXT1lmUhn88jGo0qlz2Px4OjR4+q5B+tVguhUEi5wskNlunyygQTbHsqI/R+Ky2v8h2l+1qxWEQsFlNkvV6vIxQKIRaLIR6P95SV+7EBQLVaxerqqiJ4tVoNr7zyCjY2NlAsFpX7YCQSUanVu90uSqUSMpmMitvieNaTjOjv0G/+2845+vkGBgYGBgbXCwxx2iGkG4surOnZoeQ1V/I8SUB8Ph/S6TSi0SiOHj2Kj3/847CsrSDvQqGggroXFhbwv//7v6hUKgC2Ynn27NmD4eFhuN1uXLhwoceFSW7ayr2dpFuYk8CjuxfJc1heGStCdzw+S2bWqlaritx4PB6EQiFFckgGZRvY1a8kETppCoVCKrUz98/h5/r6OorFoop5CQQCGBoaQiKRwPHjxzE0NIRHH31UuRSWy2U88cQTWFlZwRe/+EWMjo6qfhEIBPD5z38e//7v/45Wq4WRkREsLCxcpo3Xy+/k5tTPkuTU1+yeZWcpfbegW5O2e40doWI7y01bZZ3S0hKLxZBOpzE6OqrSj+fzeRSLRZRKJWxsbKDZbCIUCuHAgQOYmZlRRIqkqNlsIhKJoN1uI5PJKBc7qSxgv67X68jlcopgSDLE89i/JXEiCeMxvlez2cTm5iZCoZBy4wsEAojH40gkEigWiypLXrVaRalUUsStVCqh2Wzi4sWLOHHiBPL5PMrlMgAgHo9jbGwMqVSqJ8NfMBiEx+PB5uamIoqsX6Y2p5XPidA7kfvt9L93u48aGFwvsLO+S9i5cBsYXC0M8vTg/zuVLfp5nQw6z+layq7XEoY4vQ3oAlw/QWCngqGdIEzhnzFN0WgUd9xxBz784Q/DsiysrKyoDTdLpRJ+9rOf4a233kK9XodlWQgGgzh8+DD2798Pj8eDRqOBjY0NVCqVyzoYtc+0+tCdr9/7kdjpg0juTyNJEjPX2dUTBTzGgfj9fkW25IDQtfO6QC03PZUb7VIwpGAKwFZwLRaLeO211xAIBBCLxbBnzx585StfwdmzZ/GLX/xCxbScPXsW3/72t/HlL38ZiUQCfr8fbrcbY2NjuP322/Hcc8/h8OHDyGQyPfvkbMcq2U8772RVsqvT6wl27QS8fTdDXXHBtmS7s61DoRDS6TQmJibUxtC03DDLZLVaVeRkZWUFiUQCs7OzuO++++D1elGr1dBoNJQ1iW2tE1NadUhOuEcZXWLpCktFAomHtNrKdmdbcx+ocrms3Fnz+TzC4TBCoRByuRyCwaAaw1QS1Ot1rKys4JVXXsG5c+dUwgmptBgaGlIWZ74D+zgAFRNFi5n+PnLzXJ20OykEZPsZoc/gdxH6fCjXLh5zUtQCvXPO9brNhMGVYafruJMs0O8+dspmv9+PaDSqFGilUgmVSgXValUlF2O/9Hq9SKfTSmknE3Dp64ETKdKVydt9b3kdZUJDnK4z2JGma/kcSZrGx8cRDofx5S9/GVNTU2g2myq7W6fTQT6fx7/+678im832JFqYmZnBwYMHMT4+DsuyVEKDQqEA4HLXOr/frzTh1LLbuRjppISfFMpozQHXgzNAAAAgAElEQVQuETISJ17PGC3GXOl7SDFGg7/LTHx8jq6Fk0IzteKMPQkEAohEIqjVairjILCVVYz7X1mWpeLETp06hWQyiUgkglgshttvvx379+/Hz3/+cywsLKDdbuPixYv45je/ia997Wu4/fbbEQwGEYlEcP/99+P8+fPodDrYt28fXn311Z66lH1Iamt0i4mTcCnjXOT76+faWejebUG138Ro985yYpeE0s5aJ9+PCwBTjZMQNBoN5PN5bG5uYnNzUyV6kBbOtbU1lMtlRCIRHDlyRBEdWllJpur1uupz3DCZpIn9GbhENphogdZePZsc/5ff+e5UOrhcLgwNDaHT6WB9fR2jo6MIBAIoFouwLAvJZFK5nr7xxht46aWXcOHCBVQqlcueUyqVcPLkSSwuLiIUCqn30MtIEirJqdfr7RmXLCuJ3iD064f9Fs53u/8aGOiwm9OoUJTrEXBJWSd/08e6rjwhnI4bXH3oCko7wX/Q9fy0+5PnyGt0pe+gZ+j31Nd7yllca6j00+NUZbbhSCSCdDqN4eFhRKNRRKNRxGIxtNttnDhxAi+88EKPYnBsbAx+vx+5XA6ZTEa5hsvETHZrnZ3cov+2XS8F1tm1hiFOO0C/jjlIGHX63anTcMBQ2J+ZmVF7sxw8eBD1eh1vvfUWisUiGo0Gzp49ix//+MdKWAkGgwgGg9i1axe+9KUvqfuTLKRSKaytrcHj8ajAcQbEMw1yo9HocSUidLckahyi0SiGhoYQCoVQqVSwvr6OWq0Gr9eLcDiMcDisCF6r1UI4HEYkEkEgEFCuSK1WC41GQ5FBPS0060amTJZ1Kd0GOYgoCDIgnvvi+P1+ZZVLpVIqRsmyLMTjcRSLRbjdbmSzWWxubmL37t1Ip9OIxWL42Mc+hp/97GdYW1tT9/32t7+Nv/iLv8CuXbtUBrRPfvKT+OEPf4hDhw7h3LlzakNVvU7t+oPdBG23YDppmOzcAZ3Ofycgie12zpPfnbSt+piRbc9MdHS/LJfLagNoJjngJyd1vZ9XKhW89tprSKVSmJiYQCgUUvse+f1+LC0tqTFKpQDvz/HDe8u+ycQU0komSYp00+N1vJaxU/L3YDAIv9+vylCv1+Hz+VCpVHD+/Hmsrq72KAr0umw0GsrqJgU8KdTp7cAy+f3+njLLe/cjTzrJ5bHt4J1QXhkYAJe7BFMZ4/F4lMLF4/FgaGgIR48ehd/vx69+9SsUCgXlvcF7SNd4qZG3e6ZOngaV8XpQiF1L6CRG/00qSZ2ul/OohJyfpUJyaGhIKcri8TgWFxd7EmpxbalUKj2JdCT5sZs3Saj5bKd2c/JC4Hf9veRWGoFAQCm/ZNiEXb/iMXoPdLtdtV6ur68jFoth9+7dSrE8NzeH4eFhPPvss1hbW0Oj0UChUMD4+DhGR0fh9XrVcelhwffVCaV8H1mmfjKQk/xkiNN1CLsBK//XBQe7353uJX+Tg2BiYgKpVAqhUAhf//rX4XK5cOHCBVSrVVSrVTz++ON4+eWX0Ww2Veat4eFhhEIhfOUrX0E0GlXCVKVSwfz8PM6dO6esUnSpi0ajatJgXAjLxAGoC0IkK8FgEENDQ9i1axeCwSCazSaSyaRKwCA7dDQaVQOJ7nPciJP3sqxL8Ufdblf9TgKku7yxHFzQKJzK96HQycxrnGA8Hg9isRgSiYSyirXbbUSjUdTrdWxubqqYlunpaQQCAUxOTuK2227D+fPnsbKygpWVFWSzWfzP//yPShjBmJoPf/jDeOKJJ3Dbbbfh2WefVWZuOcE7TR79+p7ep5zM4HJRtUsz/07ASbu2k/eV1jg9nsmJOFFwIZHhRC6JK/uRXartbreLjY0NvPnmm9i9e7fKvhcKhWBZWxbd3bt3IxqNYnl5GUtLSyoxg3QbsEuYwgVNtzrJvs0Fli6BbMdGo4GLFy8iGo3C7/cDgLIGMV6w0Wggl8uhUCigUCj0jF29r/B5dhpBChR8Fz6LY00mxeBvLIMkgLzeboHcqcBnJ0T9NguNBlcPdvOf7h4nlZfS2iozr0ajUXS7XSwtLaHVaiEejyMcDiMWi6k5v1ar9QiquoAv1wCn+Zu/yWNOQuM7OQZ2so70k5v4XcpPUmimG1i5XEalUlHzbiQSUXJRrVZDoVBQMaX6Oic9Y/hHcsFkUDMzM5iensbU1BTy+TxeeuklrK6uwu/3I5VKYX19XXkR0AuI/SMYDKJUKilvGrt304+xHzjVi1yv7YgOz5H3o0zDzdupqAagZC19rZGyJsvKPT+pFC4UClheXsbTTz+NUCiE2dlZRCIRHDhwALFYTCVM6na7mJmZwcjICAKBAJaXl5XsSUXBdpUBPNdJaSp/l3Ui4+2vFQxxugI4CXZ2v8njusCvdyQ5iYfDYUxPTyMajeJrX/saIpEILl68qM79yU9+gjNnzqDVasHr9WLXrl14//vfj2AwqJJIBINBlfAhk8lgfn5eCXaWtZVFLh6Pw+v1qonBsiwVLO52uy/ToLPsnIzC4TBSqZQS5LrdSymNdQGHGjdalSzLUhobWghIaLhJKQcPNSCbm5tqvynWOycGEkFqB3mOTEnOOmc5mU6aGcXcbrdyVQwGg6qsCwsLuPXWWxEIBHDrrbcqC8bCwgJarRYee+wx3HvvvUpIHx4exp49e3DmzBlMT0/j7NmzWF1d7as1kXXlpGXiOfoEqvdB3SL3Tmlk3i7k5KeDk7vcy0gmhZBuDVKwB6D6oXTF4zWW1bvPk16WZrOJxcXFHg0isEUoHnjgAWVBjUajKBaLqNVql5EUEn72SZbFro0kgZFuqeyTvDfThdN6y7HJvZuoNVxZWelxGXRagHVrFMulL1wsC2OrotEoSqUS8vk8XC4XIpEIut0u1tbWUCgUegigrHu9LPL9+5WVx+0UUYY8/e6B/ZPzgdTmy3Ok9VYqAWXmV84DHKdyrvF4PIhEIgiHw2qt4RpF7fzp06dx8803w7Is7Nu3D+fOneuZD9hH+8Us2ckQknjJ+8g+z/Jfa7Be7NYffZ6wg36OE5H1eDyIRqPYtWsXarWael+/34/h4WG1GT2VRACUSzZd0ahslfXF8sfjcUxMTOCee+5RHj2BQACWZSGdTsOyLEUUXC4XCoWCUupalqX2w2NsKN2W5ZptVy8EPWlk7LYkkLzeiSTpij9pVZLeFpxv0+k0xsfHEYlEkM1msbi4qDyCKDPJPh8IBJDNZlUyLRLSfD6PtbU1pNNpTE1NIRqNKtmmUqlgeXlZJSKjzMm9RGUohl5H+txtJ+vY1YedwuFawxCnHaIfA3YiTTr6nSeP+Xw+3HnnnUgmk7j11lsRi8XQbDbVRPzXf/3XyrUmGAxicnISx44dw9TUlIrX4R5JlUoFr776Ks6fPw/LspRrUafTUdYWLj7dbrdnw01O+tJyw/flokM3P8YjUSvESUsmAaDwRGGLmgi6PMl9bOLxuAp4B4Baraaex0EtE03ICUguoiwHNUz0v+V9qcnihCQnP8aKtNttrK+vo9vtIhQKqcx7hUIB6XQa6+vrqFarePTRR3HXXXfB4/EgEAggkUjg7rvvxunTp3HkyBFUKhXkcrke6wLrxqk/6ES73zl2/Ux/p2uNQX170DG9z7hcLsTjcaTTaQQCAUVY+Tv/pzaRgpCdZhe4ZAWSi6qdtYmfuVwOZ86cUXt3UfEQi8WUpg2AIvOSKEhrjrSccqGSBIWQrnK8nvFZUgjjOGKmP2oIGWP41ltvYWNjw3FOYrmldYzCBZ+hL+qSPHJxjsViiEajsCwLExMT8Pl8OHHihFp0paBoR9L6uas4wZCk327YCeHsQ3Kj6rm5ObU2lstllYiHcwSFWbluS0UJhWAASpnBfs7j7MPSi4HX+/1+ZV2t1+s4ffo00uk0PB4P0uk0Njc3e8oh53I78m83VuX8rQuQdvV1LSFjme1gRxb0Y3xPp/nf6/UiHo9jdnYWzWYT6+vraLVaaiuJoaEhFVLArRY47wYCAYTDYfh8PtRqNZURVLrjBYNBfPzjH8fw8DBSqVTP/pL0zFlZWUEsFoPH40GtVoPL5VLeMWwLzs8y9lR3w7dbl+V8p/dFuf7YzXFyvZAKQxJ53qPdbiMUCmFychKlUgl+vx9jY2OYmppCKpWC2+3GwsICTp06hY2NDZRKJXU9ZUCSyWq1qpTqDKdYW1tDtVrF5OSkCtXgeUtLS9izZw9mZmbQbrdRLpcRCAR6sszqXkOyfvT+5NRP3q01wBCntwk75gv0Cl39JjJ90rC73+TkJIaGhhCPx/HRj35UaXErlQr+/M//XGX4GhoaQjqdVh1VphQulUo4c+YMXnrpJZw6dQoAVIwPs39RqPF6vYjFYkpzQsuTLtBxspCublxApOBqVw8UmqitYaYwaTqn4ObxeNSkRqGw3W6rWC+Px4ONjQ1FJLvdrlqc5CTCyZLBjnw/uirSlUv3w6Vwx01zs9ksut0unn/+eTz44IPwer3Yu3evElZJvpaWlpDL5eB2u/Hcc8/h+PHjCAaDuO+++1AoFHDLLbfgmWeeUfvs6O4ast76EaXtfpeC+zsx0Wx3AbfrW3a/k/Du3bsXN910EwKBADY3N5HJZNRkHg6HVX+ktU++s/6/FKCAXo2unZDSbDbx9NNP45ZbboHP51P9R24wK4UuWjplCm9J5PRj8t3l/9JiyrHDz0ajoUgL+325XFbW4VKphDfffFMt9Hbtoy/wLJceNMwyynFFQYHCBV1XbrnlFoyMjGBmZgY/+MEPsLq62nM/OTfIT1kvg/qp3dxriNSNATmuOT/r6x/nd3mNXHf27NmD9773vTh69CgikQjq9TqKxSLeeOONHks0FQ1ynMt76iRG/i8Vb3rfoteE2+1GJBJRFl5gaw+1TCYDn8+nPD/oMivJUz/i0A86Cel3r6uNfoRn0HX6p1SMyXu7XC6EQiHcfPPNKvlSqVRCt9tFNBpFIpFAo9HA8vJyz9YiVFTyz+VyKSuJ9K45ePAgZmZmkE6nlcxCYd7v96v96zqdjlIwt9ttJBKJnrg2fa7vZ+3T5ymd/NoRCN2VX1dyUW7jRu0sB8+v1+uqLli+paUlzM7Oqhj44eFhvOc978Hy8jKeeOIJbGxsXKbcY4bWWCwGAMhms8jlcioGeH5+HslkEqlUCtlsVikwstksJicnsX//fpw5c0aNl/X19ctcKe3GoVOd9etX75Ry2BCntwGnhtGP2w0Mu45hp3EKhUK44447kEwm8aUvfQkejwcrKysoFAr4sz/7M7RaLfj9foyMjOD222/H1NQUJiYm4HK5lG8qtSBnzpxRweHUvHAjTQaFU9tCDUMul0O5XFZ7wZBY6B2eE500HdtppOyEVyaN2NzcVMRNxnREo1Gk02mEw2G0Wi3k83llWuaiWq1WlcAqhUqZEcyytixXc3NzCAaD6j6yfbjw0jVRtz7IfXxyuRzW1tawZ88ezM7OqhTqdNcjcWX9vvnmm9i3bx+mpqawZ88euN1unD59WmVz42K63b63E+2L7HO87lq66g0SBHThRB6X1hUJj8eD0dFRzM7OYnJysodAhEKhHisphRadLJAI85gecyMXcbtFsNvtolAoYHV1FdPT0/D7/T0ureVyGa1WS5EoOdHLwF0+k/1DugLJxUO6HJLISOsYsDXO5ubmMDIyoixudKctl8tYW1tT/XxQG/EdZX2xnmU7SAs0U89GIpEehUkymVTa4k9+8pP40Y9+pCy1sv77EXkncmd3niFM7x50AZDHgMsTi3AMMJFJJBLB5OQkGo0GTp8+fdmeaAB6+otU8EUiEezbt6/HG0DGMHI/Q7nHWL91WyrzpLWVz5YZOSlMU+kIbLnU0yrF+L5ms6mymQWDQbTb7R7rtO5u5VSf21EiDFLUXk0MWj8GjUlJmvidn3SBPHDgAEKhEJaXl5V3BvesY+wm3b4o2IfD4Z7kB9ywXrr93X///SouiskTzp8/rwgDk1hRUUvLPa34JGcAVFIcfa3otxbL3yX50s+R3+3kKP5RYUWvHI4PxvZ2u11EIhElP5HQMKSCCut0Oo0777wTxWIRZ86cUTHwHHf0BPL5fBgeHkaxWEQ2m0U2m1XKb6/Xi1AopNaiXC6HeDyOZDKJsbExZDIZFb6xubk5cO63U+rZ1ZE89k6tBYY4XWXYaXbtBpJsaF2Y9Hq9+NCHPoRUKoW77rpLuZbx/Ha7jUAggN27d+PgwYO46aabVLAqADVISqUSLly4gFwup+IruDBwULXbbeRyOeXjSneiTCaj9oyx09bxu8zXry+UcoDbaWP4rhJcpAKBgEqpzAmuVquptOQA1GQp60Z3J+TkwgHMWCYG1HPiY1YYmvi5iEuNIzcXrdfr6h5+vx+HDx9GvV5HKpVS5IuaHpKnjY0NxONx3HvvvajX67jjjjvwq1/9qif2ZLv9SvYtu9/srtWtG9dC4OzX3/Xf9TI4xWK5XC4MDw/j0KFDmJiYQCKRQLlcVklEOKEzMUIul8PFixd73EtlCnt9fOqpXqXVSJaZ5aXgI7V79KmnDzyJk/Svly4+hJ1ygc+k8MZz+D60lnIxS6fTyn2E92C9UnCUfVjX7NkRVemKJ89n+aUWv16vq7mD9c0snX6/HzMzM/jc5z6H73znOyiXy5ctgPJP9p1+/VMXELdzjcHbg7420cLK2NNEIoGhoSGsra1heXkZ9Xq9R/klyYEMXieZkMIbcMktV1cm8HqeW61WMTIyAp/Ph0ajgUqlgkajoYgKvQDslJX6HCCVJXpcnzwGXEqSBGz1dbqOB4NBJTRyDuF+aXxnKnlKpZK6n11sJctp1xZ250ml7LWGnBtkGezGpPy0Uw7r92X8cTwex9TUlIod5p55iUQC7XZbufe7XC6VJjsSiah1m8reTqejsuR6vV7cfffdGBoaUm6eJ0+eVIrUQqGg+hDlolqtpiw5JAPAFlFjnBvXA25N4eR+Zlc3cn8/CV05rV8n6x2AWlu4JoyOjqLT6ai4O0lUm80m3njjDTSbTYyNjWF8fBwjIyOIRCKIx+OqbiYmJvD888+rzMKM7aLHQTwex+joqFpvua1HNBpVac87nQ4ymQxisRiGh4fRaDTQbDaVxwYJMd/NTha2k6d12M3913otMMTpCjFIgHXSsMvz9cUhFothZmYGyWQS73vf+5QrWTgcxt/8zd8AAEZGRjA1NYV9+/YhGo32bFpbq9WUpmZjY0NloyFpousZF4BqtYrl5WVlDi+VSorAUIsjA9opxHGBo4aP51EYpeVHD8KV7yo3oqUAyqxl8XgckUhECYssuwyK5yJOQZWDiO9K0/7s7CzS6bSK95ALMxe4tbU1xONxtVjSJ1pOULwmm82qdg0GgxgZGVHZAjnBy3ch8fN6vZiZmUEul8OhQ4fw5JNPXiY4bqe/2REpO02gbjmz64dXgn4LptN44CJpJ0QDvQJSMBjEPffcg1gspkhtoVBQbpZsZ2qLm82mym5EwiEFfbsFWxIIadnR/1i/XLR5PjfNlVZJuYeFJIp8V37q7oN2igc+k1pXWc9yfLE+eJ3cb4lwWoj041Lgle+uK1FI8KjxtyyrR5jkQv75z38e3/3ud3uSxej3GqQ5lwuk0zmGPG0P+nzAMSnjdyiMyTjWyclJfPazn1VZzpgIJJPJ4Ec/+hEWFxd7+qOdskRafzk+dWFTJ9SMR5UKFbrnMmsXs6NScJN7JTGI364O+DyOa6A3ZbTM7sr7sk54D7muFgoF5ZbEc2kJYQwMlSsul6snLbk+F0nFjdM68U4KjINI03YVevJd2T5+vx/JZBIPPvggKpUKHn/8cSVop9NpRQaouIpGoxgZGVGJrdxuN2q1mkocxXv6/X7cfPPNmJ2dVfLHG2+8gVdeeUX1JcbtkPTS/b9SqSgrF0k+yVgoFFJWJ859O607u35vV69292AfBXrd+qhI5LjgNhP0Qrpw4QI2NzcxPj4OAEgkEpienkYoFFLvNz09jYMHD+LFF1/Em2++CQBKSR6PxxEIBFQMVSKRwNraGs6dO4dSqaQyznJMFYtFjIyMYHx8HBcvXoTH48Hu3bvx6quv9mza7KQQ09dGu3Fg5wl1LWGI0w5g1xhSMHHS4G733sxU9fnPfx7j4+P41Kc+BY9na8fmVquFU6dO4amnnoLP58Phw4dxxx13qOwxnJiLxSJeeuklXLx4sYfYSGsTCUC73YbP51ODam1tTS1Q0WgU8XhcBZ/b7cci3Y8o1FEjITsyF2RqRmRmLTnR05+WZIh75XAx9/l8CIVCarEFoNKSNptNVCqVnvrk81OpFKampno079SKU/CUgfXS9ZDl5r2YMl1aE1hfAJSlrFwuI5FIKF9i3iMYDOLgwYO4cOECpqencfLkSSwvL/clTrogK/uePEd+2k3I13oy6UfK+Bv7gr7A6pMjLRaHDx9WmmX6mJMkc9KV7mzZbLYn9SljkXRXOLvyDtJu0b9dxqax31BoW1lZ6Xk+70sBin2t291y9eE+INSKAr0KCbkgs7w8j5v0Dg8Pq8yZwCWFhTx30JykLzr80+PvpFAHbO0XRyGDY3JhYQFzc3NKEdLpbG0Affvtt+P55593zPDnVC67c5wENjvt4+8C+ikw+ClJh/zTU8qz/xDSSjQyMoJkMtlD4ClE7tq1CxsbG4oU6AHv+riPRqOYmppSZMuOOEnwXoxdkRuqy3g/CoDbIRlOShM7RYZcAxi/BEBZNjjPMxmBVFhQqcj1jLE3egyVLkzLcti1a78+cC2hl8sOTmXU/7juR6NRPPTQQ2i323j00UfR6XTg9XoxNjYGy7JQKBRUfw2FQmrvRQrqJLkkP0xYdfDgQRw4cACWZak5c3l5We2pSEsV46WksrFcLqv3ZYgDvVWo2Ot0OmrjcV3At3tv3k/Oo05zVr865HiS22twbeTaVCgUlCKBmYtp9WSacrqfJhIJHDx4EPv27VOK6w996EMYHx/HSy+9pOKXstksZmZmlHIsHo/D7XarcBBmR2Z7sE3S6TTy+Tyq1aq6P2PJZJ3YjVe9rzmRLKlosJNZrxYMcdoB+mlbnDq4PKefNsGytjIFfeQjH8HQ0BAOHjyIUCiERqOhAr6/+c1vAtiyNt17771q4eCi1ul08MYbb2B5eVlN7pxA6JfN8ynoUJtTLBaV2dnn82HXrl1IpVJqoHBzN70jcwBTu0PND9C7azotYgyY58CW8T3URlObJzcPJKmkFl/eRwasS4GA73bvvfdieHhYpXGXSS+k5Y2LsM/nU3Unta/UdDWbTczMzKhr+C4MwqSAnM1mMTQ0pCwizDwTi8Vw7NgxVKtVfPCDH8R//Md/KFcASUSd+oqTht6J2Ou/2U3sV4J+z5fP0y1i/RYKl8uF2dlZ3HbbbYhGo0ilUkgkEspqJwmvJBeSmNMapFt17ISRfoscj1FrzcWHoOUzFoupPizrWGq/pWuOnsGLu7LTt16ey+dLLTo3wQagMtmxzBx79HeXcVd27yzf2+67FIRZzxQGi8Vij5Vhc3MTP//5z3H8+HFF3CzLwoMPPojV1VXlfqP3cX2ulMfsxsM7oQx4N2DXR+VvwCWrrLR6WJbVU6/yWp20SMFLd7HmeTL+j3OybsWR1tyZmRm89dZbqFQql7lm08WP86jb7cahQ4dwyy23IBAI4MSJEz1JQ/pZhy3LQiwWU3M/XYBo4R8dHcWFCxfUXC3neSdBbJDCUypHASjXOwquHGeyPeTcxBhi/l8sFpWrksfjsbWGOc2P+vwt14xrLTAOmuudBF+7a9kuVLAwdvTs2bMol8uwLAuJRAKpVErFQVOxGovFMDQ0pBRGVIIy+x777MzMDI4dO9bjGcBYcc6/MlMc+62MP2Xm4k6noxLgEEyaoG90rK8vHC9ybMkx4jT36ufIemO7U3FHDyGXy9WjWM5kMnC73SqREscXFc18Rj6fV7IOx2UoFMKtt96KTCajXGLpgseY8Wq1Cr/fj42NDZw+fbrHA4mbzNdqNQSDQRw5cgQnTpxAu93Gvn37lHW2n+JYhy5P2x271uuCIU7XAE6CrvzfTmjZvXs3jhw5guHhYdx5552o1+vY2NhAoVDA66+/js3NTbhcLnzmM5/piYFgLE29Xlcud4z5cLvdyn2hXC4rH2wZmxSJROD3+3tMsel0GolEQi08pVIJhUKhZ/NZqaGj1lISHRmkyEHOSZ3uTNJ3mMKkdNWS9UWtHi0N3W5XDWg5Mcnnzc3NYW5uDq1WSy1UkmxywpWCNhcz1qEkVp1OR2lnZD1wsrCsLd92mspzuRwSiYSabPncm2++GfPz88p6+Otf/9o2lkzXRPbra/20V04Cw9WC3WLptIiyjeXCL7XJbrdbBasytezw8LBqJ5mohO1DX27uW0FiJWMS9HLq5XIC+0MoFFKWTS4wenIHqZjgwmenRWZZJOFnH6GQJwUwXZvIhT2fzyOTyWD37t09Cy2VCdS6ys1onUiK3Z9sJ70v0q2VMWckSdVqFYuLi1hcXMTk5KTStMfjcfzhH/4h/u7v/k7t78R6GtQG/ciTXbteTcXAtYIuWNHKynmHFne63Oj9RibJ4RykJwORRMtuTpDEXvZBXfCTrmlMLSzdzjqdDhKJhNqWgfXPezImCoCyhjKJyNGjR/Hwww+rtaFfu/G3I0eOKKG3Wq32bKg+MjKiyiHdyqXyTtaNrunmu0qiJoVlKvVoPWJcl7w3AGUVbzabyvuA97r55pvx4osvolqtXpaVTScYbKNB/Uj//1pAEm2Wza5fOZVD9nXOC3Tp/f3f/300m008+eSTPR4HxWJRxVoHAgFEo1Ekk0lV//zL5XIolUrqGcFgEB/72McAAMViEZVKBUtLS1hcXFTEjMpSKbzrVlj283a7jWq1qhIxBAIBpFIp5PN5JBIJrK+vO9aTlI1YRwDUuJZurPp8zPvp9acrPFwuF2699VZUq88QX0oAACAASURBVFUsLS0pD6NardZDCoFLShGuXxzHi4uLaq1jHH0wGMRdd92lEkGQZDabTYyOjipL6+zsLIrFIlZXV3syFjPbcKvVQjKZRDKZxObmJsLhsKo3fR7XZQOnfvVuKc8McdoB9M5MSGFkO4u1vqhb1pa16aGHHsLExAQeeOABtNttrKysqE3FXn75ZbUITU1Nqf8jkYgS+FdXVzE/P680LvRJT6VSqNVqmJ+f73Fx4mTBBAyFQkEJWCQjnNxGRkaUlqZSqfRoLigsyiQRtDxxUeZx4NKGbxRCpdBMgZTaOz5Dz6ADQG08SLc7loH3CoVC2LNnD5LJJCqVCsLhcM+EpgsVFD5YHmosWaZ2u61SfzL4lFYIZsezLEtZ5yKRiIrHoT8+g+n9fj/uuOMOPPfcczh69GiPplZqpdi/nPoRf5cTj53gZNePrxROmkX53Y4E9isP2+3ee+9VQmE0GlXptXO5nMqoRI0uFzUuTgB6XOK2+95OGizLslRGJ5fL1eM/L6+h5k/6nZPE6dpIAEqxwAWTY4oCqlRMcNGWz9PHhRyPbvfWBo/cZ4qBwnZEw07TKUmTFCxJdEiE+I6yzzKd77/8y7/gwQcfxIEDB5QgNDk5ifvvvx+PPPKIKrsdqbRrB72t+vW/dwtOgo5ex3ZWHqmQIXGiUAWgZ26SSimg1zo0aPzL47J9pbDCc3hMWpxI5EgaKpWKmtOGh4fx5ptvqrJIazuFJ86n6+vrCIVCSoDK5XI91hK7Nu90thKS3H333co6S1dyjpVIJILh4WEsLS0pwZTERlrN9LrjO+tZYXUhlZ4VPIcKOMuy1LrAuqHrN8ci6zESiWDv3r04efIkOp1OT9IjO0LXjzjJfmYXy3W1oAvsrDtiO4RJkiYmUIpGo/jjP/5jNJtN/PSnP1Vz2ejoKNLpNFZXV1W/YDZG6frIeTiTyfS036c//WnVRzY3N/H6669jcXFR9RcSbyrZ9PFIZRBdKwEokjwxMYH77rsP2WwW5XJZ7WFn53YmrZNyTuc417escLIy8b7yE4BK1pBKpXDbbbeh3W7jkUceQbvd7tmfjPeRChPpKkrFy8LCgnJLT6VSiEajCIVCuO222/DUU08pme3cuXO46aablOI9n8/j5ptvhs/nw8WLF9X76PLRgQMH8Otf/xrNZhOzs7PKXW878oRd/9Llbj73WsIQpx2Ck4beWP0mNqlBIOT/Pp8Pd911F3bt2oX3vOc9qlO+8soramBJiw6fy/gemv1/8YtfoFwuK+FtamoKu3btgsfjUcRhY2MDAJQ1hwsh3dpWVlbQaDSwsrKitNZ0gxgdHe1xkWI9cOHhxC8nV/r/drtdtf8Sj0srDd+Pixxjt7rdrVgQumhRkwRsTWLU0EpCxbYYGhrC8PCwWuBI5GS52T7ApcmFAikHvSRvPp8Ps7OzPckp6DJVKpVUXBg1PNVqFadPn8bRo0eV9ofuBpOTk6hUKlhdXcXu3bvx5ptvXraI2y1G8vigRdWJSF0pcdouAbH7DlwK5pT34UKVTqeRTCaVsN1ub6U7zWazWF9fx+rqao8fN/skF1Bu2CfrUSfJ+jvIetbfzePxKG06hVnei9fy2fyTwcY8pk/m0mLAsSgXfnkMuGR5ku3e7XYxMzODQCCgtIBScTA+Pq78zvVEEoNg9yyOVe6HJudB9vdTp06hWCyi0+ngO9/5Dj796U/jzjvvVELjZz7zGZw4cUIFHTv1E6dF0q7N7KD3/beLfsTSrg/ZESOgd58qSU4o0KdSKbW5M+d6Krr0/ind54BLyijd7ctO4LLTfNu9L59JCwvnWQqSJMm5XA6xWEylF9fHNedPzqEUJs+dO6fqZXR0VCUn0hUeBOe5ZDKpzisUCsjn80ohFQwGlcU6Ho8rxZWu8Qd6tySQc6jcFkPOU1TOMaMa7ydj+Rg3w7WG68fFixcxNTWl6pH7FF24cAGFQqGH0Ml2cFJ06EkBnNaKqw1pkQR6k1bYCb5OfZZ1FovF8MlPfhJ+vx/PPvusSkwVCATw2c9+Fpubm/jpT3+KVquFUCiklLwk49y4lvM9+2c0GkU2m1UZhnO5HObn5xWRln1cd0FmverjgHOf1+vFxMSEivM5e/YsXK6tNPtSMc3rmBHQ7XajWq0qLxveTyoL5JrC7/r8wf+pDAC2lMiHDh1SGwNPTk5iYWEBwFYcqlRq6zGMcp6iHMdNhUdGRlSCMrpHZjIZZeWlbMjYwng8jrGxMdRqNWXV8/l8ql273a3sxLQ6JRIJRKPRngx7g9YBO4WH3ucMcboB0E/Dp3cGuajw/5GREXz0ox9Vk329Xscrr7yiXL5cLpcKjAcuaf+GhoZUp+SkTWtNJBLB+Pi4MmczEww188ztXygUUCqVVGIHxlVx8JCQMD4nHo+rfaL4DlLA46RO0kNSxwlEJopggG21WlXHpKsfOz8HIV1XeC3vycmSk5AUNKjFp8ae2c5oUet2uyq9rWVtaUS535XUEDLI0ev1IplMqomnXC7jrbfewhNPPKEEDN3aVigUsL6+jrGxMXS73R7CNz09jUgkgiNHjmBxcRGFQuEyc72TcCMXdLtz9AWNE3W3a+9XfzUwSFB1WtgplEQiEXzwgx9URNrn86m9J9bX13vcRXk/GQvU7XZVcg5pYZETqS6E6ONXr1vuJyYTIEjBin0/lUoBuOSGKokOF2gp4MjfWT6OVQBKuy4FT4LP5TiXSTOouPD7/crVMZVK9fios630Pua0aPGTm2RzbMg2KJVKOHnypPKVt6wtt66HH34YsVgMu3fvVi4gf/qnf4o/+ZM/ucyKZtdHdKHwWpIn6ZKmkwy7+pBl0ud4fQHXBWEpTNKiyTYHoKz7UiOtEzPOmRzLeiIUWU962WTf5G+cw0j+KegwRmdiYkJZgAuFgkpD3Ol0EI1GlVCr701HZRvr2LK23L+5ZvG5PFcqKAkeYzxuMBhEt7uVBTabzcKyLKX9TiQSyopFoY3zJNdRvjO1/HKuYBklQWAwPLPYEiQBtG6wHmU9VyoVVCoVtVk0y/qBD3wAjz32mMp6K13DZf9iG+ptp/9+NRQF/WA3NuWn3vdkf+Oc7vF4EA6HMTo6iunpaczNzSn3MsvaSjTy0EMPwe/346WXXlLrO909Wd/BYFB5kSwtLQHY2k+LexQxbIHrusxeyLKyvqmwlXOarE8pnwDAgQMHFEmnfBAKhVSCCd6DVtiRkRG02221X5S8py4/6c+VHjFA77rO8ni9XoyOjipZ7a677kKhUOjZN0zOJfyTbt+UHS3LQqVSQblcxosvvohDhw6p50QiEZUMqFwu45e//CWOHz+u0sI3Gg3EYjH1PxVCchsNxrPRQjg3N4cXXnhhW7F5+pjUFc38tJs/riYMcdohnAQMHXbaFzvy5Ha78YlPfAKhUAizs7NotVp45pln0O1ube4JQFlb+J0m2FAopDpitVrtiTNgJjJ2IJIkLmh+v19pBrjBGzWGtVpNDW5u7MmgyFgsho2NjR5XBulvzwmIgiF9izm5kMgx6wq1qjxHup+wzqrVqtJgywmMgjX97eWkw3ckmapUKsjn88pSwUmUEzHfH9jyh2b2HJrY6Z5IYkl3vFwuh8ceewz5fF5ldYpEIj3Whna7jXPnzql9EiqVinIz8Hg8uOWWW7C8vIy5uTlFmPVJRF8UdWHOjmTplih5nvTZ3ymcBNV+2mu78sr/aWW88847EY/HVfu121v7diwsLKj9yKRVRbrkcfEhUdjY2Lgs8NSuDp3KSCLHscQNcKemppBMJgGgJxtTo9HA8PAwFhYWbOMV9PqRbnyyDmXbSIuaXte0MJBUSZcTCocXL15U47bRaCAQCKh07RxPduXTLRQktvF4vEeJI99lYWFBCakco0xu8/jjj+MLX/iCysaWSqVw5MgRPP/885e1j93cqfe5nSyI211ALcvqmX/6ETL9uu2cL8cfcMnCSoum3AOs0+koBZbsSxwr/JPKJgoSkrToQrYuUOjadGnpZ9tTmxwIBDA3N4dIJIL19XVcvHgRmUxGxTDMzs6qDI8cm3rsj6zjVquFixcvIhwOK0IjY1yBXisd35fxo4ydYl0tLS1hfHxc7UkzMjKirA7SXVauEXbEV7r1sexcZzm/09pqWZaKXeJG6NIjgwKjZW0lTZmdnVVZ3OjytX//frz22ms9ShJZPru+ryuEpGLmeoFO9NlnQ6EQ9u3bh6GhIXziE5+AZVl4/PHHVfm9Xi/e//73o91u47//+79VXLNlWT0yAJWTlUoF8/Pz6HQ6qq8CW0SBijaSDzvSBFyKW5NzL8+RylC6jO/fv1/1YcZIyXclIaF1hTIBXWyBLSvR7bffjpMnT6JcLitvICrAgMtTjtt5l7BOuHUMvYcmJiZw4cIFNSdwnaRyhUoaJsOi+6S0si4sLOD06dMYHx9Hp9NR8fRUvK6trSGfzytlGt39zp8/r/rA8PAwarUaCoUCDhw4oMgky04rIpVodmOS95Kwm9O5Vl1rGOK0A+iCVb/FWDa+flwy5lQqhdnZWcXKKRhyYmA68EajofYJYqwNyUs4HMbY2Jiy3nAR5ETFCUDuLUPyMjIygpWVFeTzeaWdplaBQYVcGOlPTCsP3yEYDCIWi6nJmx2XmvdGowGXaytIkFoamXqZA5CLJwmYHNwkTpIkcQHihCG1MryO1jFOTKxfLmycMNxut9qkjRa+VCoFy7JUFjVqyaiNWV5exokTJ1TSjUajgaGhIYTDYayvr6u9H4At8ru+vo6JiQm021sZ9xiHMjs7i2AwiH379uHUqVM9iyf7UD9SQthple00Mqz3qwWncaCTIx3SpZOCybFjx3pc79rtNtbW1rC2toaNjQ2VNYluG0wHy3clEokEAGBzc7Nnr4jtlJGaN5KEmZkZDA8P4+zZswCg3IIsayuz3erqqnIfZKIEOT9IUiuFVyoXeI7UtEvy00+AqlQqeOuttzA0NIR0Og3g0oLP/h4Oh5VCBIBStFQqlR5XQtmWUtihSwznKLsYLKZp15PBUEHBOYaCUTQaxRe/+EWcPn0a2Wz2MqLp1K+cFFJXQ2DUiU2/8/Tn9yujndKA8y83+56cnASwpYhhH7AjTFRSUbMssxZSwOIcx+Msn3T1lhYgOf50qw8zawWDQYyOjmJiYgLBYBCZTAarq6vIZDIALlmRSCKkBVWOK8a0sCxLS0tKG6+7MkoCy/eQLl4sVywWU/Ntp9NR7zA5OalcgPL5vFJKUMmgu+fpz5P1C0CRR65hjO2joLu6utoz39KSSOUGNxNNJpPI5/NoNBpIJBK47zexMvPz8z3vqvctvd/JOUWO4e0qCq4F9L7OduQ8EgwGsXfvXkxOTmLXrl0AgPPnzytLnc/nwx/90R/hpptuQrPZxOTkpHKFA6DmrGKxiEAgoNKKU2ZiH7EsS7WP7oUiyyYtLU5eCVSgkhQAUOECVMgyno3jBrhkEaGCF4BSHHHsHThwAMePH0cmk8G3v/1tdVyOB31OljIOAKXoaLVaal6gt4GUiXSLmrwn483o8k3lLTe4TafTStbjHML4MLoekrTR2sT6HhoaUgpAGX/P+DW3243p6WmcOXNGvbMdQXQaG7pySM4/1wqGOO0Q+uDrx4jlMf06Ckb33XcfAoEADh48CAB47bXXFEGgFpsuR/QL7XQ6iMfjPUKYy7UVgMpdtaU2GtgaiNFoFBsbG8ptjXshFAoFlMtllEolRCIRtbhZlqV+owmWbn50D6S/NjV/JE6WZSmNKbUxlUpFuXNIrWI4HFZCMokZcGlzTxKVVquFVCrVo5kiieSEJCeaYrGIkydPYu/evSgUCrh48aJymaDGj9qpcDiM8fFxZDIZeL1eTE5OKtN7tVpV+whZloXz58+jVCphdXVVaVapAV1fX8fo6KgS2Ov1utqgd2VlBel0Wr03hReXy4Vdu3ah3d7a64D1Jjf0ddLE6H1OaqhkfAyvkcfeCWz3We12Gw888IDqo3y/SqWiNnKen59Xk3SxWESpVMLY2FjPhnvS7SIej8Pj8SCfz6sYH5ZJF5KlYEq/eaZBn5ubQyKRwMTEBBYXFzExMaHqmK5rKysrqk/5fD41Zu3Ijny2/p0CM8siFzpq5GVbyvElx5TL5VJxIzMzMyoI/5lnnkGj0UAwGEQqlVLB/VILybFFN12Ob5aNdSX7pswsxveUCyAFm1qthrW1NbhcLgwPD+MLX/gCvvvd7/Zk/dPnVKd6dPp+Jf1bF07tfncidHYLug6+i9/vVwRidHQUQ0NDKJVKav6jFZwgsaFQKIPipbsNY1JpuQIuCVg6GZFllRZwtoGM5wkGg2oLBvadbDar9q+R7cZ1RyYNke9Aq1a73caFCxdU35TnScjv1IpzbHu9Xtx22224cOECgC0PAm5bwQQMgUAAZ8+eVS7hUtHC8cS6k+SN92e5uU7RnanbvWQV5xYgHKOS9Mp1im5bLpdLbU7PREFLS0s9ljcZ89RPjpDWJzkmrzZ0Qsvy6GNPzqskJWy3iYkJTE9PI51O45577lFKR7bJHXfcgQceeAAAsLGxgenpaQQCATV31+t15PN5VTecu9j2MmkK65xxRa1WS82nnCv5XL6TbDe2P8cpE31QNmq327h48aJKqkXLIudBykGVSgWpVEoRFLfbrSww//Vf/4WvfvWragxw7Wdb2pEIvS/4fD50Olt7GHJ88d2p0NIJPfswlR2BQEC5uTJRGPvx+Pi4SjDG+YdgyAjrkbIQZazh4WGk02klS2azWQSDQYRCIRw7dgw//elPYVkWxsfHsbCw4LhBunRZtJN/9DFxrWGI0w6gTwp2Qi3RbxGVgt0tt9yCdDqNcDisOgqtSTIDkceztVP22tpajysEO1GhUEAymcTi4qIy23LCoQsAfcIBIJvNqjTlNOkyZTdjjyKRCDKZjIoxqtfriMfjaoKiJp+LCsvJCYmWHWo/acGSWYg40VBjSS2s1KKQgMgU01KLRVOzbCe6eK2srKBSqWBlZUXtKE7SFwwGVRp27iHBVKcyxXuz2VSLZrlcVkGX1G4yy1qn08ELL7yAu+++G7FYDJubmyrjFLCVpnllZeX/Z++9g+O8rvPh5313F7sAdhdlF4ve2AA2kJSoRhVKEV0iyXHRuChxL+NxHI+cMpkUTzLjzORnpziZTCa2E/0Rx048VuwkVmzJRcUSJVmRSIqiwE4UomMXiy1YLLDY9v2xeQ7Oe7mgKIn6zfd9w8vBEGX33fe999xTnvOcc7F9+3YH1ammpgYHDhxALBbD9u3bEY/HBZ2pZji1oarmMGrE2sxaUVarITpXY1wp+m8+h8/nw3XXXScZSs7r3NwccrkcksmkGD/efyaTkSwezzHTg0E+i3ar1UeRIsgaDsoeO8ANDg4iGAyKbPf39zscRbfbjaamJmzevNmBVL/88stVn1UbQo2uc84oR6bzWA2sKZfL6Orqwp49e4Riwf1CdHDPnj2yv+rr69HQ0IBnn31W6vXoKDMbTaOvkTv+Tteo6HpLPg9BHk2l5Bf3dblcRiKRQDqdxsGDB/HAAw9geHgYR44cEcS2mjNmyhcd4GoOYjUZfL3OZLXXm7rfvLfL/V5fw+VySVF0XV0duru7AVSyTaRVMjDW19NZEZ31AyBBjw66ddt88560Di6Xy+Lc0jmhvLNT6fbt27Fp0yb4/X5pOkKZ0fuxrq4OgUBAqM1ahwHrLAQWrBOUo741gwHOqXameCwAULGVXV1d6O7uxtzcnGSjV1ZWpB7Vsiq1rtPT02KTdOaNOoUMDn24OcE1BpCcJx1cARDgjIg9z8yhjaLDvmvXLnH4o9GoBLjhcBhNTU2SfaUDqdff3PvVZJz77a3Q7xsF3eb9aD+JTnpNTQ2am5uxY8cOBINBvOc970GhUMDs7Kxk2t75znfis5/9rFyzVCph586d+PGPfyyHCpNJws/U9DUGHDr7SdBndHRUgEgNVplUR+o4HaCzjoqBw8DAgAQr/L2m15tNrjSop+ukUqkULl68KHLITOby8rJD35oZJtMX4POQCVFfXy/zzYCO+466mTXuhUJBMlQ8OBqAMJRcLpdk9OhX6bPb+GzsVEhmDRu9DAwMiP30+XxSe0wfk/4XGR6Li4tVfWct6xsFkvy+WrB5tce1wOl1jGqoj/l7/XO172kAOzo68LnPfQ49PT3Yv3+/oFa6rTC/p1PHDNGjjz6K+++/X/rq64JeGlAavXK5LEgbqXjsssWGBQ0NDRgcHMTU1BRyuRymp6eFy8025NPT04KsNDc3S2DAz+TvWltb4fF4kM1mHY4UAAeqTUPCzizaEdAH0BJ542ZlLReVHlF5jRBREdXX1+PGG2/EqVOn8Morrwg9AqjQLvx+vxhKUufq6urEqVhaWhKKB1ssHz58GOVypZMZuzZ5PB7h9nu9XjzzzDPYvHkzQqGQBJwM+sbGxlAoFLB//34xcIVCAX6/H/v27UNzczOWl5elWFKf36JlyJQvLYNmcbWJ4PD7N+JMVhuvdY1q79NBdiAQwF//9V+jVCpJwEHgoKGhASsrK4hGo+IE8qwmHmhoWRY6OztFZnSBPAPr+vp66cZFo8YvbYC1fLa1tTla3APrgQKDeTqpTU1NCAQCSKfT6OzsxPDwsKMQ15wH/dlra2uOc2joyJZKJUc7XN6nln1m57SzSxSWmVvtyEQiEdx33304deoUYrGYzBOBB16fGQhSk3iIbiaTkZoDnsWUzWZx4cIFuUfbtqVpBWt3AoEA2trasHPnTmSzWXz729/GD3/4Q3z+85/HN77xDfzxH/8xLly4gLGxMTlQd6OgiP9Xc+BeSw5f67W8/ysJnDb6u3bMzL3KrpyNjY0ih1zfhoYGtLS0wOv14tixY46C8VKp5DhDhiCWbdviaBF8o8PHNswEmnQWSGcnqEO1HLGOx+Px4I477sB9993noEBNTU1hx44dOHfunOy/6elpNDY24tChQ3jppZcwPz8v+phBFvU3sO6cJZNJOVKCwZ/O2OpgvlQqSRMl6txyuYxbbrkFjz32GM6fP4+7774bnZ2dmJ2dxdzcnNTn+nw+QcKZpWVmj3Wnzc3NqKmpkSw1bQppZi0tLcjn85idnZWgaGZmRt5vOm7UPW63G5/85Cfxjne8Q2yGy+WSYLm9vR1/+Zd/ib/7u7/DyMiIZArMZh/V5NLUMaQRXu3B9TflmzbH3Adcz+bmZjzwwAMCntx5550olUr4wQ9+IGcffec737nk87q6ujA7O4twOIxkMunIgnDuA4GABDylUqXeiXXUdXV12L17N3w+H2ZnZ/Gtb31L6Jy0Dfq9+ow8+loej0eCAJfLhQceeAB33303yuWytDhfXl4GsJ5p5WuDwaBka2jPdLOuTCaDTCaDr371q9iyZYs0v+B9JJNJB/Cg2STUJWzoVV9fj3w+j5mZGRw4cAC2bePee++FZVn4yU9+gpmZGclm6bpwBk6NjY0IBoOydsyq8XBfNt+gfiZFr1wu4+jRo6ivr8fJkycxOzsrQPLg4CC2bduG7u5udHR0oL6+Hj/96U+xsrICv9+P+vp63H///Xj00UeRyWRw/fXX49ixY+JX6ky5GSSbsqZ1GgGb1+vfvJ5xLXB6g6PaglRzEKsFTm63G7fccgva29uxdetWABCeLDceM0Ua1SJqvLS0hJdeegnNzc2ora1FOBxGuVyWTAlrhjo6OhzCp4tpTQfE5/OhqakJMzMzDo58bW0tOjo6kEgkkM1mJSNAZIPohaYWUZGS96uzZrwXCjlQvfWndl60A0pkRxdMAnCg5ZxrKvpYLOboZEPnW9+jdpBt25Z6FSL5mUwGw8PD0sSC79GH79JA0uAxoKUR4+aPRqNYXV0VCh/vraenB+l0Grt378bZs2dFAVUzghpp0nPJudhIwWyEYL7W2Cho2uh1ptNovoZo3NatW/GhD30IxWIRZ8+elS5bpHIdOnQI//Vf/+V4Tho3Otd0fDSNgPuG1FAelKkNL7/M+SqVKoe6Hj9+XA6kZkCjKR0alSalNJlMXlLrYD67ziZpSo6JeGv0X8sB175YLGJ+fh6pVErQcDqXDJ7ZipkBWKFQQCwWQzKZFEdaZym4r1mrpwebo3R3d2NpaUkyeBMTE+Is6IYaNLrcTy+99BJuv/12+P1+QUELhQLC4TBuu+02cSLPnj0rzooe1YIVzmm1126kjy8n8xuh6dVeYwITJoih74PySECKgTFpWXRStmzZgr6+PhQKBUfbfY066+DGtm0JMljcTkfO7/dLIE3wiTZGr7d2IAmEUebC4TBuvPFGkVvusWQyidraWjl+wePxoLu7W7p7uVwuPProo5dkTojkU55Zv0r0W9srrfc5fwSx9HUymQyy2ayAh2xC1NLSIvW5uVwO0WhUbJTf70coFILX6xVdD6zXi/AegEo2PBgMoru7W7q1MSu+srIiTWs0GMVaL83eYPBLemY6nZZ6Q4JnX/rSl/ClL30JMzMzIj8a3a8GlJk/X6mufr3jcp/Bn3X2nGDtAw88gIaGBoTDYdx5551YWlrCj370I8lS/J//83+qfh67NjY1NWHr1q04c+aMQy/Q3nM/5HI5qbljwxWuIY+44BmAlDPKGGWbjSQoJ7y+y+XCXXfdhVtvvRXAeh0pdS8p/5Q/+kVmIxHuN5ZOZDIZLCwsiB5kR2TuDT6v6RPRdlHf6ppxDr/fj/3792NmZgazs7PyjPR9GMAxK6fZDmRrtLW1CfWO16fcM1v8wgsvoLW1VboiMmAcGhqSWnnWRu7duxevvPKK0Bdra2uxfft2HDt2DEAlWNZZJ85pNVmkbuD66Z/f6nEtcHodo5ozuJEC09+bCs/v9+PgwYPo6elBJBIRhI3CwOCEnFqiwaTDTU5OYmJiArlcDoFAQDZDOBxGT08PxsfHsbS0hIWFBelex3vUG5zFg1TwjY2NmJ6eBLV51AAAIABJREFUdnDrQ6GQdGlhkJDP54Xn7vV60dTUJAqBgkvFoumGml+skQLtuOqNwPky0/F8HX/P1/MzdFCVTCaxvLws1C+dLmcgls/nhcdM7jzRIAZUY2NjmJubc3RIYu0VqSakMXq9XiQSCbmmaXAKhQLOnz+P3bt3OyhHPp8PPT09mJmZwY4dO/DLX/5Sgmc9Nxw6+NUytxFSb77u9QZDV/qayzms2gHr6urCO9/5TqkNu3jxouwDj8eDe++9V5yc5uZmZDIZB1WPc7e8vIz5+XlpqQ9Aiu5JQ2DdErNDbCpRW1uL5eVljIyMyJkvDGYymQwmJycl+ALWOxhxX/L7tbU1xONxxONxOctFPzOwHrTzC1jvmkdjpbNppGtoo2muJ9Hv5uZmybxqtI7zAwDBYBClUknOamOxs8vlkoOy6TjX19dL104+H53l1tZWdHZ2YnFxEa+88opk3kKhEBobG6UWh8/HZ5ycnMTJkyfR3d2Nm266Cc8//zy++tWv4hvf+AY+97nP4eWXX0Y+n8euXbvEuPJZLyd3nOOrZTD1mr3ZazKwZkDa2dkp2SG/3+9o1hMIBBCJRMR5b21tlQBTt23n2ppZU9LI2IKYVKVgMAigQpWmk89aPqLc1EG0P9yH73nPewTVp8OmdUldXZ1k4zdt2oT+/n7EYjFp4Z9KpRwsAU2rppySrmbW8HH+9DpoGhr3H0FHAlHpdFoaBukOkFNTU/JcwWBQ7CntFoM8AmqWVaklC4fDCAaD6OzsRKlUwquvvgoAgvIz6CPdKhQKIRKJCMjHxiznz5/H6OgompqaxG4yeKWcNDQ04E//9E/x4IMPOuoGOS+mHuAc8asazfdqjmp7zXTsuU7hcBgf/vCHpWvavffei3w+jyeeeAKpVAoAsHXrVmlqY45gMIh4PC5AQ319PU6fPo3FxUUAENuq63az2SwWFxelmYHuTnfnnXfipZdeEiCVMk3gknLJPQdAjkDp6+vDr/7qrwpIxvUoFouSnaccsQU650a/lmUOBFHY1GRpaQktLS0CtgYCAeRyOanp1X4Nr8d9UF9fL/dlWZaAsi6XC62trbjjjjvw5JNPir/HAInZadIJdTdOMjQIBPPaBFzYdIuBUSqVEpC9s7NTjsIhRZbNmnbt2oXR0VEBATm3p06dwtraGtra2nDmzBmZfy1fph9NeQcupe+9lQACcC1welOjGoq/0es4bNvGHXfcgS1btqC7uxu2bSOdTgOAgy9NdFxT2FikSxSRBocRfUNDA/r7+zEzM4PV1VXE43FRWnT0aFzK5bLQBXR9Ec++oDGwLEt4vuzqx8He/YFAwJFRAuAIakxDr3nFwHoTA40c6I2igwu9ofScao4+lcji4iImJiZEIVCxm45rqVQ5g6S+vl6M4cjIiKODTywWcwSUPDuE62ZZltRB6Zomor56YxeLRUxNTWH79u2SAeQchMNhaU0/NjaGkZERh5xpB4dzWE3+NkJpLvf3auP1Bk36d9UMPFGuhoYG3HLLLQiHw3C73bh48aKc/+Pz+XDw4EEsLCzg2LFjmJycRG9vr1AticaxsLhYrJwpwcOfbbtS39PY2CiOBIN7tozXhcENDQ2ora3Fq6++KqeY09CxhT9pb/pZdLZqaWkJIyMjDlTQnAMt0/w994neP6SN6L1AY6cReH4O6+Y4v9yjdLh47o3P55O5Yi1UoVBAbW0tOjs74fP5JONHZ0A7AKwfIZ31tttuwzPPPCMdkpqamkSXAOt7Sxu5733ve/jCF76AgYEBPPfccygWi/j2t7+ND3zgA3jwwQfxB3/wB6ipqcG+fftw7NgxcRz0HL5ViOJr7ZnLva7a+7hupDsODAwI1e5jH/sYVldX8dOf/hRra2vw+/3o6+tDMBjE6uoqlpaW0NTUJEAM67/W1tYQjUYBVPQLu7aVy2XRNWxrTLCA+kUfz6C7aFGO6cRnMhlMTEzI3tB0aMoGGzC4XC6pzZibm8PQ0BBisRi8Xi+2bduGV199VbI+Wg5I7aJcMagiDZb6ms+mgTWdzafjDECQetKxSfuuq6tDLpdz0E69Xq8wJ3RwTxtDHdLX1yd1Wy0tLQIE+nw+bN26FfF4HAsLC3ImzeDgIAYGBsThLJVK8vmlUqWAn/XHXV1diEaj4uzGYjGEw2H09vbirrvuwqOPPipAnZY9035qmdO27a0alwuatL767Gc/Kwdlv+9970OhUMDzzz8vgIjb7cYXv/jFDT9namrKQfcMBALYt28f5ubmkEgkHI0P+PzlchnT09PweDyIRqPSeZXNTYLBIH75y18iGo1KB2ICdQStaF+SySQaGxvR3t6OW265RWpHGZCNjIwI+MGmLPooF3ZE1tkryh6D7KamJpFXrTNIk6bvw72gfSW9D2grWDPE4ff75fBdsg70ntMsB8q/6cfomj923EskElLbxftra2vD1q1b0dLSIkFooVCQ9QYgBz+fPHkSmUwG4XAYnZ2d+MhHPoJ//ud/ljri06dPX9bH0f+b9pDjWuD0/4JxOYR+o9/rqJfKJRgM4t5775VIn8V3XHB2ydKZGr6fgu/3++UMjUAggHw+j6WlJQwODkpbbBaf8nyipqYmtLW1obGxUQ5aJdpGpedyuRCJRCTY0GgNC21p1Ijks8CZaDkHjZFZN6JRKdMJpHLQBoDPrSl5et6pEFhzRWVo2zZWVlawuLgoSo1BFWtrtGMXDAala97U1BQmJydlw+sCYmDd2WXtGJFkr9cr9BlN1dLOJP/P5XI4c+YMrr/+emk6wfds27YNs7Oz2LlzJ6amphzOo85CVJNNrTwul7p+s87na2VYqw06kW1tbWhvbxcOtNvtxlNPPSVGZu/evUgmkzh//rx0JyR6TLnS9REsqI5Go4JMejwehEIhlMtlaRFuZoqIEtOQ0KnSCOHKygoSiYQgeHx2Iu9E49iWXLdi1XOhA2ftaHCPc910cEw6hd4z1eod0um0GDAGcTqzTOSSeoWgCx2Bjo4O2Xc08pwjGko6GjpL8sMf/lACLKKT1WRLy2CpVMITTzyBzZs3Y+vWrTh79qwcHr1371584QtfwDe/+U1YVuVcoHPnzl1y2LbpSL7eYOpKXr8RYrlR1raartcOWXNzMxoaGuByuYSONzMzI7o0FAqhq6sLNTU1GBkZgcvlkvdQhnm9UCiEyclJx7knPp8Pra2tKBaLoi/plFCnxWIxCY4Y7Jj6gpkvBnCvvPIKDh065EDKLWv9sGdSlEulEi5evCidvLxeL7q6unDu3DnJoAIQWpymufIZaEMYaHEugXUKUrFYRCwWw8jIiIAF3Nu6sQsDKu4j1vXSxrD+i7LL97Fphc/nQ3NzM0KhkNhFBrCBQAB79uyRhhQnT54UQGZwcBCBQMAhJ7RRhUIBFy9eREdHB5qbmxEIBAScITBz8eJF7Nq1C1/+8peRSqXwxBNPyDzo4LGao6izclcbYDBtzOVe53a78e53vxt9fX1wu9249dZb4XK5pIaajWne//73y/vGxsYQCoUkOwoAv/jFLwT0pLzU1dWhr68PLS0tSCaTIg+xWEyeO5VKSUDKLA59rbq6OgwODkpmlk08fD6fBD3Uk+l0GplMBu3t7QIUkPIajUZl3TXATeCO4Fc2m3WUMtDfom73+/3SmdK0EeZamrac86GPiGGnTQ7btvHcc88JjVX7JvxMrV8JhBDQzeVyiMVicr+k1qbTaelUS53R1taG1tZWR6MiBv7UCQCwe/dunD9/XprDkKnQ3t6OqakpdHV1SediE3w35c8EIk1ZfKvGtcDpdYzLKQ7TAJmv56bau3cvWlpa5LBVHbUz4teF0Qw4WNAHAE1NTTh79iySySQikYgUHp4+fVqcIiootr0k95wdxrhZNG0NgKByy8vL4hDy/CVytXV3GhpTBiVUCrqhg6bs6bnj3ziI8ukAiwqnGvqgOchszGB2PNJd7ajcdDvccrksCKptVxpCjI6OCreYBpnryPvVTjdpKZr2wrVj4wsqLKJTpVIJExMT2L9/Pzwej7Rkdbvd6OzsRENDA7q7u9HV1YXR0VFHsKTpKpyTjZTHRhmpK1Eqb0bxmAqNRisSiaClpQU9PT0YGhqCx+PBf//3f0sWhJSmbDYrqJZ5oKcpG5ZlSdY2FovB4/HIAZg0gIuLi3IAsa61W1pawsrKiih27g+NsE1PT6O5ufkS2iu/mPki+sm1rLYWJjqr6as6aDKzTdo4m5/PwIiIezqdFloGsI4YUh+wxT7RxXA4LJRVzj8zFXNzc0ilUsI7J1ATi8Vw6tQpWFYlS6rpHxoI0fLHbMDMzAw2bdqELVu2YHR0FGtra3juuefQ39+Pt7/97Th69CiOHj2Kjo4OZDIZTE1NOVBU03nQQUu1oO1KZfm1QADTeJvOK517TRsm7Wbr1q2SHfrkJz+JUqmEf//3f0e5XKHkbdq0CT09PVhYWMCZM2dQLpfR2NgoDAG9923bFmYB9cn27dvR3t4uNDWu79atW9HU1IT+/n48/fTTDn1LR5H1RsViUeoyQqEQLl68iOeffx733HOP0FUZ3LS3t0tAwEAknU7LPm9oaBBAi3+nLBDV5xxp+m21vcA9oOX/1KlT0rZaU8Rt25bW+dwXy8vLchAubVEqlRIdHwqF0NraKoERj+BobGyUjBVBm+eeew5er1e6a7788suyL3bv3n0Ju4D2nIj+zMwMnnnmGXz84x8HAAwMDEgnXO34NzY24vd+7/cwOjqKs2fPXkJRp97QMno1A6WNhgn6mJ/pdruxZ88efOhDH4LL5ZKuagAkcAQqPszOnTsBAH/2Z3+GtbU1fPCDH8SuXbsAQOocGciYtljfA4PdRCIhtjEWi8m6EHAgiMFavPn5eQAQUIjyq0G1ixcviuzzHui39PT04MKFC449BUB8OdoUTe/WAYWuheIa0s5zbjV9lTpQ2wzaQALFZF3oMTU1dUnmlgwd2ivLqnQhZOdV7supqSkBbYCKzpifn5ezRYFKFmnTpk2XHIyuaxafeuopvPOd75S/tba2Yn5+Xmyl3+/HBz7wAfzt3/6tnGtH2wBsrMdNHaztz1s5rgVOr2NodLMa0sif9eAGJyr4tre9DU1NTVJPQL4to2+dBdHZJhoty7IwNzcn9TrxeFyyV3TeGIDRGeKJ5h0dHWIIWDCvgw8AUgOSyWSED07jqrNkRGV0QwXTWWJASMXCnzmoROjUMYul51YbFL159Pzw70Re+DemxHkd3j8NLR09ZspSqRTm5uZQLq93NQsEAnC5XFIXwEJmXXvCYJOKSNNQdA2DiUIylR+JRBAIBKQ2xu12o6+vD6urqxgaGsLMzIygtPr5TST/tSgaJir+Wsjh5cZr/V0Hc8zKdXd3IxAIoLGxER/+8Ifh9Xrx5JNPyiF4Pp8PQ0NDqK2txdjYmHTb4r7Q1+Y9sKOh3+9HMpkEUCkq3r9/v8hpuVzhnTc3NyMcDgtNB4ADAW1paXE4dnSykskk4vE4mpubJWMTCoWE+pbJZKQTHNutmplR/q8zXwyc9LqZaCHnUIMp5jrwuABSaVOpFCKRiMgfM6O6rTszsJs2bZKzTgBIBtmyLOmcpA/gZj3CQw89hEKhIA0geI90iHXgx8F6lnQ6Lca+ubkZqVQKXq8XL7zwAu666y784R/+IX73d38XFy9exLZt27CysiLnz5l6YCPZM+fycsGVOcx9tBF6r4MnvVY6aNIUvZqaGrz3ve+Vbp1dXV3I5XLo6urCjTfeCAA4cuQIAOe5SsySEgFmk46enh45S27Pnj0IBAKYm5tDbW0tMpkMxsfHpd6mu7sbTU1NOH36NJLJJKLRqOgb1imxTTzXk5n6bDYrXUS1Y8TsJIE7OpThcBjd3d1IJBJ44oknZD4ASKClM8fco9ox1LaP8889VSwW5dw0Op5s2MAMGJ1PbZN4PXaEBIDrrrsOu3fvht/vx9raGhYWFrCysoKmpiaxk8w6zc7Owu12IxKJIJVK4ciRIxgfH4fH40FbW5vUdNDecDBw4jMsLCxgYWEB4XAYACS7x30Yj8exZcsWbN++HbfeeisWFhYwNTV1WTmsBtpe7UCKc2myRjhs20Z3dzf+6I/+SJp3RCIR+fvhw4clsL3nnnvg8Xjw4IMP4vTp06irq8PHPvYxeS3BGt0+XjfAob1nfXFHR4fUAjIY4JmMrC3iGrHj59TUFFwuF44ePSr1bwS/dPC+uLgowBtrynnepQ74KcuU02psAoJH/CJYytcwYOJeYKaSPp2pY/Sa2LaN8fFxDA4OSlOgYrGIyclJh0xyb1uWJTXabHBB/6lUKiGVSknnVADSfIMHq3Nd+vv7BSzRgZ/eu8PDw47A6dZbb8V//Md/SC05bXN7ezui0Si2bNmC+fl5Rz2Xqc8pczro1L9/LX/ozYy3lgz7/7OhHVX9vTm0U8rvXS4Xtm7diu3bt0txqG3bEgDRIJqLz2sQCeahrHT+eS7R4uIi5ubmBD1goTyR4GQyieeffx4TExOyWavdL5FOdtVi4SqVP++F72emQAeU2nFicEKH09xQ/BuDPF3nwb+bgZJ2WID1zBULj5kS12coWNZ6YbIZ9JIeQuSpvr4ezc3NaGlpQWNjoxwMx8CI88A6GtIBiCTxmXn/VKaatsi/sdCYGTOiajt27EBNTQ26urrQ1tbmyDBsJJvVEMBqzmU1NP3Njo3AAxpKZtHq6urw6U9/GpFIRHjiXAe3243BwUHU19cLFYAUMyK2nD99QDA/g62c8/k8fvSjH0lg0tjYiHQ6jdHRUQEgdKDP+wwGg+jp6UFPT480RiAAwNb/pVIJk5OTOHr0qCOIBiBrrVuH6zWjzNLh1DV/ppLXWQszA2vuV1JzV1ZWZI8R6WTQWVdXh2Kx0oVPtznu7+93dH2inPMzef6VZVnYsWMHLMvCP/zDP8h1ieJSz7A+UzvSmmJEHUfa1ObNm7Ft2zZHB1CggkKXy5WM9u7duwUFrRbwb4RCvh6Z1T+bgZD+Wcs411Wvj15jNtWhXPb19aGvr0/05c6dO7FlyxYJeurq6jAzMyN6xXT+TWCptrZWDlOdmpqCz+dDb28venp6RGfHYjE0NDSgoaEBHR0dGBwcxK5du7B//37s3bsXe/bswe7du7Ft2zZxBOmkURc/+eSTUj/FweytRr0pR8FgUGiGrBHUwBxlhrpZn3tkgkPaKeR+zOfzGB8fRzwel/pDtqrWMszAlYGU1sflcqUe5MYbb0QkEpEjP1jYz/P8mInK5XI4fvy42OdTp05heHgYQKUTWFNTk2Qq9Flm/Fyze+WpU6dkLm+44QZpqsI1oD543/veJ1kYPS/VbIGpd6/mqLYHzP1RV1eHr3zlK6Knrr/+egAVh3t8fFxAxuuuuw4dHR1IpVIyD7lczjEnp06dEuece4C2XX/xb7qZAX2KdDqN2dlZnD17FqOjo5L9bWxsRFNTE7q6utDa2iq0ZACO4J1+zrFjxwRE4v+6u7Cee11zxeCR12XgTHumdaOpe/ilfRbtT/EeuZ94vzy8lp0mY7GY7BNe3+fzSXkF5ZmMJjatYL035TKXy2Fubg6xWMxBEeaxLrwfzTTSvjKDPz1uvvlmWJaFyclJYRsdOHBAmkFFIhFH7fpGOljPC3/WtvKtGNcCp9cxqgVE1V5T7We/3497770XKysrciAYe+qTJ6udMH0d0/mgkteCoYvlafTY35/GZmFhAa+++irGx8cd9ED9eeVypci4u7sbra2tEjTo4nRuUsuyRIFUU6qaBkjku9p8aQVZLeDSwZp2UrgxqZRokFn0rA0oO6xpBUn6k9frxdLSEjKZDIAKjYCHEvP15OZTIXi9XkQiESk4ZfDLIInPw2fXyIk2BtFoFMlkUrIy/DyiaI2Njdi1a5c4TKbiMH/WwVk1mTQdkqsxLueA+nw+tLe3Sxvm3/zN38Qdd9yB7u5uPPTQQ5KmDwaDuOOOO+Dz+XD+/Hmhi2kDo5/XpDwwc8juPefOncPzzz+PYrGItrY22LaNxcVFoT3q2jg6b6xFGRgYwL59+xznQun6KTa0ICKqlbQ591q5M8gjbcTcw+YwEUUzYNKOIANNPgf3K1E7ffYSdYwu/Kce4j2RVkJ0kZmmw4cPY3JyUgxhOBwWw2nSAfW68Yv3QgPMOY9EIrAsC3/1V38FoJIF+frXvy7O1p49e4TSslHwtNHfqsnrRrpbO5/mNfV+4fs18quDJqLS1113nXQF+/3f/32plQAgHdvY0ptdJdmMgPQaDaTpjDkAKWh/5plnRDdv375dzmR57LHHRBdGIhF0dXUhHA4jFAqhra0NXV1d6OzslOCV98fgO5/P4+mnn5Y2z3qwsQTrImprawGsd/manp7G5OSk6DzuV+pCyi+7c+lMLx0wTdXlXBeLRcTjcTm03bZtoXXZti0Niwge8tgIyijZAzt37kQwGITLVWnhPjMzIwAKgTNmNX7yk58IHTaXy+GFF15AsVhEa2ursBLMPUB9pfUy5Wh8fNwxlz09PZKRzWQyQiO77rrr8Pa3v31Dh9H8WTuOV3OYeoe/o25yu9347d/+bdF9N998s7x3bm4Oi4uLkiW94YYbAADDw8PYtm2bnAHZ1dUl74lGo5cEFiZAwc9lTQ5ZHyxFWFpaQjQaRTwel3Pm2NyG8soMFM9E4zWpn23bxtzcHE6cOOGQUZ7jpzPrGnSgPWfNkZZrDaJqsFnPtQ6cdFMH7U/o91PGGhoaUCqVhIUwOjoq66YDUC2vtm1LIxqPx4ODBw9icHBQwLfV1VUsLCwIW4HPx0Pi6Qua/o0JEj/55JMOmero6EChUJAaf6/Xi5tvvlkYOHv37pUGGfpLyyE/Qwdq5l55K8a1wOkKh+l86rFRJkAb1+uuu04yRhQGFiXy/AB9zob+DCJyNDDc8ETUaOBYj8QggJko8stZJDs6Oiod4/g3jWK5XJUW0B0dHUJZYOTP/+ksEGEznXAd4PFnBlj8mUqQ96CVot6EVGbaQdEbn/fMQIkoiOZD6zN+aJSZefN4PMLjZVGwzrYx88HX04EOhULSBprPR8VpyoOpRDjnuVxOnB4iuFRmu3btcmSdTFS7mhyayAvl8Eocyqsx9D0y+CO94TOf+QxuuukmlMtlPPLII3C5XNi8eTN6e3vR3d2NLVu2IBAIYNeuXdi5c6c4LVTELpdLrqWNCJ0VzhuDhJ///Oc4ffo0VldXMTg4iLW1NfziF78QVJmIICmdbM1NWkd/f79QGghMuFwudHd3o7u7GwCksxGbMeg54JroddDIIA2Y3nvaCOsvOqimQeKa88DOtbU1eR7qC7fbLTQkOu0ejwdDQ0Py2WynrwPTeDwundtCoRAymQwee+wxxxlvfI/ew0RlTcCH4IbX65XmNrwXnvOiHfTm5mY8+OCDYqT7+/urAgh6vJaevtww9aAZRFUDh8xaE51RYeMXj8eDv/mbvwEAocdp/v/S0hKmpqbwyCOPOJqUUD70vuZh4+VyWebc5aqcK/ejH/1IDmK96aabUFtbi8XFRRw+fFgCjMbGRkHZdUOESCSCgwcPSqMQnTEBgFdffVXunSMSiYhTp51aOmA//vGPxaHR9UY6qOaxG9rZ4rxqhJ7gmt5Lhw8fFioR7QSbN7BzHQCpWaLzSRrT7bffLgXrS0tLkp3u7OxEKBSCZVnIZrPSCY7Poc/YY9MYbbM086CaXFmWJXRZDoIYZ8+exfj4uNCOAeCee+6pKu/VAiYti1dzaDBMD2aahoaG0NvbK2CKHmQNtLe349ChQwCAl19+GePj42hraxNddt111wEARkdHsbS0JGsO4JLgAYAAZV1dXUKnZOZ9ZWVF7DaD0Z/85CdCUabvsrKyItRk7jsNbNEHGB4eRjQaRaFQkLOWtL/Ga+pAjxlaHehUkw3qTT2/2h/iMAEo+kfAOtuBOqFUqtAVT5486Qg4tB9FANHn86G/vx/hcFjqShcXF5FMJsVu8Ht+Pm0naxmpB00fRAc2IyMjl8hVf38/bNvGM888A6BiUw4dOgSv14tQKITNmzeLftGyqEED7U/93/J1rgVOb2BoBWUqLXPhKGQshCf/NJvNitOlO17pxgtE6egA8X9mUDRKTHSS1JqFhQXEYjE5w4U0AAYUREu0QPJ+uelZJMzUrc/nuyT44wbke3WwQweRm9YsotQKTNcimc6JVtragdGKSqNETDMTneT96OwXjZY+ydvv9yMcDkvNDJ00GnaPx4NIJIL29na0t7ejpaVFmgboTJlGiKs5xpqzXC6XHYadCBWdHCJkO3fudChXPU+moqgmixs58tXG61E61RxVfl57e7uk+oeGhhAOh/HFL34RX/va16TVbldXF9rb27Fv3z6hKzFY5wGgnCvWsGkkXhssGg06q2tra/je974nDUKampqQy+Xw/e9/X1rLMyhgjSCR6ZqaGgwODgplr1QqSScgOkw0Tgy2zCyennMOE0HVRkCvrbnW/NJGSQ9tnBkoxeNxATDYeZMBaH19Pdrb24XyQrSWDuvy8jKOHTuGfD6P5uZm5HI5/OM//qODxtXV1YVsNouFhQVHAbeZVeVzl0oloU1ls1mhWTHjeMMNN6BcLuOhhx4CUNnTN998M9rb26W5DQ9X5ajmNL7ZUe16pt7RKLF+PQNcgi+lUgn79+8HAGlQwDOxlpeXMTY2hu9///t45JFHpKYUcB6xoO0BdQTnwO12S+OCEydO4Mknn0Q2m0V9fT12794NAPjmN78pZ9ABFeekvb0dNTU10tKZAM2dd94pB6rzLCPbtnH06FFMTk5ibGxM5mTPnj3SrQuABGe0TxMTEzI/Gqk3O5SatB4t89zbBAJoHy3Lwvz8vNCSWAOm6dqWZWFhYQEjIyMoFosi6xoYpK5gQNnR0YFgMIhCoYB4PI5XX30Vc3NzsCxL5nl6elpslm4lTed1aWlJgEnTMdaO+//oo0I/AAAgAElEQVT8z/84ZGznzp1Ip9NIp9OOwIkyX02P63nbSHavxjCz3gzYa2tr0dbWhk984hMyxzt27HC8l8yMAwcOAIA0FygWizhz5gxKpRI+85nPAKjI0NNPP+0IMHRtE+A85qCpqQmBQECOTGFWSNeU0XeKxWI4ffq0yFE2m0UqlZJr6xpo2nPbtiXDyS5/DBYZtNNfYqDE+9TdTKmfta/D9TJBZ86vDvS5B8xsrSkDbH2fSqWwsLCACxcuyLppf4RzZNs22tvbhcLIM8cmJiaEAs6gSdt6zTridbnHdVZZgyH0RfW4/vrrxR6woQePxvB6vdi3b5+j83M130UzPLStfCuDp2uB0xWOagrrtRQUlUxfXx8CgYDUE/BEaG4i1kqQdsQNxi9uGjqRdNx0NzueRQM4my5YloW2tjZpgUouMBs+sDGCdgT4PbvNsdMSAyZ212PQZgZHmoNLR5cBFo0mP0O3uNUFkKaDX23eqRipZLTRpkHXKXUqIl1wqrNURK/YhrapqUkCxtraWoTDYWzbtg27d+9GT08PQqGQzLsueNZoModWdjrjBVSMxcmTJwFAzsQiurx37174/X709PSI02nKl/lzNYVR7bVvlqpnfo7+fJfLJWd41NXV4bd+67eEkjQ8PIxisYhDhw4JJY/yTIU8MjLiKA5m4OrxeAR0ANYPKKSMUIbq6+sBVOTxW9/6FnK5HLZs2SKGhei+ZVnC5bYsC0tLS/KZLpdLKAtApWB5dnZWuO7xeByLi4syD6QubTTnvB8tH1qeuZfNuibTSTfnnoGM7tTE67M73tLSkhg/j8eD66+/XgySNqyWVSmef/rpp4X+lEgk8Mgjj0hW1rZtqTnSVCrqG+5nDejQyUwmk0Jl4sG9BB9qampw8OBBh9NYU1ODL3/5y6KrtmzZIi3/Lxf4b4SQX26YQa+p8/lsrC3Q9ZjAOnhTV1eHW265RZz49773vQCAM2fOSHE15S6RSCCbzcohq7ZtX5Jd0SAaZYdnaRH55bodP34cx44dQy6XkzNscrkcvvKVr+DEiRNIJBJwu91obm5GX1+fo3Wwz+fDpk2bcPvttwsFkPdx5swZjI6OYn5+XtZnYGDAQUdmG/Hx8XFxhjSlyJxrTVXV68ln1eun9wnbqfO8q0wm47AltJPJZBKvvPKKADC8XiAQwN133y0BqNvtFuoia4hPnTqF48ePC/hAe3L+/Hmhm/K1rBlkIyY2kyFLgfuZa0T9f/r06UtkkHWEPBCUQx9GbdrHan7I1XQazUCWg9mKT33qUwIcve1tb7vk/c3NzWhvb4dlWdJwoK6uDhcvXsTa2hq2bdsm7ztx4gQmJiYc8k/5ppyxxohNfUi57ujocGQ/ze8B4Pz58wAg2UkGP8yca91Lp5/+2tjYGI4ePSrZLA3IVssOraysSBBN3Uz7xMHP0PerdanOLmn/QfsRnCuXy+XQIclkEslkUvSTmRXTgW9LS4sAnclkUlq1x2IxB1ihn5Fzyj3E+l62/qeuon/m9XodwIsexWIRzz77rAAU27dvl8xeb2/vFcuzXvO3clwLnN7guBJUhyjGnXfeKcLADUvHWTdGYI0MN5jeaBp5ACDICB1NBjX8XAqPz+eTLAp53z6fD8FgUNqxasfNVB66BkIfHsiiW2ZEuMmpCHg9fp5OW/Me6VyRj68LCKsZhmo0pWoGmZuHFC4Gm6QRUSnRcNIwhsNhNDc3i0PJDoRsFrFp0yapSQgEAsKT5rxQmWmFYSpTHUDpZgfnzp2T19Epcrlc6OrqQkNDA0KhkNDDqjkinFPtbL/W398MKlMtaNKfwa5DNTU1+MpXviIF73/xF3+B+vp6DA0NiZIFILRKzsfMzMwlc0cZoUOmP9ukcpISRiTsBz/4AVZWVqQV7dLSEp599llxqAgQFIvrnfFY28MDBFmHsrCwgLm5ORQKBUe9SX19vYAZ5tzwSyPnJvrI15o1M9Xmt1rgywCTxpFZ5rW1NaHy0elubW295P3cH5OTkxLgLC8v48SJE0ilUrKvuP9p1PUaMYijTuLrqOdSqZTIP8/wYLcr27bR29uL1dVV/Ou//qtc1+/34xOf+IR89uDgoMjL6x2X09t6zk1nSAdOmpqi9yKD+F27dkkB9q//+q8DqDRYYK1HuVzG4OAg+vr64Pf78elPfxo7duyQA5t1gxndvZRdw9hEh8AVdTPBm1OnTmFpaQlut1uoMHNzc3j44Yfx8MMPC82M1Bweh2BZlWLv3bt3o7e3V3R9TU2N1ADRieS6UO64tul0Gg899BBGRkZkbxCE4BdlTR9loYE3Uk61veOeJmjIs6ZIYwcgtpOObT6fRzKZRCaTkXnj/ti1a5cjwKdtdLlcOHbsGMbGxuQ6pVJJHFJ+VktLC8LhMHw+n1DB6CCzE+X4+Li8XwOCulmGOUjL43xzECzYSJ5Ne3g1EXdTP/F/y6qctRYMBlEsFi85JLza4CHnujHQn//5nwOonOV07NgxCRh1hoRywRIEnkNHf4G6S2eN+MX7Yp23x+NBc3Mz6urqJCNEINgMTPP5vICvuVwOL730khy2rgMezpEZ1LDek9fR1HP6CgwstA/FZ9I/a99BU+B0HbA+z8nr9SKVSjlo7FpGGPD09fWho6MD3d3dCIVCiEajSKfTSKVSUn9kZnw08MHPo//K+jLSGCn7Ho9Huobq0djYKHNNOvDu3bvluvv27bvE1zNBYP5/Of/nao5rgdMVjo0cxWqv018DAwNScM5TnfXGocEiesZo3ey6AsAh8ExRE/mis60VqGVZgpTxdVQsRBr1xtCBkvk8wPqZTxRoOkZ0evSm5jVp1HVzBz1/NNb8fJP2pwOxUqkkSMZGG2mjrA4Vq97MDK50NoOOOZ1zIiXsKqVRIDoELATnXNM4V5tD/sxnoeO8urqKqakpAJWsEzOBtm2Lkh8aGnIcMryRPG6UqjYDpqsRNJnXsyxLTmmvqanBn/zJn6CpqUle/5WvfEUc79XVVUGpOSd0FlOp1CXBkUkDsCxLDBrg7G5GNK2+vh41NTVYW1vDU089hWQyKXTI8fFxoW5wj7BeMJPJCGrc19cnjTtWV1eleyVrQyjTrHcgSGDuB/7Mug4a0Y1AAA0Y6KDIDHr13OgDHElZWlhYkAy3y+USVFvfG+V6ZWUFR44cESd0YWFBHG3drVIjsrwHTcswgyidlQmHw1KHSPovM4mlUuVclunpaZkHj8eDt73tbVJATzrna2Wd3sjg3GrwiGthZvtMp4Bz1NPTIw7f9u3bUS6XHbVAvb298Pl8ePzxx+XsGTrdmrqmdZmu5aPjzWx/XV0dgsEgwuGwdBY7fvy4ZJ30cQuTk5P4xje+IQegRyIRqdPkGTBerxe33367ZIMJQJw+fdoRJJFaQ9pTNpvF008/jaeeegoPP/ywgFJaDig3+ndadviM2vbRjtCGMChvbGyUzBKDy6WlJSwtLWF1ddVBtea+YMaJDR00TbVUKmFqagpTU1Mi/2zyUCgUsLCwAKCSBW1paUEkEpGGJbxfBrK07exiqUE07iefzye6Sw+eH8UAFYB0Vq0GHG4UhF3trJOWf8uqZEzf+973ikzec889jvfQVnOQ4lgoFPCf//mfcLvd+OIXvyh/P3XqlDSF0OAXgyZmQkxmCoMSUioZNOj9Qd0Wi8Vw4cIFoWJTRoGK3aVu43OaHXFnZ2dx8eJFpFIpLC8vOwIsXdep14Q+ga650q3PN8pAlcvrddNaJ/Ca/J/7BYADoDhz5oyD3ldtDT0ejxw1wAA4Ho8jnU5jfn5eAn9tdyi7pKvTB9L2gMGTBspLpUotLgdBiM2bN4tfyqC5vb1dfFqWR5h+hvnzRnL7VoxrgdMbGFe6GLZt48CBA6ivr5dNSoVMNJdc32rpTXOj8IuISSQSQWNjoxg4XZejjTkRGq2MaBCXl5cFlQAgwQHgpKDoFCg3CgMo0nE0CqI3MjMPNMrmPOr20FpJmTxZFnPqIkUzhU1HmggjFQYpkfy9vmapVBJkPhqNYm5uTs6+sixLkEhem4qazi/Rl8bGRnEM+HymrPC+9b3yXl588UXH3NAZ7uzshG1XuMitra1ynTc6zOD69QwTcTSDqJqaGnR0dDhOeOdzpNNpDA4OYseOHSKndIi0c0iOtklrYOMTvT+0g2WCFlrOLatCHRoZGRGFnsvlcOzYMZw5c0aUOMGFcrkstKpyuSyIL8EG27alRkJnd7k39DxrZ8f8PX/W8qh1AOWa8qZ/r69LnUL9QoPmdruF+kVZZg2LCcysrq7iiSeekD3CNeCe14ET73sjGcnn84hGo7K3NAJcV1cnTUNmZ2elGQed6fvvvx/btm0TShjn4Atf+ILMXWdnp+iq12s0r3TvaONs6hoNDtFBsywLoVBIguNIJCLt2bdt2yadJdmt7dlnn8Wrr76K48ePS9dGTf9jhkvvOTp62kFkNpfts5kJmp6extraGnp6euB2u0V+0uk0vv71r2NmZsZRj0XEnVm9vr4+odACwOLiImKxmOyB6elp6d7FxikTExOoqanB6dOnpTGRdrw0DU8PDSZqG0AnUndUJQhWLBYxMzODWCwmtU48jyqbzSIej2NmZgbRaNTRde/QoUNyP5xftjhnfQ33OvU961C100gAkuvG37MuuFwuS2G9BtOKxSKCwSAikUjVgvkDBw7gwIED6OzslP25ffv2qm2ezWD+SuT/jQxTt3o8HvzKr/yKzFMgEHC8nk0a9F7juXwnTpzA0tISWlpacNtttwGoZJvOnDkjQC4/g3aQGXOtx3jEAr/IUmANZ1NTkwShXMtEIoHHH38cuVxOKJsExAi26W6Mmnlj2zaSySSefvppHD9+3HHuJjOxWs/zXnSpAnW0pvtxLc0s0uWYCQzutN5fXl4WGnsul3PQErUO4ee53W5s2bJFskYsGUgmk5ifn0cikXBkfvkeApLmOZm8LmWCQSfnjs915MgRpNNpyaj29fWJ7iEDBah0muQ67N+/X9bDpLNXo7Bebl9cjXEtcLrKQy8YOaP9/f3iqOkzADRX12yQoB0b7VRxo2l6HgOXuro6tLW1SVMB1m4QSdCcYPLE3W43lpeXxSHVtAmNFhIx0EMLLA0iP4dBBwCpB9BIPN9P5UKhp+OokRL+zGyQRup5PaKDDECZMeJ9ExHifANw0DfS6TQSiQRisRgWFhawuLgodSEAZP1I+wAqSmtxcVHuSWejtDLRc6k3Na/JQRoD54wKi9TAQCBwSeCkFWG1Lz20w6eDjSuRZz02MtIej0ecBsuy8OCDD4pTwqLp9vZ2NDc3i4Gi8mWQVCqVkEgkpD5APxsLfHWBNT9b35POKOrzKcj9XlxcFKO+urqK06dPY3Jy0tFIhSgl76ulpUUMOfellmfuE63QqwEf5vzp4EjXNZqOpN4P1cAUUuG0sSqVKue3aUPT19cnTVN05jaXy4njsrKyIk6vSddldsjMlJlfdHiIEHP+y+WyFOK73W4MDw/D7/dLRi+VSsHj8WDXrl1yRhyfKRwOY+/evbBtW/TbW2EYdeZM6zi9HnxGOszMhuzevVvm7OMf/7g4DAx0SA/67ne/K0dCjI+PS/0YwRdmOnSWmwGslnneAxtstLS0oL+/H5ZlYXZ2FpOTk3LeDGWX2ZDvfve7UsMTCAQke+J2uxEIBPCe97xHqMtAhQrHGr90Oo1oNCqHQAOQNcnn8zh//jyi0ajIpJZrYONDbk1QwNRZlH02SuJc02kkVSibzeLixYuYnZ1FKpUSgJIt2TVtcG1tDRcuXMBzzz0nVKFyuSxZQF6PQI8GYwCII0lmBRvO8EBqBpgEVbxeLzo6OtDT0+M4IJZj27Zt2Lp1q9ADAWDLli0yV9pGbzQuByi8kaHtjMvlQktLC/bt2ye64V3vepfj9bqeEqh00WPw+thjj2FlZUWyTVNTU3j55Zcdx33wM3XwCqxnH3UNM1/LbIYGdrl/tE9z9uxZHD58WIAOHmjMg2Bpl/g5JkA8OzsroA7lMpfLIZ1OO0A93diLz6VBMN3wixlbdgQkqG6C6ZwDfjZ9CDbpiUajWF5eljbsnA/Ol/Yr3W63AJulUgkTExMYHx/H9PQ0FhcXLwH86HOSKaBplAAcupH2Rx9Vw7+fO3cOMzMzcgg1ANGhzOoCwNDQkLCROjs75egA+oxmLZMGuExf9WoP92u/5NoAqjuL1ZxXbeRuuukmABW0qFgsSktxOvo0KOymRCHQgYQOpID1cyJoJKj88/m8nEcQCASQTCZRU1Mjh45qxLGurk4cEgZxpG7w3CcGanwmOgB6c3DDaFRcoyp0GHS2isZTC7ym+ZECxfnU1yVSuby8LOcucD4ymQxSqZTQffRaWJYz5c57YuaKa0LFaFmWzBU7Y2nktLa2VqgevAadSTrnq6urkrnYyIHm3HEOSAXo7Ox01Ey53W50dnZibW0Ng4ODOHHihFA8TVnc6Gf9O/P/jV5njo32ABUZz6VhYM41piJbWVmRhiOcIwDSvYtGdnJy0nHIHteLxgiAA3nX+88MDM26Cn4ekS1207tw4QLK5bID5QqFQrIvmC2lkSGtlvKh6SX8TN09TNMKuLc4p9ph5M98Hq0DTCor38+5IABD2kSxWJSaGuoU0lE1SEJHlw48uyjpDAifg/RW/cxcYy3bdCx5sKnOWGkUl9dhYTPpSQ0NDXI9Gn7btnHffffhxRdflAysbiSx0dBzupEc6znl85iyZ+4LvbY648hA0efzSQDE+WRdznPPPYdCoYC+vj7JpOuGPzobTnCFjrluIMSAiA5iMBiUbMjIyIh08qO86ZqKcrmM73znO9i3bx+GhoYcbAXbtrF161bs3LkTL774olyDDlmxWEQqlUIwGJTgq6GhQdgTGqnWzhf3hj7WQtsSE1nnWuhaFg02kCp78uRJ5PN51NbWIh6PI5fL4cUXX3TsKZ/PhxtuuOESoO7MmTN47rnnEI/HZV8QdFhZWbkkW0oqtenM6swsKdYE2i5evIg9e/YIiDM2NiaH61YbzABwLTZv3oxAIHBJZzLqwI3k/moNHeR6vV4cOnRIZI9n5+nB4BJYP5PJ5XJhbGwMuVwOH/zgB0V2XnzxRQmy9fNQLmgnNPMFgIOBQtqcDsK1receYW3g448/jjvvvBPFYhH9/f04fPiwBDLUTfQXuLYMBDR4qusPdbaE9kdT+Gpray9pDMQMMBkClE36hWajGL6Pc6NrfnO5HIaHh1FbW4vh4WGhZusAR89LY2Ojo/51eHgYZ8+eRTQaBQDxaQBIowZNh2e2Xa8VfSHaqmw2Kw20uHY8TNeyLDz11FO46667sGvXLmmWcubMGQwODiIUCqG3txeJRAIejwebN2/Gyy+/LPNg6ubXAimv5rgWOL3BsdHCcPOyGwhPdtc8VL3h2aFLO3cmWqQFgxzUhYUFqRdgfY1pXGicSqWSfM9uK6QYsd6DVDYqfgZAGtnk5iRirVFRk45BhEinU+lUMGOgjarmqPOeGPBoyl25XJaDfrWCSSaTSKfTjsJS7VDwfgBIBxjOLZ16nSkggjk3NyfPRiXEegyiUXSKWGNWKBSwvLwsTSOqOfj6HilHllU5ELezsxMAZB48Hg/a29sxNjaGrq4u9PX14ezZs6878LkS+X2t92gn1HQcm5qaxDHo7e2VNeacJBKJS4IDBsZ0yMvlMk6cOFG1zk5/rg44NjIqlE3eow70GTxxzZeXlzE1NSV1S5ZVaXXLLCUDPjZUWVtbw/T0tNTdcH/zfBwTTdcBBuWWQYH5XOb8aAfNHETBXS6X7BPuc12rx3mJRqNobm52UCRTqRRGR0elDTJRQjoavCYNIp0GjezpPcL3WlalS2E6nXbUY549e1ZkvFAo4Fvf+hY++MEPwufzIR6PIx6Po7293UFz4di3bx+CwSBSqZScIcLA+3Jy/1p/N2XN3Bd6PTWaqQP17u5uWQui6QSalpeXxZE8f/48YrGYNCWgvBJp1gEtG5UwU0F5pgOmA1xN0yTbIJvNCs2M3d+YOSR49OKLLyKfz+PAgQPyLLyHQ4cOwe/342c/+5mAGXSEidDTjgSDQQGuTNaAnnvuE9YCaQCQNDmtM839orP7OqvgclXOeRv/3wPeY7GY7I+6ujo5UBNYP1dwYWEBL7zwgtBKNWjIw6Lr6uoEqCsUCtIuOZvNCqDGrATvFVivhRofH0c2m8X09DS2bt0KoNKa/oknnkB/fz/uu+++S+RQA4W2baOvrw/hcFjWQOsEM3iqFuS/mcG55WfU1dVhYGBAftaH3XLogDAWiwl97vTp0+jp6cHevXuRSCQwPDyMZDLpOMvLBMo0IKUBHN5XLpdDNBqV59ZBMQNmXZddLpfFtjMYoCwyINfPzr2vA6hEIiF14nyP6bxr2l0+n5cjUrSOJ4CtAzzuGwJhvA+9vvw8NkBpaGhAPp/HuXPnEA6HMT8/7wDQdHdaAKLXE4mEAGxTU1Ny1h/1PVCRRc6h9lm0HuG6mdke+kIEmqkf2Wzo7NmzuOuuu9Da2orZ2Vnxr2KxGPx+P7Zs2SKg5tDQkAROJqjKz9dzpe/1ao9rgdPrGKbju9GwbRvXX389bNsWSop2GPXBbjrVbNJ8TEHgRiECyQwRue506sx0Jrvo2baNWCyGeDwO217vfGZZlgRyyWRS+NnMoPCe+NkMgBj0MbvCzaZRar6f31fLWjGYIjqj2x4zVa0VC9PYNFIsuOS8cJ41PVCjPFRWNHSajsPXMkjkfWqlTUVElJmUR3Zf4zplMhnJOmkHlz9rCiS/6OzSWHOwGN7n82FgYOCSwKmaTJrO4uXQyTc6qLy8Xq8UprtcLnz+8593GBRdIG0G1lynfD6PyclJzM7OyppoGdGZQROV1IEWAEeWkg4PAwsdQDHba1kWkskkLly4ILSwcrlyJhSRRO5jjkwmI44uKUmkiHDP6Ndrp5T3wayNef8asdQ1edowA+sZBM4pjVM2m8XMzMwl9SSJRAJzc3Po7OyEy1VpCPDMM8+Ic00KB42kuc6UQdJctTyZIAllnF3GGhsbEYlEEI/Hsbq6iu7ubtTW1iIYDGJ0dBShUAjlclkaWRCgYGt5oIKC3n777fjZz34GAAgGg1KHVi04qhboXw5w0PrADAqpI/T1NAC0adMmmYNQKARgXVcQACmVSvjhD38oMquDTWC9W1WxWEQmk8HS0hIsa73OUgfa2oEmOMSGEKQ8tre3o6mpSahSpEPxegz6jxw5gkwmg3e84x0OfV9bW4v9+/fj7NmzOHfuHDwej9R2alqoZVmIRCIIBoOX0GSqBU6cS23z9BybACKflTaCOoXnv3g8HulqGYvFMDs7i1KpJJT0gYEBYV8AEFv37LPPSi0YZY/AQTabFRCAWSZ2UWVwRZvD8xFN2eJ7lpaWMDs7i76+PpGDXC7n6Kaqh7ZdQKVYvrOzE9PT06K/TF1uyv/V0vV6HSzLkkNJCfi2tLRs+N6xsTHU1dVh06ZNOHXqFDKZDPr7+1Eul8UXoT2nnGgQFnDqFQII7ORL+8lSAwIJ+n51bWZdXZ0EKn//93+Pe++9F7lcDr29vUJP1naSz6nZQLZty7EVulkTX2PuT9pB6jT6SPRf+Az8X4MOJpCjg0MAktWhnzE7O4uJiQkBBbnHAch1aSPIBpiYmJCabm2PAUhASfukdSQz4LxnZiD1/4VCQfaU7lzI+4tGo/iXf/kXfPSjH0UgEMDKyorQwblHeI4gG9kwI6YHbar++Vrg9P+hQYRj27ZtqKmpwdDQEGpra4VDS4SKgsHNRuOqOewcFAAaSXaM0QqCSoWGlRuedD06H/w8bmQaAaKRvLdq98FNq+sOaDxyuZwoJ/JVTUWigwSiO5oHTKNIPrlt22KY6EwwuEgmkzIvZqc1Pr++b94rlSvnkoaN1+Gz6UJ8zrVOC/PetSNeLBYl2CmXy0gmk6K0SbFh1x4qJ03LsW0bmUwGk5OTGBgYcMwZg+SVlRW0tbVJoKHnVw9tOKplZczXXcnQr9UK3bZtac3r8Xhw6623orGx0dEBMZPJCMpFvj955JzXxcVFPProo+IsMlvHeic65NpY6WejI8oMIimjRM5436ZCXXtlDaXd663rKQOsoSEdgmdi8DPW1tYwPz+PQCAgn8X7ZntW3p82eHov66BJv07Llq5/rGZACTaUSiVHUKPr/Ogor62tYXx8XDoWHTlyBPPz8w4kkjJjosBut1sKshkwBoPBSwJZnbHw+/3isPPMHaLRxWIRfr9fDhZlFpv3zq5jNJ4cv/Ebv4Fnn30WpVIJXV1dWFxcdKDEpoxfye/137SO5DrxefTQASIBKk0lAiD3z3VIJBIYGRlBPp9HQ0ODo+kBAEfWmtkbMwjXmVx9f5RfUuWYeQoEAti0aRNeeeUVqcscHx9Ha2urIPCrq6s4efIkYrEY3ve+9wmNh4H79ddfj9XVVbS1tcG2bZlzZo9ITfT7/ZdkDcxAiowFPrOufzPnWOsYzhXXxeWqHB6fSqVgWZV6FQZEbHvv8/mwf/9+qfMFKrZ2fn4eP//5z5FKpaSGZmVlxXHuDQOopaUlJBIJR8ZAU7CqyY9eK7/fL7W38/PzCIfDjqzslQzW4vD5ddbCnC89b1djmEHI3XffLbr5Ix/5yIbvY7OGvr4+AMATTzyBQqEgWe3FxUVxrFdWVmDbtnRW03ZVB9Gs52NJAW01/Q06//xZg7j6eBFmQv7t3/4NN9xwA1ZXV9HS0iItz037ZgIc1L26WzDtG/+uZV/rdH6vKaN8jQbH+PnaPvD3GtAmeGxZFYZOPB6/BGwmYMnfM6NKn4ifoc8C1fuRoIUORHVGivep/wcgOmx5eVnAX64bUMlMPv/88/joRz+KzZs3Y3R0VHQWAHnf/Pw8SqUSbrrpJjz66KMO+iLn2JT5ajr7ao1rgdMVjtfKMnFYVqUFrd/vl5Q+ULhDvtsAACAASURBVBEAHramDxfUaBudaTpW5mfrzUeHUxcPAhCnkh3I9EF9RIvD4bCgukQgadyJwutuYVoYdepZZ9G4EfQ8MDjUiDmNLZ9/bW39wDRSU+jg6eCNKDgDNvJea2pqHBk4YH0j8fMsy3IUaOq5ZTEvDy5k0MbrUeFSSegmBvozmL6nM0hlkcvl0NTUhIaGBnG2NRqvUUWizIlEQn5HClapVEJ7e7sclhmJRDA7O3uJM32lMnqlr93o/XrU1taKE9jQ0IBPfepTjnnR7bGZAaHBIR1xfn4ezz//vDjkDObp1NAx00qZ889np+JcPbqKFVToZDZs1KAGNmyUUEJZ/bPgBAUKxwsooYTSDSXpXEkHgefB6M8tl8vSBYo/m4igDuz4Oy1/RAX5Wu0Qm6Na8MvAkllay7IcTi33HetemJXgQZ6zs7PibGh+vaaeUF7YaY8AEH/PTCOfTSOotm2jra0NiUQCy8vLGBsbQ6FQQDgcRiwWQygUktoeygjbOJPmTCOfzWbR1dUFt9uN1tZWZDIZBzqp5+SNDs4XHQ39/KZh1r8LBALyN+r8RCIhLYjpsExNTYk8t7S0SBaeTgp1IumQzJiYtQTV5IWfU19fL8EtKTGZTEbQdpfLJZ0leawF5zkWi+Hhhx/G+9//fmm6sLq6imAwiH379kmnwOHhYcnwsKlEPp9HIpFwONo6S0eninWBnAcNbFQLEukEm6BHS0uLZEi1M8fgx+v14rbbbkMoFJJuY8ysPvXUU5I1WF1dlbWic0inm/OyuLiIxcVFjI2NwefzoaWlxQEqaAaD/mJdFDvYDg8PY9OmTdi8ebOjhvBKRnd3twCs5tA6RwetV2Pwui6XS5r76KzqRiOfz6OnpwdApW4lGo1iZWVFQDU61awzJRCs14UBiannAUimKZvNin9AW8kDbYF1n4UBGdeWgfLjjz+OgYEBlMtlBINBkQPtfxDUpo/B7BX9Na0btENvrgF1KvewLtHQDA2uoekHmkETP4e1eC6Xy+HD8Nr0HXlPGhTRFDrOjw5GqPt1sKf3NQMv6nA+M/ekbq7C1+ug2OVy4Wtf+xp+53d+B+Fw2AE8RSIRLC8vY3x8XFgLgUBAgBETPOIz8OerBR6Y41rgdIVDKyVgY+NcU1ODvXv3wuPxyGZkTQ4zPDU1NVIfxCyNDlR4fQoFlTmvlc1m5dAwGtlyeZ2aRic+Ho9LG+Xl5WXJ2tDx4QZmgwgKmw5auFm1I6zRQS24GiUn2kdHjQ4JKR7Aen3L8vKybGQWv2plaCItfF8ikRAqFQMREwHUG5TXMFE5y7IcZ90wE8L1IJ2RTr9WvjSufE6ebUJKC9G15uZmh2GlAtLdrgAIdYxNMoiOAZX2nLOzs6ivr0d/fz9isZisyeVkUwdK5muuVLGY8s/hcrnEkJZKJRw4cMARsNIQ8vO0Q6jrGk6ePIlCoSBOOA/hIyWS+0OvrRmUFI8UUUABKaSAyP+2wq/3wXbZAgjQsOo19Hq98I564drlQmm4YoR4jhCdUN4HjYOmAKZSKUGCSV2lo2aih6b8UdEz66ifUQMq1Z6XX9xbRB511oj6g4f52raNeDyORCIhzVSI0ALOzki8B22QdIBYKpWQyWTg8Xik45EpL0DFgIZCIfh8PiwtLWFubg5AhWY3OTmJnp4emSuezVMuV6hY+pBXtpgOh8M4ePAgxsbGBNGnPjNl9o04jzoY2cgp4vf82+DgoOi7d7/73QAgSDqzgaVSCcePHwdQkX8eQswAolgsIplMSjdB6tBqRz7orBMdIO4zZjhIX+Zn6EPTef/sNkddUy6XkU6n8dRTT+Hmm28W2fF4POjrq5xnRn1L4K++vl4K2bPZrCOA1fNlWest1DU4oJ0wYD0jRdnXmX6ddW5qapI5ov3hPLrdbtxyyy244YYbMDMzI4FiPB7H2NiYoO0rKyuIx+Nik6iP9Zxrp5ZAXyqVEmRcg2qUB96zx+ORWrz5+XksLCzg4sWL2LRpk8hUMpms2mDBHGzhTwC2GjjDeb6ag7bTtm05UNmyLHR0dDhed/r0aTQ1NaGtrU0YBnwvW8Svrq5i165dSCaTSCaTyOVy8Hq9aGlpkeynZVmIxWIyn1rnEVSlftBzTsCCOow2lvqbmSTSNdPptNij8+fPCygTCASkJEHrV84Bg3lemzpfM1+4LrxvU1/z95pNpHWv6WPxs/WaU+droBeAI4jia/V5TJqiy2uT+UNg2vws/Uy2bTtAUN6/zvpp+5rJZKT+nPuKtWkMaNmFk9lYPfr7+3H69GnMz8/D5/Ohs7PzkmNJtL7+vzGuBU5XOK5kQWzbRldXl1Djenp6YFmVNpmkG9ER0wgiNyl/1kpaO8Z0VDKZjKCEGrkh4sL6BiL9LpfLcR4HjZJG9HUhKjcW70FnyPgakyqi0RJenxtb15TwWfl60iA0VVBz5+k4VENBSOsjGsQ5NB0fzZHmHAPraI9OmVMp1tbWXnJdTc3R1BGiLQz+FhcXhRqiz+diloWKR6NHXBdmrJLJpKTNeS+2bUvb297eXhw5csSBPm80Nvrbm0UkLcuSdt+c6/vvvx8+n08QIQbGui6AVDYCAazXCoVCUqw7NzcnClzXY3AduM68j3K5jLUdlY5HpUIJNdEa1GyqEaNhtnWlPPGe8t15+CZ9cG+v7JFsNouxsTE5fJjrxmCJMs77YECmaaeXC5q0LDEQo0Os/8b36z2nh3Y69X7k+uo9yS8ei8BDhk0ePK+rufj6Wsx2ExBJp9OiY3j/Wl9q2bVtWw5XZNvssbExaQbR0dEhTSI0tYTUQlIvb731VvzTP/2TIN+Li4uXldPXI+vaqdfzr420fr5CoYDBwUHRx9u3bwcA0b96j46MjEiwV1tbC5fLJa+h7qYsud1uxwG0mhKsZZGdvhigTU5OOprScA9RNmpqauD6Dxes//1XQglrH1yTfVUsFjE2NoZNmzahvr4ea2trqKurk1oWZg3W1tYQCoWQSqWwuLjokAkNtGkwi3UP/J7zqil4+jW8HzrLBLRKpRIWFhaEmspzcXTgc/DgQbGvBAgSiYTjCAnuAX2sBwEtzi/XzsxgcM/ygG/trGvZ4d5ob2+XWh4CBm63GxMTE1cUOHV3d6Ourk5YIgQRtdzqQX3zZvW8los77rhDZGr37t3ymrGxMRw9ehS/9mu/Ju9hAxgA6O3tRWNjI5LJpByqzXOPgPXMKu0/r6EzctSvBAuAddvIOmuCk9VqzvT79V4AINR32rNqTZ04p5piT/u2tLR0ybXNwIdDAyDM1gDrDV9oE0yQxrxGNTCTPgefQ2fbOF+a5k/50EETr2dml7gvWPfEz6F/xaw7dbYGe5h55yHxpVLJAS7m83k8+uij+PjHP15VBgcGBvDKK6/ImX8XLly4RLfqNTLn6GqPa4HTFY5qC2D+zrZt7NmzB5ZVKZSl4NCJYichOhpcbNJegPXNbZ4qTSeUlJfm5mahUrCwj4qG9ApTmPgZdHy4MSjsmqbAv+VyOWlfTiPCza2VA6+jKT7AujIAIDUMzGgVi5Xzk4j+MT1Pfj5pdGzAYHJ96WgSXaETzL9px1Wj97wGDyvUtVnAunLhdbi2DGR07QOvTcVBJEQ3zrAsC6Ojo5JNYcCln4XzxwyIpj7y2WpqatDY2IjFxUU5C4lOFq9VTU5fy3Bezria19PGhM4wZXn79u1SS+fxeLC8vIwLFy5Iyp6dj0jtSafTQjdkZo1nxRAdJELNQJwOvEal+LfcqRzKKMOGDVevCyWrJEZDGypThmg48m15uOfc8G2pyAHR5fr6ekQiEbkPTfvQcmJm/zRtYCN0mEi5vi/eJ/dWtXXg9U2evP5eZ/7YGjudTkutkUZ0dRaNekrrB663Bk90e3Yiymw4owEBfW+1tbWSdV5ZWRGa7PHjxx1zbJ5jZNu2BE/McnIvENHXe7IaCn8l+4A6Rf9O685qOpUOGu9BryP1oc44kKanZSCfzzvaElP3kc6l6TYa1WZN08zMjKx14b8KqEUtfPDBho0yynDDDRdcKKAAGzasB5yUn/L3KtdbwxrsT1cChsOHD2P//v2OzDqDsObmZunOWiqV5Lwu0llNBJ1rCEB0FueNQSJrhrTsaDReO5Wkm+bzecTjcWQyGQSDQQAV3dPd3S2fvbCwgOXlZclGEXzUQTlphxpcpD3RjAoNYpAO6XK5pPBdF/3z/rlvvF4vurq6MDY2hvHxcTQ0NMDv92NiYgJDQ0OXlU0AUkeqA6LLyfTVCpx4nfr6etTV1Tk61HIcPnxY2rcTGOOgXkmlUvD7/UJX1QGZbdtSR6qz4NS3XEsCvbQ9PBeNmdWWlhaxrw59/6MySiihgEIFLvh1S/QUgwzNAvH5fI6gWQcRvC/ez9LSktDyq2VBTMBL2zLta2k9qXVHNeDN9K804wCA+HLcK8B6IMq9rH01fdyKtis6AOL7aYM1wKN1ry5F4PqWy2WpE+T9e71eaQih16ra2Lx5s1y7vb3dUctbTVbN76/2uBY4XeEwBbfacLvdaGtrg9frRW9vr0PhezweKerXm0gf7kZHWzsn3ETkZ8fjcaFl0DklpckcpBJwo2guOJ06XXtFQ6dpezqLQ8NsKgFN5WF3PgZR2nksl8tCX+FzkwpCZ4qZJ6JIy8vLEjzplrxUrMz26MBTU1k0As7X0ulraWkR9MTtdjuKf/l+KlJ2ZNJZAp5Wz88maqbT9ly7mZkZ9Pf3o6Ojw6H8mH3U6LEOEHQBKFCh601PT6O2thZdXV0YHh7eEJnSCkQH4G9GsZjvJe3B5/PhQx/6kBhJy6ocwEk55Hsoj3R48vm8OJyrq6s4cuSInKfC9eZn6iyRBCinLKlVcm1zwZ2vOEfF0vqBsmZwqp9Dz1uxWESxpYh8LO+oi0ojDWuoQk1hFoYAh5lhMQMN03Bqg8p1MTNn+ktnI83rmJ+nn0uDCHqvx+NxyVBrQ8hAnfTYamgj9wJ1lHaGNWrpcrmktpLUZF6Hey+bzeLcuXPStv78+fPYu3evtDluaGiQejdS2FhzRtDlXe96F77zne9IoKcPk67mMFYLfqqNauiuXrtq8kQKke7CyGwSQZpoNCq1EaSqkD6tswgul0uyTP8Pe28aJNl6lok955zMqsrKrDVr777dt293o7sJ6SJdzYAtYeOBCWMwDhC7ApCwEAIGDzMwQ9iMg/HEjD0TCnsw20ywDBCIYXWMCTBCExbBFpICsK7uwm3de3V7ra59zazKzMo85/jH6efN57x1srp6UTA/+uuo6KrMs3zL+73L8y6fKiJeESOPXF9fN492uVxGBRVUPlAx5TFN7vT5CIg7MZKgH9LC+Yy+u59b1PuFHvBdWXjVZz/7WSwtLWF2dtZkG/OaGBpYKmXl7w8ODiy/zoctKV1SVikiDcD4HwETKl4KIlFG9Xo9bG5umpeLBiRp79KlSxYipAfZbm1tYX9/38AE8l6tjqrrrYCeFoPQfcmzz6iIe+Nd5Tmr4FIWTk1N2cGtRY15fEEQ4OzZs3ZvEVBSxMsfhuJIOn/iiSesBD1zl3iUAStlkp9zfjj/L7/8suUsMoyPRhHziznnrJDI7zWnmvuJ+bSaCkDekvxuZiAd4QgJkgxI+7sRUALioRil4RLCXw8RfEtg9KI6BI0pza1Tr7zux3a7bYeGq5GtNOQ/8+CWXyfd54PWQ3mUN5z4neYxcVykzdHRUaueTH5OecD1U7BGIyjUK8Xv1IjiHqLcCYIMgF9ZWbHKw5Qz8/PzSNPUIo9OagxTrVQqmJqasuiJk3TzBwUNBrVHhtMDNC9Az5w5YyjIuXPnUC6XTQmkwCSBKnFzo1Bp5sal0sDKMbdu3TLi2t3dtaIP6nUgUY6PjxsyQsFCxZ5Ey9yE2dlZjI2N4fr16xb6RgWYCl5RqBuNK/4o2sowFY/Ss8SuRxEpnNT1qqEpDGGj54kbXEM3vEdBwybUEKxWqxZLmySJoZFUiJWZcS61ehi9T1RuOB6ixZprRYWKJ9nX6/UcQ6EQUMbKcMbd3V1LwGX/JyYmMD09jbGxMZw7dw4vv/zyifT5IMxkkNBVZZGG6NzcHM6fP2/M7Nq1a1hbW7O8mu3tbTN2tQQqvaudTgcvvviinVhODyDnSJmjCtAIEaIv7odc0ljSsAM/jiIjR+cmnonRDvqVmnppD43lBvaxj0lMoooqdp/eNSWQ+4z0RaFDgaloHN/hDSDfSE+eX2g/eY0X8ryf4ycNcp6BfPU8BRs4Fs6PNwo1dEbXhX1UkGdnZwelUnbW3PT0tIUn01De39/H+vq6KY/0PFNwc5+wAlen08HZs2etTwz1o5e20WgMJuZTtJMUT79+ugbMzaCxTzocGhoyYKVWq2F7extTU1O5XCOCTeQd3FPcVz70S1scZ2dwkVcPDw8j+r8jRN8SIRlJDIygAU2DQ/tP2UFvehAEWemUJFOo6P1ljtDFixdtnAxzqlQqlvezsrKSM5h8o9dGzzxi9Ueg7wHWohjsIwsccSw87kGVOCpvm5ubVj2PsmdjYwPNZhNRlB22rJEXlCPsA9eB/GR0dBSdTsfOolOgksUjKpWKeS60P97ArtVqOcBSD0717cqVK0jTFM8//zwmJyetuiTnV2U0m1fSH6Sp7H/mmWdsnebn5wHAwh7peTx79mzufh6DwjN6uI8YCtdut+3sIE1fID/xhaWoI5HHRFFkYZoMkz7CEY6+7Mh0gFKpBJTypcWDbw2Q/nqK+FvjXE4P6YvjIQBAWlAjhN4c0ogHt4qAMC9viv4GigtL8PMijzj5BCNcWEiLclDlUqmUVUeloc90DwJVuu7kr7oX+C71KnOe1ODic+r1OlZXVy38/fLly3YuGo3w5eXlEwEEAHj++efxsY99DEBWZZIFwtS7OwhEftjtkeF0ila0IH5RwjA7ab1arVqiIxGAIAgsTIvhGDQMuJko0NQzxE0UxzE2NjawsbFhwoPVksgcqJRqnkEcx4aE8D1EC+fn5y2ckN6L0dFRXLt2zer760ancFHhq8xA3dzKQBgLvre3ZydUc4zq3fJCXRU/AOYR0vM0aHBwQ2v556LcJBpNLKmrjEWNTDVo6O3S8Doyh5GREasQpOXLORcafx7H2SFzesgwlVA+j3NMQcT7VWGLoghTU1Oo1+t49tln8Yd/+IeFyNQgplH0eRE6778v+oyKR6mUHXhLw3N9fR0/8iM/gg9+8IOmIDM5nUoYGfCNGzdMiaKSSaXJG+PajyRJkLyRIL2UojTSPxSU3kxFeQeNfZBhye+oxAdBgOR8gr3aHqpLVeA/9g/UpYdFBa8eSDsIOSyab29MqXFddK2ihCoYlbcAfW8VDXJfoU2NPk3o5t/qFQD6SgXXQY0rPlMTf9fX1xGGYS5UlaEwKysrmJ6exjvf+U4Ld1FkVNFUPRw6CAIsLCyYEcZzXR5UWHp6UH7EPa18MU2zqoL8+6mnnrI1qVQqpoyQpnkt+ZeGx3ilRcOVNKxGAZ8kSTD0/wwhQpQh69/SD7FmBIMqomqg6PiCIOiHgX1XgPRXUqTfkeby4W7evIlPfepT+Nqv/VrzDDHkkoYAc3j4Pi83aZSwEAUP6OU4OadURIeHh1GtVlGtVi2XRA2lXq9nspL3djodvPzyywiCzHPJw04J5I2Pj5uBw7UhbwfyR3to1IdGYOzu7pqiCGShUbdv38bo6CjGxsZsvwH9Qjjs98TEBDqdjlX406qCvqlRSd1CadA3lcsPo5EWh4eHsbi4aPzh6aeftvcxd4XRB75piXryIhoejDrgWZP0aAF9vgX0z9zjnDEaZXp6GrVazXSd1h+10HtnvsS27huCtEb3R1nIOEPC1VjgHqWxpeFtNKo0PK+I1/u1KALxTlor7TvngfeRbxDEYCgz+SU9TnEc2/c8MkArmWoOMGlddSDqJZoDqJEK1OHo8dUxJUmW189qhZ1OBzdu3MCTTz6Zy4+anZ3Fzs4OfvZnfxYf/vCHC+fiscces3ETiBseHs6dxfjIcPpPrBWhxdrCMMT58+ctH0KNhyiKrJgDEQsqXWw+JlqVEaIyFIJEatI0NZcrN7IaK73f7iFGbOWXAaBz518XXSRIsPC/L6DyDyqIEGESk7iAC1j/wXULuTAkU0ITFFEHYEwvCAJDLhhDTgG/v79vxgXvpYtXmb1H6SmsKpWKIW5jY2OGkHY6HTSbzVz4ERUXdbMznnZxcdEMQEXYKaxVeWEIkK6xxv8CsAMRKSQVCfT5SnEcm+FUqVQs14fGwujoqIUcEU1lU/f31NSUnc/FQhL3Yih5ur4fVDJN8+eJLS4umjL1qU99CuPj4xgbG0OapqbgkT7iOLZKXO1228oTt1qtY8q7jsE8N68GiBAhvZgiCPvKNRVvnzBdZDBx7Pp/0e+kwTAMkb6SookmhjCE8stl9O78635x15Qf0hS9wSpI74eRKzhR1Lg/1SOsRhP5AX+nsavoPEEKr7xTaBLQ4DwrP/A5NyrkyeMODw8tbLNeryMIAkxOTmJvbw+bm5vmndna2sL6+roViqCSA8DOdNra2rJqXqyCdXR0ZPx1UHjLaeffz7Uan1QqVAmjcs738vwR8hxWDWOlKybAs1AGFTz12KlS5A1hrgsA83aOfuco0l9OEX97DET9PFn1uur6+N81xMc8jt+BzHh6XyZr9vb2bP2vXr2K97znPQZU7e7u5sAjzo2+i38Tved+XV9ft3Goxz9JEsvnZR4qlT/mbzA0kQotkBWu2NnZQavVwvDwMPb29nLn6bEKnsoJNZA475rjwbnm/mEYKdecPLvdbuPq1at4/PHHTXlVo47PpiF4dHSE1dVVLC4uYm9vL3fgORsNRrbZ2VkrknIaOr8f3u5bEASYmZnJAR9slPMs6jOoTU1N2blO7CM9HWmaYn5+3niCnh/HdaFhtL6+jtu3b1up8oODA5w5cyYDQv/oCN135AtdkQYJzOZAyP8uQvgfQsSI0UUXwXf2QVrKegV5uTfVMNE+FoEugwypQbxIn6O8X/mS8gEWxBgZGbFcT+57ze0FMh7K8GnKgLW1tZyupyA438d1VQBBgWTqcbdu3bJwUjXwwjC0Q2wZIXXjxg180Rd9ke3FarWKzc1NbGxsoNFoGB/VRsMsSRKr0koZph5g5TmqRzzM9shwus+mSlcQZO7I8fFxVKtVnD17FuVy+Zh3QeNBWQRBUQw23VhxHBsqp4ZBmmZJ9vV6Hb1eL4uz/aUWOuggxh3F8WuPC8o4zmLcmyNNrI6vIvmVBHP/as6q01S6FdT/zzri749NkaWRQu8ZNywVG4YhDg8Po1arodVqWQIuY/c9SpskiSEiiuSp0aQCJwgC8zh5ZCUI+pVcuOk13IX9m5mZyRUa0DK2etgkhTIVRN2IitgzZIWhF1wfXk9DCOgXAGGZdRq9VHKIyrDani/uQeYdhiEee+wxXLlyBSsrKxgbG7P48KJWxKCVwauBXnTvoO+CILCy7ZVKBW95y1vsUOI/+IM/sHmnYk0FolwuY3Z2Ft1uF3/yJ38CIENgt7e3c8VJvHKXEzZPZeczlT9fRvBUtpasXqhG06BWNCbSmIIWOaF3FQieCdAqt9AOsr2LGEjjFO0gX8iAe4bnJg1qg+a3SHH3+0fXgIqMKgjcQ16JKjIMddz6nYbzMSSDxrvSjQ/N4B4aHR3F1taWVT3b2NjA+Pi4obuMsb99+zamp6cxNTVlHgwWDtA8tSTJKsbRcGKIIvcyeawf36C/T1oXf33R/5yDSqVyDJUOw9BKtVOZWV1dNUSdc0gPJcfKpkaTKn+6RvTCBz8XoPeBHtKwv/5UnnyfdWxKD/QS5sJtvi1F+msZ6BYjRu8r+4noH/vYx3Dp0iVUKhU7v46gAdD30Pk5J78jiESDrShfEIDlTjE3iDKU5chZir7T6VioD71SlJ0Em5jDql4F9RRrqCQVNK0+xutYPEBzgSuViuVUvf766+bVYni+yqQgyCJQ1tfX0Wg0UCqVcHh4WGg4PfbYYzn+Pjs7eywE3f+vc/4wFMcgCCzkzj+THrPJycmcQeWbL4DT7XaNboaHh3HhwgWLVqBexHdTBtNoorFFvn94eIjRvxhF8J/nDQudI9UV+NxKpYLwW+7Qwr/PVxz2hoN6fBXIIBiiRRpOijAYBOKxT/zM64P8njRIA575kgQVNOXAG42aMxzHMTY3N3NrwB/uYXqrFDDyfaDndnt7G81m03g8AToPRHMue70ednZ2MD8/n0u96HQ6+K3f+i184AMfODaHjCoAYIcgU//UQh5An0a9B+xhtUeG0ynaaVCb6elpTExM4PHHH7dQMCJOTIhTJULPk2m32/YeRXaBTHAwXpvGRamUnTVQr9cRfSTCIQ7RQAPt/7avOPo+e+JhjHjyvgS9mR5mZ2ct8bT0z0sY+ekRBD8QmEcF6CP+w8PDdsAcGT8bEQQaKzs7O9jc3LRYVPUoKVrtwxmAfMlmKt0e6abAJFP0hTDocqfg5di5WTnXFILc4BSyQB5xoVBVNIjhJESluAaMJS6Xy1hdXUUQBJbHQealcdLqaeG7WA5e+xGGIebn5/H6669jbm4Ot27dOsYYlNndKy2f5lplnrVazcLwNjY2zMAOw6z0NBEnhh8qGjs3N4c0TfHiiy/mxsf5VQGQU/w+FyB4qn/4soa03Ot41HggzXCNLXz0ApBcTZDgjvB/ui9EGEai4QzMZTitMXdSnwcxfTXiVfH1iiqVejVGPJ/w6Bz/LhLmqlR44aiGE/fr7du3rdR2o9Ew4c3z7La2tuyzz3zmM3j7299u6CkFLBUEr5y99a1vxcc//vEsZO0O8v8gQrLImB0EPujckV9r5c2NjQ0kSYJarWYCnoozDQsqDJxLn8itIac+RHpoaAjxT8VIPtRX2MhTvBdQmzeSuc/oVSEABADpN6ZADJS6JeA/AvFX9cOnrl69alXNoigytMeZhQAAIABJREFUY0JDrPk8/k5jhvtWeZReq/fHcWx8hHs0TVPLzd3c3MTu7i7W1tZyua981uzsrBklpEt6uBQM42caaq1yWulDKwISNBkdHTUv6sbGBiYmJjA3N2dgH+eeoALHsbGxMdBbMzMzkytVPj8/nwM0lA5VYdfvH6RRvk1PT+d4/q1btwwk4BwWeQnY9IBVApYspvLss8/mctl0frkG29vb5p30vCeOYwQ4nibAxt/VKNLw5uhXI5S+u4SgnD/4WJ9h+0H2CmUY0yNKpVIuzWEQ6FIEjPk2CPBi32u1GiYmJsy7o3mhpCsaPpQN5J29Xlb9kqX4mevO/HHNYWLZfs6B8iyCVdRPdnZ2zAPJiBryNk0nod61u7tr4+D8dbtdXL9+vXBOFhcXLVeU4X0sHsY8Ub9PH3mc/gbbIOVTN3C9Xsf8/Dymp6dzBgCV6iAIbFOpC1UTg4F+qVYaGTwojqEfaZqVbr58+TJKHynh8AcPsbGykcux0b75fiuqR6ONZ6DQ3Z4kCYIfDhD9VITgHwXGPJnEzbA3zeMgs9ANQmHPWH9WJVIkRJFJGkoqEHQcOne8n0gHmYc/H4kCkR4yDZ/ku1jIgkyB7mzPoKl8EjVh36Mospw2MiwNf2LBEK0aGASBlV8m4qreCdLDoNCjixcv4s///M9x5swZvPDCC7m45EH0OwilvJtwLRLAHHcYZmXY5+bmEARZnlK73cbi4qLNN5UE7WO327VTwNM0NU+cggc5xeBlIEWKHnpZ2Olbsr8JAGjcOpvSuR+7H5sqUBqOogZ//EUxoqEIwcvHS8MylERDPxmqqcVbTprTk9ao6DrSpE9C15A70rd6MDTn8W7vOOlzFUxeieN3lUoF9XodGxsbALIqXASS2Beex8b8hYsXL2JiYsLoYn19HXNzc5iZmUG1Ws0dGPo1X/M1+MQnPmHgy0ntbgbV3faDHyOvZZGTcrmMN954A29729ts3hWlX1hYsMN/lb51b+izKSM0jI+fx3GM0k+VkH5/ijiNc2i3Glfe8C3qvzdY1MsO9FHbMspIRvu5qxwjjTiGdWrxHzXgyA+KzrvRefdKJ/uoYyBPZ5gvwwUJ2jG0k95fbyRpJIj+rqAJx6Bzqz80UlutluXeTkxMYGNjwwDPTqeD2dlZzMzMWL/ZD/KG1dXVgZ5pGipsCwsLx8L37sa/TwJfTtNoFNPw18OuaeAMDQ3h2WefHfgMFlfieOgBobLMarw8eygIAismtby8jFu3blleLJVs4M7RKv9fiPArQgRhYPJUvUtAn6Yok5UPhghzfFNpgHSuugm94PyO9MYoA6YlnBYw87LAG03qFaWRMzMzY+X36a1VfuFBFI6VIXzb29sW7jg2NmbVblXnUXmiHmXVrfg7dUMaacyNZDEcLycICi8vL1seOSN8er0ePvOZz+C55547Nldf93Vfh49+9KNIkgRLS0tYX1/PVVPVtVZZ9CD0X9QeGU6naHeb+DRN8cQTT1gVICKHVGxoYDAXh7kgFCLcFMqo+Yy1tTW7hoznqaeeypLt0Mba2poZX75PKnA8Gqxo8tHR0bHzE8IwK8XMg91mZmYM9Q3DfvlWokE8P4DfVatVc2NPTk6i0WgcQ1FVUHK+vMKsm52CiOebJEliRhMFEUMj1DgiQyAzVWWBHiuG+zB/Sg04jotMn5uen8dxnPPKUTHgOBnOx3DLOM7KKzebTUNbmGjK+xi+wSpKvo2NjeHs2bNYXV01pE0VDqWDQX8XXX9S0/XSkBeGaZRKJSwvL6NcLuPy5cu5ssM6X0SyZmZmEMcxrly5klPYVIkzpQoB0mdSpN07ChSy6w4ODkx5G9TfkxQLL6TYR3Xx0zgBgOTlBMEzfRpiv1VAFRkQ92qsDuqb/14VVAA5xZC0yL2lYXx+bvzzixRvXqe8RK/lNcpbKJgZSqlAERVvhi4TxeWch2GI8fFxdDodLC8vm3GugnJ2dhYjIyMWMnSSMXgaAXqSAuPniIoKDQUWCCC/mZmZwfr6OprNJmq1Gs6ePYtXXnllIBCnNMI1VUWo3W7nEudT9HOUCP4o/9Qxe2NE36uAEvPNvAckDEOk35Qi/Q8pht83nDOaOO/8myBe0XxrX4qMpqK51/lXmUpjdXp6GgcHB9jb2zNPr3qP1VNFpVg9TAqMKaDm82+J4DNXg+tDA40KKD0y7Xbb8q263S4WFxfN4E+SxOQnz6QaGRmxKqqD2tjYmAGxup6DADalgftppA3KpCiK7AxBVhukEatnN/n21FNPGcBH/kAjhx5L9ZRyvtfX14+FuDJygXKohFLOS6oVKz3fUgW+1+sh/a0UwbcGiEbyZ9YRgA2CwCKCSBs0nLQ4CZV+nmG1vr6ey3G9G517ucxGmqReNTMzg8cee8yO+Dg4OLCqjAqcKGjBqBvyWhZQAvrAvu4Vfb+mZZD3eJCH88Xccb6X+4UFcTSShMYUCwSdPXvW+hHHMV588cVCw+ncuXNW4bJer+cKemikFvfESfviQdojw+keWhHxB0EWzjY/P49KpWKMU9GRNM0O/2LCLhUDLq5uaFV0eD6Exlkztrv3T3tY/451y83xQt4jenynMgeOg2g5lVsiTPgg0Pu5Htrvz8KQND9heHjY3LG7u7toNBqGsDL5kP9Xq1U7z+Xg4CCHOrDfnsj9GHheAudJkUwyLDItbl79nIqHGk5RFNkBvF7w6Xqzv3y+hpSRcRLtZplUvqPT6djBtXoQXZIkWF1dNa9THMfGaEk7GxsbmJmZMaPMt3PnzuHKlSuYnp7G6urqXZmER7Z0rk9qg+7hGi8tLZnisbe3h/Pnz+P8+fPY3Ny09VGjpNvNDvvk+l+9ejU310W/A/mzjGh8saqRjpH9GzTeonnx79P9od6/5MkEuJIZcsHTfcERRVEu3FMVjntRWk5rAKrhr/ucse5A/lwc77Xwz9d94d9Z9DuVT9KrPou0wD6VSiVMTU1Z6BrDGskfuZYUttvb2zhz5ow9q16vG9BAhUhD+bjXB4U73e/cKw0VKTyay6QhRvy/Xq/nDvttNBqmLPtnq8HDect5NX6ihR56GMEIYsRIkCD53izEmN58lSu6nkV7it/7kLMgCHKJ4p7ewm8KMfSbQxj9gVGTZzR4GSqq8oj8WmnUK5M63/5zbwQqmMaKhaVSdn4ilXleQ6WeBhJz4tRw8uHh2meVQfQwMGpAw76Afug4vevz8/NYXV2182kODw+NXxLUoGwql8u4evUqDg8P8dVf/dUn0ijlgQdjvKx6mI3GMcd84cIFy8sjWHw3by9TAeh9Z+gY9yyLSmk+bKlUMrAUyMJgx8fHEcexeTeCVwIk70rQLfcP1AXydMdnqRFC70np20oI/32I9Lvye458i7KZXh0NIQT6lR0VpGW+Mr8rAjM4r36eiz4Pgiy/+9y5c5ibm7NoGIY/06ik4aJGBMHeiYmJXHoD9R+G01GGUSb7Ssz8js9XPsI+MlSXefzkCWx6nh8BaOqeOr8AsLW1NZCWFhcXcfPmTcupX19fNyClSIf8QrRHhtN9NkUwxsfHMTU1ZS5UzXNgGIYaDBRYGgvODUsXZxAEdnaJCqGRkRGE/zTEwd8/MIHN5pmnN5z4DG848d1aJabX62XG0/uB5N8l2P/QvoXdKTLBPm1vb9sGZgwtDRjOEwWYVr3h5lEDUtEi9puCS1F9GkYU9AzT4DzyewBWjINrRxSJZWUnJiZQrVYtblfnk+/i92ScOqcav80xsd/s39DQkCU206u3v7+PWq0GADnPIY0uHpJY1Or1uuUJra2tWV/47kHC9LQMxd/nlWoK1DNnzphxuri4iEqlgtnZWWxsbJjXMQgCEyJbW1toNBoYGhrCxsZGYZgKaYc0EiAwYaEI+yDlq0h58OCCNxj4Pn8dAJReKWUJ8uiZ4hp281UZKTC4x0iHDwv18utBoUNa1lC8KIrMEKdy4o04DXkpMg54rxo4yvcGGSpqqHH/MxyDB7bWajUL+2k0Gjg8PLQ98alPfQpPPfWU7d9z584hjrNiAjwzqdlsmoE4PT2Nw8NDe6+GyDyo8DxJCSXfPDg4sHlhhTgAltsEwEKuya+AfCKzKuvqeWeOxwEOELwvQDiSr1hIpUNpo0gh073rgTZVCHm9eVhFkbS9+N0B8AtA6cP9cFb2h0h9kQGuiHjRHHsjdRCAogoulVvSm55rqKFFpFeCXOp9UiNfeTnv83tDrwX6FRRZDChJsry26elp7O/vmzK5vLyM6elpi5igshtFkVUYvFubnJzE1NSU0YhfZ9+K9vW9NN5PD5sW1CBQA9y9CAVpioY+eRTXh+XZkyQxz8PR0RH29/eNL098dgJDGELzbzf7IftvSXH0uSMEfysf0sZ+e68jv2OeeKlUAj4E4JeA9Hv6epMC36Rv5ikqcKp910OrNSpGAZFBIAznuqiVStlxHwsLC2Z0d7tdNBoNO4San3uAjPJXDSIFeVSf417ygB+/U7mm+hnHZIA7YPuQ8xYEgenG1AU0p3tvbw+1Ws2cDqyOWaT7zM7OWo6d5kd5AOEL2R4ZTvfYVHEgsUxNTZn3hYyEyY6avK1obBHT7vWy846azSbCMLQQEL6X9/b+SXb+QRGaoZuUf3vBw6bfKRqo4QdRFCFFankIYRjmDu3VRMBer5eLU6WxyAREMhNVlD06yWIUvV7/DBLOM/vMe6hYsT8UjFSeOLeaW6QMQTc1qyBpcrC+e3R01EJAKEB0vtk/TTpVbxnLxu/s7BhjLZfL2NvbsxKzLABCuhh0LgZbrVbD+Pg4lpaW8NJLL52adgcpWPfSdB14kB77TOWWYR1M/AcyBvnSSy+Zh4+ocZFyFwQBSq+WstyKtye5kC6lm/sZzyABpiFSURQheOHOs9+WIkxDhL0QcTdG3I3RS/Ne5SRJLDl+kNJ32r5pn05CkT340ul0LF+MBpVXZvlcNX74DO9p4DXkPzp3/FsVfd0PKsC53loBbWpqyoStepxv3ryJg4ODHC+lQOU1rVbL+Ojs7CyWl5fvaizf7zoMuo/jJeBRLpctZBnol88lfVBRZiET9ZIpistnEyxK/k2C4H19D7byNA1T9Xx/0Pg1/E+rmhLk0z3Av1Up6/V6SJAYH2OFK3o3i8CWk8JmVGYprQ+ieV7DfjP6IYoiO0CbiiENFK4Dx6l8WkEB/g3APClaipx8QUGHWq2Wq9rHeQD6B8TGcVbggsVRyDOpQHKe79bGx8dzhSZOQ9MPYjjxHbu7u2YYr62tYWlpyQDMk4ym3d1djI+PY2Njw0BK7m3OX7fbNY8ygVgA/bV8OcAIRlD5u5lesP+pfcRP3DmP7HMJki9OkAwn1l+OmUap0qQaVD4kNS33I4B0XmlQUC7xeIE0Te24ER65ogWCWE2Tz+T7vbzzTdeLugdz51lcjICZAgQKaJP+te8cN/ch+6o6KYEd8jHVGdRTpzleSitBEFhYIMHNo6MjrKysYHh42Iw/ADk96vDw0HQ/6s27u7uFhtOzzz6Ll156CWmaYmZmZqDn+H5k72nbI8PplM0j1PoZY5NV0SUR0sOizFrDVNRgYYI0k8zVPcrNUCqVTDnSsAhFzovQOTbv4vf/83da/VEUIfjmAPgNIPnG7Dm3b9/G0dERlpaWTGjNzc1ZrX4ySCq4R0dHVgqT7npNXGS/aFywzCSVQoY00NXLpiECcRznkEciWYqyADCDxpSSO4yQhowiK2QWDMEk09E4bVVaVOFX40sVcRpSPACSaBWV2yRJjFaIYKsXkLQFZEj77Ows5ubmrEJZkcLkadcrJndDC31TxJV95FwtLCyg0Whgc3PTwhZ4Xblcxvr6utF3HMfY2trK0S4b56+MMtLnUjv8UBVFP8ai8fo++2v1O+4V5hSOvDaC6LkIAQIgyBsbpO92u200OEgB8mMbNKce/NC/i4wnVTiV/rhvabz69VXFswhR98KSe8J7nBThZeP1nAsFSehp7XQ6WF9ft0qXGl6bpllY88rKCmZnZ+19WnKWe0EVF3qbH5agLAIY/N80fmjIUHln29nZsT4xJKbVatnZVZQRQL4ITJqmFoaTpilKKBkCzzAxLZTDvpE+9TmcL16nHm3Su4YvBUG/mpxeQz5GGku+N0H4b0KM/uNRq8i1sbFhSqPO1aD8S21F/Mp/zr+pnLEgD2UH+SzXRYEwpUvdE2oUkpaV5qgEktb4PXnE0NAQZmZm7HwoIA+ezc/PY2dnJxeGrQYavfGlUumuQBkAC68i3XG+itrdDNDTNNKVB0boXdeoEt+Wl5exvLyM27dv4y//8i+NDpWnxHFWfXJnZwdJkuRCGZvNJoY+O4TkHQmmZrI8mYODA6RPpYjezPhy+ZkyyiN9r6IC2tS/SLMeyFGQKECANDxelErH7PcYQcM0TXOeRTXWKCu8zqi8m8/SOVcPEMFm6lYaOUPaKcpR8h5WepXDMAuX10Og1XjSPaD8nvoW97OXxbyX+4C6F3XJlZUVzM/P5+c96EcJdLtdG3OpVLLjBQDknBCzs7MYHx+3aBwfNeEBqC9Ee2Q4nbJ5gaR/F52aHYb9ajgq4LyAoiJOpkrFWUt78nOGizEhnvef1IqISDeu/u0NLk3UBoA0SW08W1tbJjSq1SomJiYwMjKCtbU17OzsGNqgOQiag0QFgPNRq9VQq9WsMg0FBL1V6tZXZsH7oyiyaj/cxJxXKu1knCoswzDLwaJhRkbLd7DQBWO6PRqr4Scau60Kg86vosXc8FtbWyYMqVDx0GMNf+N7eR8AnD9/HpOTkwONH8+wPcNSNKzo3pOEbhAEliDMMXKdy+Uyms2mCS2+a3193ZSRtbU1O7xX30W6i16JzNPEHEFP10V99OMsUtoGKcOk+3a7jeipCMGrQWY48dkIED2TCaTum1200Ub8WJxDs0/Kaxpk7PG7orH4+4ruUb6iYa9EtpX+vLFTtMZqVHskk/f7kCag7x3y7+QzeYApvU48l0YV2SAI8IlPfAJf8iVfYu+qVqvY39+353AfAjCEX3Mm77edVrnXz+I4q+zIg8g/+clP4sknnzTAiP0jwPbqq68W8m7OFfMkDw8PEf1ahOT9/TBuAik+7E1ppwgc0+cD+ap+XEPNQSCf9Aok5zyOYztUnXKOeaxeIfT772407Zvfz+Vy2eTO4eGhgTOHh4doNpsAYEckKN8jX9LxkddoyJ8q36yGCuQPqY/j2MJPGa3gxx1FEebm5uxgZ0XFGbLNvum5Wye1o6MjqySoza+z8r0HMZzIt1lAiREeWglPS4Rr297exssvv4zl5WWTWyqf0zQ1hbrb7aJarWaelf8twgEO0EEHI+8eQTQWmcLO4iUjz2XzHVbyR5Z4/qSG/CB5AQDJDyRIf+oOn0IA/IO8t1SBXuXv9HgqIMt5I0/TaBm2oj3Cz3m/6iSbm5tWPVYNKo2yUd1IDSKet6QpJEzF8N5YBRl8mgX3kzekyYsmJyct77XVapmesr6+jiTJ0lUajQbq9XpObtC45NqSf7ESK5AVwSiVSpbWMDMzY5E8nDNNf/E67sNujwynB2gkKlq9WjaUBEwXPQ0JVbq1LDkZEZUdnpOk7lkqECwYoQl8SiCDlEXg7qErHi2k0ov3AunvpMDXZ9exyh2NHRaP2N3dzTEaZaoUekQ6SOhEDLUaGABDc5QZcqOpETVIueM76U0C+rkBDDuIosg2vHqcaDTpIbY+p0CZKJlmHMdmINJw1P7QDX54eGjC9uDgADs7O2YcaRwyxwr0hZiiL0tLS7h06RLGxsYsN47jHrTGSicnXTMI0VTFg7knDAszb83IiBUuISq8urpqZ/IEQWDx6/o+zlmapojfEiP5XIKDpYNc2Kan9UFjOMkguNvnZjw926/KGCQBkCIz6JAgejxC91rXqntR0SJ6dlIb1A8v5P31GgKn66MeTn6mXldVlLmHvHJVpGyrMFaeoh5zCu8oinLx9L4qWZqmJvBZrrlWqxk9qFLV6XSwtbVl5+94D68CILOzs7h586aN28+hp42iz4rWQX/3tOfHtbOzg8XFRQCZonD+/HnLIWCBAJbm5f7xOXrc2ywKxJLTwzvZPcyX4/26XuRZNAw0GkHD7NRDpeNjf9Srr2P218dxjCMcYWdnx5QZzWcsUgrv1aj1e4D3k7/SAGdlsevXr6PT6dhxElTigD76zr6pEcr50+gHjrlcLlsFM1YvC4LAZB6ryWklN5VD1WoVS0tLFqJNeegV+Varha2trb68dY2fj46OYm5u7tic6O8nyf97aQqwMJeGYdic91arZfy9qI2OjuLMmTPmMaUnlfoOK+aVy2VcuHABQRBkeaTfF6OyXcHMzIytDStnal5pkVFOY4E0AOQLC5HeeUyD7W8EwIfuVM8binK5iORnGnqnRo733KtOovnZ7CObFtbxY6DXlLmhpD9+7o9e4Y96YGhkkT55vxZHUb1KebA+m6ADeZSWN+e7yPsBmO7EdIR2u41er4cbN25YaXqdOwJDLK7S7XaxsrKC/f19jI+PW2gkeU29Xsfy8rKNicZd0Tl+Xwjj6ZHhdMpWxMTJWOv1uv2ujQyU5xdRsaZSpeETrVbLcoK46fmesbGxXPw4kyt9mMZJFrY3hvx1ynS9KzUIAuC3YEYT38XkTeY4cQOoMaFGD4DchuT1XvFTT5H2R40mbjxep0JR+65hdryecbdJkpiwp5JJA3h0dNQQGSoqNGC1cpPOJRVDGoZUvunS7vV6Vj2IHjKGcvIUbaCfxB/HMZ588sljY9W1I7LKOHLOk1eIixTxBxWumqdBJZmMdHt7O3cIZbvdxu/93u/Z/Ooh0Bwbwz+CILCKPF100W13c/Sp/yvt+s+1FRkhnr60kb5pDOVi5d8ORL0I0bUI0ZkIcRrnkp19zg7vVS/JSc2DF2yKuKkQ90YF30kvK9fFG1p+3EUKL+eHIAb3jCqKREX1M66lDxErl8uYnJzE1tYW0jRDFalYcYxTU1P48i//cty+fRudTgfVatVCnahkaQgM+W5RnPuDtJMABTVeoig75PeZZ54xA4cRA2NjY7hx4wba7badfcccAdI554fhSTwa4vDwEAkStPfaudwEb9iQb6niwjVX40ANKKV7/uj1ShN+7Nyj8bfFSH4twe4/3DVersa68hdv6A+SP7zWX6N0RB7OAiEsc88iHePj4wZ28RkaZqdVv3R/cG6DoO+dorEC9AsUJUlie1zzSLhGakTEcVaOmRXHWHHVy0UaEgcHB4UHydKoDYIA586dMxCtaI38fD7onkiSxOaYfJH0RBCwqKre3Nwc6vU69vf38bnPfc5A1TDM8qT39vbs7KbHH38cUZRVRush020og3lcCuWNjkn5LOeUIeJ6rIh6UDmGRqORM5CjD0SIfvHOeZroIkWKCFmOd4oUHXTQRhs99BAgQIgQyX+V0So9k4wMot7A/6k7+LC9QWsUhqEVHCEAz2cxz41j0TA60iA/V68VaU2NO/6tuX9p2k910DA/AMf2De/ndWrIBEGAiYkJTE1NYX19HWmaotFoYHd3F9PT00bDXCOCGdSdOp0Obt++bQAzc0nDMMSFCxfwyiuvoFwuY2FhAevr6zk5WATcPMz2yHA6ZSti9FSUWW2NSY1APgFXw9YUadTSnHt7ezg8PMxVcwH6pbZpaPB6KkIe6fFKVxFyqiEHeq0aJ8fG/Y1A+H+FSL4+H4u/t7dnyYvNZtOKVvC9VKw5H7qB/bySwWm/FR2n0qFJncokVBkgoxkbG8uFKwEwpFD7xx8aUnpoIgBDyuj5UEHhlReuFZE4Ghb0dnU6Hezs7FhcfBBkVYva7bZVtVHls9Fo4DOf+QwuXLhgZ9mwMUzy/PnzePPNN60vqqjoWntmXaTE+O99U0HEcE1+TtpqNBoWQpimKdbW1iwp+ODgAKurqzmku9FomCet9FoJEaIMeZzJ5/H5/nla8TTtrx9Ed0Wfx3Fs1dpoDOfueyJFebmclYa+8w9n+/mNVKpJ79y7Rd4ob/T7flGQ8ln03GgYMK9T77c3mjSEpXCfy99cOxpOuq88gql9Pjo6yp1z43kBjSOWaWYpWh0DFdNms2kKUBzHtkc4LiqvDAXi+qvgfBht0F7hXt/b28uFIlH5LZfLNhdhGFpujh5ayX3AHAbmr8Z/HCP5sgRpmA/7VTrU9eT7+R0/45rpWU+6xvwhz9HcUx079xqR7zTNFEoeE0GjVpHf+1FcBu1HKqKa48OoBZanZrEKVU5VhihteDlJw1HXhQaRhuxpzhb3mubX8h0ESyuVChYWFnD9+nUrua0yg8+bnZ012c6Ik6I5YWhgs9k8NhbfTuLvp10L7rvV1VVcunTJoi6Y43lwcIBarYbl5WWcOXPG7h0bGzPaOjw8NCOL8zg+Pp4zHjudDuL/NUb6w/2zwSj/9CgRHa/nG+STCqTqvlFeRQAa6IfcjXznneiUCEjCpO816vbQWm+h/dtt9P5OD+gBIUIgQk4GUs/hPlKa5Tx6kMuvFcfAYiMADJArl8umN1AG00BSo5LjVaNJATxdXz6fzyDdEwihrqOAM+dbebp607l/ODeMuorjGDdu3MjljPM51AOYtwrAjE2CTTdv3jRvPufx0qVLdj6eAgpfCIOJ7ZHhdIrm0SH9jAmkDK9jo1DXcy50IYkY0wW9u7tr5TjJPEnoiib0fqaH3lfmn6UIpLYiAURGqEJTFTYdZ45R/WYAfDOAMB8fnySJGUulUgnb29vHns9xFMU48xleCR40/76AA79X5YzPU3e2PoPX66alACwymuhG1nhuIjI6Rp1nfa6vfkjlcn9/H5OTk6YAM4xNkey1tTV7RqPRsDOTtPEcsSLlbhDzULTqJAZTZLAAfSOAwp8eI5akp5FIJvpXf/VX9tnm5qaBBEwcPXjtAMHZACNXRxA8E6DX6iFuxDlFj2um/TkJddX+F4WS6HroM1Tp5v7CaI0IAAAgAElEQVRM0zQXhkahlZ5LUbpRQrwUIw36ApqGufZPBZcaO7omRU1BAzWAKKw0V4MKgNIu0A9V8l6Gonfp+3g9n0uEUA1CzpUaTT6U2L+7UqlYrube3l5O6G5vbxuARASS97ZarZzXLU1TzM/P5/qqazhISRk0zx54GjRH/m9d0+vXr9t3U1NTti849lqtZt4RVdhZWcy89sjTIfujP6oUkhfpOvIzGrsEbriPyKfIB3zlUY/c0stAXl5CKQcEMlyz6FD2QQatN2j0fUoz5XIZ4+Pj5qlXY4W8iF495W9KP0rblBVKp+RR7AuNT4bs8V3sI3M/SH+kA31nqZQdGbG6umrGMQE2hr5xTpm3tbGxkQvJ0712UqhaEY0Wze9pmt6TJAmuXLmC559/3s5UpJw/OjrC4eEhbt++bYYT6Z0KMcP6lC6YG763t5fl7nykhPBHQyCEyTx64ZSWBo1Z+6renyLvugKvxsudPkJ9IwxD60f7v2wj+aM7kQRf0a82ypQFhtTxeBaCFvQekWcNkr98J4vJcB2iKLJiOppHSOOI/VYQmIV3OH6fC6X8QT2sACxtQEN/Cf56nk7dScG1drtt39VqNYyMjNj9zWYTy8vLuHjxoo2P0SmaSpEkST9cebh/6DaQhepxnCzPz/lUWuDzH3Z7ZDidop2kZFBQEEkAkFPuyJSppCujJ5NtNBpWhjxNs9Kfk5OTGB0dNfSVoXsd9GM4VWACfSWpqO9emfaog24if18QBIi+PULwGwHCb+1XtCKh9no9S/Inmq5hO8qMNIFbhQ374cP0VFEsUtjUUKGQ6/V65jlShsn7/bOp6BINVgaiSjLXi2uoiox6FRRx4Rop4uwNZM7b2tqanfPBd9+4cQPnz5/H/Pw85ubmCg2AxcVFQ/cGKXt8nqeLoud5uhjUyOBeeeUVvOtd78oJoDTN8j6q1SparZZVyKGSwPLwR0dHWdLrXNdOnqenx5cdV4HpBc7djMZBY/HGkwcRqFjR88Q+atnx6FyE4dvZ5xEiBJcDC9P0dMA9oKVc76acK6Koe8SHBrL5daAQ5f1+7N5Q0Jh2v3+8AqJzR4BhkFfDj0kPz56amjLDsNvtYmtrC5OTkzb3FMo6Tiq4LAjAPnil6l6Np6LPBu0D3euHh4cW1tlqtQztrVaraDQaePPNNzE3N4darWallslTeG4Jab7b7WYeTOm2KoZFSLvn2R5cUi+hD8kjnet4+E5PM1RuRn5/BOXvLCMshzkvVbVaxd7eXg4sPI3yUrR3KWM4j/V63UKrmXukRYyUd+rYdT4IvqnRqmPmujBciHuPoJbOueY4+feqrKJc6XQ6uHbtmh0mz5CrVquF5eVlA+6uXbs2cG5Ujuh3g3jf/RpO+qwkSXD9+nW0Wi1Uq1UzmjhvBEAYNbCxsYHZ2VmEYWiHsyuNUP6x/HX8kRjhP+oXJqFc4DPZjyKjyYMd6jWk4q97WI1n5Rfsk4bPstHDlqYp8OV35vWPA0SIgP+mHxpNz6uGENLArtVqOZnPdygfJp2Rjskf9LBkpWUNC1QwjR4kBXhz4eboFzApCufT87k4pwqI8zuVQYyy8OvCPpknPc4qKZ47d87uURBQ13lnZ+fYWNmo6xXJqi90e2Q4naKpksxGAhwbG8PY2JgxMX5Hg8AXRyCz5uakK5ohKxTALG9L5jw6OoqjXzpC+5vbuU2mHhTPQPVzf00RGujHqyFyQx8dQvCBAPFQbK5oII9kq3FIBIFMhCgdkWUqPYO8ZToG3aCqMCtD5ObXja2KAp/BsEcNIQyCwNAcvUebolBkJJxTzwS9YcsNnqZZcm21WrW1brfb1o9Wq4Xd3d2c92hrawvnz5/HxMREriKUrtfU1BTOnz9vSC/75VE6T9NFnxe1ItoH+vHOm5ubJqzIXDk/POyWKDsASxTl/mBBCQMH7pz148MN77Xfd2Oi/vsiJY9zSQWeBrAqW1EUofxFd7zCr5SQjCR2kLV6fLhfGWbhhaZ6MD0NqXLm303k3aN1QD/Ez4cZ+v3F8XPv+jNQ7mZEEwxShXzQuPgs7ld69RjeFgQBbt68aaji7u4uFhcXUavV0Gg0bFycg5GRkWMe/UFK5N2a56NF49bnkY7DMMT29rYpi9yH7Xbbil3cunXL6IDFU7hPWbKailL3j7tI/laSWxs18j2Ao+NWI32QMUUPuiq0RfOkvEa/j+MYwXsDDP32EMIPhTkgQL0+XKeiufPP9QaqgiTDw8OYnJy0MDUi3OTF+gzPHxUQ8Gg779fS2h4IGBoaskNZmcurZad1HfguKrEaNTI/P4/9/X3s7u5ie3s7dwaNL6UfhiE2NzctBEzHMz4+jpmZGayurh777mE2b5Czsil5NiMlVKfY3d1FEARoNpvmfVKPMueGx2ccHh6i8686wP8AxKU+iHB4eIhGo5EDmL1SXtRfb1SofqLAMIBc7o7mFZN+9DNNjTBd4CtDDFeGEf5+iNI39nWgcrlsRjYNfnqb9GBYpR2CvhruT35OY0rzrRVM41ipJ+q4NUyPjcYM0A8B9FE8nCcF6/Q+9p853ZRBCjJzLskfaRhRL9zY2LAzO9kPoF8wIwxDC+cu4sU8O5QOBjWqtH0h9scjw+k+G5nA448/jrGxscK8BSpHqjQQZScx0mBSQvNoYPkjZYxgBN1v75qrUtsgVM8bfF6YqHJVdI8KnPL3lBH+YpgdfIgA+HYg+GiA6MORxRSz3z6WlptMk2h1M+r76drnmGgwaTiEClivWPKdKig5Ruah8ZkMMVOjzD+fyimv0RwAvUYZe5FSyvyCcrmMqakpU6yYWEu0fW9vD/V63Qy8Xq+Ha9eu4dlnn82FF+i6TU9Po16vo1armSDj3D6I4cHrBjEeRcw9/bLvBwcHVnqd51HQW8MKYkmSoLSRHXSLZ/pxzUVzWtROUmyL7isa06Dn6xprOJyuORl9uVxG6Z0lxC/F6D7ZryhH+iS96VklQB65U2VL+Yf2h3OroAKFlnprKVyLvERK46pQEFzw4IEXXP55pAHtoyqQRcnF3JOtVguNRiN35tfNmzfxjne8w0AHntVUJEDr9bqFU6rRea8Iu1d+9XOdA37GcXMtrl27hosXLyIIArzwwgt47rnn7B7SM/vpecfu7m4u5C1GfKxfunZ+7jU3loo97yNNqKJPEMbnyBW9zxv3+owSSghLefpkcQaCHx4I8HOp7/Xj43tqtRomJydzR0fwuQRiVNnVdVQPrUesacCTf5E++cMwNOYx8b16uKcWC2LfNcqAe6Ber+PKlStIkgTLy8tWRY5hWHEc48/+7M/wrne9C1EUodlsmuHE9QWAhYUFnDlzxg4B9c0bpHcDPU5qyjtYwIJzxUOPmVZA+UWdptlsWng714X0wLVqtVpIkSIM+vKC0QbqueY49EfHW+T9ULBKc57Iq6iTBEGQexf/Vxk0SI4ODw+jjDLC4YwWmedXr9ctx5fGDAvEUN+joaBFMEinNC5U5mjEQKlUstxtIPMQaREsNRg1+odrSprQfNUiGcFrdS59BA37QT6kwCjDLWkQEqRI0yzveW5uzsbLvaUGYqPRwOc+9znU63WTAWycPy3EwT1yNx3gQdsjw+kUbdDEDw8PY35+HiMjI8cq4Wi4DNEDbhhuBua5EHEHkPdS/bPsWeH/FCLajXKlmoG8kTMIrbvbWMhIfBiOMgtDLz+clWQOjgKEHw0RIHsnqw4RMdWxsBFxYJ4INxY3IImejFaFnSbfqvCm0BkdHT2WbKjXBEFgKBDRFVVQuT5+7vQdenivKs16raLDynSUHthfHt5IhI3zzCRaDU3a2dnB1tYWlpaWjq0N28zMDMbHxy0kTsdeRAtFSsppG5+na6hl19M0tXwYoM/Ud3Z2LMadaBoVyRpqKL+9jF7QK1R+2JQ+70bzJ43vJMY6SNGgkURDiddxz9rzkA8DpVFPWmKyOf/WveeRUZ0rjS/3Y1SlRPdKkaKtP9x73A/qjS0yLov4jb5bwQo/Ng1d4Q9BFO57Iu+tVgtXr17FpUuXEAQBbt26hbm5uWPn3QRBVrlJw4KL2qB9UNQGKUl8jm8sAnPz5k1br7/+67/G/Pw8kiTL2eK9rEymz6QyAUjIHBJEwXHj1fM09fZrfo4qnLxeFUJ+rqHTRR5eHTOfQxBEDSel2UqlYucNajvJQCtqVPoqlQqmpqasgqii80mS5AwnKumqYOmYtZ/6O+dBDxslCEQvLr0mvFbzb/Q5vsIc99no6ChqtRr29/ftrEN+TwDhtddew+XLl5GmKTY3N/H444/bc9m47qflW3zH/TTVNbrdLt544w089thjBsrMzs6aDOv1etja2rIzd3Z2drC3t9fPYbozb+Shu7u76P1kD6W/V0IS9IujqCe0iIcVjZceFw+weqOJxpAWyFKPjEYCaAoBr1VZR+OlggqSkQTdn+8i+Pp+TjrvUXrVnGfyasoC5ofy2BPSsq9iyjBVDadjTpT3tqnh5I0hGkS+qAz7zWcAMHmunjI1utI0tSgLjabiODSncG9vzwAPngfKIz3Yf75veHgY29vbZpyp42BmZgYrKyvGCzVs8V74/f20R4bTKVsR6keEo1KpYHx8/Nj1QN8QYtIvGRDjp/f3943YPLIXI0byo4kl21FpKFKGFI1VBUUb76GgvZtCoGOmELFN/x0hwl/px4zr9RrGxhZFkeUQ0TtFxZuMIAzDLAHzTm4IBaCeIeDXgQnDVEw5Ps8oKGy8kujnrUj4qNGnlRHVMFaGpL8rEqqIGOes2WxaqVfS1M7ODqanp60fzH964oknMDY2VsgUHnvsMdRqtYHu6pPo4UEQGaLoarBy7TSXgEgUlRyCBkwiLaOf31IUlqFK+kl9HmTIDrpWjYGi53jlTj/XpiFbKfKgA9ekyFApGofSE1u5XDYhBOCYwss+FXlNiwwn/q5hHbonPJCifSuaRxpBHtzgWvo9o3uZSkq73bbwvVarhTfeeMM8rXt7e3jhhRfQ6XSwsLCQG2dRP4v6eJp20nOKaE/3IoGAiYkJdDodXL16FeVy2Q4PZfiON4CbzWYO7abiMah/amD7cG0/twre+HAk9kEjBIqMKG+wEcgql8so/VAJ+AkA7+/PC8/0Y5EP9pcyRJ97EqhD0GFsbMwSzEljDNWjwQ3APLH0eHv+rgajf5enI1XwaZAyYoCNfFuBxyIAgS2KskT2RqOBXq+HjY0NnD9/3jxoGvo8NDSEtbU1NBoNy1/V52j11dO0++HxOhecwxdffBHPP/88oigyY2hsbMz0GVZLnZqawtHRkdEAleIcQPCTPaTfmyIOYwMYtNIdx6Z83BvfpBNV5NV40EIKnuewH9wn/LvI06RzoTJgaGgI5e8vI/n5BMkHEjPm9T6uF//XAhHqPSU4q0cu8DOt6kpdRI0af6aT6jrekFS+rPuf/fU6Ew0Yepr0Ofyh91CBZeqr1JFJK6xQnCQJNjc3MTs7a0aWGpojIyOYmprC2NhYodytVCpmsPG8PO75QXL6YbVHhtM9NFWKubBE3B977DG7jhuVBhNLpZJglRmz1CYJjs8OfyJE90e6hj7s7+/njCuPUKvLmULCK4ReSJAJKVNQxuRDibQiUxRFqLy/gvK/u3OGyj/rMwUNF+LzySToRtccF0VoaFxQcJEJeKHLe5gorH3XPCWPWHkGWLTB/D3sFysgJUk/Z0s3OteXa0IBQIbCUEWeMREEWQ7E7du3Lc+Nsd80tNi3ZrOJ7e1tE6IMf9O1rdfrePPNN3Pzz58itPde2iDjotfLDrWjt4Co0O7uLur1utEZDWLvwk/2E6RI0brQQjKc3NMBdkXCTMd8kkF0t3Hp74PmiveRNuM4q6CUIEHyWoJwsY9ss5FmKay8QNcx8F7udfIMP3aipACOKWyeDryR4b1MXuH0c1O0fzQUTJFwjsuH6/BHDSnmORGAIjLJpPqRkRHcuHEDcZwVDmEeTRRFmJiYOJG+vYJ+N9ovojdvvBc9LwgC7O3tYXJyEgByVeY413o/n8c1NR72l0D6jhRpqZgneUBA16qInvWdfIfmcui6Fxnj3lAj72U4VIJ8/ieQ5eFUKhXLT/Cgij5X50NlFPklD5ulAhhFkRXR0YgFDdFi87StcoJzQA+a0j6Vbj1KRPOauG4aHcF1UY+XGrRpmhrIl6YpVldXcXBwYJEQnK/XX38dS0tLODg4wAsvvIB3v/vdx4x1zYMt4pdeOb4fw0nphjRx69YtM/AajYZ5e3nMxObmJkZGRvD000+bYszWaDSsGh9+Gkg+1D924+DgICsS1C0+R0zpnnTL9VWeZvpTmA/58oAzx6ShcDpmz5MViNXrjKf+QAD8IoBvOg7eaaoBvSuaI65GlHr7aZhpzmkYhrmqv94w4n4uAsSU/6t+5EFkfS7/Vs9SkQwFkNsL1BOZF0j9jnmJ165dy1VbZB4ojbXh4WHUajVMTExYbpTSgK4TAMtBVJ6ikQkPuz0ynO6xKZo0MTGB8fFxNBoNzM7O2jVpmuYO5ePZP0EQ5BQIKpkM1SChlcvl7IwAwJLSqUx7lIDX69kmuvG90eCRAv3MGxIqCDTmlqEp3AzJ/5wgDfoVWjRcTxnTyMgIqtVqLqeH3gqf18S59n0LgiysYWZmxuZL76dgVzcz71cXuVc4OV9kDh595HhZCpmV4cjcNM6XoR0qwIgeTU5O2jkkQZCVJk6SxM45oHBmWW8+QwUK6UbP9YmiCBcvXsQLL7xwLFyRgkaVkwdtSj96GF+73cbv//7vI4oi2xMa8mII35UQIUKE49l+ao+0C0v3Fxm9us98U/p9kLHeDbHyfSEIEP11BLwVQKtY2GqeRJGA9u9QYVFkxPiQFm80qcBU5dErw6o0eqR8kNKla+T3GtecoJCisF5559963hHBApatLZVKeOKJJ3Djxg0sLy/j7NmzJmQnJycxMjJifPak9TqJHrxS5L/zRokHX9R4jaIsb2Vqagr1et0OgCTP1tBOKnmdTgfxn8fAO48bvH4NtV+eT560Zjr/CrBo2DL75Mev7yI/DMMs75V9I5BIXsd11jksiojwhoHKtdHR0ZznIAxD87wfHR1ZRTDKY1a+VAOIiDnQL/rAyAby9Wq1mptnBQEU5KOM4Bzyhwo7eTj7EIb9g+FHR0cxOTmJZrOJg4MDrK+vY3R0NHcI+/7+PiYmJnB0dIRbt24ZbXFNarUaFhYWLLxP58/zm5OM6bu1In67s7ODjY0Ny9XhPHDOut0uxsbGMDQ0hNdee83ovN1uG4Ac/3SM5Hv683ZwcIBGozEw3055mB+T9jEMQ/NKkq8oOKN7R3mQ3+v05qu+5Xnmsbn9SSB9f/4sMC3MQL2EdMgwVgKsaZpa1I0a8/o/adJ71XTti6IHiuSCGpoKnik/0LnyBov+TiBUQxwJemvhiDTNohKmp6exv79v5fk3Nzft7LUwDG28SrekFU2JefbZZ/HpT38aYRjamWBFeuwXoj0ynE7RBgmx2dlZ1Ov13MG3ACwEieEnPn6dzRMrBcbQ0BBGMYqomjHfzc1NUzLYH6CfyM2cmU6nY+eDDFKkihSxIqaqn3kPEhlOu93G0fcd4ehnjoAf7VdDYb9oRHW7XVSrVYyNjeUMJ+Z8KcP0Spxu4HK5jJmZGTzzzDPY29uzjcdQRwo1j0KpEecTebkh6c2iW1yRC2U+3KTVajXnZaBw1BBE/tAI4kHBGv+cJImdLM+wvXK5bGFLirKxohiQMYTDw0Mz5KampvDEE09geHgYvV52ppYvJFIkCO9HoOr9rGrDtadCQKHDsDwayIoEDZ8dRjDST9BV48r3WWnaK6ynUewHNc9o/f2eAXua0v/jOEbvqR7SV9MsR+X88cpmHlEE+vtL10Ppn9/5UCM1/FXJU/4waC95RaAIUNEfnQMFMfwcsp+sjKihrYoUeySX15B2STs3btzA5cuXEYah5TiRd1CBoAfvtPSsc+8/P4mWiu7jmL13Pooi87pMTk5ifX09V8CBYyDPGRoaQqPRQIrjOWRKN+Q12l8qaUV07Odb95D2v2j8RetO3q+0maCfi8pw3DTNwrXIpzj2KIpySpbOI9+phkulUrHcIp1n5enk+1oZlddQ1nB+CGyxci3Hw8p53kilMQjkvXAKDvr50TxI9oP3VioVLC0tYXl5GaVSCcvLyxgbG7MKkgo4DOJxlUrFDD4twOGNDn3/g/J5PidNU9y8eROLi4smH1mhkXTx7ne/G+122/SWo6MjbG1tZVEUPx2h96FeLt+bed5+vLrnPDDg54SGB/N+vIe7iJep0avPVABAx69z6Xk5r6OeNoifelrkXqChrUAa+TINoSIPkv6uf3ujqWhfK//X+/w1fu60kV41d5OgsXrauHa9XlY+vF6vY2VlBXEcWy4feZv24+joyA6D9vos0N8LjDoo0g/8PQ+jPRTDKQiC9yKrbv92AG8DMAbgo2mavu+Ee74MwI8B+NsARgC8gczZ+ZNpmhb62IIg+BoAPwzgOQARgFcA/Eyapr/8MMZxmsaNNjQ0hIsXL2JsbMyKIwCwBD8u3N7enuVxULlSxYdWuW7woaEhDGMY0XBkiqeiJmxK9MDxYgyq/AN5Bu83k29Fxhf/9iE4PfQQd/rFL7i5qdAwjIKluKk46OnQGk9eLmenY/PQNCBz8U5PT2N+fh7VatUEk1Y18htEmQ+AXLgFx0NDR9FqDdvwygjnmwoe51A9fVqZieVEeUCyKnmkBRYXYdwvAJtLjiOOY6ytreXWRxn+5OQkzp07h3q9jsPDw2OMWOfkQdEYFWpUlJrNpoVZEVVjudk4ji2Pw9Cot0ao3qqicrliNEDPhCr3+k7/fh3TSbSsAniQkuiNgUHz4xFIbUmSIHk1QXwpRtw9zsIoOBTBUzrzn6lR0W63rYiM7sEiI7JIsBcZR3yXRy2LfvfNG006B0TztXCIT87XZ+t+ODo6ygFRV65cwZd+6Zca4FKtVpEkCdbW1nK5gpo3pue++PU9qXl6K6K/IsOJ4yad63wz9l8RcMoB3kNvNACECBFE+UgArqWiz6pcsR+6JuxT0Tp6w13H4fcJgJwSSQVdDbAY/cPayRuBLHwmiiI7DHR4eNjoWKuYad99pAA9+aQPzmG73bZ7GQLlFS//OWWWJt7zuT4MnuNW5Fu9owoSeq8xZYAfG68fHx/H4eGh/ayvr+Pxxx83w4/vrlarubOqlNZrtVoOWPNyfhCd3kvz9MTnXrlyBW9729vMYGVp/d3dXYRhiGazidXVVQONmbsCAPhBIP63Mbrf1rVcF9KDN57ZVFfhnioyWjkfPmrBtyJ9SNfT7z2uOfmU9pHXJejThp8v6h0Eehh2p3ySgCcLk1Af0Wq/6sXy72efvOGv13geodcWyQedn6L55thYPp77gga05UHe4c3kI2EYWq47w/UajUZ25M4dnZLhzQSHWVSFKRJsS0tL+PznP58r268gwkky7EHaw/I4/Rgyg6kJ4BaAJ0+6OAiCrwPwOwDaAH4DwDaArwXwfwD4zwB8Y8E9PwDgJwFsAfhVAEcA3gvgl4IgeGuapj/8kMZS1N/c30Q3Lly4gDAMceHCBftOq7UwBOvw8NAYuYaG8bRzIvasiBQEdw5WQz9EoAj1UAZPRXsQOuCJ3yNZRYqg35x8Pu+3OHkcr1jDjUvBRaFPwUChNjk5iZmZGROQ+nyWKaYhxRyjg4MD8+pxo+p9yrw4Dn7O3CAaPVTWGPLA9fBzyGd4Y5VrSUOJhrUqNozRZwy+VtYhMsPwAgCmFDAhmgpWp9PB8vIylpaWCtf43LlzmJqawvXr13PrPMhQ8ujt3ZqnEYZZtFoto+FOp2MH9Wo4Fj1OnJvgpQDDXzwMVJAzNHWOi5Q47W+RsaN99WtX9L1/Fp9XtBeK5iFnNFxLkFy+s/bXU+Bc/vlEV8MwzJWS9Z4g3wci0Kpo+v77NshQUt6h/+vYBs3pIINR7yVwRPrm2nphrv3k4YhJkh3PQAM8CALs7u5iZWUFly9fNgODhnqj0Th2UGORUlTUz0H9V8NYx110rV5HWmcFsSjKKmQCMD5PUKDX66HZbKLZbBr/Gh4exugfjyJAgLjcN1L4fvJPPbtF+0zFrkhJ8uPwhqs+h8/SnFyNdtAQNLsPxxVe/l6r1UyG8aD4RqORM4R03nUM5NPcO1qSvtFo2LW8TnmzGplUPtM0HRg6yqZ0lKap5ZF6JdLvIaUDfZbey/sYXkp+t7Ozg7W1NVy+fNnytqIoy927dOkSgAxY0sIUS0tLOe8jDYqTWhEfvFtTOuG9KysrtrcJdHJuKZ89KKrgbozYwCA9u4zNz5fO+SBAkN8ROOH3Suu6Tipb9MfrUF6v8O+kTIu/LwZ+OQM+oq/pA1a6JlEUWUhorVbD4eGhGRc0QJjeQaNdDSUNHy0yeIo8S37+Bq0x530Q3/dzRp2HKSmkBXqbyKsVvNAIGHqI6THd2NhAvV5HEAS562hs8ay+jY0N7O7uWh4pq2zyby/37gcwOE17WIbTDyEzmN5A5nn6o0EXBkEwDuDnAMQA/os0Tf/yzuf/BMAnALw3CIJvSdP01+WexwF8BJmB9c40Ta/d+fx/AfAXAP5hEAS/k6bpJx/SeIr6nft7enoaExMTKJVKePLJvp1I1JOMhCEBXtDR0mYFOnXHlstl9NBDlEbY398/hhT4JDiiWyRYjZ/3TMh/rq1IQVUE0AuVNL1TVeZ/LCP91ynwocHIJwtLkMnu7++j2WwiTVNTIg29uWPg7O/v21jIgLlJeTCaj1Em8ytCtvmdMkcKda6Rr/rE/qhBpkyKm5PufUWGgiCwk7HJSFgUwvdbmQWFSbPZtFj+JEnsdHlVLLVdunTJDs8rUiD9Z/fLWJQRB0H/YESizVNTU3awLxOsWVVSkeYwyOaQDFjnuSgMQpuiStqKBMQgo8mPQ+naI3l+voo+w4ZS1fwAACAASURBVDkguBFk55xJf4B8XsXR0ZEd5KmKnipGVApJm5wfrabH56shosqnNirtRYqfzos3pr3BVdQ4BxyjrzzJ8VCB9fdyHuI4Plbeudfr4dVXX8WTTz6ZU2SDILAzRIIgyOWw3M3QGUT3g4yt0xjnfK+CLsxl5PoCmReGxgPzX8krpr5tCiOtEbT+tIXe3+nZehClpgKia+7XTHmo0rSXP8oj2DSUVq/RH16nnif/DPIvJrEzz2FqasqUHw8Isu/eGKB8o+eOChdDNikPVXkkrfnKlZpL7N+r6LzKCaBvLFKuc270nTrfOi9UrHkdjSWCiNQFVlZWcPHiRSvjfnR0hOnpaZw/fx5AZqxo5V6VK5yrk2hVDerTNr9X+XweK3F4eGhpAjr2z3/+80YHqkinaZrlN31nkuNpRU3nUP/nWukacR7U6PbjUO89Pyva50VgYpGRpdd3u110f7aL9DtSjByNIK7k88zZzyRJMDc3h+npaURRZMUyANiRI7u7u2b0M8yU86dn8umYijxQfr97WadjKxq/zmORfkUwz/N7vocgMQv7qEHEvlarVWxvbyNJ+ufYcS/pPtrd3cXZs2dRqVTw+uuv4y/+4i/wwQ9+EAAwPz+P119/PeeZ0z3px/iw2kMxnNI0NUPpFJ18L4BZAL9Co+nOM9pBEPwYgP8XwIcB/Lrc8wEAwwD+JY2mO/fsBEHwLwD8AoDvBfAFM5yA/NieeOIJVKvVY/lNRF16vR5u3bp1rELanX6j1+vlzrWhUjA6OoqJiQkAsJLNujkUhQP63o5BCqBulKKNc9JYFdHQvpvX4I6iMDQ0ZOEaZGIUeGoo8owhKoNAJoyIJFLQMVeL7+EmZb9oHOpYi/o/yFjUTUlGQFRME0L1XvOuBflEeFVGWfwCQK58Ou9haIOGL6VpatUVqRiTGe3v72NhYcH62Gw2sbKygsXFRTst24/5woUL+PSnP30MHRs0Pw/ScoLjTkLsyMgIarUadnZ2TMHwFfXSNEOpQ4TmZVCDCugXFSnyJHhjgePRfg0as15TpEgMMqr0GV4ZVUQwQIDgcgB0jr+TjTH/6pWlIpSmqZ2DE0WReV0PDg5ye9Eb90U/QB6ZVSWyaB4GKdpFAtTPB5BXTPW99LYreq/9Zyw8w3bUsxAEATY2NkxZ14Mit7e3MT09bUo6+awK39PQxUlNn1G0ljrfo6OjuHz5so1/Y2MDQRBYmdyhoSEsLCxYuAkP+6SCzupqAQK0yi17juY2+HXRvaD0wc8VzVfa8XRUtC6e15MPeQMhQGAhawBMIT46OjLgh7JNeaZ/PveQPov8nz/knwyBVtno50bnQ0PedT5Im1pBDOh7EIF8rqA+m58XyRU+Q5VRALn3Mwc4DEMr283oBP7O9vnPfx7Xr1/HV33VVwGARWAwp5lrWhQqprR6P83vo3a7bV5g6h5aAICFDxhFQH0gDLNCIsx51ZxNb6T79+sYNNSU60Sa8fxPlWk/J96gUp3K7wN+7g096jYttBAkQY7/cK35PMo4fk7jsdFoYHl5GWtra9ZfpjbQo+5pTfe+9zwV6YF6X9H6er6vRiavod7GveT3E9eGuYk0mhg1o30Lw9AOym61Wgas8jvqjt1uFysrK3jyySdRKpWwtrZm+39oaMiObVF+oc3Px8NqfxPFIb7izv8fK/juTwAcAviyIAiG0zTtnOKeP3DXPPTmGfLw8DCeeuopRFFkLkI2MvidnR0ruZimqTEWElAcx3ZYHIXj8PAwFhYWMDk5iRT9HCIVKkyU1RheKq8nofAnuS8HoVE0Zsrlcq7ogbrBiSYA/UP6GM9KAcrYXSIKOg9hGFqYDsdI5uIZJu/1hotndKoI6rrpOP1YFZHX56i3jGNTxUM3JkMK6WXxJUc1lJEoKg0iVRYZ2kNmwn51Oh3s7OxgfX0dCwsLOWOc7fLly3amwSDjSZnjvQjTIgWy0+lY+BCN5uHhYezt7WFxcRHNZhOvv/56TolIX06BZ4A06idrFzE+TwNsXkG52xjuJoiLrrlb84aVeRmfDJC+noXpqcCm4qzrr+d5aL4c57BUKhlqm6ZpDjDxYxi0lp4GdP/pvX5sKkj9nhjUivYsBb4qO/oMjr1arRofaLfbFtILZHHu+/v7mJycNGVzfX0dv/qrv4pSqYQf//Efx3PPPYfPfvazA5HSe2l+zDovSnO6dkNDQ5ibmzOvWxiGuHbtmu17Iqyzs7NoNptotVqYnZ21PJcwDFH++TJSpBj+1mF0S/kQR/Ibnyum4/XzyutUYVMaU945aE+okkm5A6BfUTXJQrUR5MOZLYTpTsiRjkOVSE8P2jcdm8oe5RdFRiPHoLJA9xvfqSF9qvhrNUg+Sw0lr7CyL7rXlG/neF/aDwnTfidJVur7rW99K0ZHR3F4eJg7QHhtbS0n22dnZ1Gr1bC1tZWTb0Vy0K/raZqnJf/35uam5SjxyABeR1nJstvsR6lUQg89KztepNCrQaRz73ltURRMt9vNhUD7+z0/0BB5BXy80QDkeSJ/FHzoflMX+E2g/O19DxHXlbK+1+vh2rVrdnbnysoKtre3Lf83CALz0mqhK9XzGBrJd9zt6BWdyyKdRcfn114NU+pAvvCV6oL0oOqeIgCoxVLYF55RRQ9rkiQ2fq8rHRwcIE1TjI2Nodls2lgmJydzVZp1n30h29+E4fSWO/+/5r9I07QXBMFVAM8AeALAq6e4ZyUIggMAZ4MgGE3T9PCklwdB8FcDvjoxL0sVpbGxMZw5cwbDw8O4fPly7jqGk125csWYJ+M8lVGwso8e3jc1NWWEECM2VEaZBQ/9AvpClIyYm3PAuAs3yiCL3DMoVq/TkLI0TfvlWdEXRuybGgdEKIqQuyIUsCicwodxsA9FSrc+X934ReiTvovKPz+n54chNQw7KWLwHL8eRqfPZUgaDUp6W1ZXV20t+U5NHuW4STNra2sYGxvLKZdsjKE+jcdJ5+lemirUjL3n+2gwMsS02WzaWS5Fa5TzQg0wkthfVXpO0+eisQ0yJIsUZf27SPAWCf3wSghcOm5kaoKsR/IUyeTYuFf4Ds3L03nQe7TPFP6qDAB5FJy0XjTuIuNJBW/RdX5+VHnX+fL7Ogj64XpJkqDZbGJqasr2bqPRwI0bNyz/44UXXsCrr75qnpw//dM/NY+MKqeD1us0QrVovX1Tg3BoaAhPP/20jdmfLVcqlTA/P4+ZmRmUy2XzFFy4cAEf+9jHsms/lAD/tl8gQXm5riH/HtQnIC8bisamNKM0ofzZr5PyVPLAMLxz4HPQfw8PZ+XzOEcEAIiiFzUqXuSlnqdyLr3B6Mfk94dHxtUQUi8X6Y8VTgHkQmpVIfZeiiIPk9KiGlhE6zWsdnd31z7r9Xq4fv06zp8/j6WlJcsFYdNqvv6dus4n/X23VjSvfB9B3zAMLeVAlWnyHx8af4hDi7Lhs4r6x/lmARhezzUg3yJYq6GVnk/68ZA2NFSShpcaZ76PavBqOGiSJEh+M0H6DSmiof56qjeL/dvZ2cGNGzdyc8b5KpVKBpjxfUrDlJU+n09DSP1Ydc2K1tXPizbOCSMBvOGvRhPnjPOvRwBwDopkBfcNow4UwKAulCRZMaCZmRm84x3vsPw+Nu5TXa9BHqiH1f4mDKeJO//vDfien6sr5zT3VO9cd6LhdK+tCPGYmJjA5OQkJicnsbi4mLs+TVMLLalWq6acqOBI09QsaBIJCyWYEoq+y1sZvCrLREkUjStCSorG5L8vEpS8jjkq3Dz83GL3fwwI/nH+4DFF+HxlQFWovJHkvULaF01Y5txpzkNR4zVMVPSCzG9oPp/eMcZys1KdesYAFDIELXTA9VCjid63g4MD3L59G5ubm3avGpe8RsPykiQLAaKR7duZM2fsMLhB6+6Z7CAlTGmkaH7JzGkchWF2MO/h4SH29vYMNMghsi9m3ib+rcVU9H36f5EQLBpT0d9Fxo3eW/Q5kPcW6XOK+kpaDMMwC9UTXsHPqfhx/b0Xku/U8Sqtaahb0RhyxluY9y57Q0vnUgWfH6tPlKZn/KSm16uQ9e9QECMIAgOXiLRTkeCYX375ZQvL293dtZxHABa+QRT8JAP8boJ00Drr9359y+Uyzp49i5mZGVsvKlQce6VSwYULF7CwsICFhQUcHBwYT6rX69ja2sp4DvIhS8rrVGH0PEwVQjWIONd+DykfLaKVQevJdVPjJf37KfATQPr9qXnWtPgNaYBn9XBdi3KcOFeq/NIoJi3UarXc84sUfDWSioAJBdLUe8Yy+kx617kmnepz+L2CFF6B83REuqCM4FhZkpvyst1u45Of/CS+4Ru+wcKf2VhgwI/X0+iDNlWIdQ9tbGyg3W6jVqthdHTU+qbvpR7AZ7RaLexhL5eDrU37zXVhOXo+D8jnXvFaT7NFtKz3ct65P1XH0sa1KuKjPDMqjuOc19XPm/ecahVB8jk1EtWIIa1Sf9RxqMdJPcpq4Ou8Fq1rEe/Xv+lBP3ZIt3sOf/dGE/vF3HSvJ3H+u90ubt++jfn5+Vy/+XPt2jWcPXsW586dy+X6FdFAkQH4sNt/iuc4cdXuZbSnvidN03cUPiDzRH3JgO9yP0NDQ5iZmcHCwsKxa8l8FcVSwUNC2t3dBQBzy05NTaFWqxkB9NDLhfLohuCm44bSam7a30EE45VLFXAUjkA/AZ/GA5kgn0HEK/wXIaJ/GQE/1A8bZJW/QQYKhalnVNonnVNFgDQkiEooGZiOWZOciWbwvRRO+l7tFxVaGqccE8eu1W1U2NGlrXPKvjB0gYbo5uamleol82COHMezv79vyaSKqB8cHKBareLmzZu4evUq3vOe9wAA3vnOd9pJ3V5R0vUfZIic1DxT5bhZ6IOVc4gAdbtdrK2t2ZwCWdUhhHlvRJHCw3cV9d/33RtYg/rOa5SGixQMb2ScpID45wbIgwIMI6AByX1MpdmPl78ryED6VqBB362N17BPqmjrHKlBw356BZqtaH4GzQH/9j/cw74PvIfedKKb7Xbb+EsQBFZxKk2zHDDus3a7jatXr9peIW8soo/TtCJ6803pJooiTE9P4+1vf7spC1T8WTWPZwTNzMzYuWtUetI0q9DK/M/0v09x9NEjHP3XR8eMA62yRZ6qVUW9V12NnSDIe12UJ6uyWjRWfR5pRQ/fTv51gvTv9WXH0NAQKpVK7vxC5nJo2CKAY6HoBCOZ68n+UVGk118jAAZFEnjj0xuXfm+pMkcFF8gr6ty76i1SGadzzOfovtUwJ83jZN6uhtwfHR1hc3MTAPDMM8/g4x//OH73d38X/z977x4kWXrVB/7uzcyqrHzXu7q7uqd7pjXTo9EMeo/QeiWDBi0rRwi0BsGCwFqzazYWgx0bhoi1WdbrNeEgCG8YE7ZZNsI2DsBog1hbKAQIWO0IwmgYzUhoNY+eUT+mH9PVXY+srKzKzMrXvftH9u/k7566WVU90wr4Y76OiurKvI/vcb5zzu+8vo9//OMAgEceeQTPP//8RF7ueei9NL/u/Iy/d3d3LWk/juMDZfipB3E/B8EovK/zVzuIvhQB//lBr4i+W9eF80x+qfxPAa16XjxN63u8fqP9Vg8J5b7SkPavUCiM3vkvYuR+KIdhZmwgYv9V/rPfBFyabqEA3vNejQrQ8SnY07VS0KRj1+fqWPmd6o9+n+heApB4J+/xRwKQP2nlPX0Ow9DZn/X1dSsqxTnj2jL8WY8HYFNDpPb7OHrBG21/EcCJXqPqhO8r7jr+f+HuPVuH3NN80707RiOz51lEGnoQReM4TRIMy2h7BssS1cVi0VzvQRAg+N8CDH8mGdLDZ6v3xjNtD4CAg5axNMsDv9MffsawBcagqlu2XC6Prv/7MeL/aVwooNPpHCiykOayZVOLKPukCqK2tD5yPmkBoxLY7/fNAqKMmEJJvR06LwrA+JuxtgASCgytoIPBwDxTygy0fxQmzWYT29vbFrJHphmGod1PGtvZ2UkwBGX6/X4f6+vr6HQ6+LM/+zM8+eSTCIIAp06dwte+9jWE4cEStWlM9I00nRfGKA+HQ2xsbKDZbCKTyeDmzZu4fv36+Kyt5wNk35NFlB2H8GSzWRsz18PP/XH6cVibRPOTfh9H8VahovQdPxYD3wTC8+NiJ6R7f04V10cFFn+Tdqgwkz5oOPFWW7+3tW+kUbWoEjixPxoG68fshVHafHrg538PBoPUd+ie19CjnZ0dK5ITBAFqtZoZYzqdDprNJnZ3d9Fut/Hyyy+bEFYF542Cp8Oan+NMJoPz589btMDMzAwefPBBdLtd1Ov1hPFG5UQcxyYjGKpiQAjDBCDiWmnOpCrg/FzP+eFaK98gz/AKkK6fV7Y9aKJlnIeNsr/xMBnqp2vJ/itf5CHiClAKhYKdRUcjEhWuIAjscHKOo91um8LseTjfCSQ9p74RwCqwoRzlGuieYWWzOB5XcgPGsjktj5XvAcbnPJLHq/GC93B9GbkAjApJ9Pt9vPDCC7hw4QLy+Tw+8IEP4DOf+UyiwJTKf6+ApwHjw+h8kvEgCAI76Jzn8WxsbBxQVAmcOAetVgvR00eDJg/805RhzzsoS8hrVU/he9TwqN+pF5XXaAi5DyUnLWokyNRvTmHwqfExLN4TpB4R3ZtKm+qJJIgm8Nb58jKd9O8NU34/eDDFH/IQb9wCYEYS5UfUfTUCwnvKNC+Ksl0BL/UgRjFQ9+G9fr5poKWeNzc3Z2NhqXJvCPpWtr8I4PQKgPcCeBhAIt8oCIIsgHMABgCuuHsW7t7zZXfPCYzC9G7GR+Q3vdHGxeVi1ut1PP300/j+7/9+NJtNO3wrjkcxoTzotV6v27lBWmo4CALMzc2Z8GQFFUPaGCZimpURkkmSSNJKrPIevkuZj/9Or/c/ZPAaZqdK3+Li4oghYAyaWD3NNzInBRJAMhFYw1K0HcbA2dd+v4/d3V07RJDfqQBToAOMzw/is8iAFDixL5nM+EBXLRWqzNczXA9qu90udnZ2jGEEQWDVZ2hhpXJByyOZDy0tHBOZMpWmxcVFG9cDDzyQsKRNUvzT6OCw5q/j+Aiup6am8PWvfx17e3uYnp42j4AxNAQIwiSwz2QydvivrsVhiu79YIqH0ZSOLw0o8Du93qx3LwJ42/ga0p/Sgwf9nuF7IMdrSaMAEsDJAz4ffgGMQ1bVW6FKLRVE3kelTS2hXnnRd2vfvALOeSBAUC+zhjJxH/T7ffPA8J300DabTVy8eNGSqkljGh57v0BSWvPAqVqt4ty5c5iZmUGhUMA73vEOzM7OYm9vD1eujEQYlQJVeBi2nTBI/ctgdMbN9yZDNzlP5GOqyPtxc3092NbcHM/z+B7Pr7yiShA+MzNjxsEoihAhQjQc0zV5LN+lEQOae6UKKwA7CJ68z3tkVY5SLtE4pqGDXsFM81Do+Px9HAOvY0QA30tvG41y9LBzTllBttVqmRynvNDDTff3960yGCMMOB5WItNy5JQNN27cwOrqKubn5w1keZqfxPOP23Q+0p5FY5cactQAxFwclVtxHCODDOJMukEjDfwC47MxVUfQ+zi/SmPcIx7487ncF2qc1YgU7gXSvOoF9CpnMhkE/yxA9N9HyA6yCKeSpcL5DC2OpfqNjsN7TBnhQhpMSzPQUDfz/kYHQ0NVhqmHivfQ6Mt5o9GDc0haJC0TGHLOybdZnpz6IkGgOgsIfMi/2Q/qKYzWIojVNeY69nq9xFlOrLTqDQZH6RFvpv1FAKcvAvhhAN8N4N+77z4EoADgj+NxRT3e85/dvceXHP8v5ZpvWVOGu7Ozg6effhp/5a/8FczOzto1jUbDwgvUE0H3o24SvU8V/TgencSu1jklvL29vQNWLt38adaZwwDTJHSuFk0+X0HC1NSUhRb2MQ4/U9CkIIsWCf98WisKhQIAJHIXvHWaY/LMgcyOwIReJ25GWjXL5bKNgZtdNy4blRG13FIAECjwfrqnM5mMebbYfyo7/X4fe3t75mUiM87lcqhWq8aU6cFkEQ4ykm63a9YtnTcy2Hw+jwcffPDAmqaBJqWFNAX9Xlscj871uHTpEhYXF7G5uWn0QoBoCsv7AsRfiRG/axxmqeEsqnB7mp0E9nW8h/Vx0r1+Lnhd2vf+ugPg+MUIwdsP0qVeM0nB1/3vP+fep0JJ/qJCWPc86dmvtbfk8jv2ix6RKIrM0g/AFDnSdxowI01TmU6bH84FrfbqVaMSTyFIIM2iOpubm2g0GlhfX8etW7fs7DAVyJNA070Kz8P4Jf9m/5944gmUy2XMzMzg3e9+N6rVKqIowvXr1+3MJgKAVquFSqViMoHGHoYgBggQ/vi4kqnyUl0/7ZMHPcobgiCw3DoNK1OQlfbMNLnB97NyqIV2/kKA4H8YK5VBECTyG0hP09PTxtuV5rTPPBh3f38f5XI5wVfjODbrN/mq7i/l48pLfNSCV6qUVtPWWOdA9y+VaT3g3RsimK8Xx6Oqulp6mZEjhUIBnU7HlPZut2uhXPl8Hnt7ewCAhYUF9Pt9C+uP41GBBjWaHsbDjvp8UptkNGJuK3kCw9C5TqwIOTs7a/zk9u3biWek8fpJcskbe7yRSfnLJDChHncttsN+T/KG+5A27oEwDBH/3RjBrwTIIIPMjycVfRYK0wqNalzyv1W/4jPI47RoAmWCerMU3B221sq7VIfQYiWkde5jAkXqouQDNIJpjh49qqo7kl6Y491qtSys2o+33W7b86gX+/WIoihhrGDYr77vW93+IoDTbwP4BQA/GATBL8fjA3DzAP7x3Wv+lbvn3wD4GQB/OwiCfxOPD8CdBfD3717zK9+qDntliRVvvvSlL+HMmTPGyHhgK92UOzs75iFiKWJudgoF9bYYIsc+4n8VI/jUmMhJFD6GOk3IecKZREh+Y/mNyf7wO93YlUrFCLuPkQLgq9KoQuSrgqlVUw+GJRNWZVVj/XVzeAvMcDhKQN7Z2bEcEo6FzEsr3pEhqnWRa6c5FjxjhtZFnkOhsbdBECQsH9pnMlBVBjlmzqFWp9M+ULFilbE0JVjP+wBGifS1Ws2Y9iTA/EYZjH9OLpfDCy+8gOnpafMwBUGQKHoBAIOvDNB/x9hTQhd+WpI4Qeuk/L3D+ubBVtr3KrBUGKs134Mn/0wPdqJHIgSv3H0uAuDhscKlwknv13emhSgoffN6LUerHgNVJjiPacqjXqN7h0KRII2CjX2g4qbWRm0EPqR/KiNq3Sdtq4dALYtaPW13d9dAFitbbm5uWpGBtPwDbapgHZfWJymKHkRwvy8uLiKXy1lhiP39fdy+fRuZTAaLi4uJM2vq9TpqtZqFmHGNuE9zyCH+P2JM//C0KV58H+dbrfueLnTeNf+ByhBBiJ8vHTPXX8fOz7PZUdn4Wq1mHpIhkl4d8nl6hBRoq0Kt1mi+h3RHIMkKplTQmKdKI9kkoOzHpPvJ/7DvaQp5GgjzRgAaAnTvBEGAYrFoZ9mpAs5cplarZcC40+lYWGqr1bKiD4PBAPV6HX/+53+ORx55xNaRJfkvXbqUMMh6fuXX+F72gtL7pO+10IEahDTEUA3Ig88PEP/VgykB+j5dCxqKVNZ5oOEBktKrNxzq9YwaUYOWGiH886gnALAUiziOEf1ShPAnwlHubhYJ+U0wqYZn8kPNy9bxA2M64VpRbmixHPZPDQcaFaVyw7/fg1XyfpUT/IyAiXoa54N98X2l3FAjA/c1jcAMufY0Gcej1BCWt2dYLnWmmzdv2jl5ni59+GLanr+fgOq+AKcgCL4XwPfe/ZMVE749CIJ/e/f/m3Ec/z0AiOO4GQTBf4cRgHo6CILfAlAH8HGMyo7/NoDP6PPjOL4aBMFPA/jnAJ4LguAzAHoYHaa7CuCfxnH8LTv8lgSoCkqn08Ef/uEfYnV1FR/72McQBKMTjqkgvf7662Zho9fBK326oNxk/X4f3Z/oYtAdIPz1EOEPHbSCqMdlEkGkMSd+rsIgzSIBjJlGWp+npqasmmAURdjCVsLV65OUWdWOB7qpojYYDMySCIzr+2s8Mq1ztNoooNP1IZPZ3t5GoVBIlMOksGL1LgCJvqriQWWHzILJzgwJ4rMo1GkdnJ6eRrlcBgADzD75GBiFJJVKJZRKJWNGtFwGwcgVvb6+blbqzc1NLC0tmRIJwObN1mBrC9VqFb1eD2tra1hYWLBzcZhDoPN12N9HNQ88NDRHFWSeT8H+ttFGb7dnipCek6KMnM+n5Z2KUpqnUZvfC/5a3cc6Bm3eW5L2LN+o/AdBgODRAOHLIYILASKMhahXEhU0qMCmQEmbc2DspaMiOYmnKK9KA51ecGpuh58vzhX3B8/uYhUoNiokCsJUcdc4dA170THqXmw2myY8mS9BAKXPSluvo9bssLU87n0MsaIBhPTOcG0eWXHz5k3s7e2h0WgY6CsUCqb8r62tYTgcYuG/GYV84zeA8PuSyduaE6FhP0CSV6vyw3wZzidBKRPT9VpVPnXuVAaw8iv5Z/9/7aP3d8a5OlSmyNMI1LiHWSWW+y+TySRCbEjT9N5wz/NgYIZDck9xH2hUhirSfh25L/Q354zjVsNJmsdJZQ/lF0GhetjYZ1bmKxQK5qnb2dkxOtnf38fOzg4WFxcRRRF2d3exvLxsIJwy5Pr16yiVSsjn83bUQy6Xw/LyshmoDuONafNxWPP6Af9WEFksFnH58mWT6eQflFuUfcDdPLPvDoCnAXx4/B4vS/hO76lnSHsa+PXAip9Rh/AgmOul+0v5nzc06ZzwXo4rxsEUCIIF4GBeqRb8Ut6v+oGCEs4B9zx1EeXPg8HAQgfZFOBzXtOia9LoxhvoyTf8/vEgTO/zRgblK7xXo3P4DC3ApXrk1NRUAnBRV87lcmg2m6lnQaYZFO5Xu18ep3cC+Bvuswfv/gDANQB/j1/EcfwfgyD4MIB/AOCvA8gDuATgfwTwoAfjSwAAIABJREFUz+OUkcZx/MtBELx29zk/CiAE8BKAn43j+Nfu0ziObNw4xWIR1WoVL730EmZnZzE7O4udnR0Ui0ULt1KCYl4KN4huVHokDpSpRBbI4kAZR8/M0pq3OvB6DdcAkqEeKiQ9aFKrRblcRrVaRSaTQf1n6mh+qpkILQSSCcqcq/n5ecvliqLIrJJeSKtnihZIhjhQ+HLj+LEOh6Pk8e3tbTuMlgyFXiMKab85taoRx87vZ2ZmDAxReHY6HavwxPAKen8ozLnumhjPnDZaVuJ4XHKXFpbd3d2EpZpMguNleAeViIsXL+LEiRMIwxDz8/PodDo4f/48XnzxRVNOeK+nkzfTgiCwMEu1aJPZk3YGg0GiUiRBJ+eecdakBSokuk6TgNJxAI7uFf3tFWXPfHlv2v38TmOy4zhGiBBRPE70VSCje9cDGQNfTqiqdV6BDoWh3scxqEfDAyf1ViiwZdiH7y/fTRpmf4bDoZW+57u5B+hJ0XnmvvdFQFSYKnBiSGwYjoum0OOr3vZJis6k9T9u8/d4Ba1QKFg5Ziq5rCJWLpfR7/cxMzNjhX943WAwsMIIv/qrv2p8qVgsIvNbGfQ/2U8UiOEa0jDkS66n0aUqXCoDFOh6maKAQ+UEeTJLYJtCh3H+BnkqCxyRp7FgxmAwMN4fBOMcGF6n1nzmudFaT68+z64LgsAs+ryec6P8nmPR8aYZD9gXpXs1YCgoo0yigY37m7KcyiBpmQr63NwcCoVCAmRxbPV63UKUaOxifzKZDB5//HF86UtfMm8f9+nZs2cxPz9vHr7D9oPSwHHoXve/530KTNbW1oznA0C1WkWpVDK5o7I9m80iQIAYB2UQr/NebM4RgRqNh2l8XhV7LczDd/A3/08a08OG06q2KZ8ijYdhCPwSgL+NxHO5D7j2GpZNuiG9MexU9xvnVb1T9NxQZ/L5ZGq4SAOWXHvlr9pnfZd+xxQDGo/TCrFM2l9+fTygJW/gWPhc6gAq29kvTR+hLlir1RL5bGmGz7+0wCmO438I4B/e4z3/CcDH7vGezwH43L3ccz9bGI6qBT3xxBP4+Mc/ju3tbQwGAzz77LNmYaRiwwQ6Mlgq2bT2qeWYFnWtbJLJZBD+eIjg3wXofP9IASGzVcX/7rwAOJjnoG5vfu/BlwrLSUqoMpKpqSmsrq6acNvEZiI8CxgfgDY1NYVyuYzl5WVUq1Ubv7fyqFvd/3AMzAfY2Niwc1z4ue8/rZuNRiNhqSIjAJA4tNUrJ37czOWanp42ANNqtSysgpYQWtfpPfMAmu+k14tCX4UylZ1KpWKKp+absFFAkyZarRba7Taq1SrOnz+Pa9eu4ezZs2g2m2g0GgeYiDK+oxiLZ4R6LwWAhmmpd5AMj4ACGHvL6KXz9KmgmUqIF+BpfZkkTD0N+znQdtRcpL3fwlBfvKtoIWnB5nqrVd/PEfe8AkpVhAiQt7e3E3ui2+2m5g/qnHjh5n/4OfPsOCYfbqHhN1SeuT+UH2lRAobIss8qpPVvvlPzBGmNJ01RaKq35bjrdpw2CXSnfc81Y4hxt9vF9vY2rl69ilKphBMnTuDq1auYn59PhA0z5yWOY/zCL/yCeQ8AYPe3dlH8ZNHoXsMdeY8qYmlKi+fharkHknmnGm6mvJbPpUKSyYxKL6u3KYoiBAgSdE4+wD3L0Dp6iRiNwfsJEIrFYqKseBzHVoiHuRCkfXptCEJofOK86MHRCkB0njh+5TP0IlA+e0u4ziu9rloVVYGGGteoM9BQ1mg0El42yqp6vW5jYiVeVi0ERrIkn8+jVCrZPl1YWMBTTz2FV155Bevr6weiMCYp//faPO/lM/r9Pra3t1EsFg08cu05fgWfU1NT6KADhOkRMV4ZV/7HKI8gCMbVh4ODxqc0Iwz75nNu+EzmnPl1TJOZNHAEvxwAfweJZxNYqYFTdTaCm06nkwjVUzChOaKcRxpQdR64DzQsUD1hXq+bBHQIaPleryNqtIc+V5/B+zT8kQYF/aGuy/GqnOM1WkWY7yTP73a7VnSn0Wjg/PnzAICVlRVsbGwc6Juu3f1ufxnPcfpL2SjYL1y4gJ/8yZ9EpVJBr9fDtWvXcOvWLbM+0WVIQtje3sbe3h5WVlYSia1UmlSZ4iJTAR8Oh4gQJb73VgH27bDN4ZsyBVXa/TO9MMhkMqhWqyiXy6Ox/YNt7P3gXkJ4UpFmifXl5WUr1uCtFbRA83OdA2/5ZynamZkZFItFbGxsmIBTTx6fTUFbLBaNoURRZEAmn8+bMOdmBsZhgMooNAGYSiOvYb5Gr9dLWPk1YZiMlUL8sGpXPveJfW6326hUKvZ8DQENwxCbm5tot9vm3Xvsscfw6KOPAgBeeumlxNzej8b9MDMzYwDokUcewcLCAr785S/boaRcSwInbwHTdZ+k5B9lKU1jmPqsNzrutL7od7Qq5vN5hC+FCB4PEA0jIBqHWzD0yCss3qChffYKcBzHpoAS/Guoqx8f6W2SZTZNaaGQZD+ojJJOfW4hx0+vsVlh77ZMZpRQzDLKTBxWCyuQjLsHYLRE+qYFXkPL1NuUtja6Rn7N3iwtKF1xH5Jn3LhxA8899xyy2Sw+8pGPGBDs9/uo1WrGq/r9Pn7+538eN27csLmMogh11JH5vzLIIosccggQoP/RfqrByyuMbOpFJPDh3wQIOt9pdKn5B7QMl0ol8y6aEohkNTvNpSLPV2WK1blUkVLQrICHspRHNzAnaH19HXNzcwiCwOhLwxHpoeD6kPcrL/GeTc1H9Z42LwO532gQ0PXQcEqCI8p7Kn+tVss8iXxuv99HvV7H8vKy5dNqeefBYIDNzU3k83ksLy8jm82iVCrZocpPPPEEnn32WVM60wD0pPU+it6VrpRGqtWqRYPs7OygVqtZ3xXga9TB9P89jex/kcUwk6w6e9h708CTejbTwJMPwVfwxufRqMkUAxoogmCcf6d7js8tFosjj/rfDRH/UozoJ8aVIjVsVw1J5H+smEjPK/Ul5jxryDvDOFkoSqMMWGSB+4lGJtUrVJ7qHKfJF4J7vx58n0Y7UBbp+nBu8vl8Yo978M655dok9Ny793Cf617lno7j0TEVTIm5fPkyHnvsMayuruLq1aupPNrL1PvV3gJOx2xBEGB+fh6f+tSnMDs7azH+Z86cscIIJHiGbOzu7uLGjRt2DhLLJ6o7Xjc436OhasDBJMXDiEGFepqVySuD6vLV56sw4vPy+TxOnz5tVpN1rCcAIBXFSqWClZUVLC4ujsJPMuMiDKpcUchrn30fvSLAfKJcLmdhL2R6fBbXYW9vD1tbW2apC4LAQsI4Lt20tOBQsBFc0YqpbnTOk1pt/doow1YlmuGCOt8cXxzHqd6JZrNpse/AuJwxwzyvXbtm87C9vY2f+qmfQrFYxPLyMn7zN38zVcFOY27HbVxvhiotLCzgbW97WwJ00hWvigLXiT+0lt0r0EmbZw/6lX4n7RN+lzYHuse88KFCaLlpGNMCLeKayKstDST6fk0aEwvR7O7uJowwCs74OQXTYQDQj5M0xLVTBTIMw4TnUxVV7m3d38pLWFjFhyPzh/yK+Y57e3umeHmAmMbXJs3jpM+PorFJQlh5FHOVCoUC9vb28Oyzz2J7exthGOL555/HE088YfPPKlBhGOLWrVu4ePGiGVMIEruPdDF9YnokX7JTmMIUun/QxeBjgwQt+/7rvOiP57ceFPn8MmBsOFLjD40jCQPAzwHBzwWWe0BeRDlJ+lc+pp4J9dD7PcxrBoMByuUySqUS1tbW0G630el0sLGxYWdJkQYt5yROery5R3Ws2hQQ0ZtGuczxsP/cV1qgQ+edNKpGAnrNer0eKpUKdnd3E3KLc84KpNx3jKhgSDj1jaWlJYRhiNOnT1tRnpWVFZw6dco8E4cZm47D69OMKvo7iiK8613vQqFQMLDG/N4oikyxVe9d/Csxwh9OHuCt+55tkoGP9M/qvZSjfp96T5PnMaqINxoNW+OpqSkLOSfv0TGHYWihudlsFsE/C9D/ib7pBlNTUxamqGCeY/KGIDXCAmNjufK2wWBgHlf1YjJUrVKpGI2QB+ucKDjVXCf/OXlFoVCwd2nVSvWa8TMt2qL6S6lUShgvFByxD2oIm5qaMmDIdWo2m2YkVOPPcDjE1taWze/W1pa9g2G79GgrzbwR/eao9hZwOkbjxJ88eRInT540oqIgoeBkGEY2OzqTp9VqGdEp4VBB8ESn7k3grhBA74BFTAWStx6kCSCz+Dtlko3f6TO9wM3lclhcXLRwtbX/ZQ3t72tbvyhga7UaVldXsbS0ZMJTlS9V0g5TSlTgqpAheFleXk5YY7zSRqVrZ2fHwvUYFqbrp3OjXiKviCrAUnCjIXfadyqfDLdgsQp+ruFKugZkNFqVJ5vNol6vJwpCMISj0+nglVdewc7ODgqFAr7+9a8jDENcunQJ7373u/Hwww+jUqlY7HCaUDpMifT0pD/0AFYqFXzHd3wHpqensbm5ie3tbQDAJz/5Sbz66qv48pe/PKJDJIU5y5ZqroDvj1f6J33m+0yGq94JD0oOax7Y6NwxLMkOw3wpxvDt41LbNBakzSP7zPnU9ffvS7s/n89jbm7OhHAcx2i1Wgbk+Cyfs6RN3697jnuN9Mn9QlrTps/V+/z3Omek7zTwxD7wGhXUysN0bTw93wvwntR8f9LWgX3s9XpWAGJtbc0OvAWAra0t7OzsoN1uW8haEIzA9TPPPJOYIxo/wtdD7GEPZZQxjelRieMfzKA73TVlRsetoVActyrNat31a625RqoQ828qkzyzie8jf8Q/AuJ/FCP86XHObr8/Ohphfn4+cVCs34MagquyzK8vn8kqjjdv3rRcN+X5zCslmL19+zZ2dnaMR7FcvFr31ctNGudnacYGDVWlp1W/p7LIfUePxvb29sjIuL5uXiLOte55erC4D5nXFccxbt26Ze8plUoWxlitVvHkk0/ixo0buHHjBi5fvpzwqB3lzbmX5g04DzzwgAGNmZkZnDhxAoVCAbu7u7h27RqGw6EdTLr/K/sI/+bYsJkGlDknac3vQ4InghgFHGlGITbSG6vV8pgY0jm9w/pOjpfhlqTLHnrotDoWxrq4uGg0RhnO/pCmVL/wPM97x4IgMHACjPYyjzKJ49i8ZTTC0kPLCBTOJ2mXvELDOX0RC3qXFeCQttXAwP7weupKBJ+qT1IukIdrTiLXitWo+c7t7W0sLCxgf3/fvFvsg+qCy8vLpkNQR30zBoN7aW8Bp2M2CpudnR1j+vl8HltbW1ZOttlsIpvN4syZM+YZWVxctMIIFGJknspkSdwsFkDmuYvdhOVXN1qaIsmmhJmmJPFzHdthimK1WrVDVuv1OraxjcFvD4DvHVfCq1QqOHHiBJaXlw00TbL06VjYJlmKvHJEBnzy5MnEIb0ekEXRKMxta2sL09PTlkhIBUGTr/lsjkWtlBrS5z1SZLoKwnQ8WmGK66ggT62WCqZYHIK0sL29bWGBXCcy0729PbTbbczMzODKlSvIZDL4nd/5HfOyeXDt6eQ4LW1dGDrygQ98wMqls6IYPazve9/77MDS6FyEwY0BhkvjOTwq7MoDbf3ssKYe06MUbn7nf6ddoyFovKaHHsL+aK0pzP3cHvbeSaBpEv1TOaW3iSEslUolYaHjnlCa8aBJ6U+9qxp2q/fovvX/92PVvaX3Mz+S/M+vud7jwYDOh6eDw/jhvbZJz+De5dxRqb969aopBBTg3PMEtplMBp1OBy+//LK9g3y+2+0iRIgeemh/pI3p2WnkZnIIc+PwIb5TiwXpnCjAVICn/9ekefIcrgEVJipEDJsEYDmmBix+LrCcRc7L9PQ0Tp48aREByqv5rsMURm9gY1/Jj4MgwOuvv47d3V2jVQ09HA6H2NzcxM2bNxM5KxsbGygWi5idnUWlUrG18SF8GqpK+areAnpM6UlROcxKrFwTVkNlNAqvYVEQpWfjI67AA69pNBrY39/HysoKCoUC2u02rl+/jiiKUCqV8KEPfQhBEOD5558/0C9PIypvj6L/SUYper6Zh8WKblToCd5ozNnGNob9scLugbI+O423e6BFuT4cDi0/ju/n97p+2obD0ZElDHfWSBDuLQUTNHQWCgXEvx6jiy466KCHHjK9jEV1MM/TAyDPO/3f6nH1+4PrNT8/bwYyAnYahWmkI78nGPSRHXwvxxbHydLhmqPId2vInObfK5DSolUsCsQzJ8MwtPwoXk/wyO+pJ6sOvLGxgXPnzqVGGXA/drtdlEolM05Qr9Z70mTq/WpvAadjNE769evX8aUvfQkPPPAAzp07h+FwiLW1NTvBnpVZBoOBnQFE4aFFACis6Ibf2trC1tYWgiCwcD4Kqg46iKMkIXhFxXtaPFPWmFd9jo7Pf6YbvFAoYGVlxQT/xv++gf5/1UcQB0CQVOZoefIhiGlKJOdGP/eClONjX3Qs1WoVJ0+eRLPZtLlXgcy5aLValjyoB8mqt4ybn/32AIXzQWYTBGOLEIU6GYnOnybb815dM10XCk8WdKDVkaFLrVbLrF7an16vh42NDbN4d7tdPP/88/jQhz4EAInqZver0XDwrne9C4888kiirDpzIfb3901hs5wcDNBf7yOqjK2PHjCn9fUw2p10HYW3xocfpmh7Rd/3gXHcDOkZvjpEH30ECJD/Zh6VD1bMAjhJ6fA0P6kdNhek41KpZKEytHarp0eVKN0P3tPJ9/EetVpqEnMan/DK+GHj4fXcDzRCsLiKH6sCJ/0s7T2H0Y3/bNI+UJ6nv9PeQeVtY2MD1WoVa2trCSA1PT0KuVOLKQsKbG1t2XMpA/r9PjJzGexWdxFfjZH56DgHArjraf8PGWSQQR/JQjHB3X8AEH1wDJyopLDvaYod15nAjJ4xXkeFjJU9Z2dnsfRrS6j+4yoy0TinKQxDrKysWBh7Wp6F90Kq4qigSfeg5k0tLi6a0qRepyAIzAtx+/ZtCx0k36E1XpU4ep507TVniX0gIGJeCZVtBQZRFBmo4h66c+eOhayRtjXvSfcm54Hf0/hBw0e9XkcURTh79qyVZN/c3MSdO3eQzWaxurqKD37wgzh//jxeffXVA2GASr/HVSDTrlPP5fz8vM2b8p/d3d2xV/JuG2CAYffgMQv+70lyIG2/eqCp+pb3xKoc39vbM9BFYMJnMVdIDZw0IASfCdD/ZB+tXsvojoZDHtbs9TJ9PvuhPIb7ht+pHuf359zcnOX6qV6jZ93RkEq+oXqgrYUUlOKaKdAkiKQOpPoM59DnTnJM6gFkziujr0jvBGkKSmu1mu0VhnqmrT/vZwjj7/7u7+I973mPRV4QQE6ir/vZ3gJORzRdwEajgS9+8Ys4deoUfvRHfxRRFGF9fd1cqHrApVrN2Kg0q5W40WjghRdeQLPZtENle70e9v/dPtpoY/jRg2Fo7Jf/LE1B8ArFJOapSooKvOnpaSwuLpr19M4/uYN97CcYHMP0VlZWEkzEbzC+X93YacqJMhj9TBVAWopqtRoWFhasWASQjBfmu1Vh0RAkglrGC6swZ99VgHPtfGIzGTaFZ1qcL5mIt/JzHfv9PjY3N3Hjxg1zX9OiSpDO8rO8R3O3bt26Zf3d2trCN77xDYRhmBAwk2jlqOaBdy6Xw9vf/nZ8+7d/u5VFb7fb+MpXvmJ/09LL+6MowmB2gEF/gGgvQlAMEtYntYp58J9GH/qZb2oJS6PtNAVbx+efT0XJCn5citA/PRIq2VwWpdkSpivTCYtcmvDms9L6o9foONP6Sy8wK0JRAVcvL63oFFoAEnPLufHr7PufNg5gXDjFx/Sn8RiOVUEbeQQVXL3Grxv/ngSavHLyRtokGlF+pJ6fvb09fPazn8Xp06dx7do17O/vm6c9n8+jUqkYyA6CwKpC8V3c1xomtnN1Bx100P2DUbRBEUXkkUcOOUTfE2HYHSLuxcAQQAREcQSEdwFpFCD60wgxYgwxRP+j4z2gSq+uj4bnaYEG7mce5N76wxYGGKCBBqYwhUpcsXGQD7O4gSa5AzigIGpolVeWlY58iF82m8WpU6fQ7XZx+/btxDNYeIHFF7RRIVOvEnOk2BcfLsxnNhoNbG1tGVjjs7PZUTVA5m0xrLrb7WJzcxObm5vmfeE8AUg9uJfvpFeL4U48QJjhnnNzc3b9tWvX7KD3UqkEALhw4QKuXr0KAAaeFDjdS0szMHFfEKRwjih/+M58Pm8GvTiOkUEGcZj0Hnuvk8p41Vl0H6btf647w8Co2PNv3k8PJYEH30ewQR6qIcQMPQuCAAMMLDUAGFUXrlQqFpY6Sa/yvJP0pvoR59I3lYszMzNYXl7GnTt37FD7fr+PZrNpR8NoiCf3oOYRagivL2tOAwm/9zzPAzldO+7TVqtlaREElrlczo5o0IIb6nGK49g8yQSE5LNeJtDYxgiv1157DSsrK5bjNKnq6P0GUW8Bp2M03cj7+/u4c+cOms0misViovoJ46pJGGQqJDZaphqNBtrtNur1Our1Ora2toxw498YCb3u93TR3x8XXtBnsE+euU2yzOj1PoSJ36s7le+kQCSjbPx8A60faCEeJl3NuVwO5XLZSu96Bugtip6gldDV0jmp72S8rPa0vLyMmzdvJix23HS6OTudjq2b5lGQ8fv+kiGQ2REYsYINGQ/vo9dRK95lMhl7H/uhwlN/Op0Obt++bWCcVbiosNPy6Ofg3LlzeO2115DL5TA3N2dWpy984QuWZ6HjIl2kKcaH7QEFlgsLC/jwhz+MarWKMAyxv7+PK1euWOgEGVyv10tY3e0nHwH7QFAKLETA0x8V8zAME0ze07XfG/xeLbwqLI9iqnotn8+cRNLBAAPEUWz07/OaDhOi3jiQBpr0nrS/GZowMzNjIVSMCdeKU6osco680pb2o1bISaCOY0/zZOh4ydt8rqL2RwWkgijPp3TtjwOk3mjTZ+v7FHgOh0N8/etfx8WLF22vMuSFZx4FQZBQuON4ZJm9c+eO5alxfaIoQr/cxyAYYD/cx1ZmC5lMxngcc424h+hJIajY39/H4B2jIgd99DH86qgqa/Bd47PGqOSpF5+Na7K/v4/19XWzzEfPRYjeeXedpmLE3xYjOj0uJ14qlbC6upo4p4nPS5tHDWsmzah3TGlElbc4jlEsFnH69GkLgeO9VAYZ9hgEQSLHlgYrrkOpVLIqpcAYXDGKgArczZs3zZMfBEHCG9FsNlGr1ZDNjs5fojK3u7ub8G4pTXlDgNI9y+/Pzs7a9+wzQe1gMMBrr72Gq1evIooizM3NYW9vz3Jt0sBx2t45rKXxSO1vpVJJFMLQggQ8gmQ4HFpebgYZZKbHpah1Dyl/mSSH0vQIBQIs+ESgScMFeRhpg/JAAQn3kOZxUvehLhP/RozeJ3oJUEUQrwfPKt9J+7/3LvlrJs0Hn1+pVFCpVIy2oiiyM6gIVuiRpZ7A9A8NZaRuooW1aAzSg6XVoEN+rzllXnckgGUIJ/kh5QQjC3woZaVSwblz57C1tWUGG3qmVGdQucD0mGvXruHChQsoFovGr9Jo5363t4DTEc0rDCQMWvI1cZYbguE6Wh2P4UL1eh2XL19Go9GwvJX9/X1ks1nMPjeLqU+PLZQqeLQf3BTKINOYsVcuVclUcOJ/aC2Yn59HpVJBNjsqt72D0YnnwW8HCH9g7GqdmZnBwsJCoiSxZ9qq8HmF3QMnvd6PXX8TVNRqNczNzRloYZ4YkExSZxjcYDCwMuV8Pq3y6u5VxkDQ1Gw2sbe3h5mZGbTbbTtXI45HpTIZf08LCxUCngVFWtCwEArHnZ0de4Ye8knwQKsm4+SDYGT9e+ihh/CNb3wD3W4XCwsLyGazuH79Our1up0qfxR9H7dxrR555BGsrq7auDc3N80qdu3aNQRBYGCCB1eyUpStO8aJs5pPppZqPfDQgycyc78PVMH1gmnS+NM8uuq90T02uDbAcGXsCeZZMpyfw+ZUad7vXX8Nm4JK3RPZbBa1Ws0sdOp1Yn9IWypINVyPe05DhtgnFVoeTGoYmfYtLVyFwlxzc/RatXoqT0qbszRF/Kjm+eNR12rf/d+enqiMqQI+HA5x7tw5O7+IoXhULqjE0QijTeeCSgANMqVSyay4/FzzZwgkmGuQvZBFVI6Ar4z22vC7Rs8jvXIdVQne39/H7du3LQcEwMhj0E8qT+RN3PPc68o/dX9yT7JRUSMdU/HTOdD1ogKcyWRQqVSwtLSEer2eCGujJZ403m63rRogQ9+pmFUqFZTLZfOIswoe39lut3HlyhXcvn07cRaZGuS43rlcDs1m07xSGg6VRl9Ki7qntQgUr6UynMlk0Gg0kMlk8M1vfhM3b95Et9s17w6VXn1vGng6Lr/3slc/I1CkUUCrzobhKP9pOBzi2rVriXWkETMtAsKvt/bVg3vtG/kF6ZFGS3qP1BPDPtDDTTns6ZVedJPV6CfWid5+FstK67/KIv1b+36YrNC5J60xNHBnZ8f4xmAwwPb2thWf4lgJPPgeglvOC8cPJD3CyncUrGh0gBoQlZaps/T7fSuEopU5KcMVsNHQtLy8jEqlgq2tLVtD8gRf4Q+A8TsaiyuVCur1+gHa+Va1t4DTMZoSexiGqFarhqgXFxexv79vbtvTp09jZmYG3W7XANbe3p4RTLvdxvr6Ou7cuWNhG1RAZjCTAF2KzhVE8bM08KSKh1dmvHKoyhGbgqZisWiEu729jR5G1s3wB0MEYWAen9nZWSwuLh6o9jdJcPh+TPKi+f+nKZjclEtLS8ZQVLDz+dx8ZAa0dChDoeKhyjL7yjCb7e1tO/gwn8+btxGAFQqhECST2t3dNcbBEENajNknPUG+0+lY6INWoGKlJgqmOB5ZYBcWFvDpT38af/AHf4CTJ0+iXC7j85//PJ599tlElSCu+aT5PKzptbX3NmpHAAAgAElEQVRaDR/60Idw69YtfPazn8X6+jpqtRqeeOIJm+tMJmP9JB0pPcatGFE+QpBNB8i8zoMfpR1V9L2Cq9+nKc26JxQwqzLHMCsNe4luRRhiOAqVwjjfaNL7Pb0e9vdR1/r5IThlSWhgHO6jYJRzqNZevzep1JAuKDxJh75R2KoVn5ZFf1aQGo50r2sISBrP4v8VMHlQlTZX+v290vhhysyk95LOOO5CoYDV1dVEeVwaU+r1unmB9VwrNVz591PZ13VVpUoVQCqzVFj6/T7iB+8ecvlqFjMfn0lUAeXz9XDxwWAAXLlr2ECM7Pms5W2Vy2VbGxpFaFzzeW7cV2l7Q6t30SKu9+lc6DzTKzQ/P29AScO18vm8GRKYz0JQSIs0LdXVahVxHFtf6PXhGYAbGxvY3d09EMal+5syg2uZ5i3lmJRu/NgIqvVaKvFRFKFcLo9CJu+GI96+fdsKwpw8eRKZzLhape9n2juPY0BI2wfKG0lvnGPqLr1eD5cvX8b29vbI44cYaME8sRq2pe/SfnmZkGZw9d4rziNBpJaz1oJeyuM8aGLhH2AcIRR+IkTw2QDBXxsDqxMnTiS8TZP4Uprc9fvBe5/S5pz8eWFhwbzV5OuMpKlWq4nnat4Vf8iHVbf0/SQNU0dRHZR8RQ08Ou/e2KZFwjj3eh/nvVQqYWFhwQ4Ep9FZ95GGEJZKJTSbTXzP93wPKpUKdnZ2zNOs883/328g9RZwOqKlKTCzs7MmJOk+pSVsamrKXOdkYnt7e5YoXyqV7KA4KhxGfBgnhlLoqTWY12o1OB+/msYQFAzwGjJ5BRgkbk1qpqWu9a9bCH4gQJgZx+by9PLTp0+jWq0mgJP3DACTkz/TmLr+P42hqHJNQUqPDd3vCpJUMWNsMK2nrJKkhR9U8WScP9eRz6LXaWNjA1EUGXBi2XGuRbvdtvKp7DfBHfvX7Xaxs7NjDJF96fV62N3dRT6ft7MnVlZWjKENBgMrt/uRj3zEwjq++7u/Gy+++KJZYVTovFHFkjRy4cIF3LlzB0EQ2Pkje3t7uHXrVqLcL+k8DMMDccsBknTAsXgw5MGO90h4t79ahtWLouP11jO+T4WE5q1FUYTe672RGjkfJ+aCMd1+Po/LqL0ips2vmf+eHt9SqZSw4qaVIqcw8nkjno+okPKGGO0Xn6uKoioymmRMnpAGDnT9+S56INKs8TrHvk9HzfNxm/ZvEu/hb7Waci0uXLiAWq1m/c5kMsZzNjc3TanTufNzq+NRRY/Kg9876hVkaFIYhuaBzOfzGL5viP5X+qMqkD869pjU63W89tpr4z16O0RwSgxf0yMvVa1WG3uz7hqsqtVqIlyTTded/fQKFxUqBXG8XuWX/02jDIEEvXcALHxVw5E0AoAyYWNjAxcvXsSDDz5o8pzr1ev1zPLNZ3tApOvC/upemQSED+MPlC+cP4LxwWBgesWtW7ewsbFhY79+/Tre/va3JzyB2hdt5J9HtTTQpLyCZ5cBSCT102jz/PPPo16vmw7R+0APwTMBlr932c6j0rMUuabeQKY8XL3T/jqda+URXtlO21cKUhlixvfQsD09PY0A43dls1msrKwkcgK1qU6TNqeeHryuo15HvZeRK0tLS3Y2GDDiwcx3IzhREK/PUb1P++DnjtdQJrM/5HXsozeI8V7qSVEU2WHYpGfKel7P52rOoVbwZNPxfOITn8D8/DyWlpYAjIzWWlnZr8e96jlHtbeA0zGabgQSLxUuKoq5XM4AFK1HDO1iNR4Sv1aRAiS/CJGhbJ4pQOJRIcmQBa+UaHnJNGYCjJk9iZcKFpXAarVqsb3dbncUNvbrPeCTY4sy+5LL5bC6uoqVlRXzwHlrIX97RpjGGPRzr2zx/7oefBaLO5w4cQJBEKDRaCQUSRVe6uplpb1KpWIhEXoYGxXBdrudqGhDAcXxsiLi9va2leOm4s1zr6iUMPTMgzlNTub3Gh7IBOHt7e1ECAItdyzisbu7i1wuh0ceeQRnz57F66+/PlER0zlNa5MUeVo32ThfjUbDEpu5J/r9vgFKtYQyTI+MFkDy+zhZQIDvoVJAJqrCT5m3gl8qaQqkNMRPgZTOC9el+3oX0dxBRY4JwoflNk1S6P16+O+OAlFsVGR2dnZsL7PfWhmS41EFm+P2nia1Bqc13ZtKx7o+URRZzguBkC8vq/tS11OvB5DI7/DJv5MUU///e23+3jQFXpVJVt86ffo0Tpw4kbB6A8DOzg5u3LiB7e3tVK/EcRTaNIUgDdh6YEpDW7vdRvvDbYSlEL3P99BDD5vYxBa20EILQwytOl8QBYn1IGiampqy/KBSqZSQhQASvNPzev5fLd1Ko5PmW38oDzUkTMOaaZzkfgCS5/BxnrrdLm7evIlGo4GTJ0+aBwEYlRJXnqX7xstSVQA979L+p33Ovvm54lxyL/PICRrvKE+YE7W3t5c4NiANOPn5vBe+r21qasqiS6gEU3b1ej289tpreO2119DtdhO5MFOPTqH8chnZ78taeOEkI0CarqDGNA+qFWzwe51z5XdervA9WkI/k8lYuHwulwP+A4BPjPlesVg8wPfZH/9OL6PYJoGqtDXS73ieJkvus9GoyvBBNdzqmNNARBotqJz166CVOmncT5MBBE9BENh80SGg6+3pNY5jO4RYeSVBGqNvPve5z+HHfuzHAAB37txBsVg8cL7apPG92fYWcDpG84RNKx7Drig8WJ60XC4bOArD0CxgwIgp1+t127i6qLsf2sXwj4fI/GTGKpMBSGx4EqYHU51OxyoKUSDxegoWzRfRzU20ryGI/X5/BEB+q4fw+0IL1WCfgyBAqVSysyWUCaV5u7yr3TMHZRLKEFU5UKapLZsdnXo9Oztr4Wxq0eK71cMWx6M4dlaiq9Vq9i4ydY2DVlAVhiEajQauXLmCmZkZOwRT+6aVpTKZjAlhDdXjWjIHROeK42cYTRCM8pnu3LljdEEQ12w2sbCwgFKpZOeMhGGIp556Cn/yJ39ifbofDCSORxVwTp06hTiOsba2hn6/b8KQ4UQMjeBhjfQA2noiGUYJIGERThP6CaW7G9szAvkXIkRQGFvWFADzvA+vGOi6KZ1ZCWN3cC/3F40MvqUpHl6ZTaN3vU6/52eTFBoKSgogAAnFhGNM80R7fuAVTJ17r+Bon9MUQ1YII7DQfAJe6y3EafOjBUL29vYOAORJSqu+5zjtMIXRX8e5ozeH5wS9/e1vt1LNBE77+/u4deuWGdG03Lsf93H7fZRSoGsLwKq92aGZD49B8mAwQNSPxl7gcEynLBDECItisYj5+XnMzs6asqlGBy2SASQrg3GtFCyl0T/vU6VTaYLP1IOgFVDTG0ZveNr+iePYcpL29vawtraGpaUlFItFtFot3Llzx0DupDn34H/Seuj1nsYI9jQvUUEDS2SzyiojEGjEazabuHPnDqrVKq5fv57wKh9GG4c1/73S+/z8PN72trfh1q1bOHfunIWts2rtxsaGRdMov8nlcii/v4zis0Xk/utcQo9IA9c+HFX1JfVaehAFjI88UD5GpZ3faZSCytxMJmMH5EZRhPj3YuATyTlYWVlJGJD1/Z422BQ4pfWZf+ue5bW6D8IwtNw8AhO+j5EtPvRV58zrfto/zV2aBL5Vl0t7joa1UoYy15BFxlSn4980UA+HQyt048Ew+1WtVhEEAXZ2dnDnzh3Tud/73vfimWeeSQVP97u9BZyO0XQTcFF5fg8tjdyILGFJpYXVXcjcr127ZsJfmUYQBNj94120P902ZYNWJCBJ2AyXoGLHw/ZYjYTCnMpGv983F7mWi+VGZBiGJuM1m00MfmuA8PvGsa0EThSOp06dsjN70pifMkF+roxMN5+3TnqLDT/za8LveEidL/qgYVdUYti4qXmqO/sB4ICCwxOy+Qx6oKiUz83NWRimev1oQVMPkbe48F0A7Htt6pJ/9dVX8dGPftTmkJ5JVgFqNpsARpbBd77znahUKmg0GgcYiJ/b4+6DKIqsguFwOESr1UI+n8fCwoJ5yLrdrjHvKBod3qt0EcdjjxPd+pxnY9rdu4p5TjrQh1nE45zQAmIgwOgnA6ANxNNJARvHcUJA8nNPq6SZwWCA/Zv7o6pk80llMghGCfjlcjlBx2ngxtOs7pG0tThMCUtbqyAILK9IrXekdz7b5wLwc9In/+89GB7g6fNoRFDa0BCOXq9n+TSkUw0TSVP++Wz1tpO2We5ZgfWbBUtp85nGb9KuI48maDp//jwWFhbMc8H9wNAqCn+G0R3V0sZ1VN+Ul3oFR89TUU8uMAYqukdyuRxmZ2eNx2cyo6R4Hn7qKyryOfqMNHpXxdbLjTQQmaZcR1GEmZkZzM7OGh/W55fL5cTZSuoRY+N60HDVaDQsmkCrHaoxcBIwShvDYeuk68h5oCzROaWM397ets8V0G1vb+Ppp59GqVTCyy+/fCDSwvfhOHsjTTZQl3nqqacwNTWFVquFixcvotPpmF7C4iIa5qV9qNfrWMACpuNpkw1pADoNOKk84ffcS/S8eNrT/GAq7gp4yGeUJ7FoVxzHiRBs9o9hemlzyTXkdx508PM0wKWyRz11eg9/pqensbKyYoWuOJbBYICdnR2rbMgiWcqvFbAqH+C8Kej2RjbOscoO6joE/plMJhG1E0WjNIR2u50AZr4iMc9Ji+PYjBm651S2aUrML/7iL+LEiRMYDAY4deoUnnzySfz+7//+Adq63+0t4HSMxoUjsqW3icTCZEJgHAPKEtAaDgMAly5dSpQ05TUA0MWIQXLDkvAIVNTql8lk7BwoHrZHIqbVxJLb/78BBu8YmPLEvAyCIY4JwDiJ9t8Pkf3BLILcWFFk8mG73UYul8OZM2cmWl50Y/rvFSRNUt75nYZh6WZIu17BHd9NpVKr+cTxuAwpQS3ziLiGBIjsLwscAEiEXvb7ffMCMVmUQpprx3hdxvqSOREk6YGOPPNgEtBhbHu5XLb393o9A+g6b3Nzc6jVamg2mwe8OG9GuaQFnesYRRGazaaVoWW/+v0+Ll68iM3NTQRBkKhUFCMZU51QwLsR4uzd/t2NRggQjECUW34/Dg3P0e/JrDXOmvPqLdr9y/3RGWqzI0GTm8qZ8hTHsXmb1GCSNg5dt7Q2ad+k7Ym0a3kdPa6+2IAqL2po8KBJQb63MqYpsirUdb69JygIRl4nFkah10mFsl9L9lmV1unpaRtfLpc7UInOP+ONNr9mk9aEvxnePDc3h4ceeghnzpwxHhDHo/Lw9Xodr7/+uoW20oDm22F0cti+1b55RS1NgfYRCyqDqJByjzCXhca2XC6HpaWlRMK3VxQp7yaNxytgnEelSfbLK28Kjkj3LE5UKBQMVKu8Ytly0jqAA3ROXqweb9KfKrFpivCkdhyjh17L8W9ubpquwbB+Guso3wjwaDTlWW4K9g57t/KAw/qk+ziTyeCd73ynGRh5IDv7SoWX7/eGmuFwiM6lDlofbqF6sprQDSbJf8pRGghJc/wbgEXaDIdDmzPSDumhWCwmCjl4XYK00Gg0LEfaymkjk9gbvoy9n9M0vSbNCOXXJU0v8sCJLZvNYnFxEdeuXTuQX8TQ+DiO7Xwnk7nx2COroY8+1NYfG6FGEM4tPaGqU6k81AqqvJbRGdR7lP54RhbXhYYm9on9AoByuYz19XV89atfNb2H+WkrKysHZJWf6/vR3gJOx2hk4LVaDaurqzh9+nTCk6CJpVTQvYufHqJGo5GqNERRhD3sYe2za6j8SCURP6xxpEEQoPgvi8gii61Pb+H69euWyKrMjlb/6demET4aIno5wuDbRtdM/eEUpjGNLLLII4/sfzsiAyrtwWcCTGMaucI4QXt2dhazs7NG8Pl83rxUSpwqGP0406xL+p0qc3o9MD7LgHOlc8vfBK1a3pZlMWkJ4W96echQGo0GarVaIsmbY1MhzQOKyay5RgydIJBW4UzwNBwOzZvISlB0SRNAUWn0ir+ClFu3buHRRx9FNptNlKImkyPtBUEwseLbm2nKiDkW0gVDTMNwFM744osvJvKhgLsheYhGJY7pQZJ/CS/TXQ7FsLw0geT7FiMG7jrtAkFaESIMauMCFGpxI732Xuthf24fw/oQme0MssgihxyyD2ZtTRmeq3R6L/PqBaz/fBKwSGucj1KpZBXAACTowCucqrR6r5wX2Do+r8BrqBe/41xy7/B7NTRpCKW+i89UYQzAPPscy6T1vx+07Z/jlRyuEQHd0tISHn/8cTz66KOYnZ21sdMzsLOzY0nLURTZ2TbHAUlKH2m0wuu9oqbeW+W1nu4U7LDfMzMzVsKblmsmnBcKBaysrCSMU75f6slSj5KuZ9pc6hiU1+k9+ly+i30m/eszWOSIocL0LPlDyPlbf3wIqVde32hLA7n6Hoa7nTlzBoVCAfV63WQbS39fv37dwre1BPlxecZRLU2xL5VKeP/732+FlJiLTaAJIOHt8v0JggBDjI2LChLSAAZ5B/8mPdJrpMZlNQakhZExCgW4q4T/0ugcvgABgh8fvXtvb2+UV/OfYmSRxdTdf1mMwVomk7FqmWlzpLzJ04qCUB2rNyR4MMW59OtSKBTMq6r7gfPRbDaRzWbtgGaV2Qqa0t6lOgd/K18DxuCHa8//61ypQU4Lb6mOw37pnlSQxD6p4TOTyeCP/uiP7Dggfk7PeKFQsMibb1V7Czgd0ZS5nz17Fh/84AdNKVE07nNaSDj6DFoIvHWNm7x/oo/2fBvtF9oo/EghEdepIKrykxX0+31c/reXUUcd+9gflUgGgDmMifP1ITIPZZC/nEcGGeS+nkMeeVR/qGpJ/HEcI/7XMTroYB/7CBAg/+n8KN9pfsrCIObm5hKHjNVqNcs9SBMqnil6UOU3rV7nrZgqVA9jtEEQmCCdmZlBFEV2hlAQBFZ1huVm6a2hO3l3d9cYNEMwOfea00ZvCptWOZyenrYTzLVKXKfTQb1eR6PRMCVdFahOp2PnvXhrDOeFc/fSSy/hiSeeMDrUsrx+LmdnZycqxP7Zvvl19XPvBbVafrrdLi5evGhJnvyxUCt6lIIxaNL3HtaOVDpz6eOKMzGiToTBXTdWiHB0OCMyiBGjhx72sY+oHiGDEWjKIIPMuQwy2YytJT22aYJHm1do065L2x9pQkwt8Wn3EvBTSVfrOpVj/3xVEv16quLjFVbgrgW507H1pNCkYkSLLQUe30+vE/mnAjYKWK+AaR/SwINv9wtA8VlpwCSTGVXhes973oP3v//9mJ2dtZPrqVSo54BjU+/vvdL5ccY7SWFL+155JsO1K5UKAJh3T49smJubs/DUSd4CBcSez096/yTl0wMq/VwVTx7JwBArfRbBH/kqw96Y/O/Bqb7P8800wHPYuhwGtPQ5lAU0Nt28eRPnzp1DEIw8tkEw8tY3Gg0raBTHcSLMbJKRMu2dxwGAXh5/7GMfw+zsrCnqNHBSiafRTPOgD8zbClC5XbGKjpNAM3Uon2vDkDsaYAgCsv9nFgMMEN79FyAYFdq6+y+HHAIEoygHROj/eN+qz+JXgQFGhrwccsh+5ziKyKo+To3DVFn6PQ0g6WeH7W0drxqEJ8kQ5fl8bjY7OoCXeXxBMC4TT7203W6bzqJ7hvOZJmf8XuC7qBP5faHP7HQ6Fl3APqhhLs1IR73WG8vUY6U0Tr3uK1/5in3WarXMaEVPM8+hU/l2P9tbwOmIpm7aEydO4NFHH0W9Xk+EKgyHQyNOBVJUZBk3/eqrr9o1iqhV8Z96YQr72EfcShZDiOMYnf/YwQADbP3QFtbX17F2fg3d3S6GfUn6bowYBBkIAGS/bZTzVCgUUJ2torRQMuW+1+uh9yN3T4uORyGFswuzWFpaSjC2Uqlk55KUy2UsLi6mhmroxlOLvFcQJwEtKiUKLHUtgHSPE++n5YEAjwolGS+BVRAEaLVaptQEQWCJt/Q8qeUWgMXwLi4umheFeU8+hFPHwjHU63XzRvrS7fQ2KRPRcZE+omiUY8RwPb6DglcZIoUZn+Pn7M007R+NBDz4LggCbG1tJZgX++5B4RvpS5qiqONOA9ikp0FhgDgTA1kgyAXITGcQh7HNe4AAuXAc3pnL5TA9My6+EIaheQ19S1Na/XeThGOaAql9P+pdtMJqCJb2UUOP9F005Gh/Kay84ccLSYad8VrSn3p+FRyxX9wz3upPfuSNS91u18JjfE6ZzlcQBIl+v1HaOmodOY6FhQW8733vw/LysuU28rwlyxO9G/YzHA7trBEf1nicPkzq61Fj9Iqd8uRcLmdFgYrFIsrlMgqFQqKIDQv/TE1NYXV1NUE/PjLgqD4rTR91vd+//jvNmy0Wizh16hQ2NzcTYXYqu9VQVS6Xsba2Zt5AGij5njTApn1V+eOV2qPG5vkwDV40vjEMmvPLHKIoGoWU1+t1O6CVciJN8U17V9pcHjb//F0qlazkOfcowQ1zfmhIIT/QHBVT0G9HGP71IVBM9ol8gz/kEV5pZgn08J+MABKNbcO/NUS/10eUGUUDBGGAIBr9hLkQwczd9w8j9PeTfCf4WwFyvRwK7QKyvSxQGXtYqC9wL6yurlof0gwqhwFuBS4cs+pX2iYBHG1hGNoZanyXnkFFHsoQT9U3KItVLquupTTPOeA8sH+e95BPB0FgvJ/P1fBNfZ86BNQDRVrn/9V4/e53vzsRLQLADArnz59HNpvF/Pw8bty4kQrw7ld7Czgds0VRhG/7tm/D0tLSAesjiUuJQBWYXC5neUjKwJQx2wK/K8b+3D76/09/ZBH/axmEnx8xiei7IoQIcbl5Gbdv37aY5gSznh31N8yGmCpMYaY8Y6CpXC6jVColvGMMYWDIYalUwokTJyxfhVY5ZSAsT5t2jkGa8JjkYaKyxb5MUow8M1JAqc/ju2ZmZlAoFMyFqxue1zJ5koxGE1x3dnZQqVQS1QJVOLEYQhRF5pXiO2mpUjc3n0GlirH0tOBwDbRyn2e6ah3iKfXlchnA6EBajc9XpsI5TgiL4HCL2L20IAjMu8Bk8mw2m4g9J8NUpYbtKEHvP/dtkmDxyo4fL4WyJtdy3eg50bAS3kMrtgdOnlZ939L6mCZ89XmTjBJp80JrLC3UTN6nx8efgzRpTtXCq/1UIUYDg4YJcW7IK2ZmZhL5bqQPAisN5VBQrUovv+t2uwnrNr2Yuudp7WYVx6MA0KRGPpS2HvqTyWTw+OOPY3Fx0WL7B4MBms0mOp0Ooiiyc3k0dE+9BEf1R3nAUWDK7+lJYyDPyefzWFxcNI8S14wFiZjfRDBeLpexsLCQqKKn70h736RxpNGWVz4nPc/vJ/LRhYUFnD9/3vKBvPLHvc78xKmpKTuEnkUNCEQmAUPfBz/GN8pTSfthGFo1WxoWaACsVqvo9/t2wPr09LT934MnP+++76pzHNY4B/Pz8wfkC0Oy8/k8Tp06hcFgYEB8OBydk6VAiG1ra8uUavIH0qSOQcvAE6RNTU0h+0tZhP9ziHDqrt6xmxwX/8955dzoM4Gk15Iym8o7x62yO5/PY25uLrV8vqfftH3ojQAq1/16pO0TL8uo5ywuLlq/8/l84vBeyjaWhlePEfmshlxyvKqX0dukUQdev+O7+D7yB86p8vi0NaIxSXUDzVfkswnie72e0SQAOxvvhRdewLlz5xKGt/sNmNjeAk5HNCV6no1SLBYTlnOCijiOE8yX94dhiGvXriXCu9IExnA4Kj2dyWQw9cHR+VBT/+8UMh/LJKxim5ubiXNxfH9pscnn8yiVSlZtrlwum/WTSaf0VHATVqtVy+WhANVNznA3em100/twAZ2/w5SYSczFz79/rv+e/aTSq4qVegwUCDEcBYCFcvCcDIbjqPWLY9SDguM4tvO8uGkJ1sjwKdx5mK4qm7yGZ3RMGj8/Z44WhdipU6cwHA4t1425Z0weVg+epzudy+M0T9vZbBazs7Mol8uo1Wp28Gc+n8fm5uaBpGuvNPlnH6d5JcvPE+lRgYcXbGTiqtRbaMbdOGlfVYnPUWu3PjNNedW+pY3PGwS8wpY2R5NCoGiJ5vyTbhnCR3A4ae4nCRq1HLISJUN2vDFDwb/yA70WOOhR81ZzDfeh4Ge4jCYOKw0uLS1he3sbN27cmMgbjwtW9B5tnPtsNouzZ88ajcTxyHNw584ddLtdC+nVVq/XE2WaJym2aX1S+vN7dxJ9+evIu1nkgaBPixzxez0IdGpqykp1cx2UBj3/PuBpEMA+CTgdFtaXtq/0Hv5mpbGdnZ2E0gvAcps0By8IAvOcbm1tWdgT6Vi9sW+0HWU84TW6xxqNBprNpuXKsu9xPE66pxfhuH3Q9x81Jl3PTCaDSqWCjY0Ny+M9ceKE5TsTWBHUnTlzBpcuXUK1WrU9oSDl9u3bWFhYsHXXXFmVy5wL8mmrYoxk+XvepxFAHJ9G/KhirgUTAFhYPvmlzhH7WSwWLQxR51V5ls5dmgEgTW6lyQ1eS8Cvn+l3LFZGAyULuXD+NHqFlTy914jzrXnRnAcaCfk3wYxG1ABJkBaGoeUeETjpM73+QfpmY6QWgARwInguFAp45ZVXMDc3hyAYe2hpqHrhhRewvb2dqovez/YWcDpmC4IAzz33HJ566imUy2Wr86+Jzty4tH52Oh37/OrVqwni1M3FNhwOrVJNsTjyZ4cfCRGFozhOno9AiyafBSTd3mQEtBoWCgUUP1fE9N8cH2xLYiVTWllZwcLCgjFLbjBzj9/dJAzf0ARJHVMa+Jl0jRK3Z0BpY1NG65+nSi3HTsZA66hWjyEInpmZwfz8vFn7dnZ2zL3NZGKWf2cfqGgz3pbMRCv+8D10c8dxjEqlglarZbTDphUNyTQOU/J8dSAe/MZD4JgQSq8kPQ86r2/EEuPpNQzH57rUajVTxMi0W63WgQMk9VnHaYcJ+TTF7TjXUxircGCpfodJ/q4AACAASURBVNIKvQQqHElDaUqenx//vRoW9Dt9Nv+vljm9zwtZL9xpLAHGRRqUXtVTRk+U32+8RxU5CkY1LPix6JhUSUnb72m04K/ze57AtlgsIp/PmyJJQ8np06dx5swZdDodNBoNNBqNxPx6GphEf2mKjs4N156lsFlwhmFVDFGiDOBcd7tdq352lFBPkw3a0gwfum46DqUV8qxarYZTp07Zobbk56QT0j7BZ6lUMmu7zoG+x8+b5+eqpHmrtefnfpxpY+H3qpQXCgWcPHnSzpRTcMHKpbxfj3EgH1eA4kNMAaSu22Hyyo/jsDXlfqOiuL6+jpWVFQs7Ip1p2BXPqtJ3p0WA+HYUn+R9Ov+3b99OlJwmwGbIahSNCp8Ui0V853d+J37v937PQlbNqIyeFepQXqseDv9+jqlQKGDqX0wh+7NZhFPj4iHKq/0epRwiUOKz/LrwUGcFHVwv8rFKpZKIJNF5Vf48yUvpx6Q0keaJ8UaGSboWwRN5jhp5CVhorOF5SnoNgEQ+Pp+vBhICdi3CwGvYfy3+QPrQ92iOqs6BVhQGkDhrVD1HQTAy/LRaLVy7dg1TU1M4f/48Xn/9ddy8eRN7e3uWJ767u3sobd+P9hZwOqJx0cIwxGuvvWbeDCblR9HoHJ58Pm9KSq1Ww8LCAtrtNoJgZNXWs2z881Wh0MO7NEdATw2fVDyAoInCoFgsmrdp+m9MIw5jY1zcdAzPq9VqKJVKCZctGRY/4z2sUuOZHfvhNz3nBUhWh9PvvdKoQitN+KYxJm5anqWlIRD8jiCCYQZBECQ8Tr70OxVM5jypxcYSTKVx/slwKGjieFSJsFKpJML4OFaeDq9MZpLCTCYZRZExp1dffRVXr17FhQsXDLR/7WtfAwDLW9DKi54GJ7W0ueZnjCeen5/HwsIClpeXE8p6vV4/1Lp+nJYmOLR5JSBN+QLGuT0aAkZaIT1rGIZ/H5/La9KUV31f2hjSPksTpGn3THqGfq4FTfR77im1lnoLL8eg88OwJwIlhjup5zatL2qxVxDGd2lFJvW8aiU+Gjz4XBZdYdgM9wrDhs+dO4dKpYJisYjV1VW0Wq0EL73XNklRUYWFpdHp6SMvoPGDxiUqLTxn77jvPGpf+v75/+v3NBAsLi7izJkzmJ+fR6VSsdBt9ov8i+PIZDJ22K3max72rqOuUZlHHpgGipRu/XPSaI8eyTiO7TgQzW9VwwH3sRrKeEgwaU/pV9+jY/N9Tvt93Ma90O/38c1vfhPLy8tYWFjA7du3MT8/j2w2i42NDTOc0vvKkFk/x+ybl7PH6Zdex5LnzKcZDodWDCUMQytAxHziYrGI8+fP4+bNm6ZoDwYD7D2wh+h6hLX3reHBBx/EzMxMQmmeBBrCMET+1/LI/nQW4UwyDB2AGS090PaAV/k2+Q2Nf/SQAEj0h7zOVwMkP9PnehCUNp8KSPW39p3Xa5i7j0JQ0Efgr6kT3A8cJ43u7XbbjPKcG0ausCko5TWah0cDHd9FucCwZOZcqxGGY1KDHB0Fll98dzycB+0XI2vm5ubMo3Xy5Emsr69b2B5lypvh+8dtbwGnY7YoivD6668bITAHiARDQiHYeNvb3oZ6vY5ut4tbt26ZJctb0Egcan2gsk+PVb/ft1hs3axUfPRvbpRSqWRJvwzPo7JBwZ/Pj6rnMdyEjNCHIaoloVAoJMLgdCP7+UpjWPqjCpUKUjYvLP0z9TcwVj7JvAEkTtdmeAYtwLS2lkolAxW0vBJ47e7uWoIuNzUBFJ+j7m5lzAASygZzZ9QdHUURNjY2sLm5ad5GVXK9UA6CALVazZjT8vIyBoMBvvCFLyCOYzz55JOWM/Wnf/qnFrYXBMGBsuDHFeyeqbN/lUoFS0tLqNVqOHHihIE5Wv23t7dTwdobBVGHgZNJ/eZ9XBNdP5YVZ9VF78nzIEkLfxwFmtKATxqom6RkHfbMtO/UMOAPWE57N5D0SqUphWo40O9pedaYeV+WnDSo+W3sM6uD+tBN8jP1UrIf3W7XDrHkHg2CUc7Tgw8+iDNnziCTyaDZbOKhhx7C1atXD4TK+fEdRUeHAQCG31LJJi1RYSGvyGQy6Pf7FqaXBur9Ow9b57Tr/d7kPSoTisUizp49i8ceewyVSsUq6emB6KR59bZq+J73tPr3et6tffD0xbVNe8Yk+k77TOdLS6hTjqknjh4bKm6VSgWVSsUiDQBYjpEP0/N7dRJQ9QaQo5oHNlQo79y5g36/b6HkKysrVtHwi1/8onltZmdnrUjLUZ7Me+W7HDOVbgIUVVwZUki6B0ZRKWfPnrXPy+Uy4nhkRGygga2tLZw+fdrSAPRgZj/X5LvTmDb+6w1A6s3gb97nx8M9SVphf/mZ0pQaXH3xL78PPL9KA4H+R0NJORYdgzce+3fSiMTwaNUJ2W/VtbTolOqO3A9eTvD9CnjIv2lcAZDg8ZQDnU4nUaxIDW80/u/v76PVallqBNe33W4neAbB6xNPPGF628mTJxPGY+a2Ut/zvOF+t7eA0zEaF6/ZbOLSpUt4+OGHUS6XLYeEViIqYMwtOnHihHmKlGDVcuGtFN7Swmf7xFXgYM19CuxSqYT5+XmzJjK8T70pMzMzWF1dNWtEq9UyQlcrMIkeQMI675Uw7Ts3CEGhMjaOVa9RQKSb3VtZVInTKi+cCwpHMjrOF5kyx0IFj2dRMZbcAyfOW7vdxt7enhXEYH+Y66bWdY7HW+Q5Do6Pgq7VauH27dt2zhP7qUpPGIZmVZyamsJDDz1kc3n69GmEYYjLly8DgFU7fOWVV9BqtVAoFPDYY4+hXq/jc5/7XOJsjDeyD9i3YrGI06dP2zkvPKsqDEPcvn0ba2tr1me1kL0ZRpZ2rz5b9xObF2QE1sz3oEBMUzz1uRSsaWuaBpK88uuVRA9W9Po0sKQCZNIccq/pc9Ug4S21+rdXujhmGl1I39xbDO/i/RSEtPbRqKCeW16rniudF3pmSDPKK3Z2djA7O6p8ozmMq6urOHXqFJ544gnEcYznnnvuQBL3pPmatHb6/zSgQz6iQDubzSZKdZOX0vDE3NVJQNn3a9I1nu962lWPIdewWCzioYcewnvf+14zpJBWNPxLFUbN+VOe7OmY79X950GSzrUqYIeNzwP+NHnj54BygfcxD5ShnpwfFomgAYUAPJPJmOJFmvYeWS+D76WlASxtKj94TlMQBHbAL3l/vV7Hyy+/DGCUa7uzs2NnWGk/J82x74tvvE/5w/LyMiqViq3f9PQ0zpw5g8uXLxuoomGgWq1ieXnZ9gcBVBRF2Dm3g8HVAW594BYefvhhC5mkXPd0xd/MbdIwLvbR82TySRo2OAcaSk8DJq/lddyzCj7USOTnzc+1B9XaJ84BadKDNfIVBU3+h+vD59P74/VI0jp5juaFafSFpzvPjz1tAuMiGzpW8h1+R8OZjpnGMoZ80xnAvO8wDHH69GlcuXIloYeqfOKB6oxuCYLAQvS4j5vNZmIevhXg6S3gdIzGic9ms/jsZz+Ln/3Zn7VQLzJaZc4kwEcffRTXr1/HqVOnjLEA4zwkbiDgYLUSZVx6nWfeJB5uIDItCnG6QTVRkuEsc3NzZkFQRsS+qSAGxlZW9aKkbW5uDo0z5zM4Dn7PTcH+KWDjXPE99GYMBgPzFun3bOw3vQqq4NCVqwCSYRlBEBg4ZB+o+NDKwoNP+R1pwCsEZMie2fJ7PnNjY8NOt6dCo54Rhsh0Oh3EcYy5uTmcOXPGmGKtVsOlS5fsnSwE8NWvfhWZzOjAvuXlZdRqNZw8eRJXrlxJMETO13H2AK+bmprC8vKyzU0cx+h0Omg2m+j3+1hbW8PW1tbE0uOTlKpJ/TlKyKcBJr2X92sYJ2nZW9GBsTWOoWC6Jtp/D+z5HWkhzTrJa3Sv6HsnKetKVx6M6XWkdeUZqlzwncpfvJBR3kJgqffwkFQ1iHCuWOkzCAIrYuL5he4VnW9atj2dcN+r96RarVpu00MPPYQzZ85gOBzia1/7muUk6nj091HNg15+pvPEQgLAKJSpUqlgOByaQY2hezMzMxgMBgeKtKTx+0m04lsaiElbQxrRHn30UbzrXe8yT5OGD3Od1WgGILE/dP1U5mifD9uzlImqPCkoVsXX84FJwCnt3aQPNZxpzpJa2amwch7CMMTS0pJVsQPGh3oqKPTv9Aqt/u335mFN5WMQjA1rpHcCvnw+jw984APo9/tYX19HHMc4c+YMXn31VQDjMNFJ7z0Or/eKfC6Xw0MPPWQ5JvQqzM7OmmyiXKQ3mUZN6hwEtZlMBn30sf7MOlaxihJKmMa0lRYPcRes3f0XI0aAAJmfySAzk/Re6B7y/ed6kzcRpDCNgbmg3pBLfs/xU6/yRXV0rb0OQ7piX5TXc+7IL3UPKp3xuXymrp3SGPUcRrHo52n8mTIwDYyp3PIyzxvT2W8FYX4MWkGUXkUaJHZ3d7G7u4tut2uHgi8uLqJUKiV0Y64hx3jp0iXLT+/1emg0Gnbm3MmTJ9HpdLC2tpZKz/ezvQWcjmheeD7zzDNmWWG4A62stFR0Oh1TsvP5PM6fP48HHnjAvAJhGFoohyZbe4ZLD1Ga8snruBmY9Lu8vIxSqWSgic/mBqtUKnjggQdQq9XMUkHLcbvdtnh9jlEtjpq45wW1eo7oqu31ehZeo9ZyghcCNoIIbmhlehq3y3NSOC/svzIJ7RcFKEGruqvJENWSxM2pB9/SG8V3s3oe54VeC3+mhjIizp9+xvjeZrNpFW80bpj95/lZPHSVAKhQKFjY0jPPPIMoivD4449jY2MDQRBgbW0NYRhieXkZ+Xwew+EQZ8+exZUrVw7Q+L1YZIIgsNwwJlPv7u6i2Wxa+eXt7W3zHKi3YVL7VliE2FcF0Fw7ziXf7enZCy/uMa8I+X2poNg/119DYUKgwRBYb91X4aaeokl9UWMHha5eT2CSBhh5vwpzDY3hOxRw6rxRGdEqiq1WCwDsjBEKTo6Lfe31elZYIQ1Ia3I8QdPs7CxOnDhhIIWggOXLNdxDn+XXTpu/XgGTfqex+wzFm5qawqlTp3Dr1i3bs4uLi/jmN7+J/f19AyhUnPQdae/z7/VgRIGv/zufz2NpaQkXLlzAo48+aufMUfZ4Kzv7RsVUCwFoPzyQSQMJ/jsN0aGc8GHN5JPKy9Pmx4N7Px9qJOBc6328V71sGqa9tLSEvb29hOwk+NJxTqKhw+jK93cS36HxzkdB8NpsNov3v//9ePHFF82TyQT5SR6y/5+9L4uN+7rO/2bhOpwZcrgvIiVRtjZLsi3J8ZLYcewUbpEWRbqnQBH0oSjQtyLpe4BuQJCiTYuiSJekLdCHf9rGKYLabeykWRzvkmzJ1r6RIimuQ85Kcjgz/4fBd/n9Du8MKVl+0wUIkjO/5d5zzz3nO8s91zoOGgFJ5aVKpeKyU0KhEBYWFjA3N+fAaigUwsTEBPbu3Rvgp9XVVQCbWAeA0/flwTIK1QJOtZ/C4cOHa+nSaAm8nxghVAkh3BZGaMwfqW9Ee8pv8jYLZdF4IB+qblbZyL6rE8H2gfcxisK1Z/fl0WlAJzZxAPtH3td3EBcpX6vcZb+p3wC47BqVfaRLNBp1VYLJ81yH1lhTg4yN/dSMI+Uj7T/nUAsKaYoe9xbm83mHWY4dO+ZwFWnG5/b29qKtrQ2Tk5OIRmvHnczNzTlH6MDAAAYHBzE3N7clRfvjaPcNp22aLsZyuYzJyUmcOXMGhw4dcsaEeqXIMGwUxr/6q7+Kb33rW1hcXHSgjQzi88wrA/tS4zTSxMpwZC4AznOmCqWjowOjo6OBVBbuByKI454PGoHqjVQjzqe4tO+64U+Nq2q16t5VLBZdyJaHp3JhU3EzD5rP1vQ+CjktdWk92TonKti1iho/01xmemjUc6ZhduvdZMqm7gezylpD2CwGQaVM4EAlowqeqZ8sxnDgwAGUSiUkEgl0d3fj8uXLiEQieOCBB1AsFgEA8/PzTsiR5urZ3Q5A1lsL5CdGEsLhsEtXpGJcWVlxucs+Zdao3alnyCfAFfQzKqjV5gjAATi+sF513/PsZ/XGQj6xXj8aCOT71dVVt0cum80GSv3T4LfrSp+na4tNAY8CAPImDRO9jgaZBVbsvwWqNsqrMkb3EZIvyOdU7rre6EkvFotO4fmUMZ0Y7e3tTo4MDAygq6sLoVAI165dw+7duzE6OooPP/wwsG7v1jD3gU4+a2BgwAEkOlXo2Ein01hfX0cikcDo6ChOnTrlZJXOjc+hUE++6mfWG0x5RsdLc3Mzdu3ahb1796Kvr885XzQ9TaOIHJvyq64TO3ZdJz6jjvPFdaD7GqjXWGEwHo8H9ioogPTRoB5t2DSqR51DvtJ1Sd3H53BO4vE4RkdHA/sl0ul0YK+srz+WX3ytkfGkc0t9ziwW1b0cT7FYxO7du7G0tIRotHYI7fXr1wOAXOdIf2ufG42HrVgsorOzE9VqFcvLyy71lPOVy+Wc44/XT01NOTrQ0UZjiuPI5XI4f/48xsbGAgV6WHyLBgnlF++1fbSZBjS6uL6Yrsr93OR1Bfl2jauRoHxJ3mJflN6azqwOWTrTGYHnnniN3NOZYfeNspKdpinyb/aBn6shqDxHGhBLWJ7TKKViHN6nssbSQt+lmIc6gM5Vrn+eAZjP57G6uopbt265bAI61/hMTd88duyYew+vS6fTbg9gX18fmpqa8Nprr9U1rO9lu284bdMUsJApvvWtb+GP//iPAwCfoIB51WzxeBy5XA5Hjx7FF77wBbz44osOOOmG6XrvViOA/3MRMNWsp6cHqVTKRWC410CVTzgcRmdnp/PWApubvDs6Otz7isWii8QwxE1PrvZJwZcKHCvgdGxMx5mdnXWRFgJIhvcZRWGZTRYfoFAhIOK13FemSlEFqYJLziMFPL1ITEegUFClo6BZIw+aMkVQopvhNYRNurDIB/tCQctn8bcKI92X1tLSgl/8xV9Ef38/ZmZmcPz4cQDA9PQ0AKCrq8spjba2Nkd7pgfUq8Z4J41GGP/WQ33ZKCSp/O5ls8JaG2lHY5b8QY+tTXuwxoOda1VCjcCarw/sq/Y7n89jaWnJyQhdL5w3pnS1tbUhlUoFCrEAweIp+g57jQWQqlRtCoeCem1WQVuHhBpnKhO4Tujxp8Kkk4DgiOBdQbXSkb/pUW1qqh2wTGCbSCQcrTiW/v5+XLhwIbC278ZJUK+pEUmwQ/5nupJGwpuamtDb2xuI4rOvnBtrmHDcKrusQaVGcTKZxPDwsAOGzCzQ/ajq6NHIDnmDcsp6ttVw9dHP52Dgc8hzxWLRRaEBuGIMGxsbiMVirqhGU1PtfCndd9jIgFSd4zMqlYc0yqdGoepT1ZNDQ0OuuE0kEsHi4mJAt9u13YhflE6NDGOgVqigs7MTAwMDboyRSAT5fB5ra2vugNlqtYr+/n7s3bsXr7/+OpLJpPc9/MxntG3XSNtcLuf0GVNPWeyE880IAtNUWeioXC47+cuUQwJzPvvq1asO/NIRosYf+2INAxoX6qykYQ5sOl3oPNMziZSHfGMGNo0N66igTFReV3xot1VwD082m3U0YlogsyDa29uRTCaRTCbds6yOsBEfNfKAzciuLchEJ4HiJ/ZT6cBxav+t80/HqPRQXcCmmUV0rNJhnMlkkMlk3N5uG0SgQ5Z/Dw8Pu/4MDQ25PrS0tCCZTCKVSqFSqWBycjKg8ywuvVftvuG0g6YAo1Qq4ac//Sn+8A//EF/5ylfc4Z+tra3I5/O4ceMG4vE4hoeHAQDJZBKrq6uIxWL4xCc+gY2NDfz4xz92ZzOo108b/+diIFM3NzcjlUq5c3NaWlqcx5ZeIGCzkAOAQLU2WvaahsFwNL3frFxCA4qgnYsZ2LopmWl2HE8ikXApixRW+XweZ86ccdX91HDgAuFeHo51ZWUFR48edftSBgYGUK1WnYfVep6sEtVFZD0lBA7Vaq3yDwU2ixrQU0SlyrK8VMQEglQKLE1M4WaVBIEzjdVMJhMwrJaXl11FGZaTr1RqRUkSiQSeeOIJtLa24uWXX8bq6ip+67d+y409HA67QwmnpqZw6NAhly7KvVQ/+clPAkb93QDKSmXzTLHl5WUvqNNn+oRWPePNp8x9n+kcA5t7l8iz9OIpKCQfMwWH9xBE2YikpvLYSB2fa/up68s6PLLZrCuY0Qgs89n0KnN/mvKrXmvfb/8mqOe4VMlSJqjSZ1O5Y0Ee+6gGp46HiloP5GVe+8rKiitGQ3nBH83Rt/NOJ8/Jkyfx0EMPIRqN4uWXX8apU6dQKpXwB3/wB6hUKpiZmXHgQz3DOwW6PrCuf5Nv5ubm3DEG8/Pzbn8TS36vrKxgbW0N0WgUhw8fxsTEBM6dO+f4kX3TtE5t1iBgP3QfZCKRwL59+5zRRF1UqdTO1KGTg7KK0R3KI41CkXc1CmONJ+1XPSOPMk8N1omJCczMzAT0GEFwoVBw9ANqB6Q+/fTTTt9Y3rIGldJJjUOOkXzDo0G0JLkvq4OyIZVKYWhoCKFQLfUqFos5JxG95cqv9cCZj494rdKI65DYYWxszPVzz549OHPmDNLpNEZGRpyTNhyu7ct64YUX8O6777o1RNraqNOdyHleWy6XkU6n8Y//+I/43d/9XfT397tzCJkauLGxgZ6eHrS2tuLMmTMIhULYt28fXnzxRUQiERQKBYeR2tvb3X3kA+5bbmlpQW9vb0BuK/jWYg98L2WHGofka2IG3kNjhTxP2W9lOfnByls1mAC4fTZqaGjJbuKl6elpzM/PB/Y3ce7Jl5FIBOl0Grt373bnaTL7hHiBEWXOj+Uffm5lPp0SiknI99R1pKeuK+IhxXrlctk5EHifdbLT6KGxpGNeXV3FhQsXXOCAkeaBgQFcu3bNySw64PhDo4uOokwm47YyMIPq9OnTDsPWc/Tcq3bfcNqmWWDOn8uXL+M///M/8Ru/8RsunezSpUsu3U0b98BwPwP3hHAh+0CQfTcXV3t7OwYHB5FKpVyaIL0YqvSi0dr5JgDce/mbTKmAkIqKAobFCiyIBIIpcLbRA8y/tWoMw7Yq8FTxsKlQYESKucmMFtloF/+23jUuYh/wpGAjPShANQ+fQoKgXFPpFGhzM7LvYGBGo7RARyQScUKFz6P3nQKNgpL7iFKpFDKZzJZwPK+jd5ReGNLq/Pnz+Pa3vx0A7Zbmd9q2iyT55nUnbbu+WZ7jeOPxONrb2wMedjo6rPKjMlZPIY179VIpGLMA1vbR8lU9Y/BOAIxVZkoDC7brgW+9R40mglDdT6Jgifs2fUaV/q9GoHVcKK8TgHI9aTVKNcB8feYcU+HT4D106BBeffXVQOU/gjLS714pUJ1Pggnu4ST4yufzbgz8jE6egwcP4sKFC07m1+uTzzBWo4bytKOjA0eOHEF3d7crK84oKwEM9+oAcGe4sD9AcD+EGkd8n+oIH//ZufatCxoa/IyGJ5/BPQ/kg0wmg6WlJWe01JsLu74UUKps5zt1noDNlCTlEU0tVAcLDRVN+dLosS8tbjte8skYvoNp2aFQLcKzb98+fP3rX0c2m3V71lhZknzR2dkZqO5az1lg11g92lonyrlz55wBNDo66s6PYto5ZS/7xJT7crlWWp20po5SY4P0YkSSY9KIDoszcf01cizQYNL9mXSGEgtQpqv8U16yjgKueb2OvKH7hRTvWMetTelTpylxF/sUCoVc5JUOKDVgfM5H7b9GifiZ3sv3WPmuzgD9Xx0s+rnqWhq/gN+JDQArKyuuAh77xX3H1Av8joUimF00Pz/vipMAcAfxMrPhjTfe+FiyXHztvuG0g6aCUBX0iy++iFQqhaeffhobGxu4du0a2tracOjQocD9kUjtMFBWYlpYWAhEVmx4VD/XtAJ6HujdYerX6uqqWwiMODU1NSGZTCIUCmF2dtZFknRMXAhkThoZwKZiYf+tYq1nOAHBTYgKrNRroeFkC5o4fu2DDQPbv30/fBafp02FFsem/WEj0NGiAnw+gYgFNgoi2T/m++q5KfpOn0Ak6OezlpeXXUSjv7/fXUcgcv36dezbt8+lU1SrVczNzeG73/2uq8B0L9p2oG+76+5FI7+3trY6byYNfX6vjZ4tKnN64fUEe/WGaxTURldtswDFx5sE+7579Lk+mtUzxBo5DDhmGi+8nrxt0/D4HIILehD5PN7nA9I+/tVnctxMS1EQY40bSzs1miKRCHbt2uXGMTs7i5aWFgwPD2NlZcU5QVZWVrZEQy09G/FwPfCr87CxsYG5uTns2rULqVQK8/Pzbt+fNYxY/Y/OEn1PvWb7EA6HHY+3tLTgxIkTGBkZcddR9hAssuIo91YACBQxIp/rMQc6t7Ygik+mNuJV0pg6Tw8vJrgGNtP2VlZWHB/Mzs66csN8n6UN31XvN38I1JXPFKgyQkPgSwcnARr1YlNTk/PkVyq1ggkdHR2Ynp52DknVdb75rEcnNVy5j5V8tG/fPgwMDCAcDqNQKODKlSvukHP2TbMidF4aGZ4qi3zN9ndhYQE/+9nP8NxzzzkgTyce0/HU0ObaDoVCLv2Y+o7Pp4OB8pXPsinzAJxRaHWmyifiIxbZsc4hPoMOAyCYdkzaaKRVaWpxhOV1i1WsA9TS1UcLLbyjc2zvt4aw0kT1mfZJ71OjCYCjO5/JpuvGVyCDcoTOdhtRt2txcnLSncmnziUaTkzd0yJcrBA9MTERcCZ2dHS45164cAGXL18OZBloq7cW7rbdN5zusFHgAkA6nca///u/u43Ba2tr6OzsRE9PT+CeWCyGXC7njJmVlRXnzQKwZYHqQgGCG/s6OzvR3t6OanVzLxMXC0t00zvDgwD1kDSml6knQitSMWwObBpPKtwtWLNNPyNIVcGghRx8CtgKE/ZPmxVe/Ezvtd4VX5TM7kdS5aceKQo/Bb+kl9JDBb6mD3CuwNlriQAAIABJREFUqtWq85pFo1F3gKAKN76PXjndO5TP550BZzdL5nI5nD171p1LRS/M4uKi29DbSJHeq2bBg88g8H1/J02jEPRKqSK1gFO9X1TUpK2CTnUQ2P7a5gOSja5RhXgnBiX3Ftq+1HufNtKJ/bN7PIBg5JCyjQ4W9UZqWoiv2TXM91Ehq2NBjVP++Magjp3m5mbkcjksLi66aOqrr76KSqWCffv2oVAouDK177zzjtuIfqdNZYfvN2US19bQ0JDzsKtRRR4LhWqRtlQqhd7eXkxMTLhnWOCnTQ1hPj+VSiEej2PXrl3Yt2+fK+rD1BbSkjxMY6WlpSUQ1aFBYCMuKu9sRoI1aJXnLYjl+qGDUWV/W1sbEomEi/Crgc7zVxjJUd63IFVp6NNJti+RSCRQHtlGO2nIZ7NZLC0tuQNxKUuBWmSffBYK1Q4ij8fjuHr1qkuH90U5CcwbGVQEysPDwy67ggZ3LBbD8PCw451YLIZ4PI5UKgUArqRzI7li6bITGaRgfHV1Fa+88gpGRkawd+9ehEK1anrkbc4n1wb1NmnNubURDTVuuM7V0UO9rMaIgnJNyySv6x4gPlvnQPnWGiWqI7gWrNOW71Z+I4ZSY1jXbmtrq3Nc+OaCcsIWb/C9ux5eArDF4LRGEN+lmEplO+eN9ON8EYdo5hHnhsVxuL58xiWjyYuLi1t0dbVadWsqnU6jWq26CGY0GsWuXbuwvr7uiu5MT0+76tHMCvrGN74RqKD5cbf7htM2zSdgKBw3NjYwMzODV155BQMDAy7CYw0nBWIsz1ipBCt5sXGx8N3K6B0dHS7SwPQ8AM7TmEql3N4ZVqCKRqPo6upyaVr0jpHBVUhwUSjo4Dg1r9r2l7+tMWQBEpV5JBIJMLn1Ounn6gm19LF90PC09UqpEKJSV2Ci88znUJgDm5WBlC9UwBC86PMVdOrJ63zv7t27sby8jKmpKeeVVQFG+vN9FIrRaBSDg4OuLwcPHsTrr7+O6elpvPfeezh06JDr782bNwNnzviEyp0A+e0Mip02H9/7nu8zBrjZl3tK7GZYe7+CKypXrWZoHQT1FFa9/60xpHOovMn1bvmIv31j1dSPO6ET7weCDhBVfBw/n8UIhDosGhl6vneqoUbZwfRW9onrTY0mNbh1vbJfvb29OHnyJDo6OpDL5fDVr34VP/vZzxCLxbBv3z6X/nH+/HlcuXJlS/rUnbRG9Fbwdf36dYyPjzv5GIvFXDVTAkim+bLS3e3btwOFe9Qr7Hs3gdfu3buxa9cuJBIJdHV1ueqneggxQQz5jHKVkVhW3NTUSDVyOFfbRVhtXxX8q6OCERyuT0bLWeWP/eBhpNyry0Mx682JNZQa8adeY4vW6Nqjw4CFiuhwjMfjSCaTbm2sra3h1q1brrBFd3c3wuEwbt686aJ7eryI9kHn2fJWNBrF6OgoHnroIYRCNWfByMiI26dMBxH3W/X19TmZMjs7i1u3bnnT9O5W3ttrqtUq5ufn8eKLL+LEiRNIp9Po6elBe3u72x9Mw7hYLLpiB8vLy6hUKm59Uo9pqXhNL6e+1egndZ46G9SpEgptZn9o9E5lL+eTqWDKN+qo1P/1x2IOH69ptoPSnXyUz+edHLaOKEbLrGFST7Y36oNiG5++0GijTSWkAQhsZrzoPlRNWeRzNW1PtxroONbX13H58mX3vfaJkfhCoeAKkfDMuWg0ir179yKZTLpxTU1NuSIi1WoVf/d3f3fXjrK7bfcNp7to6oFdX1/H7Owscrkcenp6cODAAe89LEPMyIMytc3Z5bMVeEejUfT397v8anq4NB+2u7s7cHo9Uzv6+/uxuLiISqWCdDodKA0MICCMtAgEGVwNLesp9QEMK3RVSTHdTfeeqAec46eRxTOpbD8tyGKzi1oBGK+zIXW+U9+h4W5Gl3SM9KTTq0bAyPHaEp86V7y+vb0d+/fvd4e4cUw+YBAO1w5CpAIZHx93z3/22Wfx8ssvu3zzjY0N7Nu3D7lcDq+88kpAsPkA+r1ovvn3Ce1G9/o+0z6TP1m2nvvKFDDY96pRzDmg4iYfkN/UuPBFKNmUho0Um36uRosv7cJnlDVab+p5tfytRiLHp+8nrSzdmLqk0Qreb5/vm1P7vaZwKH05Jz5w5gPs9DqS53/4wx/iRz/6kVPkt27dcjLlv//7v51svNtWD3SSXygL33//fZw8edLJC91/GY1unh0Xj8cBAI888gimpqZw4cKFhiklOsc0mkZHR9Hf349YLBZI/SFYpTFmnWLWsLBpStbZwzHuRE5YYKf/qyOM72eaoR4Dwc+r1c3iOKzCaHnF8rlde7bPqldpMFnDgt/R6OEeGVZ1TSaTCIfDbi75jOnpaZTLtapeo6OjAIBsNotisYhcLufK66tOZ59UBqiBtX//fpfG2Nraiv3796OrqwtArQBJe3t7INpUqdSOMbhy5QoWFhYCdKhHEx13vTn1rUsajteuXUOxWMTg4CCSySQSiQR6e3ud0Z1IJJzzZXh42B01Yh0kdvyxWMxF0BgRVWcTIySU1fxO99Sok1d5UPnd4gaVs+Q1/cxnOFkes04IKwd55IsWZlH5za0NPGtN31PP+NF54rutnNY+K/5Q+azRV+pXOmhJA92bTiyqfeJnwOZ5VUpDoLa3aWlpyfVLsR8dE3qYbV9fn+OBgYEBh5eYrXXlyhUMDg7ijTfewAcffNDQUfBx4J37htMOmk+JKDBghRAWVPC1cDiMfD6P1tZWdHV1YXl5GUDwHBU+l00XdjKZxNDQEFpbW7G0tLQlfM3yxTzsVPfm9Pb2Ih6PI5PJIJ/PI51OuwIWHIMKKHoOFLhrvncjTwjpootTDU0eQqdhXSuYuBC5EVdTqJQmlk6kswJiergUrGqKHpueIUMh5Evd0zmiJ9cKDpsCo0KC/eIzOzo6kEwmsbi4GEjNI3ClkInFYlvyyNmOHz+OpqYmLCwsYGlpCcvLyzhz5gyuX7+ObDbr5V2O9W6bNQruxXO0KVAi7Zl+quCRcwlsBfj2c50Hn2fW8oaP1+1vyx/1jAq+V/nTZyTwf+1DvWsbfcfv1QvL/nI98hpVoHyv7oPhdb70Pu2z0lSNMUYPdD+Jvc4+S3m8v78fg4OD6OrqQiQSwZUrV9wcanryqVOnnNHUaB62a/XkPbBZOKNSqeDq1au4du0aRkdHUa1WnVdd9zqGQpsHRu/duxfPPfccrl+/7opYWPnPdxGwxWIx9PT0IBaLuUqbNjKt+0kpz7X6npVBChSVh3S96LzXW6PKUz6QxypYdDBpNVddg6RRPB7H0tISKpVaxTZfU7ltnWQ+0GoNQjtORqGq1c0N8Nwjw/7q3ppKpYJkMonbt287MEqnJs86KhQKyGQyLq0vm81uOUTXjr9arQbSwVOpFEZGRhyeYBRn//796OvrQyhUK5zEim3ZbHaLLLO8W+9/2+oZzZVKbZ/01NQU8vk8du3a5bYPUD4MDg66vbjPPPMMJiYmnCFFHKF7jcgnXMvKr+wD+YeyjNsWtGgVeSaXyzle0/m28678xN+6N9Gm6FnetnJU+ZH0p55n0QzKKTWe+K5YLOb2JWrfLO6op4t4LSNOqrussaxygjKZdCa/aUqlFkvx6Ri+V6/nPPF6HmDOz3kfD34nb1H2kcdDoZArAkG9Pzs7i2vXruHdd9/FuXPntmyLqMfT97LdN5w+QqNQVsGQzWa91yYSCUxPTzvvKUty815gKxilB6C3txd79+51DGQNHZYoZ3SGipWAPh6PY2hoyIUz5+bm3NkifJduLNbIiHqG6IWw/fQJbNLGCikaClyM6tHh86vVqvNe6d4BfY5VDj5AaZUHFSWFlgWCuvAqlc0qWSqIKPwBBKJQ9JpaQKhgXAWrgtrBwcFAnjrBtW6QTKVSDQ3W5uZmLC0tYW1tDbOzs4FxqFC5F96Xe+XB2clzOE+MNJEeFLzkGTXQNVrIdaBRXFWS6oEHNueLa0zBpa/fPt7UZ2mjMWyNEfXAaTqET3nzN+fUR0MF1QrMaCDZVCVg08kQDm9WtLLP1Hcqn+v/fIc+lwrX7i/xKTp9D8Es5Zn2u6enB8ViEQ899BCGhoZQqVRw/fr1LbT/KAqzniJmqvXGxgb+7d/+Db/zO7+D0dFRZxTYSChBXH9/P8rlMnbv3o25ublANMYHjggymOpHzzXTUxW0sNS+Rjb4bM6pGvn1DCe7Xqwx4jPSLTjl2Om0YUEIm3atjVEWArDFxUW3V1ffoe/Uv33GAfmRdFGAp+mE5Hs18rQ4huqJSqUS6CffT4cgI419fX2OT8rlMqampjA1NeXSJTWtnI1R9KamJjz55JPumlKphJaWFqRSKRw9etSlNi0vL+Ptt9/GG2+84YpN2Wf6mo9evrm09ORYmLnCSJ06GbWa3vDwMD71qU/hf/7nf9z31PtqzNK41D6oU1jlOCO7NG55fVtbm0uFy2azWwoFKb9T/iif8DrrpFUDSB2tPrqpLFcZyD7H43GXCqrvZHSTcs7K2p3oScUXmt5t+6JZAGokqlNco03EInSqqa4CEMA2SkvOcThci9YS96lDmbzOip/qBOVRDzr+rq4uTE9P4/r167h27Zrb96S6Xfn142z3DadtWiPGVTDO/xcWFhzjadu7dy+uXr2KlpYWHD58GDdv3nSb9n1eBnohhoeHMTo6ilgstkUQaNpSf3+/C1HzTCUWoGhqasLAwABu376NfD6PbDaLxcVFZ4hxMVFhcAHpZsZGAtX3t49WVKKdnZ3Ow2A99VxYbW1tSCaTgRx+IJiiVO897LN6JnWeVDCzKcjk+yjsNZWQAp/gm3PNkshaXlyBC9+rYJPP6OzsREdHh9uQTLBQKpVciJ8VZEhD25hDrXvHrBfGN3f3wgi6GyG13XstcGSJWQuY7N4hNQCs4rWGh88oYlPwaPtlDXblYW32Ot1oTmVPLyN5n2kRALZEeOsZGfXep7ysUSXfmlXwqKWAVSlZ5eh7bz1jiv0g2LL9qMebzc3N6OvrCzgTnnnmGWxsbKCrq8udeZLNZh2P2P0xd9J0bdbja4LxSCSC5eVl/NM//ROOHDmC3/7t3w4U4mHaUHd3N3K5nDus/ODBgzh9+vSWvU36N8EMDTH+rdUjNTrKn7W1tQBgoozhvGrkhXrGGto29dhHH9tvqyO4HygUCrlomfbLFwHlGFhMQI/YsM4NNgvk9Jl8l93zoWtDjSWuNZsBYXmiWq26whykMftJfctGgNrX14fdu3fj4sWL2NjYQGdnJ0qlEiYnJ52e1r6Qj+nAGx4eRqlUwsjICEqlEtLpND788ENMTk4GnElq8Daau0aYpt5nGtFfW1vD5OQkjh49ipWVFfT29jo9yDmMRCI4cuQIPvjgA9y4caPhulxdXcXKyoozvDQqobKIuMdGxJVmjKTYvZXqUKtXut2nLxo1i93UYaG0ZgYNU0LZb65vi+98MqiRYaDv0oiu7v9Vx5XSxFeRUcfDyDEjZxop5z1qYPF/Njrw9+3bh0uXLjncq3NFhwKNYjrMWS+gWCyip6cHq6urmJ2ddQVkbCTXR5uPw4i6bzjdZVNwoMBkcXER2WzWneTNxkMsw+EwRkZG0Nvb69ISyOxcYNzbMzY2ht7eXheW5sJiGgELUrS3t7sNtwBcLi2vJTjv6elxwmt5eRnDw8NbTqEGtnpPOF5+51vAyrRWGOn17DsVBxe3pUNbW5vL+VUlqxGGeoLEByAVwCnQ1s/t2KzXn+mY9JZQsKgnU8Eqn8H/LU1UGNGAJn14PggBRXd3t7ufeya0xWKxQNhdDYlG7U6EihVMOzW6VAHs5BkKQLiZXA0O/lbjShWWBVYEmUAw19sXPdXPbOqf9plz3cho8hnJekAygb4+mxXQ6MhoRGPlV5+Ctf3VCEc9mqunXWnqS6e13kzbL0ubSqUSAA6NDHq2zs5OPProo64kc1NTEzKZjPPghsO18uOTk5MYGhpyypupwPVAZCPDSPtg6WrlTLlcqxz3xhtv4L333sPRo0fx6U9/2kWI9+zZ4+QYvaN79uzB0NAQpqamXD/tu2xaJ3lGAbYCLIIlTbNj/9Rw4rzqHHFefcaCXSNs9ZwOHANlUTgcPNNHo7nsizqjeJA89wSrY8H3Ht/7FdjZrAfOI3ldI0g6NmAz+qugk3vJ+vr6XLq90oL90sgVx8aCDnNzc+6MxXQ67dLL6MgMh8MuQpdOpzE9PY1YLIaTJ0+6g0AZzeLRJPTAs89WN/r4uV6rJ3OUjtVqFVeuXEEmk8HMzAx27dqFUCjkjkuZmppCtVqLQD3++ONYWlrC0tLSFuOVcrGpqQnT09Po6OhwjhKVY+p8UeOGepd8xrFzX5WuExtp1eNZ7PjtuuDa16iMbdY41+fR6ZFMJgPnN7K0u5bot33xySCLI9g3jhnY5F9r6LB/WsHQF6mmgwiAc3iT3uVy2e3jY2qw6hf7OxKJoLOzE3v27MH777/vikEAQVkRiURw4MABN29HjhwBsHn+Uz6fRyaTCbz7Tnj7XrX7hlODpkxaT7mr8AfgDumyhhOwedK0lq3kMxQ0d3Z2Ynh4GIODg24vB1PwqtVaGltnZyd6e3uRSCScJ5uLuq2tzW3IpiBpbW3FwMAAlpeXA5uc+X7+T2BJ7xEB/XYgmYvJLlIdH5/BCoHqBacXkuBAD33TPvrmqF5/lMbqefQpOjV0VCirECI/sH8AnGerWq0GcoDtXhn1tqkg5zs5L1SY9Misrq5iaGgIo6Ojrm/d3d1bxlsoFAKgqZ735V62el4vX9upkUVQyLLr3KjN96lxzedakGmNfK4DqzwINFUhWmOknsevEaj00UeVZygUChQc0eu4NhgdrffcRgaT7aOmxdjvCUrUkNd0JktH8r/SS+9nqpKVmXyeenp9NFWjlJXFaGSyjDUBGJ+7trbmZCcNlfPnz7tS2L75aNR88l4/17lXwLG+vo7Tp09jeHgYx44dQzQaxcjICAA4YFQoFNDf349Dhw65Ij9M37Hv4jPz+Tx6e3sDh5TTkFIDJxzerBymY6XxROPAlu21Y9I1ZflF/7ZRI5WlGu2i4ebjCZ1HZlnwPKxCoYBUKhVwmFm6+/hIx656SPsdCm2ek6N8x3eowcV5oHc7HA47h+bi4qLTBwo01cBVh113dzcKhQJWV1ednGOxpkQi4QAtsw4WFxdx6tQp9Pb2uhQ56noegtvV1eUqE3J+SVtL4+2cXo2cGNaAWVhYwLlz59DZ2Ynl5WVXFe/BBx/E7OysK/AxNjaGhx9+GD/84Q8D8pg0isfjzgkyMzOD3t7egB7lfJHf1tfXA9Uf+UPDifyte/10XHyOdXYSw9i1UM/B5pMnlsZWttNZpun+rI6p/bB6qN782OiYD+/YPhHXkIa8Tq9nZsDa2prTSbFYzD2H64PGujVQLXam7GHpehqtNnKVSqXwxBNPuHU4NjYGoBaRnJycxMrKChYWFpzzjffadf5xt/uG0zbNWrM+waJpPcvLy8hkMhgaGtryrFQq5cDw0tJSIE+dXpdkMonu7m709/cjkUgEwrdUlARg3EyqBgZD2bovANisXtLT04NsNouWlpbAQZdqxHARWMCqERA2BV92kWpT5c6FxMXK92voWBWuPsP+2Hewv/yhINVojOaXN/JWqMeQXlKNGqhxRDrTOOb7NEpo0+g4Xww7q4eTgnltbQ3d3d1OaFUqFTz33HNb+nrt2jUvSKgHKD6Opkpou3f7FDeBO0GyAkULWlU467ssoAIQMJCATWXMH2ts8m/lT6uY2F/b7HrQ6yORzYNJ64EZXR+8xypRnwzyrQc2ayzauVBDRfdz6HOVBjp+PsuCC+bE6/pSw97SzNf3rq4ud7js4cOHXYUxltevVmsVqxjdyWQyTqZmMhlcvXrVgQH73nproZ6h5TPwAGwBHdlsFpOTk6666sLCAgYGBhxN2L8DBw7g4sWLjnbZbDbgvKE+WVtbCxx8rXxI+UjZqcaRz/tLZxg/s7ysc6j/+9ZFPdpRhnHdsFCG9ln/B4LnFCYSCXdgqk3n1GbXo0+O2yi0XQMKxn3rW5+tz2ptbXVRtEwmA2BzjysNJ31uOBx2Y4lGa0dJXL16FbOzs1hbW0NzczP27dvn9C6rRxaLRZfa9OCDD7oxMeOAxlU0GkUikcD8/PwWnOKTG9vpgUbzq88pl8s4d+4cDh48iGw2i5s3bwKobUs4efIkfvKTn6BarUWdjh49irffftulb6rxSqzDMw1XVlYcn5bLZacT6JQpFouuNLtmD9ApxSMBaGApFuB7o9FowMDUMVr94DP2ue58slTpzjnjfZqCSPnlq1JncY5PFtnvVQeqM9+uZepZdWYojbjniIYvo/t0AlBOkYblctk5IXzrTd9NnuUaVHq1tbXhhRdecFsRFGcuLS3h+vXrSKfTbj/UvcymudN233DapllwVM+AIrMXCoVAaVBt6nVkmh6FHlMtuGdJU+8IpDUlSRnHByiZrqf53S0tLQ588CR0m5rDhcDFTNDJftgUNDZrzFgAYgWOLnYL0FRo1QPICga0D/xNGqnRpM+3NGTTz/h+Rn9opDJSQMNJ6U9aUnDTE64CWMexsbGB6elp5yVWby37yAqIlq5sr7/+Oq5cuRKgs49PG4Gej6vZedY+WWXQ1NTkzqnhhnqG4/U6FcSqMKwHXNMW1ECyIKpR2piNwtqx8Xk+OuszqTQJfjUCZsemPz6DxWc86XssDWxk2dc/G4XVKJJ+p32wQErBgdJO3+fjP9+6jkRqFbp42Df3U9A44dzynBvSdmRkBMePH8df//VfOyDni7Zt15Q2PnDEz3R8lJ/Xrl1DNptFOBzG/Py8u0/LVPf39zvPejQadefQAFu9yPl8PrA/TqMvGv1TGaNpLNbxwP2YHJ/13Nt5t/NWj+/1XYymMBqja9Q6IvgZUEs5Zsqa5XHL2/WMJ9LI50jSprpInWk+g4t9ZCRcnYvW+WflsDoNqMfb29sxMTHhHAwnTpxwIHr//v0A4PY7VqtVdwB0OBx2hvjt27cD2RqaFthIzvtkx51cy7FVKhXcvn0bExMTePTRR91YZ2dn8eCDD6K5uRnFYhHhcC1L4sEHH8SpU6fc/SyKMDg46Ar/zM3NYWpqasvWAx6zQtDM9cLDglW3h0Ih5PN5VKtVd5Ay51ojWEov5SFrcCgd9FqdayvfLE9afGTxgo/GjebAFwVTGWQLUKge1EqE7LM6PJhOzXWcTCYDRVpUluj+ftJKDUVLD6U3ndDc675//36MjIy4tcgzSwHg+vXrWF1dxfXr1wMOZvtzJ7z9UVrjU73uNwD1PaL2u2q1inw+X9dwUvDBVDru42DpU6BmYNkDV2lYcbHysDAteKDRGq3Hr9EQVv8Jh8MuV9oqP1U6FjTVE8hWAbLReFEviqWd9apboaPKrJ4QsWCjWq1uMZooNBQg8jfvs6FjlpunEURDU4Uvx8nxq6Cm4rOKnj/5fD5weKGtIFapVFyKUiQSwQMPPLBl/N/73ve2pCVtN193Y0DVA771nmvn036mn3MfXl9fnxPUlpescrRgUflAwY9641WAq/Hk40uOR3m3nhe+3ph17qkotGqX74fRZxtxtc2uW9uoROt5RikbbBqjKjv2ySp+n2HoM0h1vxEQPLPNjkV/WltbMT4+jj179qCnpwdDQ0NIpVJIJpOoVquuPO6uXbvcfFYqFTz99NMulbWesabr3tfqGdE+RW3lEoHjxMQEAODWrVuu2t+DDz7o0vJCoZBzYtkovtKEPE1jAoAroW0dZ/y7ubnZ7Yvl/Zbflf/qGT8+eaU/9QyqUCjkNryzuA3LLWvqlPabcpOp6vF43DkZ6vVD32mBpJ1fy7tKW9WtlB26LgC4ioYE9JQpbW1tjg+UnvVSh0j/lpaWwN6OZDLp1j3fyTLfdGQydZk809HR4dLcFhYWvDzke/92eMbSSz9X2lartYyIDz74AHNzc27ee3t7AcCV6Scdjh496ir/hsObxa04ByyAVCwWXVXFcrkcyKyJx+MOJ6lhybnUNG/OA88g0jXLObX6hGNj5MXuC92JDtRrfWtUDQ+lr08u+fidvOt7l2Ie1X+KTcijxDfqWCqVSm7/XCRSO4iWWFT7z/3eikl9vGX1puoZyvl4PI7Ozk688MILgQji7t27AQDT09PuHKjp6ekd098nL+5Vu284bdMaCQ9tXFD5fB7nz5/3XkPvKFMmuNA1B3xjYwOpVGpLOpw1YFh2emZmxpXhVOGhJVOZD0rBpsLX5vQCm6BSveEWWFkDS/tqBZD16FuaclFbcKuAzr5HhYJV5r70PBU2FjD7FhYFJz3EoVBoi9DRZ2r4mqmS/E49JEqDSqV2eCdLular1cCp3cCm551K+ed//ue38NUPfvADrzCuBxw/StupELJCy0bc9LpwOOxy9VmWVRWaXsf1omtC36HVsRT4WO8e6aJGlfZJf9fjcd9PvWu0D9pvSw/+71sP9ejM5ltjVvHXA746R0pPBZZ2Xfv6ab2YFoiz5LIvqqx9TCaTOHDgAAYGBtDf348TJ04EUjgLhQJeeeUVdHV1Yd++ffjxj3+M06dPY3BwEH19fa5qnTUG73Yt1APClq5ALYr8wx/+0Mmgd955B0AtVVuLVuzfv99tdLYRD80WIK0p17ixmuk0vFajSEzn1tLymiqsdLf059xtlwrDa4GtcripqQkdHR3o6Ohw+zb5o0abyn5uku/q6nKHuVvAaPnU9kN5286NXfvstzrDFDSTXnQ4shS89pt7cyiv6fjyGZWkeaVSwfz8vJunRCLhnKgdHR1Ip9PuPpbap+HW1NSE+fl5LCwsuHS1q1evuoIyWmXsozYf3WyrVCqYnJzEjRs3tpwZePTo0YDjdnBwEP39/Y6vyLMrKyuu3zQc5+fnsbq6Gjg/iHzFCnTENpavuW+Iz9JiGmos8Fr69dDsAAAgAElEQVRfxJXj1T3Yd0pXywP1nDg++aR8bvnd6gM1ZGyUmddzjWmUTA0syghWigSAZDLpaK3YanV11eGi1tZWxGKxLRFwNqs/OKeKd3p6evD444+7EuSkN9NTL1++jGKxiFu3bmFlZSVAq3uNb3ba7qfqbdOsN3G7ayqVCt566y2srq5uKRvd1dWFarWKrq4uNDc3B8430T0wtPCtx4DKkxvLK5UKVlZWUC6X0dfXh4GBAQcq6b1aW1tDqVRyn1M58dA5PlPHwgXCRcbP2U/1tKq3h+NvRB8fCFSlos+yHht9nvZVFVUjha/jUroqwFPAqXm+PDdCjSG+l95f0p1pRFZQWaFYKpVw48aNQNEKNcai0ShGR0cD+fG2vfLKK7h06ZKXrj5+VaOv3nzspFlwYr/zPVvTPvV77u2LxWKB/Q/WGFTBTDr5ABJTMJRnea/d+6GKyaZ0WQdBI4+uD6xxHpW/G92v79Tx2P5a2lo6aL/t8/UepaPul9F0Co0isy82ekGZoOkevhREGk6RSMR5NtkX9huo8cnRo0cxPDyMaDSKVCqF/v5+hEIhdxbOxsYGFhcX8fu///toa2vDysoK9u/fj1OnTuFP//RPMT8/v6VYyE6a0ni769h0Hxzpnk6nce7cOTz66KMoFAp47733sHfvXnR2dmJpaQnhcO38NlZR9Mk8Gl6hUG3/FiMQpHUmk8Hq6qoDiRYEck4VqKicsbrNGtVqiFkd6DP2VX4TFOm+iHrySHmahgTvVz7kNTvRyfqdymD7TqtbNdJk6ajv5xqJxWIuLaqtrQ0tLS2Bsxnt+0qlEubn5zE3Nwegll0yODiIXC6HsbEx9Pf3B+TMyMgIstmsSw/kGUWJRAJ79uxBoVDAl770Jefkuxue982Hz9D0yWSglkr69ttv49ChQ8hkMoH+Dw0N4datWwBqcv7kyZPOyFpbW0MulwsYoFwPa2trKBQKaG9vRzqddkUF1OBmVTbuE9PtBSzWwfnkNarzaQQDQQdTvXUAbN2b4zN46tHfF9XX3+rks3PgM5ZUztcrumPXJe/Vg3j5me7L5nYR6mzSkkYT5QiNfkb1LC0Y5aJ+5cHR7HMkEsEzzzyD4eHhgA7RysGLi4vI5XIutbUefX0Y0efEuBftvuHUoN2JcObf5XIZZ8+exbvvvounnnoqcC0r7VHAsiBAsVgM5J0XCoWA0UUGJHMzvEnvQKFQQDqddnthtHIXlSaNJ0ajeIp1KBQKFISwER41FKwy9dHGJwh0EeuCt8ahT1hY4W2BDd/B96mX2Sf4rdC3wJStXC47YNfc3Ow8L6qEFWjSsFGvJb08FBoK1IHaxvGFhQX3LD0glXP+1FNPOaHHCl3a/uIv/iJgBGvbjn8tLe5Fs4qXY6WCopGpgo2eVi0GQUVgjWAF+6S1AlY1rCyIIE3V6CXtVSFaAUy+V6PO8pBtCk59NOI1VqhbnvetB/t9vT7oOvD1g33USnqN1gpprM+y+1V8EWab2sq0HF/1r1AouEmYez4oq/7kT/4EpVIJy8vLWFlZCZw1t7S0hP/7v/+rW+Jb204UqZ0XK+utfFG6l0olnD59Gvv370ckEkE+n3cOFd4XiUQwNjbmMhQor3V+SCs924uFCHj+iTVWuR+K8gfYjGD7+J199snyeoYSP/Pxo0bP+BmBEmWb0ld1gGYBaNqO9br71qoPJNVbq/a5XOO6L499sA4wlUkElhpxYqU8HR9B59zcHGZnZ9313Ke3urqKrq6uQEom+5lOp10K465du1z6IwB8/etfx+LiIjY2NtwRFnYObbsTEGlBvm8dbGxs4OzZs67iXy6Xc9GDp59+Gv/6r//qZPPo6ChGR0fxwQcfoFLZPGS+q6vLyX8aNul02vEAC0JQlhDjcMys/qZ7eRh50gOrWcDA4g5gMyKrfGLnnP2rpzfr6WBrlKu8Uye1NdpUj9oMINVNun51bHSK8fNKpRIoXqX6lgYR957pnkryF6v3Uk5zDyqNej7PRj4519x3yhaPx52DjP0AgF/5lV9x16TTaWQyGUxPT3ud4vX0m9LiXrf7qXrbtEYT4lM0lUoFy8vL+I//+I8t9zB1orm5GXv27HGLZXV11YXa19fXcfnyZedNsd6CUqmEZDKJ/v5+DA0NuZQ8ejl5orcCImDzJGegJtxZFlO9BepZ0IpGXPwseEBgYvdHWEPJAj8VQvUUsu97VW4+kMJ9FAxV29+6x0vLZnJMvjnmeR3Nzc3o7u52Qt3eY4tJUIkS6Kn3zQq0GzduANg8BI8eHlbe6ujoQG9vr1Men//85wN9/OCDD/Daa68FImY7aR/FWPLNgT5XBT294NxzwX1L1hgA4NK3gE1PO7CV/61yoWKwYMN6khXUaR907jTlTIEaedIKbQsctU/6sx2P2+fVo7MaIRZM2v/1HRYAa39VRmy39nzpYDovur59a5z30FCmJ1JbJBLBo48+6g5AjMViiMfj2NjYwPe//323tq5cuYJCoeDWPT3UjSqxWWBxp63RurH0DYVCmJmZwfz8vDvQFQAeeughZ/iUy2UcOXLE7W+lfqBziw6ujo4OB95ZTIjpMaFQKJCqVyqVAqlJnGNN2QO2pqj59noob9n/dZy+tad8CmwFjtpn9pt6iBGDeqnU+rcaUPXkhDauf41cELBp5J99YLUwOxbKKB7SWyqVXDRI0/dWVlYwOzuLmzdv4sKFC66gg4Jarj8avOo0TafTWFtbw9/+7d9idXU1MKaXX34Z3/rWt1AsFgPRpnq8eSc6Qu+zn9m1Xq3WCrZcv37drU3bVAaT50n7UqmE2dlZ51zg+uAe7vX1dczPzwfS5rnni7RaX18PHCxLWaOFSTR1n+9lnzRDRKPHKs+Ub61s9a1/NZqImeoZPFbO8/N6Dg07H7ZxTLplwBpN+hn5JxKpVV/mMTikgy3HH4vF3F7klpaWwD6oUKhWDTSbzaJYLLpiaKdOnQrgIpaup2FHnc89cgDw4x//GJFIBLOzs8hms1vSv0kDKx98cuNetvsRp4+hlctl/PSnP8XU1BSGh4cD3yUSCZTLZTzyyCO4dOmSqw7DYhEA3OFxDz30EDo7O52XMRSqncieSCTcXoFEIoFcLueEOQ8JozDWCAjTB+3mVK2kBwRzeylMmFrI77iAVMCowlVFAwSrT90JwPcJIb6btPYJMxs10+iPhop9UQ3OB72B9iBe9Zryb463VCohn88HDnn0jadUKmFhYcEZGPF43OV/FwoFRCIRnDx50s2JTfsEgG9961tbTmO3QkTfze8/zqZjbG9vdwI1Eom4UvzaP/In54b8xWdZw9OmDxEYAsEKeLyX19PbrxFAfS77wmv5Dv7muy1obKS4fP+Tt+wGXp/BZM8gaaQI7P2+9CgLOHUMwKbBqkamAkvdS2D3NdGAse+z/eL/NurHFg7Xzu5YWVlBb28v9u3bh1KphJ/97Gf40Y9+hPX1dXzwwQdIp9MBD7HOk47R9/d2bbs15HumRin4P0Hk8PCwKxXd1dWFsbExXL58GaFQCAMDAxgYGMCtW7cCvMAILPdLavU27hViJMs6E1SfaHqTNXyZ0moj9PWM83rGi10varyobFWgY9OECEoBBECbGmo7mUdfH31rwDoE1MFmDUkFsIwcMVuEQJBAH9isWHvx4kXMzc2hXC5vKf/McSUSCSSTSbd3L5lMBjADz0N68803cevWLezatQudnZ24evUqLly44Ep4q0Gg7W6Npu2a71lvvfUWjhw5EtijBQDPP/88Xn31VdfPgYEBjI+P4+LFi47uLG6k5zsSsEciEaysrKClpQXd3d3O2ROJRFxxDs6LpoZxrbS2trrsHOplrhHqD64HlUlKM8vHVn761iDvU3kPBI9DsQ4L+34r/31Gk+ovlSF8D+lpjTegJvN1S0J7e7vblgBsZt5ohJSRJpulwJ+1tTWXjsljbxYWFlAsFgHA0TuRSGBsbMzRhTrhl3/5lwEAExMTyGazqFarOH/+fMCYrCefrT7V7+5lu2843WFTJtbPrLduZmYGX/nKV/CNb3wjcP+RI0dw+vRpjI6OYvfu3bhw4UJA8RCkTE1NoVwu48knn0Q8Hkdra6tTxgSAjBzF43F3mGKlUkGxWHTMH41GXc41PWQ0nrgHyipOAAHhpcJFy2ZbOthFrgKCv61AsJ4an8K0gATY9B5Zo8kCNQABYcpGT5bPQ81x06Ch10r7q6kbHA9pnM1m3eF7PoVVqVSQy+WQzWZd/2KxGFpbW52x2traiqNHj7rqQL/3e78XeMbt27fx7W9/27LnllZPWSqdPopQ8RmG/Lu7uxsHDhxAU1MT8vm8K2RCUE+jMRwOI5/PB7xWavA3AgPqIWTKojWeFFSoolJjnvdYj7W+k4aTXrMdTSytaWDo2rLjAoJgtFFqiO/dpK/SUfvgS7dVownAFtCo99johSrleuPhvaTByspKwPDhXPb19SEUqjmIenp6EIlEsLa2hnPnzrmzYm7evBnoq8oQ+1mjv++0WTrad6uRT8fM2bNncezYMbS0tOC9997DI488ggceeAATExMol2vnnzz88MPueAo+p6Ojw0WgFLQzVZtVKFtbW50zwm7MJiilHuDBm6Q19YhmG/iew/H5eNA3xwr+NNLEtcPv1FDhPXy/7quzulWjxL7m0wE6d9agt1kDvr2pmq6UTqcdCNRUqHK57FLPTp065c5qJMDv7OxEKBRCNptFoVBAOFw7SLevrw99fX2uepw2liDPZDJ4//338dZbbyEUCrk9PDb12dfuhOcbrd9G11UqFVy+fBnZbBaRSAQzMzMYHBwEUCsKkUgksLi46GToiRMnMD097XQgtxzUi/awIAoPB6czl4U7mEKm4Jxzo05irhVNd1WZFgqFAvzA8Wl/aDD4nAlWhlvesrTzpbXyf9+as849Pq+ew8AabvoeGjlaiEqrO1cqlUDlQo3ykQb6TGYjXblyBdPT024uNOJGWjc1NeGBBx5wKZ2UBalUyo3j1q1bKBQKmJ+fd8EEnRMdu/3uXhtKtt1P1dum+cD7TqzZ9fV1/OQnP9liOPEE+Gg0ihMnTgQEZSQSceCxVCphbm4OFy5ccIqOKQE2D7u5uRmJRGJLqU7eR3CpwA1AANhb400XHUGe5nv7hJsyrwJgG32yHj1f03uBoFeSaR1c9DZtUBcVo3UKxNXDaI06eq5oODG9TCNcHJsFGxTMmgLga+VyGRMTE4HS8TzgNpvNIhaL4Rd+4Rfcxuq+vr4tz/jyl7+Mubk573t0Xuz4Pu7G90SjURw7dgzHjh3D2NgYRkdHnbeUgFBL5t++fdvlWFN5lsu1ikuLi4sudZXvUIVA+lOgA8FIoN2HQ5rXO1XeOgDYlL8sr1twx8/1h/xl143SzfJovVL+tm86z1wPug5s/4FNpW1TczU6S3BBPtOUFmBrWqVd87yO35VKJZd+xOfxupaWFoyPj7ty1Mlk0kVVJiYmsLy8jIsXLzpHkFXcPqPJ8uZOmu86u450/jSNx0a90+k0Lly4gGKxiBs3briMgdHRURc5Ghsbw+7du7ccaE6+LRQKrnKqFoxgRDyRSDjAY+WqVh0j8KH+oUNJo1p2A77lYR8P+r5XR5LuOeNatWmCjAxoip7lI588te+1c+LjC5Xndo0pf6vM56b4YrHoohd8PulWrVaRTqdx/vx5pNNppyuSySR+7ud+DsePH8fAwIBb8y0tLdi1axeSyaST8Tbdjs40Ruuptyj7bNR1J7zcqNXTJXaNaSMdVldXcfXqVVSrVVy4cCFwzS/90i8FcEQikcDBgwcDJepVPtLo4biZfprP5x0dSEcekBsObx4BonSkvOfzmfLHvtsjSwjslUd9esA6bq2xpTzoSwH0yRArs/V/ux64frl27REW5FvKABuZZMRU50T3Ga+trWF1dRUAXCl4nS8d6/r6OjKZDKamprC0tOSwGY0pXYvlchmxWAyPPvqo0/888uXXfu3X3HOXlpZQLpcxOTmJdDrtxTL1eHKnOuFu2/2I0zbNKgudDOsd4N9AbXFls1n8y7/8C1544QWMjo66Z3Bz5+7du/HAAw/gww8/dN9RcaysrKBQKODixYvo6OjAyZMn3TWFQgHFYjFQ1pdeSjI6myoA9ZopqGQ4likSei3Hr+FvGg1KC/Xe1wOWFEoKZNWzYj2Clu5c+CoA9B7rhaBgUa+Ogg/rpSAd8vk8ADjPrgW9+j+wuUGeYW9N6bKN901MTARAPI0uet17enocXRm6ZvvGN76B733vewG+8yk8/bueR+qjtO28Oo899hjGx8exurqKpaUlxGIxZLNZzMzMuA3N5BUebjc4OIjm5masr6+7TaH05HZ3d7vKYuy/FjZR5wK/t4YU+YK8r+fhAMGoaT2QoJEVn3HEZumuQJ/vZT/0GhX2alzYObT94/N9SlJ/1NBTw4jjVyCjZZnZFz6TilE9qpq+YdMq6RFmJVAtthGNRtHf34+enh53Ng2rkJ49exblchnvvPOOO/zWNz+NlOTd8vqd3OdT1CwScejQIUSjUczMzODIkSP45Cc/ibm5OWQyGbS2tuKxxx7D4uIilpeXHb04h9lsFrdv38bw8HBA/pHvOV82Ckeaa7UsGi1AfSeBfq5e8kbr3cpfzQzQqqN6jfXc2774HBH6ux79LQ34HmBzj5PKc47ZpnPrPiY6xCqVinNOcj8SswwymQwWFxdx+fJlpwOam5vx5JNPukq2CwsLSKfTCIfDOHbsGHp7e13J9lKp5Io+aJubm3NygzrZt8YsLRrNVb12p0BTry+VSnjrrbfwyCOPoFKpFQPgESwAsHfvXly4cMGt9wcffBA3b950xiibBe80FBOJhIs80UjQNDtWNCTPacopr2dqO/GO6nLle/KCrjfVCxYHWszD+drOGLLzSJ3Ae+vpbfaR//M95F0aI3TiKn7i/+rwYlYT76fBWq1uRprUYFLDjxkEc3NzLrVO+UP1K9v4+LjjDfaRmAeoRZtoTJ05cybgvLO8tx0OuddGE3DfcPpIzTeRXAxccHNzc/ja176Gv/qrv3LXHTp0CFNTUwiFQnj66adx/fp1Vx0JgAtBU0i8//77GBkZQU9Pj6teQqOJufD0jnAvjCpBKgrmtNPTwE193JPDggjhcNjrPaXC0PEqENPFb/ugSk+9KxZ4qreRz+IityF0n5fTbv5l45itN17bxsaGq9RFb64CTB23epjU00XB4aMVx5PNZt119HAyx7i5uRlPPfUU2tvbUalUAsKE7c/+7M9cfnY9YeIbnxUwPvB9t80avi0tLThw4AB6e3tdtaVoNOpS8tra2jA1NeWqIlWrtUOdb9686eip0Zn19XUsLi4iFosFNhZTIZBvtDqPRjaVJ8ln/M6metrPtenatt7IegJcFaT1MOocqgJUD2y5XA5scmY/fAae5c16/dFokz5LC234vPF8hx7CyvvppOBndg8N05zI6+wL0854+HFPTw9GRkZcxabp6Wmk02mX+mRBiqXHR200MizN7P+quH2GBfu5uLiIa9eu4dixYzh9+jSOHDkCAHjiiSfw2muvIZ/PI5lM4tFHH8U777zj5DDLNZMP9u7di0Qi4UC98jf7YY1l/VvnXfsNbN0foXxp+bueY8GOX9ewr0+28X7L77YP7Kt1Vmj/LW3UcOI7eJ1GFthvGkxaZIh00nNraLCyIuL09LTbd0Z9vLa2huXlZbz++utuL1t3dzf279/v9jhx7fBQZLabN2+6NCX98UW+GzUf/+70vnpz5jMkJiYmnCF0+vRpfPKTn3TXf+Yzn8GVK1ec7orH4+jt7Q0cHdDW1oa2tja3X5tO3ubmZnR2diIWi7lsE8p88kpTU5PDCWtra85wJd/TyOX8WlDPOdOojdX/lv6WBvosXyRJr7HOAiBY3VL53hpl9jvLG4qXrO6hTqERTkc+x0ksSHr4jCbFU/l8HteuXcPCwoKjrxp/2jdig71797qx0Gj+3Oc+58bIKDXTsxvxuc7DvcQ0jdp9w+kjNgU99jcArK6u4p133sGlS5fcgV7t7e1IpVJYXFzEyMgIHnvsMbz22mvY2NhALpdzp6bTc85zQJ588km0tLRgaWkJc3NzKBQK7qDAeDweqPzGxjQIKopoNOoseTUwmGNMRaJNgZhGiwguuQgBBGigHhz939LKCik+X71+viprGm3jjw9c6gZHBeO6wEqlEnK5nNvgy4oxGpJWxW4BAUPVNDDV885rgBoYvXXrViC/n583Nzfj5MmT6O/vd4aGhq4B4I/+6I+wsrLiBTRWKCsN7Pf3slmvWFNTE8bGxnDw4EF0dXVhaWkJMzMzaGpqwu7du90hduvr667KFJsCY1Us5IX5+XmXbkQeUk8w38++0CsJIMDDugeKc8k1ouDKd96FpnVYGis96gFpNYzsjzVkfJ/5mr3f9z37ZJ0S1pgENvcAWmOS79BIndJZwayCFK2yZNd/PB7Hrl270N/fj127diEcDiOZTCIUCrkzjy5evLgtWPTR6E7Ape9ZjWhe7zs7f6VSCe+88w7279+PpqYmTE5OYteuXRgcHMTIyAguXbrk1sb8/DwmJycdcKSDpVKpHZbd19fnUvlIQ40OWb4Ctqab+0C0lRE+Y6nReO3/mk5mveE+MK484VsDtq/1xkH9RZ7lM/V59QpBaL9t9THeS53g46t8Pu8ionxWpVLBzMwM1tfXMTMzg1Kp5M4z4oG6PT09rnqibVevXsXS0lIA+JKOVnYo/bcDkneyJnYCRulsyGQyWFhYQG9v75bsFwD44he/iG9+85uuKNbBgwddf6rVqqtIyOwNGlnUr8lk0skTOh21Gh73/FG/UDYBmyl93A/FAlD6fup2a0z76Gmxip0T68BS2Wj53zrgLBby3cO/ORaNRlqcw3sYTSL/NzU1BYpB8Fk0mligRt+nVUzpCJ6bm8PKykrgzCZf1C0SibiCOKFQyOn+trY2t98JqBWGqFY3nWZ3yq87+eyjtPuG0z1ojRR5pVI7Bfu//uu/8KUvfcl996lPfcqdOfLMM8/gxo0bbtMzvSmayrC4uOiEBY0ceiS7urrQ29uLVCoV8NTxXlbEo7EUjUYd8zO/nXm/hULB5cz6vPF6cjqVNoDAdSpYFKRageNjZgtQNT/eht1VsCmQ0GcQwFFZau6zXpvL5bC8vOyEJksAA8H9Mvocfs68aVb1sQacCpBCoeCEgs4xUNtEe/jwYUf/J598MkCbubk5fPe73w2MwQcelI71aFzPm3UvWktLC44dO4aRkRFEo1Ekk0nE43FcvHgRPT09SCQSKBaLGBgYQLlcdsDC10+rUOi97e7u3sJ7VJLk02q1umWPmzXIgOChhkoLXqP74awio3fN8p7lb2tw6YZyzievAbambOj/+kx9r92rpGNSZ4eOV1NT+Dm97Go0qTGpqVfA5tlC+lwaSnrMAtNuVLm3tbVhz549SCaTOHTokCv9z8jKpUuXsLCw4Irl2LHbvy3/3E1r9CzfvNa7T0HD1NQUbt26hf379+PNN9/Erl27AACHDx/GtWvXXAbAoUOH3P5WjeAXi0VXoY8FY5iuZ3mcfeTcqvPA8o/ylI+3GFnVz/Qaew/7ywNZtdKiGsv1aBcKhbz3WPrav1UXafqrfYfyLWnDeSJvE4QqqKXeIx1tujfBvR42TJA6OzvrDm2ORqPYvXs3Dh065EBpPB5HLBbD0NBQgH+uXbvm0pQ0SkIaW5m1nfG03XqpR2M7F755U3l4/vx5PPDAAwiHw66SLxuPYpmensbCwgLi8TjGx8cDfEhQTgMoEom4dEjKEy2yo6nxBO4seqWFDfh+TUUjliBvcEyUcRp9snTy4Rg7J5YPfbJZHR/2eepo0Ggyr6Nzz+KkRnNGfUlDUsevsp3YUJ9BjJjJZJwTLJ/Pu7VunTcadY5EakWwPvGJTwT6HQ6HAyXImbJcqVRw+vTpLemoOzWCfA6ae9XuG0530HZKfAU7jHa8+eabW657+OGH8YMf/MAd+PjNb37TbUDV+vuRSATFYhGLi4vuEF2CJBUcWvpZATmNDQpglralMFZjirncPKmczKehbW5EVAbWyIAqDtLA5sYqqFCBwKagVnOV+S4Fqyr0+D719GiEyCoXArjl5WWXF51KpZyw19Qpvkc9lkAtqkhPI+liFRxpwYpKHCP72draik9/+tMIhUKuupDuiwOAt99+25U1/qiCoB4I+agtFAo571E2m3WpJ93d3Whvb0cymcTQ0BCWlpbQ1NSEnp4eFItFLC0tBfYmWV5Qb102m3VlU/V6Gl/kF90sa72DduxWyFr+s2DO1082HzDRtajPsN/59jvpmtJ+aiNf2rQQVbIW+On7CCC10iSBpU1hUt5X0M5rcrkclpaW3LlK9SJF0WgUIyMjaGtrQ3NzM4aGhtxRC+3t7cjn81hcXESxWAwUhPDNg/6u99mdNnvvnRpN+lm5XMYPfvADjIyMIBaL4erVqxgfH0c8HsfY2BiuXLmCarVWjnnfvn1YW1vD3NycK+cL1ADFxMSE2weoc64gj3OthW2Yrqr8wX75xmJ53Jct4HsesCmDaSwDCPTL6gJLYzrsbLpkvWaf4UvR03dpREr1qPK38hgdMXTWqfGv+oYpZOpYq1aDlcva2trwzDPPuCMuWLWVGQ7azp4969KUrJGm9Ffa+YxMH53qrYt691vjyz6DID4UCuHs2bP43Oc+h3K5jKWlpS0GIfEFS4/39/djdXUVmUwGa2tryGQyyOfzLtpEPsjlcoGz22iocr7tnj/SncYTdTNxEo1cNbwUj6juB4JRIdvIt/ZepaXPaLK01WsVF6kBon3SjB+uZZuOax1wlOs0mthf0tVnNNGpkM/nXVVJ9onzwjFoFNemeu/duxednZ3O+OW8sQIjUDu7jPzAYxt8PGn58OPCNL5233DapvkEjAUvFtBY5jnHzC0AACAASURBVC+VSrh06RJOnz6NRx55xN3X2dmJ9vZ2rK+vY2hoCJ/97Gfx0ksvuQWt+dfVaq2W/UMPPeSMHD47HK6VK+3q6gpUK9NFxvxeLgxGoTSFz+4jYuRDPQ4U4vSe1fOoWEBKUKuGmAouBYZaHcqm+/Ed1hiyQkYXsQI3O3eVSm0TK6N8bW1tSCaTgfsUcCso4PtyuZwDdgpS9F4qUE3l4DObm5vx2GOPoa2tzc2pDzT8+Z//+R0BQSuw7ecfRbhYBarvKpVKWFpawre//W18/vOfR09PD0KhEHp7e5HL5Rzoe/PNN9Hc3Izh4WFUq7W9IGo8+Qwd0jGfz7u0GTXYaRBYRbRd3+1vXse1QjDnM67qPVub8qsagsor+k4fXfX5VglbEKseTPIk16vypoJtTbel8uP7VDnzHbofgLQrFApYXFx0nmFb9Utp29HR4fLrjx07hvHxcbS0tOCRRx5BNBp1qTnkCwtotdUzYO+m7cQg8l3T6L5KpYK5uTmcOXMGzz77LM6cOYPx8XEAwFNPPYWFhQUsLS2hubkZqVQKvb29uHTpkpPjBIoLCwtYXFx0USedH/aLTgMtjMM+cN8Or/fxl3UykHc0yl/PGLbGou6D0+dYvicPW4OtHlDXz/RzC26tXrbONwBOdls9YVPWNfJgjU+CSlvtTh0HTU1NeOKJJzA6OuoMh97eXiSTSQwMDATedebMGbz++utYXFwMGEhqEGqEhJ81Avba73pro9Gz6jlttD/k80KhgGQy6TWcUqkUMpkM2tranO7fvXs3JicnXXEUjXwwBY1FCFKplHMosKASeZbGEx1BlLuatmfxT7W6GZGyxoyVX/oujegqjdT45zN9qWuqC/i3Gv1qgOuPvofX2edq1ImYhbzIQhq6H5g8zPEo7mNBsXw+j+Xl5S3VHXO5HFZXV91zuT3EOk4SiQSOHz/u5FkkUjtsNxaLBbJruBVhdnYWKysrDXnU5wxoxKf3qt03nLZpVoDsBGyqkcFFs7S0hL/8y7/EP//zPweuff755/HSSy8hEong+PHjuHHjBs6ePesWiEaDlpaWMD8/j97eXucxATa9BSsrK857q59TSbS0tARyeFXYUdlyoVIosQ8KGLRqjS3E4FN4XLhc4EzjUEGiHhMqfVYtsnnI6jmpR3fOlQoPey1THpeXl503vqury9FGBRtpwnFQsHMvQrlcdukcAJy3hf0tFouYnp7GjRs3HE0JJPbs2YMDBw649zY3N+OLX/xioL/T09M4d+5cYA9QPRBpWz2jfif37qTZZ6ytreH27dt45ZVX8Pjjj7sCFz09PS5idvLkSXz44YeOZ8fGxrCxseFKkPr6CmzuT+CG+npGtU0XUNBjwYGPl6xxqSWHLfiody//5pph3xW0WeNO/1eHhQVJbNoHVbr6PBpBmpLh2xCve7x0PSvfs5F3FchpqXF9twUIpCdTi3t6evDss8+iubkZbW1trtpSJpNBOBzG7OxsXRrcS4PJtnprY6drR2VIOFw7HPvdd9/FkSNH0NLSgrfeeguPPfYYAOChhx7CuXPn3HlOdIJptJ7ZC5lMBuvr64GDQH19t6CM96uB3Ij3VDfQUUYe0ueqsWKNGK5H3S+kzkArlzWV1H5n+8tn62d8J2nCcdjn8Fq+T6OsPo+9zqfvc4JKX9S3Uqnt/xkbG8Njjz3m9EQymUR/fz927969Zf5Onz6NV199NeAQVBr7In07cSbUu9beZ8Gnbw377qtWq8hkMs6Ry/1Z+r4nnnjCnenESsC655RrwBpOoVAIy8vLKBQKrmCBrgOVdTSOALhoiGYkhEKbZzlVq5vV+zSCbnUDx638znVFWajXqPFmdTbvZX81s4bX6dEzipX0XiBYHl0dEBavcR5oNPFerk+gtjY10kRnSy6Xw8rKSqBgCuUJ9zrFYjF0dHS4DCn2gYYU93iSPolEAl1dXeju7nY0KRQKWFlZQaVSwYULFwKRLOWzRs3yr6X7vWj3DadtWiMPjgXodnKV0dfX1/H222/jq1/9Kr785S+766LRKB5//HG8/vrrWF9fx/PPP48rV664dC4qGQKvyclJDAwMBFKI+N5CoYBCoeCqUQGb6TU0RFpaWtyp51r1igqS37PPqoQIvpQGvrxyfq7Rl9XVVXdCNRexCicuSI3oRKNRdHV1OTDFst0+rwvHqk29mlaZlctlFw4ul8tobW1FIpFwwpTj5fXMiWb/tBoc36UCVfuyurqKs2fP4vbt2w4IxeNxVCoVdHR04DOf+YwrBZ9IJPDrv/7rW/jtb/7mb7yg3dd2KiR28qw7aXwO0yMIFtlaW1uRTCadYPzkJz+JV1991ZXW37NnD0qlEjKZjOMPKhJNNQLg9vhp1FPnmqk++pl9nq5PBQb8X0E/gIAy4jX6dyOgrQASCK4lHyBR+UHlV88pAASVuVXsCm65nhVY6zOYkkQjT9OB+X5Ng2Rj5JbnDfEaAh9t4XDYreeWlhY8/fTT7lm6QbhQKLi0zEbGqY8eH6VtZ4w1cj5YpW3B7tLSEj788EMMDg5idnbW3Tc+Po5yuYy33noLxWIRXV1d6OrqwuzsbEDeFYtFF+HmPkwCHTV81ejmd7oHR4137bf+r2vDN042BZrWOFaZTV1l15l9dj26K/hUb7w2AlYbbbPv1LWkwFWdLCoD7H2kM9fm1atXnV61siQUqqWHPf/88+68ofb2dnR1dWHPnj1bxry4uIiXXnoJ09PTWwwk1es6Nksrfl5vTezE6LdG9U6u4//T09MYGxvD2toaVlZW0NnZGbjv5MmTWFtbw9LSktOLpO309LT3uUyTXF5edtWE6cTknNGAIT9yryv1NXGFRkeYyqfFTDSSbtP4lPbUS3Qs6JpS40kdEcpDGsnlNeyLlhL3GUU6x7peqf9IN5UflO+qj8gjNtJEwyiXyzlnDcdAuvPYkHK5HNi+YXVNMpnE3r17Aymv1BnPPfecoxnfOT8/j/Pnz2/RUZb3fM13/Xb8fqftvuHUoN0psRtZxpVKbX/Ld77zHbzwwguuJC1QOxR3z549+PDDD5FIJPD888/j+9//vmNGBUL5fN4Jhra2Nhe5ISNyX4F6U5i+RDBjvX928TAMTmWnYI908Qlz9TBoGg/LfC8vL7tSrbFYzAEiLmAKi9XVVeRyObchNBaLIR6Po7OzM9AHu/fJChVVMiqwKED1cDd9NunJa7khkv3kYXzVarD4gCpc9nF9fR0XL17E1NSUi9I1NTUhmUyivb0dzz77LOLxOIAa0PjMZz6zha/W1tbw0ksvBTz+FsBvx48WSH0Uo0mf6Wvlcq2MaF9fHyYnJ/Hwww872qZSKVy5csVVCztx4gTeeOMNd4bJ+Pg4Ll++jEKhEPBwWyDHFAGWJldPnYIr68WzRph6FH0G0k48rD462+uURxX4+fZ86A+BnAILC2h86Uk6DvuZD6xSiQNwxq4aTGwKTHV8dI5wU3Y4HHYHElPRsu8abXrkkUdw4sQJdyDu2NgYgFqeO6uM2tQw3xrXvvg+/7hbPXlo56tcLuP06dN49NFH0dbWhrm5OXf46YMPPojLly+7828OHjzo9l6Sx5muR6eBbm7n/KkTi7xmD8EkLdWIVp7jWtO1AwT5l2MjaFRjhbqG8o73cf6Vf7S/ANyaZv/ZJzWWfGmb/K0p6aqT7DrRcdKJ6KOBAlr77nK5duSIHkZu5WJzczOOHj3qHJ7hcBh79uzB4cOHvbz0/e9/H++//35gHdbjNW0+7GHl0Xayeyfrpp4MATYdtZcuXcJjjz2GUKhWGdMaTv39/QCAoaEhpNNptLS0YG1tDYlEAv39/VscPnxXOBzG8vKyc3ISv3C+rOFEZzAAp7NtZksoFAocr6BFI9QBbPle1wZ5k7ysGQU+w4s6wcp/3bul8+7jdZ/+IbaxmEwLavE6rYxqi2TwKBwWvbLnQbGfNKr4PO45Y0SQTgPKOzrLOMbl5eVACX7Ku6tXr2JmZmYLv+20fdzy/77h9BHadkKJAILXsVrS17/+dfz93/994FlHjhzBzZs3kcvlsGfPHjzwwAOYmJgIeKXZuEC5uZRhUQAuF1U9wmR2CoDm5uZAnjtTQrgAuadDU824oJiSxucqHRSYqlCgV2JpaQm5XM4ZVgRW6ukOh8PutGtuts1kMkin01hYWEAsFnNj4yLU9BHfvJBmNHzUA97a2uo2Qqp3TwGCRpdoOFkjxkY9eO3t27dx/fp1J7Sr1aqrZvPZz34W3d3dDlwePnzYe27T//t//w9TU1OBzxqB+e2aveZuvDHK1753ZrNZRCIRFzll6+zsxBNPPIH//d//dekqX/va1/DlL38ZhUIBra2tGB8fx61btxxgVMXE/larVaysrCAWi205b0sVlAU/On4+V0Eir1Mwp947u8ZVcVmvu43C2n2ETEGx6U/KQ3aOrPFrAbvPqVFP8fieo+DQerspczQthd8zZdWCbtKANIxEamfVpFIpdHR04Pjx44E0G7auri6Ew2Hk83mXCtLIKPIZLnfbfPc3WiONaKzGE/9eXFzE9evXMTQ0hA8++MAZTgAwNjaGhYUFVKtVjI+PY2JiApcuXXLvZyEVnu/ke5/qn2q1Gojys+kc6TjIl2rsa9+BzX07dszqPLIONOVzBXC8T1OXaTip3rRHSdiIi/7YqICdP02PUh1mjXzSRNeE7vMrl8tIp9POM87oX7VadRXHIpEIhoeH8dRTT7k9mS0tLXWNptu3b+N73/teoAy99l/XgXUe7ESO7+Qaa+zv9JlKq8uXLzvD7/bt2+7cHtvoYGEFvaamJgwMDKCjo8OlaZEGdK6VSiUsLi66lEfOHXlWDXTONTEL04g1K0HlL9P5yOPW4LYyV400/qjBZXmV9LLZKYo1iBWAzbRCa5CrjtAfxXV8Bw1E7Y/uIVMaaJSJuEezHeiEYYre9PS0oyl5nhHwlpYWdHR0YHR01BnOw8PDCIdr6delUmnL3r75+Xlks1lcuXIlcLbpnbSP22gC7htOH7ltp1CtslpbW8O7776Lf/u3f8MXvvCFwPVPP/00XnzxReehYuTFepxyuZwr19vR0YGmpiYUi0X3zkwmE/Cm0GOrqRyakgbAgRsKHY0WqfGkStO3mGmYEHwyD3l5edmd48JoWTKZDAg+LhI9K4PPWl9fdxVdeIAqPRgcq0YoSAsVTqp8abjRSLRGoDW0qIy1DK0KaQW8FEDpdNp5Di2oHxgYQFdXl5uL0dFRHD9+3MtH3/nOd5xiUSB2pwLCd+/dGE28T4GKpTVLu7/33nt4+umnMTIy4u7luWPT09MAat6uf/iHf8Bv/uZvolqtoqWlBWNjY5ibm3MbURVAsP/kCaYEaWRCgQ55nX1VcMW51v6TNlZhWkOCTYGxBWjqXdf0PFVE9t32eZpCoX3xpSopjfQ7lUWqLG1kQvdiKc1tHr4df7FYRD6fD7yfNGC6Fud+ZGQEra2taGpqwvj4uBuveqXL5TJu3LiBW7du4datW9sq0LtZD/VaPcdCo+dvZ8xZx9cbb7yBp556yu3rS6VSAGp7na5duwagti6OHz+O/8/emwe3dZ7now9AECRAgAQJLuImkRJJyVoYWZatLW68J64d27Gb2rHjJHM7mdy2aWfSZZre6ZL+kjtNJv1lpk2aNp7kpkkcN7VrO15ix45jV17lRbKsxZIo7hsIgCRILAQXkLh/0M+r93w8B6RsOe1vxt8MhgRwcM53vvN+7/K82/DwMNLptMgP9vFramoSwMm8hgYFdKliwOpFIp/Wv6GRZYa7Aed4PM/D62rljefShoQ2jE2PGM9BXqh5uN7HJqCg96ndvtE0YafwmuCivkfTUDJDAxndcfLkSWnhoQvTUJEvLy/H/v37RdaVlpaisbHRsqbMe3W73Xjuuefw2muvCV9wumf9vM3vzGPWujc0KLRWuWB3nMvlQjweRzqdRkVFhUSZmMdOT08jm80ikUiIkeV2L4er19fXS0l+HWLKVzKZtACvJSUlQr9U4NknS+szNMSBcxEq5Gt2hjefuaZf01DhMA02rUtoUEF7sWio0FvDYhc6d1F7z/S19B7Wco/PgPtPh+7q/W0CCAS/WMXUBKv0MTMzM4hGo0ilUsJbeG6ekxVDw+Gw5I+vX79e7jObzeL222+30MTk5CSGh4fR09OzAugsRHP83I7O362OU2h8YDid53BCYzTT4XEmY3e5zlWGefDBB/GJT3xCSioDy/H9e/bswXPPPYeqqipcdtllOHHiBCKRiOV8w8PDaG1tRVFRkVSmIlETNZmZmUFZWZkYJNpw4uam8qnvQQsyGiIUlpqZ261LLpeT5ro6VphxzvQkuVwuJJNJaXZHA21xcVHytOwUVl5XCzPtQuZa2xkGWrn3er3iqdIhVLwez6uVSI22AOeKO2gFWCddJ5NJyVfQSoLLtdzwc9u2bZb13Ldv34o1HR0dRTwex+uvv25hYIUUOTvaNI9zouHzGUTj9DX1X+azxeNxDA8PWwwnYLkJNNfsmWeewcc//nF873vfw+c//3kAy8ZzY2OjNNbT3iZtICUSCbjdblRVVYmipw0t7fXQBr8WOHYeHr1Odsfbra8WjnwPnAtxNYWhvq6+Bu/TNJp4HR3WaoIqGgHlebSQ1UqsVlLtFEy9l8yQFf3KZrMYHx9fQROLi4viGea9rF+/XnJztm/fLvuXQpbjl7/8JV599VX09PTIud/teK9GVSGjyEkW2NGS/s3Y2BjGxsZQVVWFRCIhhhMA7N69G6+++irm5+fR2tqKjo4OdHV1IZvNCtLb39+PpqYm4WM69I3XM5V907Aw6Y083AzN5rztvLj6vKaCT7oh/fK3WjHX9KjRfX5u7k9tEAJWj5lWcknXGmU3DQueWxd9IU+iDDPlgL7W6OgoYrGYBZzhvLjXL774Yqxfv14MyZaWFmkpwsE8tsXFRTzwwANSbIjKqx39OPHvQjys0HHvZpiGuv4/m81ibGwM5eXlAg7oIgAApNAD82EJMmUyGTQ3NyOTycja8vnlcjkBeROJhBTDMmma1QgrKios+UrMJdY6jd4TvJbWObSxbOp3plxYWlqygNhmWCDpnPRJ744uv84IGNKMXmtzzTWvBs7pJWYYoOllMo0m7UnSBqU2/AhUEtBnI3uugU5ZKCkpQTgcloq5RUVF+PCHP4yKigrpw3j99ddb6OGVV15BNBrFwMAAJicnLfe7Vnq9kABaofGB4bTK0IRayNI1h2bOACwMfHZ2FqdOncJDDz2Eu+66y/K7zZs348iRI8jn8xKbG4vFLOednp4WVzUbJ2pUF4AgwBQMpgJE4aIRGM1g9V8aUCa6oQUthQyNIwofxsdq1BBYztUaHx+Xa3CD0j2s14z3TcbHEpY6ZFDflxlGxO+4DmZcsR70brHKjhZcWqEwBbGOF06n03j11VeRyWQsDL2oqAh+vx833XQTysrKRAhcc801tnQ1NTWFhx9+WIolmLRlZyCeL9OwMxjW8hvgXMgoYO0dYSpghw8fRmtrq8S1A8DevXsFrZ2dncWzzz6LTZs24Y477sCDDz4oIaF1dXXSNV4rJczVy+VySCQSEsJpZyibyqJm9qbRotfDTPa1E5rmupiKoTkPbTh5vV7Js9PrSiVC5wnq81AI6vArTQcaQdXz4jm4TyjUtaHFsBaXy7Wi0pidsjA3N4eJiQkBRFhimDyAKDt7eDGX0OPx4LrrrhOPCUtzA8CZM2cwMDCATCYjfc9MPmC39qvR61qHqaQWOhfnw+Gk4NgZDEePHsX27duRTqct52xoaEAwGJQ8v927dyOXy4mins8vh/udPXtWnpdWgjRvNmlVGzTm3HgMf6fBBiqYdsCBBjP4zDVP1HRv/s78XO9Vcx31PtXhdKR1GjkaqLDb23xmBBo5tGdJv3TUAc81MzOD4eFhAXU0qEZAorm5GXv27JG9vHnzZtTU1FgKoHR3dyOZTCKXy+HYsWPo6+uTZ6dljGmsav5iro85TBq9kIql3V7h/N98801s3LgRbrcb6XR6heHEqIL169djYWFB5MP09DRqa2sxMDCAmZkZ8czoSrz5/HLBh+npaSm0RH5GGp2amrI0edVKvQYtdWgbYAXAnIxuU8fQ4LQGdemF1GAtwWjgXGoFc7o10E0jT+9Xzded+I7JZ7gvNQ/SBSk0wEI9yev1Cu3r9WeRr/HxcQl1BJZDIMnLS0pKUFVVhY6ODgHFa2trUVlZidLSUiwuLq4Aevr6+hCPx5FMJvHKK69Y5GIh/dqJTzvR6IUaHxhOqwzNdNb6kMxhGgK5XA7JZBJPPvnkCsMJAD760Y/iqaeekjKd+rwUSNFoVLxN7LekEQJ6tnQzW25KjexxE5sInqmgmEYJv6MCS7REJ1nSDW2GWVBo0ZWvCzGQydCA0cKOSeVsUEtBTsZixtQ7eQbM9dRCiPO3E1x2yg/Xm4wnk8ngjTfeEK8Z15zI2YEDBxAOh+Uc4XB4RaNbjlgshn//93+3pcG10GKhYZ7n3Z5DK12moZtIJFBRUYEjR47A4/Hg7rvvht/vB7BslNx00014+umnZZ1HR0fh9XpRWVmJqakpAMuJ1TU1NdJ0j9f0+XwoLS2VYijxeBxer3dFzyWNKGqho+fP/00UnoJMhyTxpQ0Zc000zVAwmci3Xi8T0dRCjZ8z34uNmTkf85rmfjUNHbtnp/c0AIvCzOvoc3Bvs2gKQ/TKyspQWloqhgDpns+0pqZG1nP9+vViLGlvCwBpgBkKhSRZ2O6ezXu/0MNUUJyMNh6j+Zudssr1J784c+YMZmZmEAwGVxzf0tKC/v5+zM/PY8OGDQgEAujp6cEzzzwjND82NibgRHt7uyVc1aRlPcxny8/Ir3VYsM4dcTKcTCVTo9w6P9B8ZpqX6nw/85lq0IN8Xuc88lzMPdXhsZr+7Z4bQT3TA6zvR5+DdJ9IJDA2NibeBW3MeTwebNiwAZ/85CcF3AuFQli3bt2KHFYmysdiMTz22GOWIkSmsaTXg/MzP9N0qL8z791JbqxVntjNQdPw4uJyEZQbbrgBXq8XIyMjqK6ullYDHFSoOzs7EYvFMDU1JRUH161bh6GhISwuLkqlYDP3MpFIIBQKScqC2+0W/YPV2SorKy3AmgaX9D2YOpAdv9f3ymNobPBzGtqkRzOklYNz1EV1CHRzLbXexf/tnpF+/tqo0xEznKfpjeLvdJ4T50IwPJVKIZVKIZlMIhqNSsqFyfcI+rW1tSEYDEqxiMsuu0xAtEAgYOH5w8PD6OvrQzqdRldXFyKRiON+1fO1k7+/qeFe/ZAPhjnsGJb+zgn10Qx4YWEBb7/9Nk6ePLni2KqqKmzduhV+vx8+nw9tbW0Wjw+FxNDQEJLJpJSnpZuZBgzRDHqBzFhhrWSZOQymMNSbiffN33m9XsuGCIfDwswoOLRxwRcNLjMEkBvczFeiJyifz4uBZOY36f+pgJqhS3YKjZn4q4W1nqd5D/zdwsICUqkUjh8/LkYTkWAq76FQCFu3bhXlPhQK4dZbb7WlsbGxMXz/+9/HxMSEI7PUNFVIgVyNubwb5mMqQSYKnM/npSgG+9ecPn3aco76+nrs2LEDwWAQfr9fjIW6ujpLXhCVDoZ88To+nw+hUAhu93JBkVgsZulGbvf8tNKnFTxzL/Bzne/D48y8JC1g7WhNK1/6XJwXvcM6bNZEOXm8+az1tU0jyURBTQPcvG/+1WEz5v7R85ufn0cqlQKwrABWVlZKrofmEz6fD7W1teLJKi0txZe//GUUFxcjGAxawpUB4K233pIwEOZH8Fya5kyafz+MqLXsHTve4iQXSI/5fB7RaBTRaBQzMzNSQYqjra0NdXV10ii1vr4ee/bswS233CIVxbLZLKLRKF5++WUMDw9bvPXagNPrp2lJe1AYJk2jlf9TtlDB07kPJp80c4BMBF6/WPiHuR0M8dbrZcoduz2q95VWQknvdvtFG4E6vFx7YM2QJ8qSfH65yTOVfF6Hhp/b7UZDQwN+93d/11J6fPPmzSsAAmAZQEomk3jmmWcQiUQsSrReC3PY8f5CeokdvdoNzXOcvne6jnnueDyOt956C8ByhElfX5/tOclrGhsbsW3bNgnhb21tFYCU0Ro0jEiH8/PzkgOYzy8XJuBx+XxePOJTU1MSAsn52+kHTuth7mtzr5NOiouLLXlFgLUSKUE9FmyhDND6D3UptmzQwLg2pPT+NvkgdUztSdLn0Qau3ls8J/VHepjYBmF8fFyMJhph3G+MMpibm5PQeY/Hg5qaGgSDQVkz/s8Ri8UktPOJJ54QMELfj5Ox6MRvzd9faLlQ9JWvfOWCnvD/1PF3f/d3XwBQrz/jZtDKCcdaHpjdbzTqQETbrgT1unXrRIiVl5djaGhIKu34fD7ZGLlcDj6fTzYtYA2hItHp3A+NvPAY4FyYjonM2w2NfpjenpKSEjH6iouLZQOam5RudJMBaAVDF2bQ4RBsjKuvb6IyesNoIW8ySlPZ1AUg+Jx02IZWODivTCaDrq4uJBIJWWOu+eLiIsrKynDFFVdISdri4mJ88pOftPTC0eOee+7Bo48+alEcVxur0WKhz3WS61rHanuAYaTV1dXweDwIBALo7Oy0HFNfXy/x3UVFRYKaFxcXI5lMAoAklvp8PlFWcrmcFBgoKioSQTQ3NydGmBlOYRob/Mw0IngM32tlVD93TU/mSwMRPAaAJSePQkkrnBos0PxHC1U+LydvghbCpkFbyNhzUoLMPUQQQxd7qampkb1OY8rj8SAUCqGlpUUUII/Hg7//+7+X89XU1Fjmf+zYMbz66qtynsOHD4vHqZAAvNCCUT+HQtewWyfzd3qt+R2BsIaGBrS2tmJxcRH19Rbxg7q6OlHUgeV9EA6HxcNKj186ncbIyAh8Pp8YVSZ/00ODRPx/ZmYGk5OTlgqG2puv+SM/swsbQkOaTAAAIABJREFU4r7TIW7acKfc0jkd2uvDvct5m3lavJZpRNHbr6uhmc9B833N57UHThv8em9zD2YyGUQiEenbxEH+WVtbi7vvvlvyjmkQhMNhS9lljmg0il/84hd47bXXxEjVuU3mWIveoY91UjgBWDy5/Nz0RKx2fv7VPISvoqIipNNpXHbZZRKZwjYkhcamTZtw5MgRAMv7JB6PW3gw561DzWZnZxEOh6VYlI5i0SCVqSPYzZvXcdrPphwxz8cXdSF64rXRRHpZWlqSdAaCSmxVokNwTUDO7lnYGUN8DmbRFe4tExikDOUcaQhNT09jbGxMdFBdCp6h1JTfmzZtQkNDg8ytvr4e1dXVcLlcKC8vRyAQkO/S6TTOnDmDiYkJPPTQQ+ju7hYAw85YLUSH+tmY7035/pWvfOXvbE+2xvGBx2mV4SQEOcwHZX6nN6AWPHTT/upXv0JXV5fttffv34/S0lKEQiH5HzjXa2lxcbmHxPDwsIRvcLNpJI5oAb1PdGWbSIPeZAx7KoR22BlNrHDGvAYiJxS+erPSaNBz0fPRFaP429nZWYyPj2NsbEzigk2EXSOVWgEwn4edwsw1M5Vtu3Pylc1m0dvbi4mJCeTzefF28felpaW46qqr0NbWJuhadXW1JexKj5deegk//elPpYO6Hk7Ko8n8VxOsaxG872bodcvlcujv7xfF6PTp01K6VI9LL70UlZWVcLmWk3O3bNmCzs5O1NTUCD17vV7U19ejra1NvHj0SpDWqNiw1Kk2lgFrSXotWCjoNGqujQRNs9rrY+4hff8cTseY9MU9pT1DOnRCG/M6zMTOm8VwIiphuoiEVhz4e+31NYEFvWe4ltyHDNGjZzmfz2NqakoU68rKSnR0dEgYTWlpKdrb2zE8PIyxsTFJANZjaGhIFNmhoSFLaV497Gj8QhpPdiiu3Rycji1k4GmaeuONNyz5A+ZoampCKBQSxcvj8WDfvn3Yv3+/tJGgIfXMM8/gyJEjSKVSlvw00rFWjhKJBKLRKOLxOOLxuHhQWMVSP3etWNl5cvg5YM390LlH9KQwwXxyclIKBplRB07n1bRr146C65hKpZBIJJBOpy18QD8D7hHz3vR+1XuBfD4ajeLs2bOWnEsi+g0NDbjzzjul4q3Ltew9r6qqcjQWDh48iJdeegnT09Oi3GtDTtNaIb3jfEah367VaNLDlDl6npFIBCdPnhR5MDExser5vF4vWlpaJMc1GAxaeK/WQ8gHp6am0N/fLzoBPSyah8/OzmJychKTk5PSqNuUARoo51rZeTtNbyR1H0bf+P1+BINB4Y2kIe499qnTvNXv9yMUComnyTwvdTGtj5m82pQfZilyhhCyrya9ynyZTZwJ8I2NjQnNU0d0u93iaXW5louS+Xw+KbWvc3C5j7XXNZ/PIxKJIJVK4e2330ZXV5cFkOQxpt7mNFbTiy7k+MDj9M4o5HHiMJFFDv2+EMJjd565uTmUlZXh8ssvt50XNztzB8bHxwVVASDoXWlpqaW8NpO1tYJmztMJbdFGkQ550xvRDOvTv+H1iEZMT0+LYcd19Xq9wiD0b/RfjbbbhS7xejr0xC48RAtgXh+wVzrNkC4TmdTHU1D39vZiZGREjEEqkfQobt++HZ2dnfJsqqurcdNNN9k+bwD42te+hsOHD1tyvDhWM5z0cXrY0ag+/t14nMzr2tF5Pp9HOBxGWVmZKE2m1wlYVhB7e3uRy+UQDAZRVVUluXw6/yEQCEg5VApRGth8TvPz88hms9IZXs9PK1F6vnaeSjuFymTq5r3aMXkahIDVkGL+nxZ+RUVFUmafc2coBAAJQ+G57Pa3HXhA49PsGcWXDm/k+ewQ+VxuuSk18yfpDXS5XFI+HgAqKiqwc+dOVFRUiOCnYkBQ4cCBAyvogPHu8/PzeOmll6QwCu/NpPP3CwCw6w2nh5MssJubuS81v02n09i7dy+qqqowOzu7IgeGPLaoqEiM1cXFRVRXVyMUCmFwcFD27sLCAiKRCBYWFlBZWbnCm81nmslkMDIygkgkgng8jkQiIeflfD0eD/x+v/S5owzQfN+8J8oFE8RikSAmwU9NTYmCq1F1v99voXvOVwNZem01Hc/Pz0t/K4YB0iuti7yQd2uvjp2irPn//Pw8pqenMTQ0hFOnTq2oIFlUVISamhrcfPPNqKurk2uFw2F0dnZKHo/5LN566y3cf//9OHv2rG24op6TE82bc1/LfuAxpscJsPe0FjqHOQfzO2DZqNm/f7/0YKqoqJDCV05jy5YtwgeCwSAikYjIQ+3R0cY5eQWrdmqgh/OijNe9LwGrF0nvUf2dvq7eD2a0AWnIBNmoLzBvk8AHow5YQIJ6nBmtoHU26mOmoav1NpPmdQU/HSpo7i9t7GSzWQwNDYmH2+Vyif5Jo0rLlxtvvNESru33+8UT2NjYaPE2ZbNZdHV1SYge204UMpTWYgSZz5L3os/3Xj1OHxhO7ww7w4kCZC1DPySn7/lXP/ilpSVMT0/juuuus1Tb4aivrxfhWFtbi56eHqRSKRFmZOyZTEYED5EAImEcJoqoUUFuOC047NAYE+WwI2IqhclkEhMTE4KAAsvhJoFAQISy7iWjhS3PrcOd9FpqxMlcd9No4tD3YCqcRLR0rDuZrFksgsfPzMygq6sLw8PDyOVy8Hg8EpJEpLyqqgpXXnklSktLhXl++tOftqWRdDqNn/zkJ7j33nslRE8zEP3eiXmsBZmxW8v3YjjZ/dVjbm4O9fX18Hg8mJ+fx5VXXml7rsrKSgwNDQlyVVdXB7/fj76+PjEwGK7EPhCLi4uCgDHHj8gtqxra9aPR9273mblPtADUe0ALMK3MmcLO7MMEQOiK5wWWc4UYekuhT2XK5VoOddDx7SbyaQdC8PqmMcChhT6wEizgoKBMJBLSb4SFTqi0AstFIvbs2SNVlIiW5vPLZYojkQj++I//eMXzmJ2dxc9+9jPMzc1hdHQUJ06csCiSnMP7ZSzpodfKjrad5mDyeVMuaNrgcywuLsauXbukiIapDAUCAdTU1MDv91saQ4dCIYRCIYyMjAhvyuVyiMViErrn8/lkDuRn4+PjiEQiUgpao/mcF6MFdDisVuT0upD+dA6H6c3hfqTRRB5LAE333NHrZgJhJn/TUQzJZNJSrIHhv1RC+bnOIdKRFLwfMyokEong+PHjOH36NCYmJkSBpIJaW1uLa665BvX19fLsQqEQdu/ejZqamhWRBV1dXejt7cWJEyfw5JNPIpVKSdilln12dFWI9pxo0e4zGhvmd+drODnJf37nci3nY+/YsQM1NTVwuVzIZrOora1d9TqdnZ04dOgQ5ufn4fF4MDU1haWlJUu+EOmE9EbjiR5acw/qZ6xlhaYvO5mmDTW9P02eTvqkLsEXQ94Y3qz3K/cgQVd9f3ZD7wHN+039jOdnSLjOUdTPR+9prg2NptHRUcmfdLnO5W273W4J6+M8tm/fjpaWFgGzg8EgrrrqKtTV1SEcDltakoyPj+PUqVOIRqM4deoUXnrpJQlJNo0nk/ZNw9Ycdrr2B4bT+zQKGU5OzGG1B6ffF1JmiY5/+MMftv2+uroag4ODkjNw4sQJi9HDzTkzM7MCYTM3kjZMODe9aezQbN6v03sTaZ+bm8PQ0BCGhobEM5DP58WwoMvZTM40PUvaJW8ea5eIaRefrREirRyaRgld+To0iMxPozJ8zczM4MyZMxgdHRWPCBVeKsR+vx/XXnstqqqqJKchHA5j+/btts/52Wefxde//nVBNKm424Ux6uegRyGUppCwu1CGk913NCArKiqwsLCAoaEh7N69e8XxPp8PNTU1GBkZAbD87Hw+H+LxuOQ28blXV1dLTxt69vidVvyz2axUlixkPJnCVe8X8350eKqdt9Vcb61UAueqmtFg5XVcLpcokDzW7L3BsFcaVXrOZrjJ4uK5Mrs6b0Tfjw774/cmgEH6YyNrGvXl5eViDLNvSmlpKfbv34/q6uoVQpYK4ve//31bWnrwwQcxMTGBXC6HgwcPYnx8fAVvMYfmQRdymCE7HOZn5rO3O0YPO147NzeH3bt3w+fzSVK13QgEAnC73dI7iIa01+uVz7TiFo1GkUgkhPdxP8RisRWhZhzFxcVSsVLnG+m9bPIi5jbo9ha6zxiN/7m5Ocltcrvd8pvy8nLxpHLvano2jSbToNIhhAxR1YYPAAFAdQijBjxMUJEKZyQSwYkTJ9DX1ydlw/l7r9eLDRs2YN++fWI0LS4uSuPiysrKFZ6VoaEhDAwMYHR0FA8//LCEMpNPOSmFpnGnh5NsKMSTAfscJztwxWkfFHrPOZPGFxcXcemll8p75v6sNsrKynDq1CnxztBTZBeNwhe9KqbxZK6hmQdlhnHre7cL4bPjSQQNZmZmJCQvmUxKf0pdoILHMjxOgxPa2Devt9rz1mAFdRoNpGuPlJbf5PGM2BgbG8PAwICAZFoHo9HEtXK73VJBkTKrubkZu3btQjgcRm1trWWN6GmamJjAU089hf7+/hVhuqvRl2m0Oh3P811Iw+mDcuRrGGsVynbErD/Xf7ViNjs7i8cffxxtbW247bbbVpyXSmdRUZHUxmcFJSIUbEI5Pz+P9vZ2hMNhKbxgEhEFF8M/8vm8CDFz/qYx43TfWpgxrCGbzYohxz5TWkhRoNIItDunaTixvwCAFSi++RuNxuj1tkOgKNSphAOwNZiWlpYsRhORIq4dFYTi4mJcccUVCAaDFte22Slbj8cff1z6I5ihVk7rvtaxGrr3bkchAIFrls1mcfz4cdTU1MDtduPNN9/Ed77zHXzxi19c8ZvKykpcf/31ePHFF5HPL4ddXHrppYjH45iZmcHCwoKEEdEAZaUf0jDpnkKKKCQru5lAgjbQzeet104bIeaeMve4NvD19XgMr0uFgMfRc0bDRxtZVCwp8JnrBazs56LDRrSC4XKd88DpedkJIRp2VCjS6bQU7AgGg/B6vZibmxOapeekpqbGUoWMrREWFxfx0EMP2dLKCy+8gOHhYQDLjZ/pZV+L0fR+Djv6NtfIDjxwEub6XkgDY2NjOHXqFCoqKjA2NobW1lbH+WzevBnT09Po6emRvbBlyxbkcjkcPnzY4nGZnZ1FT08P+vr60NHRgfr6euRyOckNBM4ZFDTKa2trpe8N58s94RQyRBCMg3ydBhANORo6AKTaKitKsimsjnTgPtBgiJkLxfkUFxdLWGg8Hsf09LREY8zNzSGbzUpeqRk1oeUx555KpdDT04OTJ08iHo9bcjOp2La3t+OSSy5BKBQSOi8pKcFll10mCf7moML6+uuv4/jx45Ljpb3KdnRzPsNOmb6QAIOT8Wa3nnxWfX19iMViaGxsxOLiIiKRCEpKSmyjbPTo7OzEk08+iXw+j5aWFiwsLNjm/prhnbFYDOl0Gm1tbaioqLDkauuS3HrOPKf2lNpFvABWrwjXhIYH+2wybJRRLCYIoQ0aMwTW7/fbNrXW+8Ocm6Zf3biZsqIQCKLzYsnT+/v7pUKw3t8mT3C5XOLZptHlcrlw5513SkiiHhMTE0gmkwKinj171lI0SdOPlpt2NGfK6NWMqAs1PvA4vTOcPE56Q/IzOwPJfGBOwlYLWf1/LpfD6dOncfHFF2PdunUr5hcOhxGLxeByuXD06FFR8vl7Cha6g/P5vGXzaWGhX5ybibCYc9dM0Ayf0Ir+7OwsotEoxsbGhCHYNSadnZ3F6OgoBgYGMD09LQaWnoMT0qXLjuvy4zofwIw/Xu3ZMPmRTM4u9ndpaQnJZBJvvfWW9FAhcspnyC7ov/Vbv4VwOAyfz4f6+npUVFTgtttuc9zEzz//PP7hH/4BqVRqBeJvjndrMJnrqr97tx4nu+vZMTMapKFQCEtLS4jFYrjoootWNEXkWL9+PaLRqNBxe3u7xdtBAyMcDksYApUybRRQMFF50h5ZbWDooencXDdNW/zMiVlTSDMECThX0Yz7QDdOdrlckvCu97QeVAC0F8kOIQVW7nnzHvX963wBDoaxMBQ4mUzC7XYjGAyirKwMS0tLEvvu8XjQ1taGjo4O4Tnczwzh+/3f/31Ho+DRRx+V8N5HHnlEeJiT0WTey4Uemi4KCV67cBonWWAqlsC5nlmJRAL79+9HPp+XEDunUVlZKSi29jwFAgHE43EL75qdnUUymcTw8DASiYSluTd5aU1NDerr61FXVyfNxRmiZ+4T8lodNaCjMkgzDAvi/dJbqatyUQErLi5GKBQCAItxpWnSDOfmGtt5fV0ul4QhEhlnXofp0dVGLA380dFRHD16FEeOHMH4+Lglx5D8vq2tDR/60IckVDWfXw4Pu+666xAIBGwr6AHLPcoOHTqEn/3sZ8LrdZU1OzoyecxqiqCdIW93bvOaWt9xOqfTee2+13yT89+xY4fQfD6fty3Rbo7R0VHMzs6Kcex2uwUUA1a2UgDOhWQyvE/zQhPUsstZ0oq7SXuah/M9+WQikUAsFhOQj/tB/yVP0ykA5nW4N/mctBeX+1uvNfeSjpLRkQqmvgeck0X8DffJ2NiY9FUCYAl1N3UTl2u5qMXevXtRUVEhz4WVU01AfH5+Hl1dXYhGo0ilUnj00UcxMDAg97MWfv9uwIUPQvXep7GW4hCAvSKq/18L09Lf6+NY2teuPDkTxjOZDOrr63Hy5ElBq7Qix03MUuaBQGCFQWEqVFp4kFk43YdGKEzXKtHMvr4+QT4ppMgomONw6tQp9Pf3Y3JyUpLN3e7lBp+aeenrmutsKrIU5Lw//dKMUJ+TDHZ4eNiCAJEx6LCoRCKBN954QxAvhpJREPD5bdiwAVu3bkVpaSmqq6vR2tqK9vZ2QVXNMT8/jy996Uvo6uqyhG6thYkUGmthMFxHu0Thd3Mtu79c+2Qyiba2NvEMDQ8P47d+67ccz9nY2Ije3l7xSgaDQVHUiXYVFRUhHA5LPxQ7BI9rqvOeSJd2RrVG4IBzAtkuEVi/eE0thLXyp4UlcC4XkKhkPp+3eCe1EkkBaFa5NBVHvjSowP2nB1FIJ4WB4SY0mLhuwWBQGrZGo1FpcLh+/XpcfPHF0ryac+P+2rFjB+6++27b5/z4448jm80il8vhxz/+MSYmJmw9f7/JsRYl0jRInebppHTq36fTaWzduhW1tbWYmZmxBc84mCdaWloqlfDy+eXQyaamJoyMjEjIDZV+GgWpVEoUMmCZP1dXV0vlN0Yw2AFRukKXnTFOGUBjQIfMzc7OYmJiwlK6mPuyrKwM5eXlwoe0UadRctKmafTrtde0z/B1AlrZbFaqnnG+VB6z2SxGRkbw+uuv46233pIwcxM88Xq96OjowK5duyRPh5Efd911F/x+v2MI2tzcHI4cOYIHHngA/f39orRqA8ZUbp3AGSfARp/DPJc5VjOc7HQaJ9q32ycaeKAR39nZiUAgIIZqbW2tLfigx4kTJyTHpqioCOXl5SgpKZHwbV7LvF/SISvHmTzcab14PlNH0kaDpnVNQ4yMsCtWZeadaxmvDSfKNl0tUnuQNEBI+tPyQnvM+J0ZwcL3BNpTqRTGx8cxODiI0dFR8bBq3VKfT++HvXv3oqWlRQy8b3zjGwCWc/lYqANYLhJy+vRp8QaeOXMGzz77rKWaqJ2c4t+16tY8Rh/3geH0Po21VtVzYhzmcFJQ7T7TAmFmZgaXXnrpiv4mwHKlqqqqKkxNTaG6uhrHjx+XjaKVKTKMdDqN6elpS7ysZo4momp6lUyUwvzeRGBYrnVyclJc09w0jJnt7u7GyMiIuLHJvDOZDIaGhpDJZBAKhaTIhZOA0BtKPysqiU5Gkslk2KOApcT1s+H6zM7Oore3F8eOHZPcAApoKiHpdBou13KOylVXXSX5AcFgELt377b0NTDHAw88gB/+8IcrSi/bMY3zGU5CWJ/zQhlO+vxOymY+v9zQtLm5WVDDSCSCXbt2OZ6zpaUFJ0+eFMXa4/EImk0BwzCjsrIyKeurlXePx2PxirL0s859M9fLTBbWibtmvLu+b9PjaeZI6oIlXA+CB9lsdgUaaJ6TRqedsWQea/cszBBWc35UcqempsRDwGT4srIyBINBAJBmnW63G42Njdi9e7eEX3k8Huk1NzExAa/Xi29+85u2z/epp55CJBJBIpHAPffcI4bxhQAO3suwC+XhKETneqymXJp0MTk5iX379iGfX27kqStQ2Z27oqIC9fX1Erbnci2jv01NTWKkaAOUEQHZbNaSS1FeXo6ysjKhBa2EagPFLrTJjDggbVMG0eOTTCZFQWP4D6/j9/slZEt7m8y8VDsaN2mE31Ee6vwhVhRkTyFW5xwfH8fhw4fx0ksvIRKJSPI+9z3nWVxcjA0bNmD//v2oq6uT4kzFxcX41Kc+5ZhHyXH8+HHcd999OHz4sESMFOrZxPspZLwX+nw1/aSQ4VTo/E5zApyjV6jbNDY2iteZYKOdrqPHK6+8IqkJpNmysjLkcjkxbu10Ka2fZLNZkQ26UI42MjgnzXvMlz6nNkIYysxqo9qgo05GoICfOela+q/Ow+IeBmDRrfTctEfKNJz0PdIrnEqlMDExgVgshtHRUdFvNCDIa5jGh8fjQVNTE7Zv3y574atf/SoAoK+vD6dOncLZs2exZcsWAEB3d7eE1U9OTuLnP/85IpGIRR7qv3otzHVxGna0q9eN4wPD6QKN1RrgAvYhZKaiW0g4FlIC+NulpSUMDAxg9+7dtvG/paWlGBgYgM/nQyKRkPwConi8Ho0SljMnMqyNCici0xvVRFj0S3/OzRCLxSSHioxpYmICfX19GBkZEeUwn8/LORYWFpBOp5HNZpFMJjE3N4dQKGSJjbUz4PScdeiT6TmyM/IotLLZLBKJhITYaeOLXqbDhw+jv79f5k7kn/dHFNXn8+Hqq69GZWWl5GO1trbalt/mePnll/HVr34V0Wi0oLvajq5WQ+rMYUeL/OxCeZzM//V7oo41NTUoLy9HUVERpqenUVRUVDCvI5fLYWxsTMI12ByXzxNYFiRMaDeNJ66VpgOWZs1msyuMITMUgc/SDoXXypxWMk1vp14L7j964ThfKrZTU1NCU2wSrUuUAytLkWtjSIMNnJMOr9LzoqFEoT86OopoNCox6EtLy1WsGHa6tLQkoTNutxsbN27EJZdcIuGFDMcElkNs5ufn8eMf/9iWVl966SUJCbnvvvswPDwsobKm4WTHp/TfCz24ZuZYq2K62vF2yOr09DQ+9KEPIRgMIpVKobm52fG8DE11u90IBAIYHR2VZxUIBLBp0yYp/a3z4DTIRc9sSUmJpVS9GdZkovnMo8hms5YKdWYEAuk5mUwK6h+Pxy1FK4qLi8UgNxVGk2ZMA8nOMNVz5vmXlpakKAU9qTSYTpw4gTfeeEM821wT7jdex+v1YtOmTbjqqqtQXV0tsrSoqAidnZ0SFm9HM9PT0xgcHMSLL76Ip59+GpOTk+JpNhU6p7FWOl9NuSwEltFQdNILVgMMTLml+SJ50vz8PPbs2WPJrTMbP5uDvcYIlrEoFIEFs5S+notWynO55VYKU1NT0m9S06rWbXS+j+6Fpz1N+l7p0eVc6IVkZAP1EhrgOryf59J7Tt+DXnNN1zqSQRtzppeU5+IxzOGj/sgiDfT82IX2mfy4qGi5BP+ePXtkj/31X/+1rEdlZSVqamqk0Mzk5KT0bMpms3j55Zfx2muvWaqmFgLK7GjPDszSQ8uIDwyn92msZjg5MQw7JfF8hTk3Bxn+1NQUpqencfXVV9sePzg4iLm5OTQ0NGB0dFSEIwUpYE1wZEIl3cgayXDyzpgbzY6BkNmwRHE8HhdkiGjQ4OAghoaGkE6nLYLa5XJZulNrNzMrwVBRNAW3yUzMuWazWWSzWUu+El9zc3OCulJh1JWX3O7lAgGpVApdXV04ceKErC/XjQKVaCYR4ksuuQT19fXCLBoaGnDjjTc6Pvfh4WH8xV/8BU6ePGlB2fV92qEvpiGvx2rCzcmoeb8MJztmFo/HsWHDBhFc7NfR0dFhe+7a2lpkMhkMDg6KwsewPA7uVfYzI71pr5H2yGoEnsa6DpXQwscUVFrA8bzmy85o4vn421wuh/HxcUtIIJ85P2POiQ6h4jm1sNS8qlAoofbiElQZHx/H+Pi45MCQ1l2u5ZwrlhVfWFiQMA6Px4Nt27Zh27Ztsp+pYLpcLoyOjmJhYQEPPPDACgWYaOP4+Dimp6fx2GOPSelxUyFxoqP3e5jRBnZzsQPPCh3P/5329eLiIqamprBr1y4UFS0X/nDKAWHz2Hw+L5UNU6mUKGZ+v1/ACNKY9mwQPEilUgKqaVlnhm/yPsnzNDilUXSe2wQCpqenRUkj781kMpaqesyF1WFKHCbib8cf7Y7lnNk7h96HoaEhnDhxAsPDwxbZxIbtVOypAG/fvh2XX365tAPgWur2AXa9s2KxGM6ePYtTp07hkUceQX9/P2ZnZ6XRsN28SRPno0tonm/KACdjaq2GkzmnQsaZ3Rz0b2ZnZ6V4FYGbZDJpqbpmjvLycuFV9M7ofpLFxcXiwdN8244+CBSxYqdZgEbrNjqvyAyV00VKuJempqbEGKYOQOMonU6LkcDeaDRe9bxNGUPQzszp1nychp7pZTL1Iuo9DMsbHR2VfCzyfH1errU5PB4Pqqurcckll4jRBABXXHGF5Tifz4fq6mq5HvXP4eFh/PznP5dm6Sad6fdO+oyTV0oP/fkHhtP7NNZiODmNQoriWgQ+CVbnZMTjcXR2dqKxsXHF8aWlpZiYmIDL5UJjYyO6urpEiOrzaearw9LGx8cFUebLzhDRyIsuL8vPaIjwnETKWVVvcHBQqmm53W6JoQcg59MMS3uiGMKUzWYtrnW9Zub9mbHANPi0sZTJZMSo0saKy7XsPcpkMujq6sLx48cRjUYtfQo0oq89TR6PB83Nzejo6EAgEEDbzaRNAAAgAElEQVRzczM+/vGP49JLL3V85tlsFt/97nfx9NNPizFQKGTDjp7svBlrEW7mubjm72WsZjhpg3BpaQmDg4NobGyUKldjY2MYHx+XruPmaGpqwu7du/HGG28I7ehnw3tm/kd1dTXcbjcymYzlGevQCc5HG1C6t41G13RpbT20cNYC2FTeuBaaZhOJBCYnJ+FyuRAKhSTPg9deXFxEIBBAMBgUutNzMIEMJ0+B5i/MO5qZmcHY2Jig37rQjMfjkdBHghcMq8zllpuWXn755WhsbBQFgF7YxcVFyX26//77VzzH+fl5PPnkk8hkMpiZmcFPf/pTHD16VIymtRhOdt6m1Xj0+Q6utZPyulZ5YPeZ0/nogdyyZYs0gHbyOjEslQUQ2GRcN6v1er1oampCTU2NIPaANYk+l1vufxSNRqXans5xMo0m5tVqLxOVVx5HucGSzLFYDJFIROiCg3yexUaoIGqQwuTxpPdCe81uDswFS6fTksdBvgss542Vl5eLsqu9Bh0dHdizZw/KyspWfFdeXo7i4mLU1NTYhpyxX9MTTzyBt99+W4xG02hxMgJNQ8Ru6HUyDV2n89nxfG048b2dgupkrNrN2QyDJq/duXOnpfjB3NycI0hAj2RdXZ30LNO8jZVUzZLu2nPDv/yfkTATExNIJBICBjAMXHuezBwlGiPaAzUzMyPFpTg/gtbMFdUeTZfLJcaMLhph3heBQF1gi/fCazOfUOs+Wv+ZmZkR7/Pk5CRGR0cRiUTEO8Zr8dnrSA5TppSUlKC1tRVbtmyBz+cTufKXf/mXtkBTMpnE4OCgNNpOJBJ46KGH0Nvba5GxWkbavednTuCAE11yfGA4vU/DyXAyFXY9TE/NagLTaZhMj8wkFoth165dK4oKBINBFBcXI5FISILlwMCAuLLtzs35knElEgkMDw9jZGQE8XhcYk95LJEVvQlpMDE2nEIpEolgdHQUY2NjGBsbk5wFEmtpaSkqKysFndBFLdi010R+6MlKJpOi3JnKoGnomUikVo41CmqnzE5PT6O7uxvHjh3DyMiIxRClwUSPANcgn8+Ly5ohNnV1dbjllltQXV3t+Lzn5ubwb//2b7jvvvskH8x0ha9GU3YM43yMdvO7C1FV73yuv7CwgN7eXjQ3N8Pv92NpaQnRaBR9fX245JJLbH9DJs2qklQ+NLpIIcAQoFAotMIw0IaEXu+lpSWLx5JhSNroMHMu7IaJjvNYHR7HSmdLS0vw+XwIhUKCUmokdHZ2VppFkx9ppVeHqJgGkwZj+BkLx/T19UlVL+Ccccjm1BTUS0tLoni6XC6UlpbihhtukBw+GhhsNzA+Po5cLocf/ehHK8rQjo6O4oknnkAmk8H4+Di+973vobu7WxRxO6PJidbXsk/ey9CKl9P3hb5z2rcm3zHPl8vlEIlEsHfvXvj9fiQSCcdCEfSU0nM0MzNj6VdEg6aqqgrNzc1YWlqSZ655J+ktlUphdHQUiURiRQ6FBqb0M9DKNo/LZrOYmJjAmTNncPr0aUQiESSTSVHSKisr4ff7MTMzIz3A/H6/yALTYNPnNsOktJdAK5I6f2NsbEzCvZhfS7rXyikVefJ2v9+PXbt2YceOHVLlUK8BwY7y8nLs2LFjxfPp7u5Gd3c3nnvuObz55psS3aDDG/UzeLfDTolcy1jNcLK7jhPSr+dgx4s4ioqKMDc3h9raWjQ0NAgPplHhVECJHqV169ZhbGxsBahF44pAAmnc9KCYvJlGWzKZxMTEhISSxuNxTExMIJVKWQwkbZDQsGL+FL3A2uhiUZJMJoN0Oi0GzPj4uJTlZv6unh/5ug6hNY02O28YDTXmEzJ/e3R0VHQ9epi4fiZIQrmqvdBFRUUoKyvDzp070djYCJ/PB4/Hg/r6evzRH/0RvF4v5ufnV9Dh0NAQotGoAOuHDx/GoUOHLPrVavRfiO7WMvR6cnxgOF2gYWc4kXAA5xA8bQEDhV2IhRiS/p8bPplMori4GOvXr5ekbA72jpiamgIAbNiwASMjI1JgwA7l5nW4AWnETE9PIxaLoa+vDz09PRgaGpImidzw3IDj4+OIxWIYHBxEd3e3HE/0mqgLkctgMCiVVXi9paXlhNra2lpUVlbC6/ValEDNPMiYJicnEY1GLY1QNaJkokDmZtQCVj9PhrgcPHhQQgq1MqqNZxqdRE1Zynfnzp2Cml522WXYvHmz7XMGlgXv/fffj29/+9uCAut5mTRkKimaXpxo0o6+7OhAjwthOOm5mf+bg8paT08Ptm3bJkr29PQ0AoGApcu4Ho2Njdi1axcOHjxoCVXiOQFrTw8iyXr9eJzbfa5vkrnmNKIymYwloV1XJOM9FjKmtDKiw2YHBwcFPCgvL4fP50NxcbEocUT46QUlGq770JhFKHR5aFNpWVpaTsTmfiUNEzVn7x7+huElFLJutxvNzc249tprxWvMe2MlvbGxMSwsLOBP//RP0dLSYlmHoaEhvPzyy0gmkxgbG8M//uM/Suns81Uc34uSeT7D7pnaGTxrpXk9zL2rFbxUKoWSkhJs27YNbrcbdXV1tkZcRUUFIpGIhAFp0I3KP+kiEAhgw4YNCAQCktOpeY42xicnJ9HT04PBwUEJcdPAE5+X6fGkAtrd3Y0TJ07g1KlTSKfTcp8+nw+7du3CJz7xCdx2221oaWnBq6++KvlGpHHKXDMcyi6/lsYUZQXnMDk5iaGhIfT29mJgYABDQ0OWfC/uNV04icCgy+VCVVUVPvzhD6O5uVl4k66AR/S9uroaBw4csDyXfD6PEydOYGBgAEePHsXBgweRTqclRM+J15v0Yfe9HR8zQcS17o/zMZwK6S5rAehM8GNsbAzbt2+Xps6Li4tIp9OSP2l6nwKBgNBSMBiUSBbNy1nNkPxLh2lrw0ODq3a6EeloZmZGjBx6dBlRw+fJXKHJyUmppqejcliVNJVKSSSDplnOh0aPfjY0ijTgxvPq/l8EstPptOhJNFZisRhisZiEYXN9dAg3nwnnYUYvkM4vuugi6Ynldi9XQL7llluEFwQCActzPnz4sMyDUUhPPvmkeLbt9Ji16jNOn9vR4/thOLl+U0Lof/pwuVyHAVjKe1HorOG3AFaioasJUf2Q+T8RFCpJ7e3t+PKXv4zOzk7bYhG9vb14+eWXkclkMDc3h2eeecZSwplD5y2Ym9dUBLXxpnvG6JwKbeToz/P5c4nqPp8PgUBA0Gi+SkpKEAqFLI1K2WGbhppmeho5p8ALBoOoqalBbW2tJIlqw4lrqfOWODd6jjKZDCKRiBiEmqnSYNLFImjkMCypoaFBkGF2kf/sZz9r+6wZonH27Fn8+Z//Ofr6+izN8ZyMPSd6Wo22NGOy+0yfk56NCzVWm6dJY+Xl5fjsZz8rz8rj8eDOO+8saICOjY3hT/7kTwBAUGrSM40JxnYzHIlIMwUi94jegwx70EJWz5d5VBUVFaLo6ZL7pkDmeRcXlxvxxmIxSx+dQCCA8vJyUeBo9M3NzWFiYkL6kDAcdOPGjfB4PJZYe03vZi4Tw6EYz66FZ0lJCQKBgMUTzARmhpQsLi4iGAzi6quvljAm3l9JSQmAZQ9qb28vlpaWqyp96EMfsjyrQ4cO4cSJE1haWi58853vfMcC8BRCHu0Uwt+EzHK5zuVr6XmYxxRScO2OtztGPzuubW1tLb75zW9KQ1pzTfV4+eWXkcvlsHHjRjQ1NeHIkSM4evSoAAfMyeT5u7u78cILLwjQpsOHqGToufl8PlRVVSEcDqOqqkq8L9obS4MvmUxiaGhIkHr2aAqFQrjmmmuwb98+aZ48OzuLRx55BPfee6+EgLa3t2PLli0IBAIiB8kTaPzncjkBMMg/qXgzQZ+J7+l0WrwVGgSz84aQrzc3N2PHjh2oqamRvcu15P2Wlpaivr4eH/vYx1Y8jyNHjmBgYAB9fX145JFHJJqDoCLX2Y7eTb5tR/ea5kz6tANunfYLW4bo4xl6aw4nkM6O15uAgBl2WVxcDJ/Ph61bt+ILX/iCgMLkt0VFy9VoL7744hXhX/39/VIx8syZM9JGhCFkExMTOHv2rBgRujejDmczw7fpnTXv0zRy3W63gFwE10hbeh9ro17vKdKtKSO07lRWVia05vV6UVFRIQYmebT2gvE61DHMEDjKMhrGGoTh3tHPmPOgJ6+trU0qHdMDVlZWhmuvvVYKYZWWlkqo6tzcHF544QVJi5iZmUE0GsV9990n4JqdnqMjhEw6cqI5p2E+Q93A+p3v31OIwgeG0zvjvRhOBc5Z8OHbEQCNAwoNv9+Pm2++GZ/73OfQ2tpqO5+nnnpKEoBZkOHZZ5+1uJk1isDNpGN4nRQTOyFjKvk8H5mBRsCZCMnPgsGghGqQoeju7qy+ohvc6bXSCLu+jkaH9Zw5X/1bovl0q+tkT94PnwOfoWY+ZWVl2L17N7Zu3Sr37Pf7cfvtt9t6SoaHhzE5OYnh4WH80z/9E86ePSsN8sjU16J4mfRTaDgZTvytKYRNIfpehnndQkonn1NFRQXuvvtuQZwDgQB27NiBj370o47Xue+++/D4448DgITaUCiyolFRUZGFxtnXg/HtuveTft7MYaPgM+dt3heFIgUwQ4+WlpYkRAM451ngMSUlJZbeZdqLlE6nEYvFkEqlBB0OBALSw0cj4UQL6RmjEWjmUxApNEEBDWzk8+eaDq9bt04EuQkqsMx7LBZDPB7Hd77zHbQYnqZoNIrHHntMFNhvfetbknfGdbP7a7e+dsL2/RpUIu08PXrv2PF4fS92iqVWUDjM/LmioiJcfvnl+NKXvgSfz4eamhps3LjRcb7Hjh1DdXW1tD2Ynp7G888/j1QqJXxONy6ORqM4cuQIurq6MDExYfH82aHyWrkkP9eeGo206xyUcDiMT3ziE6isrER5eTk6OjokwiAejyMSieDgwYN49dVXxYgLBoOoqKgQBZveUIYkci8wJ0Xzd4IOVCC1903niWggjYpfQ0MDtm3bhurqaslnoveBPfnYZ629vd3WmO3t7cXZs2fR1dWFRx55RMr2ZzIZad7tBLTqoWlL7xWT5px4vKYz87z8zM5w0s2Bz2eYIIIJCmjjyePxoKSkBMFgEFu3bsUdd9whUQE0OFwuFxoaGrBz584V12IofSKRwHPPPYepqSn4fD7ccsst8Pl8eOqpp/D2229jdnZWvJmMGtDyXnsPTXlv6kqaR/I3Tverf6ufmVM1PRPkM/kC5Zg2ksx56mdvXlcbbjTqTGDQjK5if7eWlhbJddVe8ZKSElx//fWoqqpCIBCw5OI///zz4jmk5+7JJ5/E8ePHV+QP62Gng9rpLHxfaLzfhtMHoXrvjLU2wHViWHqYypWdkVQIKdLv8/k8IpEIOjo6JGHbnFNFRQUmJydFOauoqMDWrVslzlWHp5mC3ESoCyFedveg70N7hJikzFAedlOvrKxEXV0dGhsbJZeCSiDRGG4unXBsty4a1TEr3ugqehSkdGfrAhF6bezuTd9/cXEx6urqcOutt2Ljxo1wu92CnHd0dGDv3r0raKG3txcjIyM4c+YM/uVf/kWqKmkm6IQoFhrmM3IyTsz1M58b31+oUD2766+Fyc3OzuLNN9/Erl27pMjA+Pg4Tp8+7djnaceOHVi3bh1eeOEFSYwPBoNoaWlBMplEIBBAOByWHDoAEpqnc0AosAgyaIPcromsaUxrwcoY+Ewmg+npaSSTSVHu3G639KwJBoMSJ66T8Skoy8vLLSGuNLCZ4J5IJCQmf3JyUjy2MzMzlhwtXbGJSdQ0MEl7vC5Rwy1btqCtrU0URdKHLtnPsBH+/t5775Uy5Ho89thjmJubQyKRwL/+679ainWYxoNJK4UQcyfg6UINKjqFjH49t0LAh7kPnOZufj42Nob29nbU1dVhYWEBZWVl0rzVHDyGz4iGks/nw/j4OGZmZjA7OyseUu6ThoYGqZhIfupkoFIB0/yUkQ7ku/TI0+A5cOAAWltbRfnz+/1wu91IpVIYGBjA4uIi7rjjDnz2s5/FK6+8gomJCTH4SeeRSETCwVmhj818ycd1+B49+VxLGmRaZmgFOBgMYu/evdi+fTuqq6vh8/kEZGG7AobLBwIB7Nu3D5s2bVrxDMbGxjAwMICuri7853/+pyiPlDfaAFoN2HLSGQqBUoVktd3x7ybH6Xy/42faGON1ioqKpHhAe3u7hAADy0VkGCbHnlkc5eXlqKysxOLiIjweDyorK6Upd0NDAzo7O9Hc3Iyenh54PB6EQiEEAgGhEw47PqQNJdMgMf/Xz8lcd3OvEwjX/Ta5LjrHSBs5pFWdw2QXmcJ5aaNND/JqU0/Sug/5usfjQUVFBS666CLU1dWt8FYTPOYeqaurk70wPT2NkydPYmRkRPK9MpkMjh8/jtdff132gJPRZLdu+jOnsZos0BFSHB/kOF2gsZrhVAi5KcTMzKEZph3yaDJPohGJRAItLS2C4ulRVlaGkZERCTcjYW/ZsgUdHR0Si+tkQGl3ukaTTQRUJ8ibyiWV0LKyMtTW1kpTxXXr1qGhoUGEeHV1NVpbW1FRUSGuXybxV1VVIRgMipLm9XolYZ7Kmt09mKioWbLZVHLtmI+doavPV11djeuuuw4HDhxAKBSCy+WSmHWPx4M/+IM/WPGsu7u7EY1G0dvbi+9973tSytms0GPHCFcb50Nza/nt+2k4reU9BcaxY8ewZ88eiyCpqalxrLi0fv16XHfddXjooYekCMntt9+OLVu2SHlgj8eDnp4ezM7OSqgBQ+RCoRDKysrEmOVz55wAa1NN0rqppKwGpNDTQ8SaSjlf2lvF8DmCGZqWzTxA07thNw/uaV0Cl3zC7/ejsrJSFN1wOCweLR0ORQ8paZYVJbdu3Yq/+Zu/WXHNyclJPPHEE5ienkY8Hsc999wjBWPeDc07Hft+GVDkvXbGWyGjqZAy7HQdkxfz83w+j66uLhw4cAAlJSVIpVIFG2n7fD7xMLIReS6Xg8/nQzqdFr4KQJQ48ui2tjY0NTWhtLRUQAVdmtpUfE10WwNw5OtUuDZt2mRZs8nJSRw5cgTRaBRLS0tobm7G9PQ0Nm3ahJMnT9qCERoAMNefSp1OmteAlJ2yxlDyjRs34oorrkB1dbV4qckPGSLb2toqIF9dXR3a29tXrP3o6Kh4mx599FEMDg4K4q6NJj3v8xnnS+drUTrP13BymtNqRp7Td9xf6XQa0WgUGzZskPUngMoeWO3t7StAFfa0XFhYQCqVwunTp3Hy5ElcccUV2LBhA6688kqcPn1adAl6R2iYaEOEvNXMm7Izqjh04R3TE2XydrOVhEnPpF/yZfOlPVx2a2vyK0YTmRX3zDBcDdaFQiF0dHSgtbXV4m3X16fsrKiowK5du3DRRReJjvzrX/9aiq8QwOvt7cWvf/1rCZPXe9EMlbWjKzv6sTu+0ODa6vFBjtMFGi6HUD1dMUgdK//bIUd2D9IJDbL7TCvsDOUpKyvDTTfdhFtvvdW26lgul8N//Md/IJPJiPByuVyyOTOZDJ544glB+UxGYTIJDu1OpheJgkxvKJ6jvLwc4XBY1o0IOxlMY2MjqqqqJPRiampK4tvdbjey2SwGBgbQ09MDYFkxZoPcsbExjIyMSEwx100rnroxrZlcbDJG/bx0Qj0R02AwiHA4jPb2djQ1NVl6KSwsLCAej2NpaQlf+9rXLOebmZnBqVOnMDU1hd7eXvz0pz+VfAKzWqFmoOc7TMPRaTih+logmK7sCzXWajxpZun1evH5z38eVVVVkoeze/du7Ny5s2Do7F/91V9JbuDGjRtRXV2N/v5+PP/885iYmEA+vxyCxtLHwDlhyNBNxmObzQy5xtwjpCWTwZuCUYeWkmYZikhBx5Ak0jCNFhos2ovExr8AVszNCbnkdzTGuJ99Ph/q6urEmAwGg/D7/QCWi894vV65Pr1m+Xxe1u4LX/gC9u/fb/ssHn74Yanm9KMf/QiRSMQSElxI7jh5cQqN90OOMadLP3fAnn/rYcoL8zd27zk0Yszntn37dvzt3/6tGLeFGmqz6EhPTw+mp6fFU0X0l0BPbW0tvF6vKPbaU09PD3lzcXExUqmU9FHTTcbN/B+N1GtlsrOzE/v27UNpaSmOHz+O/v5+CUUvLS3F7t270dfXh7feekuKV9Cbr4sykAfTC8vPAKxob8G11HkcpPtNmzaho6NDcqj4vMvKyuT3zC9hDmsoFFpRCAJYzrs5deoUent7cfDgQbz99tuyZ7i2mu5NOnKiFTv+vta9sxbjxy48W69HoeusVefR3+s8IPI5GvAsnf87v/M7CIfDyOfP9QxzuVzo6OhAQ0ODxfs0OzuLl19+GdFoVLyRlZWV+PznPy+FIgDg9OnTuOeee4QmFheXKz+ePHlSIgLMvFbqXgTJuKe1N0qDCzTUTSNHA9G6UqnZt1F7bO30Ad4zf6NTMPR1eH+6aAv3EJ8DDT7eYygUEr3MDCXURYe8Xi/8fj8aGxtxzTXXyN71er3IZDJ4+OGHxavHfk2PPPKI5Kw7Ad92tGICM050vxov5trqNgjvHPue0LYPDKd3xmqGE7C6gvrOeeRYvrd76HbGmB0SwFwIr9eLcDiMr33ta+js7LRtGDczM4Nf/OIXQiTciCy56vV6EYlE8PzzzyMajUrctW486YSsMlmQHjDdtFPHLxPBZqUtt9uNmpoaeDweLCwsIBwOo6mpCV6vV5DR+fl5qSQ2PT2NqakpZDIZ8TjRYzY5OSmlyTlXLWT0XLRXxzSeNOJBBlJXVyf5I0zGXLduHSorK0UhIBJbWlqKxcXlZpV/+Id/aAlRmpqawrFjxzA+Po6enh48/PDDiMfjUibVTOrUzOTdjkJCy06Jszv2/TKcOAe7//VnmpHymXzyk59Ee3u7GDvl5eVoa2tzLFcOAI8//jjOnj0r4T7RaFQQMApE0gkTbs25ULCR+cdiMfFIaeGpczk4b10RTCtvPEaH7FEB5B7XyieRQsDaGkArO3aGCK+jDTvSbFVVlZRPLi8vF5Sd96KrpLE8OsMmBwcHRQBdcskl+LM/+zPb9c9kMnjxxRcxNTWFQ4cO4Qc/+IFFSVir4mf+v9p4P+SYmeO0lms4GU12csEJQDONca/Xi5tuugmf+cxn4Pf7EQwGsWXLlhXXjkQi+Od//mcUFxfjoosuEgWLNE26crvdqK6uhsfjEYNKJ2wz/M2cj+at6XRaSirH43EJE6dRRR5HRY6AVjgctlQm1YoU8+hI69w/PI58gYqd7osDnMv1I4BG4Iv5SktLS/D7/aiqqhJZRtovLS1FY2Mj3G639DWkYszwPDPSI5/PY3BwECdOnEBPTw9eeOEFnD59Wsqs6xxJzTd4vzyH+ZkdbWhg00lvMOnInKv+DZ+zObThZP7O/L3TcDIIyQfNfDk+CxbmuOOOOxAIBCTsks96bm4Ol1xyCbZs2SJGf19fHyYnJ6UwSWVlJaqqqrB58+YVfbXuueceKWIDQCJGxsfHMTAwgImJCaFdzlP3FNM6h85HpcdJ6xU8RhtYpm6iwQrtLSWt61Bh/lYDwKbOxmsCsOg6WufR6x4KhdDS0oJQKGQB96gPcF/wGXV0dOAjH/mI5LwuLS1JKfauri7xIM/NzWFgYACPPfaY5CSaOVV24IBJWya9O4FXTnTKYVYsfOf4DwynCzGcDKdCCPda0Z3V0Ee78xFt1F6n0tJSXH/99fi93/s9NDY22vY8yGazeOONN6ScOCsQVVRUSHz83NwcBgcHpZvzwMAAxsfHLc0NnZix3rxkQGQu+j0NJY/HI4KK515YWMCePXtQUVEhJYnpyWJlPRpHi4uLYuDpWHrTiOXcyLS0caLvgb+jJ6O8vBzr16/H9u3bBdXRa89z8Z6Li4tRWVmJ1tZW7Nq1y4JspdNpnDhxQhDIxx9/XFBbbl6eyzTqznecL82tdo4LWRxiteuZf/m//pwo9saNG3HnnXciEAhIlcbm5mZBfmOxGA4dOoS5uTnU1NQgFArhl7/8peQnkHETPGDe38LCguTX6WetkUXOhR5PNvLUtEmaM+PiSS9agJqCV8e505vLob1ZnA9znHgek4a0cOTxRMo3b96MiooKuRavx/Nzrbi3yHN27dqFpaUl/Nd//ReamprwzW9+0/H5jo+P4/jx45iYmMADDzyAxx9/XJDOtSh8Js2ej5D8n2A4FdqTToCB3bm1scJXMBjEpz71Kdx4441SUdQsRDM1NYWvf/3r8Hg82Lt3r3j6gXM9n0gTzDVi8jZzz3K5HCYmJrC4uCjVHjk3os46x40GPmmQhvfExAQGBgaEd7MPGGlOG2qkdRpXGmzw+XxCrz6fz5LETkCERhcNJXqJCPJREdV8l/u7qGi5HcCGDRvgcrkkP4rPv6amBldeeeWKZzc4OIjh4WFEo1GMjo7itddew5tvvim8RQMtGrgzn73dvrCjOZ1jYmdo2dGQEwjhZDhRLtoZ+uZv7a6r5+r0Wy2nSU9sfEzjqba2Frfeeiuqq6uFz7IE+NLSEi699FJs374dS0tLUi2VeaUEAPP5PKqqqrBv3z7LHBYXF/HDH/4QPT09FsODfQXpLdShXdoQMuevI254j9qgIr2beeTUY0gn5NfacOJ+0MaTBhZM3q/lj6Yr0p3H44HP50NFRQWam5sRCoUszXV5vA7pZV5lIBDAHXfcsaIp+pkzZ/D222+Lrjc/P4+enh488cQTUgHTjPQxwSFzmPR0PmAbz69/q4F+9Zv/XsPJ5XKFAXwCwA0AdgBoBDAP4DiAHwL4YT6fX6EZulyu/QD+CsBeAKUAugH8fwC+nc/nF83j3/nNjQD+DMDFAIoAnATw3Xw+/6P3dBOwN5xoADgJOCpBphKvj3NCIJ2GuQGZD0GPUTgcxje+8Q3xirS1ta04RyqVkso+mUwGwLnu29x8RJdnZ2cxNcWNG1sAACAASURBVDWFeDwuNf9ZxpNKmuk+Njcu581j9G/MsEMeR9Q7n89L2B7d8lwfohc6udcJddNhdpqha9Tf5/OhrKxM1m3dunUilImgmLHKuoytx+PBzp07sXPnTgsyt7CwgJGREUQiEfT09OCpp57C0aNHkUwm5X51WJ72NK3GFOzGakaT3bATnHr8JgwnfW07xml+plHfz3zmM9i8ebOgZVu2bLEIxWw2K2WSAeCBBx7A6dOnpTBJWVmZhLFOT0/jtddew/z8vAgTXQIWsObN8T2wnLQcj8fFuGCyPOPoSTMUvjRQ8vm8eE4ZvqMFIsPldKU7t9stgop7iaFS6XQayWTSAnQw+Z5VyZhnWFZWZjGSuM7sYUZFmOG32pisrKxEIBDApz/9aaxfv97xub700ksYGRlBKpXCD37wAxw7dsxOWK2gA61Yaj66Gr3qY94v8E/3+LG7rjkKGVnnu2e1gsZXMBjEbbfdhptvvhmBQAC1tbUrjKehoSF4PMuNKQcHByVEld7C2dlZ6cuSyy2Xqqfh5Ha7MTk5iVOnTmFpaQkNDQ1Ce1wPbUzSUNIKG+maeSfk6ydOnMDo6KjF6OLxDNWurq7Gxo0bUVFRIfuLgAkrOJKGzZLS5BPcQ8A5BVCHK3E+wLJ3paOjA1VVVQIeUDn3+Xxob2/HxRdfbFnf2dlZvP322+ju7pYeb2+99RaOHDkiCfF28soE8FYzmvV35l7Rnzkdq4e5T9ZiONmNQsa/lmOr/Z73qPOkySfJC6uqqnD77bcLOMxqqMlkUjymV111ldwzdQWWKuezLi4uRltbG7Zv326Zy8DAAL773e9aAKpcbrmH2eHDh5FIJFbwLxPMMPUN7Unj/zo8kYaWNpLMwio6/5TpCyagqD1Oms7swuB47ZKSElRVVaGpqQnBYFDWuqSkBGVlZRIWqQ1Jl2u5XUZ7eztuvvlmec7c30899ZTkvvJag4ODeOSRR6S9idYVndbRHCa9FgKWneTE/wmG0/8N4F8ARAA8B2AQQB2AWwFUAHgQwCfz6kIul+vmdz6fBfAfACYBfBzAZgD/mc/nP2lznS8C+DaAiXd+Mw/gdwA0Afjf+XzePnZk7ffh6HFyQl/sxlqOWavhRHetjjH1+Xy44YYbcPXVV6OsrAw+nw8NDQ2WcpAcU1NTePHFF5FMJqX3QHFxsa2rmIqTDjNgKAar28zMzIjQowJnblwtKDRTsovd165sjcqZBpKTQOC56U2gwNRudCIs4XBYeqIwx0XPBzhXfUkbTYuLi6isrERTUxO2b9+OlpYWmW8ul8PY2JjkxJw5cwYPPPAAhoeHLWVytaC3Y3pOz78Q/ayVJp0EtDn+OwynQp+bAqqoqAhNTU248847EQqFUF5eji1btmDPnj0Fr8ek4dHRUYyPjwMA/H4/7r//fjGqSUOM2SYdmUozFbOlpSXZJzokT+8BACv2BMfi4qJUeGT1PB2Kob1VWhl0uc71lKEQZXgJq1aybC1RQqLuZrw7QxHz+bwUbRkbG0NxcTG2bt0qgEo4HMaXv/zlgmt8/Phx9PX1IRKJ4Nvf/jb6+/tFobajPyejyWmYiK55vt+04WR3TTuFt9AoZAzqPaBRbYZ4fu5zn8O1114rjZPtihVwxONxRKNR8Q4RzGlraxNvEsEht9uNeDyOBx98UAwnl8slzUZpkOu+ZXYGL40cXb00Fovh6NGjK0J2gHOenebmZlRWVgqwR6CQYdz04NgpQiZwRuWPZcnn5+elQAaV0s7OTlRWVsLlckkVv8XFRfj9fuzZswc1NTWWiJPZ2VkcOnQIPT094t3o7u7G66+/LkCjbqNhGk12z9ikFzN02I4+9F5YC805fW7H8zX4ZI7VDCfzWnY8XQM3VOppbHC/UZ6Hw2F89KMfRV1dHQCI54kAa1NTE9ra2hAOh4UmM5kMJicnUVxcjHQ6LcBBNpvFxz/+cQm3XFhYwHPPPYdnn33W4oWkF+i1117D5OSkhc703Hk/3Jf6f10hlTybOaTFxcVivJs9pXRuEnAuZJ3X1ryfa6l5pzacaID6fD7U19ejvr7e4sGibsRemqyUqb1J5eXluOuuu1BRUQGfz4dcLidy4eDBg0gkEpY9d/z4cbz44osWA0zLHZMutFGo6YP3q1+FhpOc4V+dI6mO+W83nK4CUAbgF3nlWXK5XOsAvAagGcDv5PP5B9/5vBzL3qUKAAfy+fwb73xeCuBZAPsAfCqfz/9MnasFwGkAGQCX5PP5/nc+rwTwOoBNAPbn8/lX3sN9FDScnNapEOPgMIV+IaGpz+tyucSFrRlKVVUVdu/ejY985COoqKhAMBiUHh524XvAsnJDFIWxvTSagJUxtDrxl+ghEbV0Oo1IJILJyUlpcEaBRIPDLLdtMkzNbDSD4TqYTMGMG9ZepHXr1qGmpkbicakwcs0ohJlXog0mPlt64Pg5lYySkhK0t7fjt3/7t4WBA8uhL+Pj4xgaGkIsFkN/fz8efPBBydkyEQ/ej3ZbO4VEmjRSSGA5/c5OsbO7Fo9/Pw0n89prMZr4l8+cw+v14q677sK2bduk+tvll19esNqYHmwGy6asuVwOo6OjACCCYWlpSXIjqDhroahj7zVzt/Miai+mNgL53i4kVOe/aRCAxwAQRUPvBR2jrtdb72VNh/Pz87j44otx88034+GHH0Z/fz/q6+tx4MAB4Sc6FNUc/f39OHPmDObn59HV1YVvfetbmJ6etqyL0zgfwWiOtfDcCzHoBTSH3ZzteLvTvTnJATvjkOCZ5n+BQAB33XUXPvaxj4mh39nZWRBsyWQyiMfj6O7ulpLlVVVVUqiHClMmk8EzzzyDVCqFsrIyKSVPcIB0GAgEBLnmPDU/J09lD7Px8XH09fWJ3AHOFXUoLi5GdXU11q9fj4qKCslpKSkpQTgcltwn0jGNQA6dk6KNJpbkZzgijbri4mKUl5ejsbERwWAQU1NTIlt37tyJ+vp6iULgmo6MjODYsWPo7e2VIhu9vb0iV3kdU1E0w8rXYlCvFSjQ8tSkNScATh/zmzSczOP0d9rzRH6o+1iyZyLbSHD9KVuDwSA+8pGPiBHM89ADFYlE0N3dDQDYtWuXlJZPpVKIxWJ48MEHJcSSPHZ+fh6nTp1CNBqV0GzzXvR78760TsMQ/7q6OpSWlkq0AI0mnkOHujrxGCc+o49hW45NmzZJmoTm+/Tuer1eTE5OypotLCxI42mGOTIag/mQx44dw/HjxzE7O2uRPXNzc/jJT34i4LN+adowaUK/7OjIlBGm8Wq3Bvp3wP9Qw6ngyV2u/wfA/wvgO/l8/o/e+ez/AvADAD/O5/OfNY6/CsCvATyfz+c/oj7/XwD+GsD/yufzf2v8xvF85znXd2U4meNCGE76OO2Z4XwYerRu3TpcfPHF6OzsRHl5Ofx+P1paWhxDathVe2xsTLxHFGI6dl27jk2i5ksjmPF43KIw6c3EOHSGLvFcvK9cLodAIAC/3y8IPs9jhkCVlpYK+kGFgUKQiey6XDTnvLCwYHGbAxDBSwGvK/Xxui6XCx/60Idw8803SwGIfH65gMXIyIgoIr/61a/w9ttvY2pqyhLWaCrVFP6mV83p+evhZGwUGmtBajjoWr+QoxBzs7sfO4Fk953X68UNN9yAAwcOiKfo2muvRX29pZvAquPUqVM4ceIEPB4P2tvbEYvFcO+99yIajQoAkM/nEQwGEQwGLWF3utwxRyGPKRm+nefVruw1eY6peDG8wgzh0BWeAFhACNKkLuLCffrFL34Ri4uLePbZZzEyMoJLL70U7e3taG1tLbh2hw4dwuTkJObn5/H000/jJz/5yQpDUt8P58nPnI7h+7XQt91vL+RYq+HkBHKcr+FkN/Sz1Xl4paWluPHGG/9/9t40Rq7rPBt8bu1bV1VX781euIukSJGilsiybMqWnVgJpAycwNnjIAHyZ5DBBJPJ/BgMJpj8GQwymZlvPgQIEEy+iSdwEtiOFzmwEDmWI9uxFpqSaImkKLHZ6mbve9e+3fnRfg7fOjx3qeYq6T5Ag8W7nnvvOe95n3c7+JVf+RX1PY8dO2YsGqTjrbfewuLiYoeBKx6Po7e3Vy0sylAn5gSS8LA/ycU6ue4YF62lFZuKYKlUwvT0tCIdjUZD5XDQADA0NIT77rsPmUxGRTKQzPAbkDTRs0PPqR790Gq11DZ+B8uyOvJpWHCp2WwiHo9jcnISTzzxBPL5fIcBotVqYXl5GefOncP777+Pra0tbG9v4+2338bMzIxaF1C/vy73dQVbfl8vuWgaH9ynjylT/3FCuVy+YRsrSbpB779O41gfF27kQ4ayyaIRkUgE6XQax48fx6lTpzqiPYrFopqnE4kE7r//fkxMTKC3txepVEr1jXq9jh/+8Ieo1+sYGxtDOBxGPp9HX18farUazp8/j1deeUV5C+V3XFxcxNTUlNKXTOSF31l/djlPMNc7mUyqggqyb8hQV5m7JCFzZeV7lPlUzAFmtVTZ79j+0dFRDA8Po1ar4Y033lChj6FQCGNjYzh8+LBaQ5BLeLTbbfz0pz/FzMwMSqWSum+r1cLc3Bz+4z/+A1tbW46FKwgTeZLFN3iMF4EyeWZNuhS/wQeNOP33AP43AP+nbdt//LNt/x+A3wLwm7Ztf1k7PgJgE0AMQMa27drPtv8AwMdh8CpZljUCYA7ArG3b4z7adNZh1xEAKbnBRJy8hAOPcXqvbkJJV5x17wotflznhdWyjh07htOnT2NwcBD5fB75fB4HDhzA8PDwDfdot9t44YUXVFU9WrWZDA6gI7mV70AqXWwjhYtcI4AKnSRftM6z+INlWWodJ16fA7vdbqsiFRRWjLtmvLu0vvPeADos8zI3hQOZlkzpEpcTXDgcVnkvg4OD+MIXvqBc3MAOuZiZmVHeprNnz+Jb3/oWrl271lEKVx/AUhDqxEr/9rpgcSJT3UywXv2Nz3arYerrXgqnfA5pxdaPTSaTePzxx/HUU0+p75PP5/Fbv/VbXbXx61//OgDg5MmTSKVSaLfbiMViqFQq+Iu/+AtcuHAB8Xi8o/IkLfSyEh5wYyy2nBR1JUMm7EpLPp/PZIXjc+vV93RSJselrOQoxzjH2uDgICYmJtBsNvHFL3rbnRYXF/Hiiy8qxfrrX/+6CnchvELvnGLWu52LbufcBVzPcd0t/JIrLyLFb0vjliRPv/iLv4jPfOYzAHaI3r59+3DgwIGOxUSdcPHiRVy5ckXl5dBanM1mYVmW2t5oNFS4HhWs6elpFdoGXA9rDYfDGB0dRSqVUjmAW1tbePXVV1UIp/Sk0hh2//33q/BBGrr43FR+qtWqynPh/CTXbOJ8IMeEfGcyhEpWtbQsC7/xG7+B8fHxDoPe/Pw8Ll++rBaX39zcxOLiIt544w0sLCwojxafCeisZqYbTdy+sW4s0MmWSb7L65l0DifDFbebiJOe4+TWJ52ew+neToYwbpP50Ewr4BhMJBIYGRnBo48+ikKhoHKFaJwFrntn9+/fj8cee0zJQVYG5fInKysraLVayjg0NzeHH/3oR1hZWekw3rKNtVoNFy9eVF4ifd6Wc7yEjDZgvmoymVTjSQ9ZdZL7+nwo+3ahUMDExISqksn7STkRDodV/mBvby8GBwdVNeWvfvWrAIA9e/bg8OHDagFo6mQsfKIbBanjvfbaa5idnb2harBJx9H7B//0+dFJL5L7/BideKzUEcW+e5M4/YwEnQNwHMDnbNt+/mfbXwXwMICHbdu+gcRYlvVTAPcDOGbb9oWfbVsG0A+g37btVcM5ReyEC6Zt275RGnQee1uJE4/1+5Gdrqd3LPlHKxz3sbTkiRMn8OCDD6K/vx/ZbBZjY2M4evSo8b6rq6v4l3/5F7UwLpUyEheSFpm8KVe9ZmcnIeGgkhZ1wLzImcwd4PGccCg8OUnK8DlZUUkqh7KEqPTQ6UmYdMUD18OXAKi8EA76X/7lX8aTTz7ZIQC2t7cxNTWF1dVVLC0t4Rvf+AbOnTuHUqnUUTlM/1cKEOnhM/UBr4nP7z7TtfXzdAF1pz1Opv1Ok6lJoWC/P3jwIH79139dWZLz+Tz27duHxx57zHc7v/3tb+PIkSOqEpdt2x1hmcBO8YN/+Id/wIULFzrW99HjzvWQUlm5j5BeVXp5pTIp49olqbIsq8PYIC3/TPxnVUrG1cvQl2QyiWw2q8jT1tYWpqen0Ww28d3vftf1HV29ehVLS0sol8tqoclvfetbyuskv61UIkxKgF8Fzw23mzQB5qqq+vOY0E0/1xVmt3vJcCb2s1Qqhccffxyf/OQnVQWsVCqFyclJ3HfffZ7P2G63cfHiRVy4cEEpjiziUywWlWe/WCzCtm2MjIwgEomocCNW66PCCQD9/f2qmBHzUi5fvqxyPy3LUkY5hlafOHECBw8eVPcGoPKkeC8SNWlkk+vnkEhJuS7nSs7N0WgUIyMjyGQyWFlZQbFYxJkzZ/DII48gHo+r9feuXLmi8jUajQbm5+fx8ssvdywvoYckSeKk9wcTYdC/t643OBEnE9Fyu6YJplC9myVOJpjGg3wXus4jw+xl+F4kEkE2m8WpU6dw6NChDk8kPZC2bSOdTuPAgQOIRCKYnJxUIXyUl1tbW5ibm0M6ne7IC3355ZcxMzODZrOp0hrYHmAnX5BeU9PSFLpRTBIePg+JE3MNTWRSGgwk5HW4AC0NANRdZLVKRic8/vjjOHLkiJozarUaXnnlFTWu6vU6RkZGMDExoTxNwM4i5j/+8Y9RqVQ68q04Ft544w3liWZ4ox6a59QPZB/QyaKpb5vmDf26TvPIB404/QWA/w7Av9i2/Uti+zsADgE4ZNv2u4bzfgjgcQjvkmVZdQBRAFHbtpuGc64BGAUwatv2/C7be9Ohen4EmQ4noaJfU+Y6UIhw8qRiFYvFMDIygjNnzuDQoUMYHR3FyMgIxsfH1cKWOpaXl/Gv//qvKnSNlYUoVBn7Lt+DjInXBT2t4ZI8yWeg5VQnhTyGxIzCkAsJcjLkcRSCsuwr91PQccDQ8i7DlaiosshAs9lENpvFQw89hEKhoO6xsbGBYrGItbU1TE9P4+2338Zzzz2Hubm5jph2+T31P0ISMa9+oL87/Tg3ZdPPPincLMu6bTlOTmPC74TMPqJfg9sZAvEnf/InqmRxJBLBvn37bihF6xfXrl3D+vq6IvB6ZS2GWrCs/3vvvYdisYjLly+rSYYlcjmpMkwIuL7Gkj7BSiWJRgAKfFnG2bIs5RllvgrLwbLASyKRwMmTJ/Gbv/mbGBoawle/+lVMTU2hUCigt7cX4+PjePLJJ/HJT34SiUQCL730kuP74LpM9XodP/nJT/DlL38Za2trHYVlnPL1dGXQ1M9NfaEbYnK7oBcH8tMGk3JrOr+bcaHLNoYwcU5IJpPYs2cPPve5z2F8fFyR60KhgIceeshR9kuUSiUVrsm185aWlgDseHJlBAJzJuTiubZtK8WJi+tKDxDLhgNQ8pRzFkPluJ4Mw9+YbyijD6hQSpnOOYQGBH3uoQGDYYH79+/H/v370Ww2cenSJZRKJZw6dQqDg4OwbRvvvfceVldXldGu0WhgZmYG58+fx/Ly8g2L2kqypOenSN3BrR84EfKbJU5ucFrHydQ+p3ab2mqCrhBLua6TBu6T+g51EIZm53I5HD58GAcPHuyoRMpcNtve8VIePXoUDz74YEdFX1YlZWh9qVTCxMSEGlNvv/02pqamVNEn4Lr8bbVamJqawuzsbAdZ02WcPk/xuRKJhMrT0g1u8r3Kf2VKwtDQkGor9SiSFupwPD6fz+Opp55SxgnLsvDWW29hY2MDtVoNPT09GBwcRK1Ww8rKCkKhEHp7e7GxsYGrV6+q0DupN21vb+PNN9/E8vJyR7qDydMqv72pr+ikyfTu5PzRDXGSx35giJNlWf8NgP8LOwUdPm7b9prY50WcfoSdAhEfs237xz/b5kWc5gCMABixbXthl232XAAXcM9Dkdu93qubomwiTrawPsuCEXoH5IA5duwYzpw5gwMHDqC/vx+Dg4Oe8e/FYhHvvvsupqamcOnSJbRarY5EdgBqEHHyls9BL4Cea0GyRQHHc2XoBCEFFCdMqYRyIHERRVnqUnqYmFPVbDY7YoBZQIKWmBMnTnQIZbalXq9jfn4ei4uLKJfLmJ6exne/+1289tpr2NzcvKGioP5tnQSIiTg5TYK7VShNwsjrPre7qp7TeNnN8XqfZxjEH/3RH6lFLKksHTt27Abi0w1ee+01vP/++6of2baNQ4cOqdAIVuri4swM61lYWFALM9IrI3P8dELBPglcX1umt7dXGRBYvn9hYUEpjra9k381PDyM06dP4+TJkyoxmFhdXUW73cabb76J73//+zh9+jSOHDmiFlC9dOmSq2fi0qVLOH/+PObn5/HNb34Tr776akdokuznfowCJoWS/3c7z23b7QLlmZshwgR9vLnNFSZFWV5HP0bOAVJ+Ms/oYx/7GB5++GHl1U8kEujv70ehUMDw8LAyCpnw3HPPYXZ2FhMTEzhz5gy+9KUvYXNzE319faqPUwmRlRlDoZAiZ7ZtY3BwUOXhSXINXPdGsv/SI5tMJmFZO9W9ZCge5wIqxPTQMneF8yKNB3qBIUZLDA8P4/Dhw8hms6qoBZVmXntjYwNLS0sq8qHdbqNUKuHSpUuYmppSlfSkoY793pTfKL+nLnudvnk3MPWPbrBbj5NJx/HzDPrxTsqzblSV8pwGKPb5wcFBnDx5EoODgyq8jMSIz5dOp/HAAw/g8OHDqp+Q5FerVbzxxhtYX1/HxMQETp48qYpJLS4u4hvf+EaHEZnkqlKp4NVXX8X6+rqS7W5jmc/D8v7sc/JZpfGYusrw8DBGRkZQKBQ6jMIAblgrjO/l2LFjyOfzCIVCyOVymJ2d7dDB8vm8yunmQsIzMzNYX1+Hbdsd/RyAImbnz5/HysqK2ifHNL+vE4HUSbPJQGrqJ27bnPqVvl16w8W+e4s4WZb1XwP4zwDeBvCUTmSsuxyq59JuR+L0s/0A/AsLL+uL23luSgQFiAxJI/QY4aGhITz22GP4+Mc/rrxPhULBlwWSSX8/+MEPMD8/35GzZAvrIrdJgiWtfCRJUujI+GVZ/hm47nECoKznXA+EIXkAVHw5J3CZrMx3weuNjo7i4MGDyGQyuO+++zA0NIRarabKkgNQEzmtQVevXsXc3By2trbw+uuv44UXXsDq6mpHSJ+JGJmEhv4N9WOcrI5eyqSXEiq3ewmX2xGqZ7qfCabn9Rpb+m/rZ9brn/u5n8MXvvAFRXJYmev48eOYnJy8mcfACy+8gPX1dZTLZdRqNcTjcbVobLVaVVbAdruN9fV1Fce+tbWl+jFDlfgXi8VQrVaRTqcxMDCgFILh4WFMTk4qS/rAwAAGBgYQCoVUNUEqxjJcg7HrLMfLPCw3hVnHxYsX1Srwa2tr+M53voNvfOMbKifSaWL0mvBMyiThVwG8k8SJFmKvSd3JSOF0jBsRczO86YqmHsrE0JzR0VE8+eSTGB0dVcqkbdtKETMVkWg2m3jxxRcxNTWlSHiz2cTGxoYqSLS2toaf/OQnuHz5MprNJlZWVnDt2jXYtq2quTYaDQwMDHSEhMrcB3k/KnsM67NtW61zRgs681i2trY68lBJmjjOOS9ReaTx4aGHHsLw8LDyHMo8QFl1b2trC0tLS8oT0G63MTc3h0uXLmFjY8PVu2DKaXLTE/zoECYCze1uc4vTNUzwWsfJiez51YVM85PTONCVat0wxj+Z/8TvHI/HsXfvXjz22GOq0ihD8hhGGgqFcOrUKRw4cADA9VLflM8sHkGd5dOf/rTqt5cvX8bZs2eVd5P3bjabmJmZwTvvvKMqT+r6h3wmttW27Q5dhoSKCzhT1pNkyaIU1LdkVTvbtpHNZjE6OopQKKQqBlarVRVqnEgkkEgklDeYHjdgZ+23zc1N1XaGwPL5FxcXcfHiReVplXqgHx1I//Z+jEn6Nd36stdYu+eJk2VZ/y2A/wPAT7FDmpYMx9zV4hAubXclTg7neF7X6aO7TaymbbLzUWDo3hopZDixJpNJ9PX14ZFHHsEzzzyDkZERZXUYGBhwbXu9Xse1a9ewsLCAvr4+9Pb2olwuY3FxEW+99RZmZ2fVRMOcCgoEWu1sYRFMJpOqgh49PzL/gwKCLmguGEqrIBVQWjH5zKyOxP9ns1kcP34cDz74IAYGBtT6CcB1gcaBxP9z8c7t7W0sLCxgdnYWU1NTeP3111VBCDlxuhEnXXiY4DW5yu0m5VO/lts1TMfpk9/dIk5u78CvhVYXyOl0Gn/4h3+oQlTlOjCnT5++YTHEexXPP/+8Imbj4+MYGRnBxsYGstmssuizmiQVTyqYTOLvFm+//Tbef/99bG9v4+zZs/inf/onLC8v31Bi3I/y5pe0exETP/tuB6hI6u/Rj0z3UmT9PLObwkFZzzlAeqAYmjMyMoL7778fY2NjilgzoXxoaEjlK1HZ3NzcRLFYxMjICAYGBjqKilAZZchmuVzGj3/8Y/zbv/0bbNvGiRMnMD8/j83NTdU/M5kMWq0WVlZWOsgdFS8+B0kNy4aTMDEUiGHZfCcyPG9gYEARPIaqt1otFAoFHD9+HKlUSs1D/G6NRgOrq6sqmoDtqNfrKJVK2NzcxJUrVzA/P6+W2jB5mfjblNPkNr97KYJ+9Qo/292u1e0CuKZruj2L17xkMhTqfZz9XOo2NK6SQJEE9fb24mMf+xiGh4fVd+Ei3yRPoVAI4+PjOHr0aMfCrwsLC8pQW6lUVK5PuVxGJpNBpVLB+vq6Wvyc7WGEy6uvvorl5eWO9eskYaKMzmazqrAO19rbt2+fWjOMfYl9lkVROGakp5ZrUwJQedwAlMeM4boypK+npweZTAbz8/N4/fXXVSQF28lrVatVzM3NgLdbSgAAIABJREFUqYWepffJ1OflPt1ga5Jjsg+4zQP6PlN/8xpr9zRxsizrfwDwvwJ4HcBnbdtecTjuA1WO3C9xMikHfhRj/XpOE67cLisOSQ+NFC7AdasKCdTIyAgeeeQRPP744xgeHkYqlVKlzWUJULadlo1mc2dBTVn9jgOCE12j0cDS0hIuX76MmZkZlQciwyk4sFl0AkBHmIY8lgOdA5RhG/I6yWQS+/fvx6FDhzA0NKTWnQmFdgpo0FqjJ3gD19fs2djYwObmplqPaWNjA++++y7efvttzM7OqpWxnayKXuTJS5nSv7OESWjo8NvHvI671zxO8v9O293OC4fDGBgYwNNPP40HHngAqVQKtr2TODw4OIgzZ87siljcKVy7dg3FYtFXgv+twPz8PKrVKubn5/HWW2/hK1/5Cn70ox/dQJj85uiZ+r0T2XAjEXeaLOmQhUBM8tmvAqvDqW87KQwmK620xDsl08fjcQwODuLIkSMYGBhQlUkZppPP5zsWtuXyEDSqSWIlvUCtVgt/+7d/i9nZWTz77LMYGhrCK6+8goWFnQATWu8XFhawsbGBXC6HY8eOoVwuq/wlhgvR8k/lj/dhBVmZpL+5uYlkMonTp09j3759ar6ihZyFjQCo9Wfa7Ta2t7eVt5ihUrKokGVZ2NjYUPkbVG713CV+GzkHyvBAL53A1DfcLPAmdGtccLq2E3EyGQr8XtNtrvJzrN7fnUgUf0uDAcPb9u3bh9OnTyuPDQkU+x2wozt8/OMfV8ew+Akr/yYSCbRaLayurqrqktQ9pLdIFstaW1vDpUuXsLCwoHJQWeZ/bGxMrePE+7B6JKsks1/JcFYZ4h0Oh7G9vY1QKITBwUH09PQgmUyqdaaoV/G+7P+SgG1vb2N2dhbb29sAoIoqUR+rVqs4d+4cVldX1b31HFb9/zpJcusDJuORlwHN6zpu44zESZ+37gniZFnW/wTgfwFwFsDP2yKnyXBsFsB7ALLwvwDuPgAXcBcWwDURJy9ro1/h4dcCqTN4DlaTMNH/pFWSgmbv3r349Kc/rfKfOGHm8/mOcpSy1LKeoM8BIr1Fklw0m02srq6qc69du4YLFy7g4sWLyq1N66O0dDHHieSQsbSsvNTX14ejR4+iv79fxbsD8EzitixLCYFarYa1tTXMzMyouP3XXnsNb731Fubm5tRCv7rQMIUpeZEn+X+nfnIzcFNKTcfpx3I7yeidgl9Dgv7bDznkMRwXsVgMDz30EJ599lm1oCYJdn9/f1cV+G41/uqv/koVtGCVss9//vN3hDCtrKxgc3MT58+fV33+e9/7Hn74wx9ibW3NsVqkDidC343C5XStu02cKJfcSLZ8Vjdl0M0y6nac3KePCRN50osIUaZGo1GlVMrqWVS4GLrMaw0NDWHv3r1Ip9PKsEUr+/r6Or72ta+hWq3id37ndxAKhXDlyhWsr6+r/D/mhdZqNTz66KN4+umnEYlEVI4cF92cn59HsVhEJpNRymm9Xkdvb68K9+PcwqUqWFSCcplkq1arKQt5o9HA8vIyVlZW1Lwp3zHnqUqlggsXLmB+fh6VSkXNKTK8UBInWeRHnxd02eqlK/Ac03HdKJJ+x4m8ppvHyU0fkddxekane3pdS9/mRaRk5I30uPb09GBiYgJHjx5VfZqEmbk8yWQSDz/8sFromWGflUpF/aZHanp6WvU9Gd1CnUoSIq4zxv4TjUbV2pOSyPA6TGNgiBzJvAyJSyaTsG0by8vLqu/19vYik8mgt7cX2WwWQGeqA/+lJ7lUKqmcLJmrDuz06cuXL+Pq1asdRY30vD2nP6dv6/StvcaJ0zwgdWE/svaeJU6WZX0RwH8B0ALwf2Mn1E7HVdu2/4s4578C8BUAVQD/AGANwLMA7vvZ9i/YWsMsy/ojAP8JwCqAfwRQB/CrAMYA/O+2bf/JTT6Hr+IQEk7s2mSZ9Gtx8hIstn3dIyPD8vR7cPLTJ1ceF4lE0N/frxa73LNnD/bt24fBwUE1AfX09GDfvn3KI+Q0aQM3rlnAXCEOTib41ut1WNZOWAY9UsViEdVqVS1IVy6XkUqlkE6nMTU1hXa7jccffxyZTEZdj14kvi8ZskhI4sO1l5aWlpQlkVbIK1eu4LnnnusIO5QCYzfCw+tfP33CCab+5QQ/1hrLsm6rx8kJ3Uy4Tr8lnMYV+3s4HMbjjz+OX/qlX8Lo6KjyYpJI/fzP//xNPE33eOedd/DWW28hmUzic5/73B2775UrV3DhwgVsbW2pxZx/8IMf4OLFi0rp1C3sTnAiSCYyIeFHobzbpAnADYsNO2G3RNHtWKfrmazwehgTPTn6Eg6szjU4OIiDBw+q0G1dSaI3aO/evRgaGlKL1o6MjMCyLKyuruLKlSsIh8M4cuQIstmsCnPu6+tDOp1Gq9XCt7/9bUxPT+Ppp5/GiRMnFHECoPIBWfxHN0zJ0vxUMllOmXKLyjALs2xsbKhKrAzvA65XGpPX29zcVLmsUtHl/fU5gNv1MCW9oqTXd3c71o8xtZtx4tYOr1A9N8XU7Tn0cX8zhmYn4iT3SwIlc6DoLd2/fz+OHz+udDnqHFyKJZ/PY8+ePRgcHFQEBoDqZ7Ztq8iUUqmkcj2ZjsDiKAyHdfLUMJeJJE7mC9HjJJd2kOOQ8xS9ZpHIzqLtshALDQ7pdBrFYlEVKaKRWupKkphNT0/j8uXLHZ403SBg0nNMv/Vv7NYHvAxHu5kP9P55LxOnPwPwP3sc9n3btp/Uzvs4gP8ROx6mBIB3Afw/AP6Tbds3Lnazc84zAP4EOwQnhJ0CFP/Ztu3/9yYegdfuijjt5r05KbxuxMnUEfQJ06lTsu3SIyXvx+0saTswMIBTp07h9OnTKnSPib6yoEMymVRuYFNJcpnAS4uMbe+sC8KwC4YBygHKakkMDcxmsypWl//yuWT1PZJJCgiGDrKEOBOOWV6Tnq7p6WmcPXtW5XT4qQ5jIlT6MU5CxA1+lS63Scbruk79+F4lTqbjvAiU6Xn1CTcSieDRRx/F5z//efT19akwJMuyMDAwgJMnT2JkZKTr57mXQQv8e++9hzfffFMlPX/pS1/C8vKyOk5O+BJOSr3T5OnV7/Ttborh3YRcQBVw9vA6jX0vA4gbTO9EKpD6nyRO0lgg70PlkvszmQwmJiYwOTmJdDqtkt4pQ2OxGHK5nFJA0uk0xsbGEAqFlAW+p6cHk5OTypOfyWTUuGKOaii0U/kyk8motlBJrVarykpv27YiVLZtK4+TzHeq1Woq1G9+fl6tt8S5Rxq+5DcEoHK53nnnHSwtLXWEHuryXFcigc4wJd2g6ZcM+O0PJr3A6R5+yZiEvgCuTpzc2qf3TS/FWMpiJ0XbCSajrekY6WWVBoRoNIqenh5Vvpz3Z9+U5GRychLDw8PKuEuizEq69BSx2qmslKpHp5ie21SBEYDSkWSlZB7PEuyDg4Mol8uYmppCOBzG8ePHkUwmEQ6HlSF6fX1dhZkSDMvVCdPMzIwylkn9RvZ7/it1Tzdio48L0/cz9Qn9Ol6/TTARftvuLMQhrnV3idOHBSbiRCuVH0ugE0xCpRuF2Ik4cZ+cNPXzJKmSXirZkfl/ee1UKoV8Po8DBw6o8LhkMolUKqUSDFlFSYZ5AFATLV3S9BA1Gg2V6G5ZlhJAMnGXIRe8Zm9vr3Kz60UvaCWl631zc1MtTMh4Zgq8Wq2GSCSi1qianp7G1NSUCtOjZccUt8tnlO/f6U9+J6e+4PT9u7Wm8JxulC+3+97pUD3CL3kyHa8bAwD/1lcqj8ePH8ev/dqvoaenR/VFACq5PZ1Oo6+vT1Xnu5cJ1eXLl1Vyu23v5B9ubGwgHA4jnU4rS/zS0hJeeOEFnDt3rsNgANyoBHrJPpPBoBvyoONem49osCG6eS88zo9sN8HNmGKS4bp8l2Ha8nypVMp5gVW3hoaG1Lov0WgUqVQKlmUpTxG9VuHwzppLADA8PIx0Oo1qtYpUKoWhoSH09PSgUqmgVCopmc9rssoXC01wTT6GWjHkLhwOo9FoKOUuFAphbm5OrcEjSQ+vzbmEuUcc64uLi3jnnXeUAU32V73qH7fzHUti5TfPz+83d+pTfo+Vz+FFYOS2Uql0wzbm9Ln1PS8Z6/TMJqLn55md9sl7mYwHMoyPBCqfz+Po0aOqgARL6tNwKMl3PB5HLpfrCKGTXibqIiyKtb29rZ5NFp+iHknjAyurUkeiUYHFfhjhA0CNuXg8jmg0inq9jvfffx8AUCgUEI/Hsba2phbUlbLKsixl4Gauaq1Ww+XLl/Hee+8pQqHLcJ0kORFd/Rs69QuTDHQiTfq1neYU0z306wXE6Q7gZohTt9YlvSM5CUg/hE1XHp1+819TeJ9UGOW54XBYhcz19fWhv79fVWuanJxEMpkEAEWC6ClKJpMdhSZYzpYkiNVjGGfLyUiuxN5oNFQiM4UMK+tVKhXluVpZWcHa2ppajJEJl7TCzM3NYXFxERsbGyo5mJOmKX/JNGD1xEh9v9/B7UZ03ISOvt+LePlV1OT+u0WcgO7Jk36eqa8TXmOGVrj+/n787u/+LoaHhzvGPSc8TjwMEW02myrEj+Q9EolgYmIChUJBVfaanZ2FZVk4c+YMlpeXEY1GPddTc8PZs2dRq9WQyWSwubmJubk5AEAqlVILhrK9oVBIeXDr9TqWl5fx4osv4qc//WlHQrFJYdThRAy89vn9tvfqPKR7nHS4PTtgVhq94DU3yON0A5nJsCDJkSRNutGNv9m3uVgyK6pS0ePcAFxfzJnbqKgwh4pFHizLUhEGelI/LflsO+U/17rJ5XIq10Qa26RSzHN4va2tLSXzS6USKpWKGh98bjeFUX+HVIZNBEsnBCaCIK8l4cfQIwmCm17gJev0800eJ1l+34+y6mfekfv0Nst9XrLCz359TpAFsiSZyufzeOKJJzqIBvPdqIeQJMniHyysQoNrPp9HIpFQRUnk+mX0gNm2rfLINzc3UalU0NPTg2w2e4O3M5VKqfX8SOwkIaJhTFaJkzlXLOKlf/fNzU288cYbauFak7FM/236Vvo2E4HX4VWEydQ//RAnnTSb2sKcdsMzBcTpVsBEnPRQPS/l1u0Y/XgvIeBkkeE+uV92TF3o6/fU/0weJ6c/Ch2SIyY8cltvby96e3tVlb6+vj61ZhSFAbBT7SiZTCqXdzQaVbHunBQZPlQoFFQ4BydPVkRiWB7D/kiqmE+1uLio1oCSi3bK9+iWy6S/a6eJVv9m+rf2g26Ik35dv/vczrmbxAnYPXniufqY0t+bVBhM4wK4XoVyz549ePTRR3Ho0CFks1kkk0k1icqkYVZb5PiRCiW36fkPsVhMjRFaMWlkmJmZUdeQ4UWcCCORCObn55UFNBqNKoMBS9VubW1hfX0dW1tbWFtbw8rKilqHhonvctI1TZTyvem/TZPazeJenoPciJMfBQPwVpjdxq/XuJB5pvr1pKGMx1KGyz6r/zZ5a1iZlWXMuYgslUTei+HWst3S4k7iIp9Nhi/Jd0XZLskR5wvdi7a6uoqpqSmsr68reS9ltD5n6sTJJGdpOKHBj4n/cqFdk0w1kTJ5TT/kSe8D3YxT+T31e8rj/VTV86PzuB3n53g3fUjKG685z7Rfz/+ThoNUKoUDBw7gwIEDHcYFvmu9yIMsNU6ykk6nkc/nVUVHFnrg8iw0HtBgQK8Uq1iych69stIARoLGOUfONTINQ+bvScPC1tYWpqamMDs7q4pdmeYkU1/1S56dvqnbt+kGbjJWb6vez/kXEKfbCC/i5PaeuiFObsqd1zZ5D53k+L2fVBKlosfrOpEt/l8nWjLxmOfHYjEkk0kUCgUUCgUMDAyo6n3RaFSF4M3Pz6vymlzvg65pKpXMtWq328raQsFCgUb3N7dROMi1N3RPkXxm/muqIqMfI88zJQWb3r2b4PdLyt0m126Ik9N97jZx0tGtoHXq527jyESkCCpqVBaPHj2qcjsYwhEOh1U4XKVSUYvY0iopJ1i2iQqotPjLPquHmHCMUkmdnZ1FsVjE5cuXcf78ebUWDZOS9YlDPpvuVdXfj9M2p2Pc3q0ffBDmHklgveAlC5zGn9vY1s+T31c3bJm+iexn7EtSZpv6i57QrpMzWtGZI5XNZpHNZpHL5ZDJZFQ/5DWo2AFQfVw+m0yUl3MSZTiPpfIYjUaV9Z4Ff2iF18e9SZbLOYxkTXrt5DtkqCKT/6vVqipmREXa6XvL+0pS6EXC9X5CWeREnkznm9qjX/tWEientuj35n5Te/X3L7+Tfn1dtvF40/V5bX5nGsh4/Vgshr6+Phw5cgR9fX3KuyNJVKPRQLFYVF5Q9ldeTxqzOMbYT1manAZiEnIWqQKu6yecI2gw4HiRbeGi58xHpLfWtm3Mz8/j8uXLWF1dVe2U780pssYNXoRVvnMpp+Rv/Rs76S6m83Xo85dpXpfjThbcEOcFxOlWwEScZMjOrXpPXsTJ6xygc5B1w+b1ydituIQ8RxdkJkKgT0y07Ojx5yRVAFRssbSoyHchJ3k50enhFrrbWf/X7f3KAaaTIS8C5SSgTffwQ3JM7TId6zbJupEmt/vfjeIQbtiNIi7PdVMevLbrSouctDjhAuiYCGXfbLd3KjX19vaqik2RSATFYhGtVksl2LPwCgmW7NdMmA+Hw2oxwvfeew+vv/66ClMFOvut2/vgc/lVvpy2OU243X6vD8q8IyuxuaGbMegXuqx1kr1ObZFyXsp+Xe67yTmdnJnmL30f8zFY/EGSE8r0VCqljA9ygUqGb5OcVatVlEolVaxC5kTJECovOW96t/pcY1K8mb/b39+Pnp4exGIx1Ot1rK+vY3V1tWNxUP29SAVfV/ZN309XAuW8q89Nbs+ln6/v5zFOxSHke/BzHx36s/H5TW1z68cm4mT6zvrYcGo790vvkp6vlEql0NPTgwMHDmB4eBjxeLxDNvNbMKqFRiseoxuSGS4tDWF6KB3fO/UfRuzo74FjqdlsqnmoWCzivffew9zcHLa3tztytXW9TB/j3ZBikw6sv2+dOOnHmmSH3/Plcab/Ox0vF8/WzguI063A7SZOfhU5P/dxY/Ju1zFNgm7XkNfSJ2HTZGWaaOWEIYmXzK2Qx+qQ58h76ttkG/xMoroQ0SsouQkd+X69FCN9YHejSHWjnDoJEL+T371GnIBbT5683o2fMeqUiC+Jk+zvTDSWE6ZUgLhdllmWfVz2SyrwJoXM1DedJicn7JZQ7eY7fVDmHVPUQTfEaLfKp0kR3A1xMl1LKo483kkhMbVLeoxk2/jbScGXZM1UmY6Kp2VZN1jK9d+mbV7vwQ3SIKKTvVQqhZGREezZsweZTEYpyo1GA1evXsXCwoLK3/K6v18Fke0AOgmEfC9+5w/5nuU5Jo+T7mH1M0692qErzE7ySj/elBvj1Vf9tkXXfWQ4HwAV7dLT04O+vj7k8/mOEFVZQpyRLTQUtFotlEollcO3tbWlFtCVVYLpneK/smIfxwOvSa/WxsYGpqensbq6qlITnHQZ/t9EPk3v3fSe5HE3Q3x0PVPvB/p39avH3C3i5G1KC3DT6EaxcCIQ3Sg1pn1+rDGSyDidI2PU9UFqurdpEud2nQSZriGFvul6+vPog9GpbU4J8U7hTH4nar+WEj9wI+x+lQKna9wMKfmgwKnv+D1eP0cX9gzVMPVp/c+yrI6QCv4xeVW/p4kQcez5sTybntekSDm9F6/rd9t/PihESYfTu3Ej5W6kw68i6kX69fs47XdSVHVy4nRdU9t1pdO2bUflXr+vyXtiMorpxEq/npdM8yOv5XmmuU+Oz0qlgkgkonJ6Y7EY0uk0jh8/josXL+LcuXNqPSr9ufTrmhRbE7nS3xtw3ft0O2FStvX9hInce/VLE/k3fS895+1WjCt5D5NspTef44Ml9klc+vr6MDExgdHRUeTzeXVdRtew8Ekul1MRCZJs8x6yKBa/bavVwtzcXEcoaLFYVAUlSJJ0mHQe+U7kOHKaE9wgv6uT3Pf7DfT7muZXr/b5vdftHCcBcfKALtjchILeWU3HyGt6HSeP99NOp/+bBpF8LjfiYjpXhi65vQ99QDsJLi9hoIcT6veV15D/mu4piZGb1cSPMun1Xfzu96uE7kbB7eb69xq6fT/6uV7C3u08rzYRJuXTpBDqiqpJoXUj3ey7JsWkG3Ko32e3faobfFBJE+BtJPHbt9yIj9cc4daubvqr/iy6Mcuvsqw/Oz00TvOCbKsp11QnTfo5so1u86s8349yZZpT9PmNoVFbW1vY3t5GNptFPB5XyxVkMhk8+eSTOHr0KH7wgx9gampKLZAqn1e23/Tb9Iym9+9FItyes1s5uJvj/Mx5fo0Obtfymhuc+odX22SbZH8Advr53Nwc5ubmOgoy0CuZy+WQTCaRz+fR39/fsZ4UxwgXHWeYH6vx8beuv8i2eY0J/Tn8zgW7kc+m9+unf/k1MJnuZdqnz6N3StcJiFOXcGPc/NePsuZngvKC00RoGkiyXaZJ10SgTG3RB5q0nkkhYxrkToLANHjlhCO9XHK/3n6TF0kXOCYPmVO79P0mhdXtXXtBV6zl+bvFnRYgdwK7fSanb+FnbPoxJHgpMU6ToH6O3pfcDBBebXVSML3ad7vwQSZN3cLrXTvJDLfrOCkmJiOd1zW7ua/pnqZjpIx1y7PzasOt6ou2bd8Q4uXnfcrj5HaZ/L+5uYl8Po9IJKJygTKZDAqFAg4ePIiHH34Yb7/9Nr71rW/h6tWrTiFC6h5yzpJzL+/n9QxecshEmG7FeOzWWGAiJPp13PqZPj/6kWmmc92gv2/dKGDSX6R3qlQqYXl5WR0jw3v1scFj5HXdvq/bszk9v0nHMz2fH33F9G3c9GC/uu1u+2I38/ntmn8C4uSCbiyKgD9LkZ9z9XO8Ji+53csCY4ITmXISXjzHjYQ5PZMkVjrpcmqvLlxMk7TT5Mh9foicfqxpwpGCZjfv2tQ+p3uY2mlqk18FXl7vg0isdkOgTM/q5zpO39mpz7h9U7+KLdtkugdh+tYmw4LfCeOjRGxuBk7fR+6TcBq3Tkqvk8x0IsZebXEjaX4UDSfDgd623fQfN/l6M0qQ6V3piqHXfaSiy3NZha3RaGBjYwMA1PIWmUxGFXnJ5/M4deoUnnjiCfzlX/4lXn75ZXWcvJ9+bdMYd3sP8tu69UUvMnI74PZe/chtp/nJz5yqf2sv4uiXgOl9R/6W4dP6N/YybnTzPbzm+G7IMfsdj9X/3K7tdW/+30k38eoH+nP41am93s+tRkCcbhH8CmY/uJlzu5lc5MTsNcnqhMIkoJ3i0k1t0weFSUF1mmBN5zrBqy1yAjKRo26vu1v4GfDdCEcT+dqNUPwwwKlPuikZXtv1azhN2rshTbfCmufnmNsxyXzYiJgbKfL61k7f0+3/TmTIy2jlB04EzPR/HVJGmp5Xl0277aumZ5U5IPJ8pzGtl/52kvEmMLmfkJXXmPRv2zZKpRLW19fRbDaRSqWQzWaRSCTQ39+PyclJ7NmzB3/913+Nf/7nf1ZkS7+PiRw4GcxMz63PzU7zazfPf7Popi/6kZUmvcAJMg9MJ58kN25LMvgh7SYdSB8XXtfy8yymdvklen7AypUAVOVjuRCvn/vIdslxpv/2O+94yTS38eLWztuBgDh5QB+A3XReLyvDnYCTJbObNjkJLzkwpHB2EiBOxEu/jy6Q9OfphjiZiKLp2f1O8rshGm4Khts5JovZbu5rUmo+SrjV78/rePlb739+2qIXYOmG0PtBN+f7JYAfNsIkYds3hn/5IRr63MHt8l+dXPlRGLy2d/t9ZTv1/uaUk+R2r24MPPpxJkInc0z8KGMmectndFMMneYkrsXD5PxKpYJms4lwOIz19XW1gHUul8PIyAgsy8KBAwfwx3/8x5idncVLL72k1nyih0mWuOZ93OSNnFv1EC8vQqBf3wl+jtktTH3V9K2dZKiE09iRy6C4eVTcvr8f8mRqk6ld8hmd+qTftjjpQSb4mWMsy1I5WLwW+7lc4NnUFrf2mnS/m3mnfs536ze3qz8HxMkFOnsG/Idq+NnmpFCbsJvJyA36vZ0GvZMC6ESe9Hs43cfPgOnmHfp5J07Xc5q0b0Ywed3zZrCb8++WZeZ2wDRunL7hbq/v14Lupjg69XX9Wm7GjW4VRC90+713O64+LJDKlpsi4NZHTMc63YfwoyzIY/3cVycR+jbT9ZyIhtO7cJPrpjnCae5wu5dfRU4/39Rer/vY9k6VwEqlov6V6/G0Wi1cvHgRhUIBg4ODGB8fRyqVAgCMjIzgz//8z/Fnf/ZnePvtt7G6utqxzo7806sMAtc9AfxtesbbqRzeTriRRP23Dv178o9lvvV0ALn0iWmc+Rk/3bxjJ11xt/rezbbHBJb+Zyl0otlsolKpoFqtqjLrertM2/wc40dv1rf70cmcdM/biYA4uYDWHaeVtJ0Ihuk6N/MhdYughFMn8zuR65OR18Rngtd2eQ8pwJyIlpOVxknZ9FJCneA2ubopC7uBaVJ2a9PtEAQmJeWDOOlK+P3ON0ssuiHA3U7CpnHSDbrpl37Glh980PtNN3CTS7fyHjqcZIDJou11rm6VdzI4UEZz7vOCX1niZok2zTv6nOeH/DiNK6dcWtN71OcVvgephNNST6yvr2N9fR2lUgmlUqmjDfF4HKdOncLm5iYWFxcVcWo0Gir/yc1jdDfGWTfy8lZe0025Np1rWdfXyotGo2qNJElGeQ09BPNWPaPf69zsd/QiK92A79m2bbUwL98j+3cikehYaFrqh7sldfK+8jgnQ5Q8z+26+nny+rdr/ATEyQW6RcdLebqZj+R3AHpZIk3/dxI6ThPWzQoV+b706+md2ss67/VsTvfW7+/VVj/XNsHr+k4T/s2Sab9tclKgPmrw6tP3AnG4nYTpVp5I8Yt/AAAgAElEQVT7USJNhBtBcBrXToYZP9BJkun+XiRAbyOVIxmeYyIpXHPGTfGQbXIzvgGdC7g6wSSn9IV6ZbU5E+EzGQ7lsfq9vOYX/flpROWzNBoNlMtltFotnDt3DrVaDS+//LIqK724uIgrV65gfn4eGxsbKlzPdO17DX51gZvp4yY4GUj13+zLsVhMlYfn2khcRJZotVod+TteCrvT+NH7lKlfuZEG/T7y324NpV6GFi8jOLDjXTLJhEQigWQyiWQyiVKphEqlgnq97lmQyw9h0vVpUzu7GRte+psf489uEBAnH/BS0m9G6XKbEPVJ2M1r4WRBdIJporpZYe6HoLgJCD+TtPy/l0KxG5Lphm4EpX6c03avvtWtNcvrmT/sxMnPpNjNZH+n39nduN/tOPbDiFvx/H6vYTIo7UaOcD9DcmTiPJUKSQZ4HRmmo889+vjxa5zpRrFkW/08n1O7JExESv7rphRLhbvRaHSsy2PbNlZXVzE1NYXvfe97rm38IMDPfCxh+jZuRgan49wIMPdzO6scUsFPJBLK00TviH5Ntwq++nM4tcEJTgYD/Ri3+zsd28193IwFEiSR1WpVkU6+H+buhcNhNBoNRUJ5jqmsOp/Ji/TcLCG6lxAQpy6hD2Q/rHs3Fg55TdM2P1YZv9e7VXB7lm4GPeFGjm4FwevWyiPb1M3xXu1wg5cV52buda8Lp9sBN8LsNFl2Q2J5nN9v69S3vazl3dzHdN/befxHCX7ks9c+p2sQbv3PidDI/TKMiYTJtm0Vbmaay0z343HyWKdzJdzGkvzX6bpuCpmTLNaP1+9ryjPyuiZgzjX6MGE3+oETSfXTb73uqfePUCiEWCyGZDKJTCaDaDSqiL9pIWYAHWTKC35Ikuk4N2Iu98t34qY7epEMt3nM7zmWZaFcLjvONV5j76OMgDj5hBtR0S1y+vGma3jdy41k3S7ys1tFDPBnKTcd0+39vMipF7ohTaZ73U4i43WOF5zI6UdR6Ln1tZsdP7fifTpZN7u5z534rh/FvmNCtxZop3P1/3sRH9P5+r30uUdChjPJxVz1ymwmr5NTu7vxMrntoyLs9Fx6aJVThT/p/ZHb3ZTcAP6wW1npZ4z48Y5I0NMUi8UQi8XUufyTnhGGm1arVVSrVWPfcSMrTt7Hbp7VaT72Ou9OgWMnQPcIiJML5ATR7cTmNtH6mYQ5YN0mRdM5bsf6sQ52Kyi7IQvdQr5/Nysgj/UinLtpox8y6ed6pkniZhT5m7Wg3SoScS/Db3/o9pq34hiv453GVTdt79ZQcbcn8nsVXu/sVnsidc+Ok1HHaRv/DYfDKpxJ5gtRydRlEu/H3AeTrNLvJyuYSRnsx4CjP5skP7KanNyunxNYw28tdL2jW4Kjfw8nkq3fR7++Pt9blqXIULPZRK1WU14mWX1Qkmh9n99nuJUI+uaHEwFxcgEHaYAAAT6Y6Mbady9Pcl5KrJ/zAuwOwTwQ4KOCRqNxt5sQIMA9D7OfPECAAAECBAgQIECAAAECKATEKUCAAAECBAgQIECAAAE8EBCnAAECBAgQIECAAAECBPBAQJwCBAgQIECAAAECBAgQwAMBcQoQIECAAAECBAgQIEAADwTEKUCAAAECBAgQIECAAAE8EBCnAAECBAgQIECAAAECBPBAsI5TgAAfAfhZdDlAgAABAgQIECCAMwLiFCDABxiSEPE3V2uX/5ewbRvNZjMgUAECBAgQIECAAF0gIE4BAtyDMBEi+duyLIRCIYRCIeNxoVDoBi8TiVK73Uaz2bxtbQ8QIECAAAECBPgwIiBOAQLcQbgRIqc/YIf4WJal/iUxCoVCHaSI/0ripHuWuC/wOAUIECBAgAABAvhHQJwCBNgl3MLhQqEQotEoUqkUarUaarWaOk4nLiYC5QQSJ51YcZ9+PUmq3K4bIECAAAECBAgQwB0BcQoQwAAvz1A0GkV/fz8KhQLW19fRbDaRy+VQLpextraGSCSCZDKJPXv2IJFI4Nq1a9jY2OjwDLXbbUevD4mVX9LDdrldjyD5ChAgQIAAAQIECOAfAXEK8JGEm5cnHA4jHA7fkEfUbrdhWRYikQgikQh6e3vR39+PsbExJJNJRaTW1tbw3HPPodVqYWNjA2NjY5icnES73UaxWOwgQ61Wy9g2nTDp20zhdiby5ESQAuIUIECAAAECBAjQHawgz2EHlmWdBXD6brcjwM1Dry5nCm+Tf+FwuIMgRSIRRKNRxGIxRCIRtNttADuemlarhXq9DgBIJBLo7e3FyMgI0uk0BgYGMDQ0BAAolUr4x3/8R7TbbaRSKYyMjKDdbmN6ehqVSqXjek6eJbmd/weu5yjx2dg+ExmU+6W3q1arodFo3MrXHiDAPQfdQKCH1poMFwECBAgQ4MML27ZvynIcEKefISBO9zacQufk/yWhCIfDiMfjHcSBeUexWAyhUAjxeByRSAS1Wq2DzAA75CkWiyEcDqtzQ6GQIk4kHbxPJBJBT08Pjhw5gn379gEAisUivvrVrwLYIVn9/f1ot9uYmZlBvV5XxEiG7el5U3IfPV6ykp68hvREyfN1AtZut1Gv11XeVYAA9zKcxjt/u+2XMoGQRgqO+wABAgQI8NFAQJxuEQLidPegK0J6KW0ZMkfSoBMGkiX5Z1mWIh3hcBjpdBrJZBKJRAKJRAKxWAzNZhNbW1totVool8uoVqtqjSPLshQpSiQSCIfD6p7NZhOVSqXDi2NZFmKxGIaHh/HQQw8hm80imUzi7/7u79BsNpHJZJBOp7G1tYWNjQ20Wi3lcdLznaSy5+aVAtBBDHme9ELJ98S21mo1VKvVW/odAwTwA6fy+voxJjlA2LZt3K/PZybCJFEul3f5FAECBAgQ4IOIgDjdIgTE6dZDV4pMSpIMlZMECECH8u9UbU6SCeYfyfwfEoZ0Oo2+vj7lRWKeUigUQqPRwMbGBjY3N5U3iesc8TiSLraV+UokP41GQ3mEotEo0uk0PvnJT2JiYgKhUAh/8zd/g3A4jEKhAABYXl5GrVZDs9lEs9m8gTjpREd6pvR3qL9b3cMkjyGpkl62AAH8wERi9PHn9Fs/XveM6jl8boRHN5jINpmIk25kkdcMiFOAAAECfLQQEKdbhIA4+YcfBUmSILcCBZIw6aTJLf9AV4C4jWRIIhKJYHBwELlcThGPcDiMVCqFXC4Hy7LwyiuvoF6vq/uTCPFYlhZPp9OIRqNot9uoVCqKODWbTVSrVbTbbfUXjUbxzDPPYGxsDOVyGd/85jcViSsWiyiVSmg2m+pe9CwRJGL8TXJlqoqnr9uke5x4TCQSQavVQq1WQ7FYdHy/AT4aMBFwfRyHQiHEYjGk02mEw2HU63W0223Vb3WPJz3Dsu/qfVveQ3qR9TaZ+rLpOiZ5oI+lgDgFCBAgQICbJU5BVb0AxpwBPWfG5CUiKTJZeuW1gE6vCffpoTZUuJzIAa/Df53268UgIpEIstks+vr6sL6+jq2tLUVsEomE8hLZto2enh4cOnQIiUQC09PTWFhYUMohiU4ul1PhewCUIhmJRNBsNpU3p1Kp4Otf/zq++MUvolKpYGBgAMvLy2g0GojH42g2m7AsSymV4XC4o5CD27uV70JXdE3bGNrE96uTywAffJg8OPytFxQBrhNpAB3jXc+hC4VCSCaTyGazSKVSqp/TS9tqtTry73S5wH1ehhCTvOA+va+7heTJbboske8lMBoGCBAgQIBuERCnDzF0qzGVZuA6SWHBBKngADeG1OhExZRv5HR/XldXYPR7mfKW5H5Cv45sk9xPJY6lwwuFAur1OhYXF1Gr1WBZFoaHh5FIJDA+Po7V1VVkMhn09fUhk8lgcHAQ29vbOHv2LLa3t1Gv11Gv11Eul5UCSQ8XiQ+LRpBM1et1/P3f/z2efvppjI6OYmFhAaVSSeU7MV9KPje/hfxe+r8S+rfls8vvwPbpHoFAeby3YSIUNAaw6iOJSyKRwOTkJEZGRjA1NaVIP6tE0pvKEFHgxjGjkyeZg9doNGBZO3l8iUQC0WgUrVZLeV7ZZ3UDiOyLeqiplDtuY1433OjHOIW5ymtKr5OT4SVAgAABAgRwQ0CcPoDQQ1zkdp0wxONx5PN5JJNJ2LaN7e1tNBoNhMNhNJtNpUBT6eFvPUxMD3uRv02ERyrvMtyG7aRyJT0sbgUQeIx+bRnCJt8BAKUsRqNRZLNZVU2POUUMr7NtW1XbI7mIRCLq9/79+zE1NYXNzc2OtvAvHo8jFAohkUigUqmg0WggFosBgMp/evXVV7F//34UCgWsrq6q9iUSCdV+eqDku+K95HvT3xHfha5cy9/MzdKvFxCnOwOT4q+TBZOhQ3qLSELYN+PxONLpNFKplBrv+/btw9jYGI4dO4YXX3wRS0tLAK7n6uljV97P1GZ6QdvtNqrVKra3t5W3NZFIoKenR/Vbto9jjoaDVqvlSFKkV0gPwTPtNxlMADOJ0o+V8ibo+wECBAgQYDcIiNM9CNOET8WIEz49HixkQOWfSjwApNNpjI+PI5FIoNFoYHt7W+UbUKkxKTRUzrLZLGzbRqlUQr1eV4QD6CQO0mpsshTryiGJCX/LEB5J3ngfCT3kTLZfWpNlm8LhMLLZLCzLUs/Mgg89PT1qoVq2o1wuq3wOvuvBwUGEQiHUajXE43FFjKhUyqITtVpNKYv8Npubm6jVasjlctja2kKpVFKElu3Z3t7uyAWRyqQePqUTUfnudY+dfK/MydLJcIDuYQoh03P69PA1eSz7MUM+SeIZBiu9Nvxeev4QAOV5SiaTyGQyqk8dPXoUpVIJlUqlwwiie30kOTP1K9lv6HVNJpOIRCLI5XIqT4jeKHrDLMtCuVxGuVxGq9XqeB6dJDn1XTdPq77dRLacDDABAgQIECDAbhAQpzsMJ8uzVK74m4pGb28vDh8+jK2tLSwvL6PdbiMcDitFnyQkmUwiHo/DsnbKaA8PDyOVSinFhyE1vK9U0BqNRod3goUQWGWO+/hbPoPJag44W4H1ilq0atOSbdu2CnVzImL6+wNuDB8kQUgmkxgYGMDm5iaazaYKr3vwwQcxNDSEra0tvP7664oAbW1tKSUymUyqHI/+/v6Od0FvEhVbhi/lcrkbFDfbtnHt2jWMjY2hr68PGxsbHSFUJFzlcrlDUeZ34jWcrOluVntd0da/U4AdmPqwJDiyxD3J+DPPPINf/dVfxTe/+U185StfAbDzLVg4QYaNEnJbPB7H4OAgLMvC0tISWq2WGs8AFGHhefwdi8UQjUZVewqFAo4cOYJcLqeKldRqNTW2eB6rODqROBoLuE//TWLPvhsKhZBOp5U3NxqNIhqNIplMAgAymQzW1tZQLBbVvWRoqg7daKB7X03H6t9Kvif9eC8iFiBAgAABArghIE43CRMR4m+3kBxTNTn5R0UrHo/j5MmTyrtExYahM7wWq77lcjn09/er/BnbtlEul7G6uqos2rwfFSWZ75BMJpHP59HT06NIAckXF0yV3hz5fCZPh4n8mHKR6C0jqQmHwyoXg9c2hbDJ55HrLMltY2NjmJycxLVr17C9va2qhE1OTiIWi3VU/arX61heXsbKygoikQgGBgZUFbpkMqkq85XLZRXqyMp49Pr19PR0ePSo3HLdp2w2i1KphFarhVQqpd5ROp1Wx/BPz1/ic5v6GL0V0kvl5PH7sBaHcCLxEnrBE53U614dfYzK/vPFL34Rw8PD+P3f/308//zzytuoh48Sep6NJDXSYyW9JtwniUs8HlehcgcPHsQf/MEfoL+/H2fPnsWVK1cwOzuL9fV15RmlZ1rmIZGQy2eUnifpneR7Yxtkfh/L9CcSCeWlTqVSCIV2FoxOJpN4//33lWfKtm0lc5y+n2480PuxfIcAOpY00EP75HEBAnxY4GSkDBAgwO1FQJx2CeYYAFAKayQSuYFUAJ1EyclrwPA46W0Kh8MYHx+HZVmoVquoVqs3eI6YaxCNRtHb24s9e/YoZbxer6NSqWB+fl4pLfTqMNSvWq0q70csFsPo6CjGx8eRTqexsrKCtbU1VaabbZcWcJlfoytYfqy78rml8k+CUqvVFKGhF4r3k94z5n3w/VORi8fjOHToEAYHB5WXLhwOo6+vD7lcDqFQCMViUeU/UNkrlUqqLY1GA2trawiHw/iFX/gFJJNJXLlyBcViEbFYDPV6HaVSCdvb2ygUCipviZ4r+T4WFxcxNjaGXC6Her2u+kyr1VIeBD6fbn3Xw7bkO+QfrycVU/06en+816ETGP6m8i5L2IfDYRUuBkCRWp00OHmXdMh+zOtz7IfDYaytrWFoaAilUsnYVt0TqH+LZrOJ9fV11U5J0Hgct7GfkMinUikkk0k8/fTTOHz4MGzbxsmTJzE/P4/19XXlcYpGo0p2yOvpHiX5x/Gg5zvqHip6ioEdL9jAwIDKp6Rs6O3tRbvdxpUrV5S3SoYMmgim6Ts47TdtN31fnWwFCHAvwiST9PEp9zFfN+jXAQLcGQTEaZcg+aAiq1eS0hUlKexkGIm0ZksFmCEwDJfb3t5GsVhEtVrtCBej8hSPxzEwMICenh6Vi0PPCRUoKtaZTAYnTpyAZVk4e/asCrvZv38/hoeH1UKxtFZXKhUkk0mUy2V1DeB6xS0+pxTsesiYrvibrPi8TrPZRDqd7ij5zftR2WKiOomVtKBblqXykOLxOMbGxlAoFFReRiwWw3333Yd8Pg/btrG8vNzRHmCn8lij0VDhU5a1k79h2zbGxsbQbDZx6dIldV6lUlHeMVrgM5kMtre3VfubzaYiS7lcDpubm7CsnXWdWq0WisUiotGoUvLlxKh7nGT5Z9l/pOdPEiWTx04my98p6EqurgSYFAPZR2TBhGQy2VEARObNkWwzv0eScuD6O9UJBHBjSJf8TYIr312lUsHq6ioefPBBXLx4Ua2PpecTSeWffZYkQhZR4L8khZQrMk+KBpRYLIZjx46p+9FLK+9LQm7yREoiLcegPFYaRJhLlUgk1Dk0AsRiMRXiK0uUx+NxTE5OYmlpCZubm+rZZf+U8GNw0fuPfF6Tt08niHe63wf4aEEf7/o+/bdOjNyIkn5NzsNOXtwAAQLcWgTEaRegMiILFOiEQfcc6H+68JQTPK8/PDysPCLr6+vY2NjosCyxal4ikUA+n0c2m1WKYaVSwdraGmq1GkKhkFJoUqkUTp48iYMHD2J5eRkvvfSSImkkXqxAx3A5Eqb19fUO75NuMZZhRgSVTX27bvWWyhRzh0joqBDzfvQCSQs8lVQq2UyUZ/giSe6ePXtQq9UwODiIbDaLZrOplGF6o2jBYzgkr3fo0CEcPnwY6XS6oxoeiSSwQ46oqHKhW/nMhPSUZDIZRQBjsVhHfgzfoU5E5XZZ2ZDbnSoNmq5zK2AiPvL/pu1ux7OtVOolcYpEIkilUqoAAceBXjAkFAqhXq93jFF+K5aNl5AFTnSlXXqdiFgshmazia2tLSwtLWFkZAQ9PT1YXl7Gu+++i7W1tY4wPH1c6F4kaVDgOZKk6XLDtm1sbGzAsnbyhhYXFzE1NYX+/n6Mjo52FC6JRqMdBhedHDFHSXqZ2EfZTlnNL5/PqzHA6pTMH2SeIsNOmfd34MABXLx4UckTXS449Xe2Ue/3+rfh9XSDgTxG9rPAQh9gN9BllzR2spokc1b1+U2XA0BnJIC8vryfLhekLiGNHgECBLj9CIjTLiAt/YDZQm1SlOT5ThYl6RXK5XKoVqsqDIwWJZ6TSqVUqe3+/n4VplWtVjE9Pa0EdyKRwMjICKLRKDKZDCYnJ2FZFmZnZwFAFYMg2cjn84jH40gmk2g2m9je3lbCmhZyXVCz7fythxrppY/1BHjgeu5Tq9VSFeYYhqjnRbHNjUZDKWhUPKlIFwoFjIyMIJPJKMX6M5/5DKampjA0NITe3l4Ui0UVZknFUSq7/M6xWAyf+MQnMDAwoDxRksglk0m1IGgmkwEAFc6l9wsqqvSAZTIZRCIRrK6uotFodIQkyvYQJmu9njsj+6QkEpLw3iriRK+P3p91ZUAfD5z0dejnSwVFhpoyJI/9gc8lv6X0UMntsh3y/ck2mMY0CzowLI0kub+/H/39/WpMrq6uolgsKkLM90/IQgySKMtvJj26Onit1dVVXLx4EadOnUK1WlUeoCNHjqhKmPR0ttvtjmImfCcs6CANF1LWUK7I988xxbFNTziNFQBUYRn29/HxcRSLRVy5ckVt12H6Bn76qYkgSZkQIIAXTMRFn6c5bmnQi0QiGBoawvj4OM6cOYPBwUE8//zzWF5extLSEhYXF5VhxGR80f+vGzWc9ASgO8/sncCtHmemecRk+HMyqHRzD6f73uz1nM7X5+bdQhqc/dw3wK1BQJx2AZNgNSmrpoGv7+NvWRgiGo1i7969iEajWF5eRrFY7CitTWUmm80in89jYGBAhZGtrKxgZmYGlUoFAJBKpXDmzBlUKhUUi0VkMhlEo1EAwCuvvKLICV396XQafX196OnpUWFOmUymgwzpirgO3XIurXFUvmKxGGq1mlIseTwVyGaziWKxqDxctG7Twk2CQas8PXE8hqF26XQajUZDFZ946KGH0Nvbi0QioZTGTCbTQVQYTidDxAqFAvbt24dYLKZCF6Vyy0WEy+UyVlZWkEqlUK/XO75xu91GNBrF0NBQx3dPJBKIxWLo7e1V1nsquHr4J5VN+e65TVcSde8L+w6V6VthpeT31PsG7y+fX4euEDidw7bH43H09PSo3LVEIqHIPZV9hvDJ4ilS8ee1JYFyMmqQRHA786ekkSGbzSIej6Ovrw+Tk5OYmprqCBmUBEyG8/KZ5PV1sB/TWKG3he/jnXfewdGjR5FOpxVpT6VSKJfL2NzcVGGA4XAYpVJJvRcSQFOYJ+8PXK/qCEBVzGN4sCSo9DhJw0alUlHXTqVSOHLkCDY2NrCwsNDhPZd93MkruhtlQDcw3GvKZoDbD31smQyX7LPSoCePl2OYczTnlFQqhXg8riIePvWpT+Hll19WEQ3r6+tK/ptCROX1dX1CGiTlfsJ0zJ0G34esCiyfV5crunFDf17KG875lmVhaGgItVoNKysrHZ5tFmxKJBIqFFivGirbQwOSNFhSnnHJhPHxcSSTSbzzzjtYXFxUc36tVuuQiTLyhnqIzFk2ecap2/BeNDIxB13KYTn364bnZDKJ8fFxlb+7sbHRkUrB9SRNhEo39EtIXUL2LRkdxG2cj7iPz8B2OslY3TjAbab2mNp8LyAgTrsAB4a0aJus4xysciBI6EKbgluG1sgiBbxfu91WSlNvb68iQtVqFbOzsyiVSmoAPfDAAzh48CBWV1fx/vvvq2tPTU2hVCqptjYaDayvryOTyaC3txc9PT3I5XLIZDJK2PT39ysyA3QOclkwQv9XvhOG+YRCIWxtbSnlSa/wJb1PlUoF6XQa0WgU9XodtVpNFYuQ+SCSXNbrdWxubirCyJClwcFBJWhYZIMCUSbeU0m2rOseO06Meslxnsv/b29vo1KpKIs/EYvFcOTIEezduxdbW1sd5IgFK7jAqD5ZAzBOQsB1xVb3UJgUA115v1mYLKH6fv0+JmuqaTt/04M4NDSEdDoNy7Kwb98+TExM4I033uh4TyRUrEApi7bwHnJylu+LY4bvX+aaSdKUTqeRTCYxNjaGnp4e2LatquxNTU1hZWUFGxsbyuMrr8/7yu8giQsARQLpjZJhhVK2JJNJDA8PY2RkBPV6Xb0jhicCwPT0tCJNMhwPgMoRo5wytVOXa7FYTBVA4fUoCxkGWa1WVbVKSSI54Z84cULlYHIMOFlMvYjTbibUe20SDrA7SJJBxVWGtUolT5+nZb6gTpxkyCr385ocGzL/sFgsYnFxEa+88gqeeuophMNh9Pf3o91uY2xsDMVisaO/SaVUjnnZFgA3yH/9HPnblKt5pxCLxZQhku1ie/l/k6Ksj23KQsp7fs/+/n7E43GUSiVEIhG0Wi0le2KxmDIGl8tlZVjlN5dGXMpB3od6TqFQQCaTUUWpHnjgARU+HwqFUCqV8P3vfx9vvPGGig6Qz0AjFNsmixHJ5wPQ0RcTiQTS6TRqtZqqsqvLWwnOb9FoFL/927+Nz372swiHw1hcXMSXv/xlvPXWW6qP0uAu76+H/+tRDryHqc0yn5jfh/oSda+5uTljvr8ezSH7sw6daAJQkRKm8Pq7hYA47QJSMJgmeJ1Ayc4khbBk89KTxHLW6+vrsG1bxU1LoU/rsrRab25uKiGdSCTQ39+PT3/604jH46jVapibm0MoFMLo6CheeuklRQTYJhInWtQpmOih+NSnPoXnnnsOCwsLHYNODzWgkNJJEyc3ChkeT6t6T0+PWmxXxoNLC18ikVCLaspBKSc9nlsul3HhwgVEIhEcO3YM4+PjCIVCyGazqrR6vV7H5cuX1eKevB89SpZlYXR0FP39/VhcXMT+/fuVt4+gJUuSSFqWJHHIZrN44oknUCgUsLy8jO3tbUVCY7EY9uzZg5WVFWWhNBEnnZjKd6tbZvgu5DuRisSt8jjJ9rjBz8SuTxokM/SsUll55plnMDMz00G86eXghEsjgZzEpAIkx6wM82RRFPZjTljJZFLlAGYyGTz22GOqaArvzby2SqXSUVSB95BFWtinSTLYNrl4stt7bLfb+L3f+z0UCgVVWITeYwDI5XLIZrOKVBWLRTSbTRXaqlfvk9dn/9DXfZNhwbrcotKysrKCq1evoq+vD4ODg8obzmv19/fj1KlTeOWVV7CysnJD6KiJgJsmVP13gA829O+uG36kzOJ4e+qpp/CJT3wC7XYb7777Ln70ox9hYWGhw2vv9178VxaQ0eWrJGvS0La5uYlqtYrvfOc7+NSnPoVsNotKpaIME/K6+nNRHpnyUqWRzKRM6/vuxniQnjqpG+nj2ckwJn9L4xdlOEOCm9b45MkAACAASURBVM2mKhYlvTfUeTinS9lu6j98z1TImeNMmcww+nQ6rfLGL1y40BGZo8+/bmTBRIS5lAQh9QYeI59D9j2pPwE7KQHMu6ZBWTdu62RdJ3Wmb8NzQ6Hr6/Nx7kqlUkgkEsqwD0BF9/B8GpRN9+e99H6ie2TlvnupcmRAnHYBk1VIF6zyOCnQJJkCOstxU1Dk83ml7NGbRMUc2Bkovb29yOVySmGpVquYn59Ho9FAPB7Hfffdh6eeegpDQ0MAgPPnz2NzcxO1Wg1f+9rXsLa21uHp4aCnAJHrv7BtY2Nj2L9/P5rNJhYWFhRhk0KC19EtdHLSI5HkwpkbGxsIhUI4deoUstksnn/+eVUcgufRikRBKt3HJCiynDv/Go0G5ufnsba2hoGBAVW+ncSH7n/pQeR1+D3Hx8cxNDTUkWtVrVZVOB4FBAUxFWQASsjE43F87nOfw5EjR9TkwHfI95RIJHDo0CG1YCgFmskKZOqPsl/xWCern/Qq3Ax0oqMr4E5t5naTkizBfjI5Oan6+7PPPotYLIY333zzBnLN0DPbtlUoGseS7rEztZt9lb85DlhYpVAoIJvNYnh4WIVuyvW6hoeHOzxcckKV30lXNqQ3FYBawJbtloYKTrKrq6sYGhrCwYMHcenSJZTLZeXNZV/NZDLKA81nKZfLHW1mO/XJU9+fSCQwMTGhPLEyXIVjsdVq4dKlS1hfX8fW1hbW19cxMTGhwm6onIyNjaFWq+Gll15CtVpV93UyEuj919QPZb9yUzjvlcn3owAnRR/orO6oG3LkPo4PeoPZ//bv349nn30WiUQCxWIRo6OjGBgYwPb2tvr+MhJAN2QQupzUx6v0QMu22bat+m69XldLhkSjUTz88MOqaisNnzI0WCf/8k8fe2yXHB/SGn+rc1a7gYnMybbId6+Hm8ljZXQAc38pcxqNhgrpl7msUhZKGaETXnkfSZwoXzk/ZLNZtNttbGxsKNLEXM5Dhw7h3//9328gRjSstdvtjgrAkgTo7ycc3qm4GwqFOqoDm3KZ5fVoBGQFXuoa1EFCoZ1iSCwixnek66EmnVW+T7ZR6l9Sh6P+0tvbC8uy1FIXDA+XOoj0pDrJb11Wm0i3HHP3AgLitAvoAsypY/JYXWHlNiksqPgxn4gdUN6L98jlcsjlcqrsdbVaVesKATvK+unTp7F3715kMhmVD0RruL6QLUsJ03pOi0atVlOxsq1WC9lsFiMjI7h69WqHosVrAZ15NvoglQUEZDgiK9cdPHgQhw8fRrPZxIsvvqgUQOZ6kNToCiQFJ933supaIpFALpdDqVTqsDTR1cxS707Clmtb7dmzB/l8vmPCZC5NuVxGpVJBtVpFpVLp8HxkMhn09/cjm83ixIkTmJycRKvVQjqdxuzsLMrlsnoGFhwYGBjA6uqqCkXkezVZY9xIuXz/tJRJsnQrPE4mxcjUL2Sf0MmdSSByezgcxp49e1AoFJRlLRTaKbdP8spno1WMQj6dTiuvnpzgTORJV1pkO+hhZGhsT08PBgcH1VhlCXDbtnH//fdjenoa58+f7/gmfN9UAOk1Zm7bn/7pn2J6ehqXL19GrVbDuXPn8O6776qwD706IK89MTGBQqGg+j2VvGQyiVQqpbyYzKXr6+tDqVRSxgrZB2RYCydLGm5YQl8u2Mz9bE+j0VAFUmiJn5+fx7Vr1zA5OYnh4eGOZQbuu+8+vPvuu5iZmel4NtNvvW849T3Zd0z9yXRegO5gUuj1/brFnGPZSbHVjRg6eee4YWGYer2Onp4eJQ/o1SRZ4pwliZBUCuWYN+UdcTxZ1nULvwwX4vm696HdbuPixYsAgPvuuw979+7F0tIStre31TwMXJfn8v5ufVa+I75LGhSlbLhb0HUeOX7ls3K//MY0UOl5xZRNfGckJvwOJr1KhlfLPiUjCtgezgmVSgULCwvqXjMzMxgbG1MefIZoy+VQdEIoq/PqclrmzbGvkhBKA6l8jyYyr8t+tqdcLqu81VKppPQ7/Tu49Q/5rdhOaYjm+JPveXh4GPl8HteuXUOxWEQ2m1VjT/ZpJ3nt1hYJ07x8txEQp11AdiDgxsnD5BaVhEIqJvxjKFA2m1UhMhQCFCzsgHRj06pcLBYVMQiHwxgeHlbrFAHA9vY2+vr6cPjwYWxvb2NjY0O1kQKIk5pUZFutFra2tlCtVlX8bqVSUcq+rojosb9ysJPMJJNJVXwiHA5ja2sLyWQS+XwefX19GBgYwGc/+1m8/PLLAKBCjGTOSrVaVYqzrlAyeZ2W7cHBQVXWXU40VKJluJxeWSwSiWDfvn0oFAoqx4oKYS6XU1X5mJjJvCbpOZycnEShUEBPTw/i8bj6vgAwOTmJ1dVVZSHieceOHcPMzIxS+CU5lIJIevckudaVYZO3xSTYdgOTMDNtk2TXaZ9+LsnPyMiIUl6i0SjOnTuHubk5ZbmjBU6OKcuyVIETWoP1MSknM9n32SZ+j3Q6rSrmZTIZpNNpPPLII+retLjRynf//fcjk8mgWCwq4ktSJ40knJQPHz6MvXv3YmhoCJOTk5ibm0O5XMb8/LwKhZBWcGBHBpGQ1+t1ZSCggmfbNlKpFB577DFFwHjfsbExAFAhe8D1PDmp4Mh4dlpgKTPoDacFmARqZmZGKZdyUq/Vaqr/y6IUDzzwABYXFzs8YCaSY7LKc7+udDj1xXtxAr7XoM9R/CNhSaVSaDabWFtbg2VZKrldrh8myYq8FucYPWfPqQ3yXH435oW0Wi3E43E1NrgYvWVZSm5K44v0EgCdBkyTgYnzK3B9sXt6l2UhIvksvH6lUsGlS5cwMPD/s/emsXFe1/n4MxtnhjPD4Szcd4kSZVKLJVmyJC+xLdu14yRNkKYIsqALkKBoC3QBArRAPhUtWrRN03wI0GwI0gZx0jjN6tR27UiR4y2SQu0WJXEVxW2GM8PhDIfkzPD9f5jfc3jeqyFjuYmc/qELECRneZf7nnuW5zzn3AZpuESwjfNDnW42MjDls9prfF3Tp3jf7+ReTvp5m4EwRzVHWutt02fgZwm06ppmDSxqh50yYV6DztqbrxFMYtdcZjYJTrOWVcujuY2EpubrZ0pAlw2FPvjBD+KBBx7Ac889h6997WtyL6Y8muczs7D8n/XSAGxZUT0Ppu7bCDAwg3PWVFG/028ql8uIRqOwLEtqzgm2azCYfqN5X9XkpZocmbLzmzLuBE63OChQ5uKohrJrdEJ/XxsSjaR5vV6hodXU1EiXlNraWtti1alTOkp0YJhtCoVCwoNNJBLShWVkZET2fgFgQy1yuRwSiQQKhYKt0FG3MK6vrxeDoueDxzGVIpUcUZtIJILGxkaEQiGUSiUsLCwgFArh4MGDCIfDCAQCyGazYhS9Xi+WlpYk4GF7dDrEJkKj0ce1tUpDCzrQS0tLonw5n3Nzc9L5y9ybKxgMYmBgALFYTAwznymzfsPDw7IxMZU6Hfqenh60tLQI/eDatWu4//77AVQcjUgkgv7+fpw8eVKu3el0oqGhAe3t7WIYdOdBTTUwlZ+pJKs53JsFMG9nmEZej81QLvN6qh2LLazJcQcqNDNScdiqnoaHAADnweVyoampCcViUVq968BSGydTcfNZ1tTUCLLG+rxwOIyBgQF4vV4Ui0VxqLQMNjU12ep3eE0McolSFotFDA4OIpvNIhwOo7GxEefOncPo6KhN1/A++X2Px4NAICDrIxgMwu/3S5a4ubkZNTU1CIfD+K3f+i185zvfkVqnuro6tLe3Y3Z2Vmqx6FySvkKgg10Mmc0if55BrPn8RkdHZU70PZZKJYyMjKC/vx+1tbXyHLZs2YJYLIa5ubkNg6NqTo85zNc3AgT08/5VrYHf9KGdIfNHv097wkA4Ho+jo6MDfX196OnpQUNDAyKRCKanp/Fv//ZvyGazQkdjIx69lYJ+jprW+VboZbQb1ImUP9pIoFLTS7up61J4Pv7W9krTmmhHaVfNjCsBSg3GVHNq9ffoVC4tLWF4eFiywaQXagefTArOFQMFM2Oi9byZOWcABUA66d7uYTIXNqJEVgv+dHZJO+wEZXgc+kW8X+2M0zfQ2cBq5+Kz4f+aJm9ZFnK5HJqbmyVIqKmpEYAnEonYrpPUagbRZjCgdQvtxpNPPoknn3xSaHpHjx7F008/DQCyNrR91/fC9cAghmwFoEIjD4VCImMaCDQBAs6nvk4tu/q5eDwehEKhmwJWyiDpebFYDKlU6iYZ1z6rpsub8/NWx53A6f/woHNWbXGawmBmmXQnH03T48JijYZu1+10OtHS0oJMJoNIJIKZmRlRJKTfRCIRzM3NSbaFm1/SAWQA5vf7sX37doyPj9sWJBVPKpXCxYsXsW3bNqll0hmYlZUV+P1+9Pf3I5FI2JopkFJHxUQDzL+DwSBisRhaWlrE4aPSZKAQiUTg9XqRTqdFaVJRUDEWi0VBWHQWhQqUrUqBSraqtbUV4XBY2sKSl0unbnR0VJ4FnVN23+nv78fAwIA4ehy8NjqQRHn4LNva2tDb24t4PC5tTtfW1pBKpeQYsVgMyWRSUtwMDjnfPT09Qr1MpVI30Ta1bJkZp2roDd/ja5sFNW91VHPA9Dk3C6r0qHYtbrcbbW1taG9vF6MCQJAsPXSwTEPH+aHTz+wpsP78KC/VjB3XZkNDg9AEKcf9/f3yLHTTEhoGUvkuXLggx+Ua0kGZltsvf/nL+MQnPoGVlRV84QtfkKBZOyEul0tkhNdGNLuurg4ejwdTU1PIZDLw+Xwi501NTWhtbZUsJvnpfr8fqVQKS0tLMv+FQgGlUgk1NTWIxWKSaXU6nTZEV2e3KP8EX4i80oDS8UulUrI1AO/d4/Fg9+7dOHbs2E3F/CYoouVoM3kyP2PK5f/1UW1d6d8a1GMAoBkL+vuUSdoSfo77A9bV1Um7ZmbN29raEAgEhP69trYmwBFlm7LHdagbkfC8+j0dvACw6WPeE2WQjtvq6ir8fj9qampQLpclG0zQzTw+1xrf4+s8tg6GPB6PbJ6ez+dtcsw5pCNJvcP1QIc6nU4jFosJvZUAKQDk83lbgyMAciy9UbV2gjUgqx1ezisd19st59oR59D3Za5pHaSbtDzKofYftANPYIc1QaZDrp/jRgCMDniZFXE4HLZMPQDR+fy+7tyrSw00gKuHPk+xWBRgmPfKbr88tgaIeP3axpLix+vSQOvAwAByuRyuX79uY6jwXLwOzrF+Plr+dXaLAZrb7ZZaPp/PJyyLkydPYt++fVhbq3QsbmpqQkNDg23/QtbqartnggHVhtZnvyp/5Vc57gROtzg2enimctMLSSNbGoHT6AV/aLSIcnR2dkoryJWVFczMzAiiSwpfPB4XpBeA0MUouJpy0dPTIw4YFRcpBIVCAcPDw7h06RKam5sBQNAXBlYrKyvYsWMHTp8+vWEmhEqRfzc0NCAej8tmtDpwCQQC2LJli9yL0+kUWhUXFtFrbga8Ubck3RaZDgNbJxcKBaRSKemSw05IY2Nj8Pv94jzwhzSn1tZWuFwuFAoFQefZmcxsp84MR19fH2KxmG1vC6Bi8E6fPo39+/cDALq7u5FKpdDU1GTbKNHtdqO9vV1aptMZ1fLEwTln/dJGiL0po9UC/1sd5jF0MMfzaQS32towP8vjMkBhJyPtODHDx9b2zGYClf2LGMwywAqFQti+fTtGRkZsQYIGBTQax/qj+vp6RCIRMZLhcBj79+/HwMCAZHQJHvj9frmXeDyOaDR6k4OqHQndUtfj8WBoaEjkOhwO35SB4bXpZ9rZ2QlgvWajVCrh1KlTWF1dxcGDByUTvLi4iO7ubszPzwuNQgMXugMg54KOsm7+wD3GtHPKDJfD4ZDAiAaSx9JOULlcFuPL59rR0YFoNIrp6Wnb/W4ka9qY6rnRsqU/awIGv6mjWvBTjf5MR9m0Ixqh53Nju2bLsqReld+lvuHnucUFz0uZymazok8JSjU2NmJpaUn+ZxMWDWgBNzddsSxLqJ+s42WwxqDddHz1M6V8MUjRQ9eT8rN6Xgls6T3s9PXRpnIO6+vrsWPHDoyMjIh+1pkerjvaHNpTnjufz0v3MTr4zFi73W4MDQ0JyKOp70TzCYiZMszf5prQ1LZ3Yph6Svs72nEH7LJLwNjprDSz0bVMTqcTkUhEaI+UM+3f6OyGGQDrjAvPy3PTPpjyVl9fD6/XK/s8ORwO6eiq5cPtdgtwQLDIfB4ul0vWxLFjx3D//feLPDz33HPyeRN41mud98HGWMwAkVJoWRaam5vR3d2NS5cuyRrSdo3H5LVTp/O3OW9kyXDN87tkCq2urqJQKODcuXMCLJOVEYlEbHQ9vRb1tWiZ0PJdzS/Reu83YdwJnN7GMJW5XnR8Tf+tnWcOHcyQEgBUurWFw2FRJAMDA1hcXEQ+nxcHkWgLhUyjH6VSCcPDw9i3b598hnUQFNLW1lZMTU2JsicisrZW6Shz4cIF7N27V5xDt9st9DjLsqSzmLnZHCkDVBrMchHd5qJnVy+2FacSo3MWCoVkoZkIpl7w+llQibJJAJUBU9r5fB4LCwtC11pcXMSZM2eE4qEdCL/fj/vvvx9btmyR1vBEWQDIPM/NzYkjTgMQjUZlg139rHm9Z8+elcBpaWkJW7ZsQTKZlH20eKza2lppEsG9s3SmRSO6msZEh0h/Tv82UZ7/jaHVaNhGzq55nmrokak0PR4Pdu3aJU4cn/na2hpyuRyGh4eRSqWkwQBroIgSE4Fma3ugovD37duH0dFRpNNpkVvLsmz7gbE2rbm5Wdalw1Gp5Thy5Aj6+vrQ2Ngo9YM8DhFntiRncKEDJt6rljM6ng7H+gaCfO7asOvfa2uVhi7d3d2yXxk3tmWx8fz8PNra2uDz+ZBMJrGysoLe3l5MTk4KNZXrTQc7dGLYfZL31tTUhHw+j0QiIYbfsiyk02lBgS9evFi19Tvv0bIsoZXk83kAkEYp3f+viF7rEzPI1z88/kaULzNw0iinGVzdrmGuRe3caRYDwTA+22oBor43zV4wg2vuOcYmPCbSqz/LIIZsB66jTCZj62bH4IefBSByw+BaO2G6PoXBw+OPP461tTW8+OKLAGDTv1rOzTVAW0UbwzWjg5KWlhY4HI6bACd9bzqoIoOD6Dqvpbu7G21tbSiVShI48RloKpnufqntE+d5z549yOfzKBQKkjGoq6vDo48+ivPnz+Pq1avSoMgEXzWtnDpQy7B+dpvp4l/XqOb76AwSX9Of1a8zi8+gNhwOS+AIVOSqvr4efr9f9JamWjLrpOvFTMBO2xANXGv9QjktlUrCMtCsl87OTkQiEQGHaFe0fjfXM7/Pz8zOzuJ73/sejh49ilwuhxMnTshzM4EAHfRpvcD7Hx0dxa5du2ST8ZqaGrS3tyMYDN5EmdVzoeeGvh91B6+V5woGgwImkCpJm8YOkqx/r6mpQV1dHQKBAJqamrC4uCgBlsfjEXDNlFstH5vJGOfkN2XcCZxucWhFYUbwHPo9bRD197hgND2P36VR8vl8OHz4MN544w3JunR3d2N0dFT2iCCnu6GhAePj41hbW8PExAQymQwAiJJm9mJ1dRV79+61tSNnwEOE4Nq1a7hy5Qp27txpq20ggun3+3H48GEkk0ksLCzIdWsFzmOT6kHkZWVlRfan4qZvbMepM0wABMnhcZlVcbvdsnktDQuvgQEYFSOD0FQqJU6iy+XC3NwcLl++LHNIrrnH48HWrVsxMDCAaDQqCm1tbU0ygiyGzOfztmJMKn46MNrwaZl45ZVX5HORSATd3d0olUqCwFImOjs7ZX8Q1mjpedYOkDa2Ot1PmTURP/2d/81aMJXeZkHRRmtEf5YIY0dHh63tdblcxtTUFAYHB7G4uAiHo4KGDw0NAQDa29sRjUYF/WJAND8/j1KphKamJsTjccRiMVy7dg3ZbFacsGw2K90Q6+vr0djYKFkRh8Mh8t7S0mJrZQ9AjsM1nc/nkc/nkUwmAazTAnXApIMmGke32y0UVRooOgQ6EKGz4HQ60djYiHQ6jaGhISnY51pYWFhAR0eHdNej0d25c6dcHwEMTdPQdBA6vJFIBL29vZLx5TVks1lxqsvlMiYnJ20gh0ZPGVR+7GMfQyQSwQsvvGDrHDowMIChoSHRW8B6K1tTjjaSr83kynTefhXOpXkd1f7Xr+taGZOCqR2u+vp61NfXY3FxUeaI+pRybwaU1NPa4QIgwUA1Sqq2TXR+dEv/QCAg19jS0mJzNqmn6HxpdFvT/1iXRBvC0dbWhnK5LKAVnTEtO2bgDKw3HGHQn8vlxF5w/jo7O1FXV4fr169jfn7epg9p75jdIjWMmSE9F3fddRdqamoEKCFQqB0+MjII0phUQ5fLhT//8z/HH/zBH+ATn/iErBXe+5EjRxAIBPDmm28ilUrZ1iOvF1inrJOmpp1QzpkOHG7X2EjmOUzAzPwuHXSn0ym+AhkdnF/OB2VKyyGDDb5m1j3rc2mAQtPTtH7yer02O0J9SnCNAABLB1hXRjli/R1wM6OhWCzitddeQ2trK7LZrPg8Onjj+UywXctCqVTCxMQEfvCDH6Dn/20E7/f70djYiMbGRpFFDWJpH8AMlqh/NGNI76Wls6nMPnFvUM6B1+vFwYMHEQwGMT4+LmUjy8vLyGQysiG8WRNmyovpS/Mzt1Om38q4Ezjd4jCNsE4h6t75fF8HEtWMOpFpGiBtrLh3TCwWE7QpGAwiGAyiVCohn88LZzYcDoswJ5NJvP766xgYGEB7ezscjgr1KZvNCgpJ58eyLFH+VOirq6s4fvw4enp6bJxcBgdApXPYyZMnbUgZFyWPBawrADqoly9flpQ7g5jR0VHJ7KyurqK+vh61tbW2jmI8B42RDqi0cTVROtaf8Bg0sqQaamPKwHDnzp2Ix+MyL/wcEdiFhQWk02lBuTg/wWAQoVDIhn5pqiSdTSoQt9st9TB0ZknDdDgcQmOksZyenpZObZqrzWEqF41S6znke2at0K0OMyDc7L3NFJ8GIGpra3HffffJPJKKMD09jXPnzom8sS6wXC5jbGwMtbW16OnpsTVQYE0gHSzusdTZ2SnGZXl5GaFQCLlcToIkFqAXi0X4/X7s378fsVhMMjpc78lkEhcvXhQax/T0NKamplBfX4+JiQmRKQC2uitmxrSTGwgEcP78eaGNcs5MhFm3XU6n08jn85icnJTAm0aQNU9utxsHDhzAhQsXJMiJRqPo6urC6uoqhoeHMTc3J84yM7bUM9FoFB0dHWhoaMDS0hKuXLki68TpdEr2m/vX0PlkTSRQoU/W1dWho6MDPT09KBaLaGhoQCKREMPe2NiIHTt24NSpUzbnlIP6s1rGpFowVC2gr/b6ZvKo/9fBiH6N66+a02ieVztumqpIZ4SyEYlE4PF4JHPD7zMwMjNtfN2cE4JmllXp6EbwTQdtDGx0bQmfI2Xp7rvvRlNTkwBGzPxy3qm36UjpzAxthp4n1g7x/quh9nqt6O/qwJP0bb7Oe2hubkZrayu6u7tx7NgxZLNZmz0KBAIIh8NyL6TCU187HOu1kZSrvr4+lMuVPcpoR3lep9NpoxkSoY9Go9IxNRwO4y//8i/xxS9+Ue7P5XIhHo/j4MGDAIBr165Jh0n9LDlPptxpW6upfSZA9uscZgBnAmXV1qX+DDOiBAyczgpVn0EqALG1a2trNmeeIA+fhW5RbrIweG59DdrukKZKcEy/ViwWMTc3J23wWfOjaama7cAgydRhtOMvv/yy6EkziKgWONH3oM4lW6dcrnSTnZycRF9fH3w+H3p7e8VGzc/P28optB6jfjAzvABEJ+gSEp4bWGfckK5HNtKWLVvQ29uLiYkJnDt3TppyeTweTE9PS4aKa1fTU/XQQLgJEP2mjDuB0y0O04hqYdfKbDOkhQaUGQqNJrHIHACeeuopuFwu7NixAy+++CIsyxLHp1AoIJ1OyyKpq6tDJBJBMplEqVTC+fPnZd+Vuro6ccaB9WYNNABURJpicOPGDZw5cwZ79+61UfoYWAG4KQAzHRoqEKKElmVJG1vugeR2u5HNZnH+/HlpxHD16lVRDBoZMoMkrQz0vNKZc7lcQjfk/HIO5ufnbQqDzovf70d7e7vUzPC8PBcpdVTmen+pWCwGv98vxkwHkJyTYrGI2dlZxONxNDQ0yHkOHTqEZDIpmQqggjI2NTVJVsPpdEq20VSCG8kaHatqDh3n8u2gOeZxqwVIGyk70wHV93vw4EG0t7fb1lKhUMCZM2dsgTSVPp0dttinrJEu19XVhRs3biAej0tgQEOnDZfT6RTOOGvMjhw5IgE+vxcMBuV6X375ZUxNTWF+fh7RaBSlUgmHDx/GT37yE8zPz294/5RXjU7X1NRIh0ddHM4gTQMHlPO5uTkJAFOplLxHeixlq6amBvv27UMymcTk5KTUh9XW1qKrq0sybnSwLcuSons2dQmFQnLcUqkkLdf/7u/+Tpq2kJ5KfUAEdt++fWhvb0c8Hsfrr7+Obdu2SUZFr5Hdu3fL5rlajkwK01sxotXe19+vtk50Rsh8XnzdDMCqBVObOY3aAeaxtbPEvbZ04KmvgbpGU7X1nFOWSZ1hy3xm6Elz4zXU1dVJEE/njzqMANe73/1u1NbWCmjB9vKcUz6/ag67nlOdUXO5XBJslctlyazpugvqbd6f+UwYwJOxsbKyIg0sfD4fVldX8eijj+L5558Xaqiu3eB3LcuS7S147FAoZDvX1q1bsW3bNqFOEijgvfn9frGLdXV16O7ulnXzn//5n/jIRz6CQ4cO4Yc//CFyuRw8Hg/y+bw0wGF32TNnzkgHUD5T/VsHvZa1Tk/X9LXbOcw1Wc0WVQtcgIq8kNbOjA9lYHZ2VnyHdDot+0sCkHpS2gEANtqxBrC1DtXXyAwdv0sKcUdHh+gz6lBSBNkohPKie06aGQAAIABJREFUt1BgoMFgm2wBbWPpS8zNzcnGujrrrgNxnQ12udb3hQQgINn+/ftRLBbFVyKDhUwZy7Jk/7BqgAmDT6fTKXLEchBm/wig8NwEwNnMirRFl8uFiYkJ9Pb24sMf/jDW1io186SQRyIRATA08KvlSAO9GpTRz+zt+iu/6nEncLrFUU0x6Aeu/+eohnoQWQwGg7LgdKrd6/Viy5YtAIC5uTnU19cLlScSiWBtrVKPxP1rWDhIFD6TySCZTCIajUqWhcGTw+HA3r17cfz4cSkU5wJyuVxiQE6fPo3e3l5EIhGEw2Gh99FALC8v21BzE2nU96wXAdEKKgVmz5599lk8+eST+MEPfmCjP9F5JkKoF5xG2GikaYwdDodk8LSB1LxinTXyeDzSwEIXtNPoE2mdnp5GIpGQTBSdUKJVfOYaBdRB4MLCAiYmJtDV1WWTk7vvvhuvvvqqbW+qYDCILVu2yPe5QR8pHZwjLWtaFk3a4K9S6WhDWQ1p1IbKDKz1d/h3U1MT9u7dK8g4ZWVoaMhGieAP55N1C7lcTurxlpeXsWPHDtTV1WHnzp2oq6vD3NyccNR5LAYaDQ0N0nq8v78fTU1N4oxR7tg1iGN+fh4LCwtwOivtxx999FEAEMqadlh5LgDyv9/vl+tnEb7ejJnUKQaDRCwZIDH4aGpqwtTUFIBK16N4PH6TA0XApVwuY25uToqfCS4wqCfAQXln9oH6oaurC5lMBu3t7VJPcv78eXGmOVc+nw89PT3YtWuXZG+pm3jtMzMzsn4AoLm5GT09PbbAaTMAiq9XAwW47kwZ03Kphw7G9Xn5PW3M+flqwZzpDGzkHPCYfJb8m44PO6Hq9WXSejSFU5+fdXr19fVSj8YNPIkAMzjmZ6gPGTAz+3vPPffI3nNkAUxNTd2UCSW1lEGPzpLwWXAO8vk80uk0JiYmBBHXn+H98rvUXTozR73GdUUQkg4d9//L5XI4cuQITp8+jXw+L+wOOoher1fOrUGZaDQq4EogEMDDDz+MeDyOa9eu4ezZs7LXGtccgzC/34/e3l5xjL1eLzKZDLLZLEKhEB588EEcP35c5iydTiMajeLxxx/H888/DwC4fPky5ufnq7Z3NwMnOqJ8jfJ7O4d29HmdwM1rQjNS+MzYtZPU5XK5jN27d2NyclLqNXW3QmZDAIgOZcMPfk5nBBkkcDDzT3tC/U+2CPcIK5fLAjxlMhl8//vfF7+Ma4z1zZrmyrWla694Hj0HtAF6bvRn9TVTJvUxVldXxRZdv34dS0tLQjFkA4dYLCZbZSwtLWFlZUWyofSPuOYpWy6XCw0NDQiFQtLinHPJ8gS9J6B+Fj/+8Y/F3m7fvh03btxAIBCQGsFkMilgCdfaZuBStdfpS73T407gdIvDRIs1GqozI9qY8XMadaupqUFDQ4MUYbNrHoWlv78foVAI09PTGB4eloVJ1JnUGRZUFwoFBAIBxGIxCQRmZ2fR0NAgHbLYQtayLLS0tMg53W63LT1No8MGCu9617vkfdJyLMsSGpSZVdE/NPA0zqy34lxqR2V6ehpf+tKXRPExY8WWlhqJ1+fi0F1sAKClpUXmns5AsVjEyMiIPD+isAAkcKKBZuDDZ1IulzEzM4OxsTHJAnFDxtraWtTX14vCM5s56IxZuVxGKpXC6Ogo+vv7JbBlpksrUbfbja6uLqnR6u/vR6lUwvT09E2yp1FsM5gyg5bN0Pe3MsznrJFv8zwacdPf1c6o2+3GfffddxNFweFwIJFI2Awh5YbOf01NZZNa7uvC77a0tMjeSOVyWbosZrNZaafvdFa6um3btk3qMGjI6ZT5fD60trbeFIwQhfN6vbI/FwAcPHhQ2rJqpE/POzny1BlEvPXm0kQNKY+UC02ZWFtbQ2trqwRPRN2JelJGONekxBIl11kMXg/PQUOqdQ/3tOKm0J/5zGfwe7/3ezh79qwguKFQCE888YR0JNTZ6qWlJUQiEUQiEQwPD8t18Pnee++9uHTpkmTAqsmn1gE6SDc/o39reQKqrxEd3FbLnlRzCKuBARsFeRoIAta7vFGWa2pqhBaZSqWkGx7n1XyW/E0dSlS8q6sLDsd6/SwRdcoi1xBreyhfmg7k9/uxc+dOPPbYYxJAOJ1OZLNZJJNJmS+eX4N/mv5DkIyotmVZyGazeOaZZwR40s9DP0+N3GsnmM6e1+vF+Pi4bMHBJiNEz71erwB0/OzMzIzMu67nczjWNxKNxWJobW1FNBoFUKFgNzc3IxwO4+Mf/zgaGhrwxS9+UdqhRyIR2/5RpGxxfnK5HE6ePIkHHngAR48exc9+9jNYliVZhFQqhXg8jve///345je/ia1bt8KyLCSTSVudoCl7AMTemYDZ7RymHdcABWWtmu5nkynKJ9975JFH8Oqrr4re11RQNmByuVwiF8z2MIvJ1vgARC45VwyyqOvYiCUcDiMajUrAy2cPACdOnBCfhceir8F1RvllppBrVgf65ud1zZAGfzcCO/nbbOBCECQejyMejyMYDAoDgfo+EAggn88L6MignHVb9EFramrEN6RfSNowM018XtRZBHlcLheef/55yZ4SlGGgNjk5iYWFBVtwpP2rakE2x53A6f8nw3zgfKj6df1Zfg5Yb9hAigRRFyLsTqcTv/u7vysIBlFtoiXMEnV1dSGdTkvrU4ej0hKyoaFBCrcXFxeRTqcRDAalMxa7De3atQvnz58HsK5guGgZTHDPJxrpYrEo6V/SinSdD50PHSRSSbndbtTV1QnVjIZLUy14bZxHIm6mg2QGpjw3nbRSqYT9+/ejUCgInY7Ow5tvvinHpaNKg9fX1ydKid+jAltZWcHQ0JAU8bpcLoTDYYRCITGWpgPH587rpyIslSqb/87OzqKjo0M+29vbKy1FibLV19fjwQcfxP/8z/+IzBCR1LJVzZmkktHOB69Dy+StDu3Q6uOaQzt+Gu3XNBfLshAMBtHW1ibyQgcvlUohnU7b0HZgHYXT3a2KxSLq6uoQCoWkKQjpSrzG+vp6FItFXL58GdlsVjY5Jpo+NzcnGVVmEpkZMgf34jpy5IgN6b1x44YAIlyzpnHgvPBvDRCYhfG8XzqrlNWrV6/i4YcflrbhQKVZBdcp1zDXHkEX0g15fXweuhkF/+c65ZoOh8Oor6+31WIyCAWAzs5OPPLII4KQalkrl8uYnZ2VeaKjza5vDocDnZ2daGlpwdjYmG3db6RTtTxuFjxVQzE3G/pYGnjQurDa2Chg0r95PfyhjHm9XvT19aG5uRm1tbW4ePGiNNThmuD3eb+UBz6z3t5eNDQ0IJ1OS3AEQDIyDJZyuZw09qHe53ry+/3YtWsXDh8+LGunXK50qbx06RImJycBQD7PY9DZ0dl6YL3pEGXEsipdH3n/dCx1O3MNqugAXmeb19bWcOnSJXHgWltbhabH+XA6nUI37e3ttWVoisUiWltbsXXrVqkJmZ2dRTabFSfb4XDI5tLMkLC43+FwyIbupOppXaflbmhoCPfccw+cTife/e5346WXXhKwzemsMAkOHDiAoaEhvPbaaxgYGMC5c+ekJoTH0vpOy6NJ3bydg88EWLfL1UAGPks+746ODqH7kxLd3NyMu+66C42NjRgeHpZ7p25cXFyUTBP9Dt0JkdtI6AyiZinwWridAv2lcDiM5uZmBINBhMNhxGIx2xzv2rULAOQZB4NBW9dW7bNoW0U50gAVdaPO1JlgO/WmBlropzDTMzY2JnO4Z88eqYW/cuWKDWS3LAuhUAjxeFzWMYNRggx+vx9tbW22DPTa2hpqa2vR39+PdDqNb3/72xKsUbfwnhobG8UmXL58GQcPHkQ4HJb72bp1K44cOYJvf/vbNpkwdWM1H0YH2xoYfyfHncDpFod2oLRTQCVdTRhMxMDr9aK9vV2QXHJ2iSQ0NDSIQbIsSzp+saMLFyc3suQGqcvLy3C5XGhubhbjs7CwII4Wi+NJyWlsbBSFRZoKDYtu6cxNK9nNji2I6Zxpxa4VFQNBXhevmwuTaAYVqU5vc+HQCGvEkY4mh0Z/tTG+6667pP5DtzdPJBJYXl62IU9AhSp04MABrKysyGapOiOwsLCA+fl5ybgFAgFpwcnOQOYz1w4OlSPvhwWwq6urknXasWMHrl+/jsXFRQnuWPsQCoUEdevr68O5c+dsznE1ZN5U5Bshl293HWjUjMGZGcTp73AuaDz4zLq7u23tjqnYR0ZGbN2BAAjVgp+lTPv9fjz11FPwer24fv26FGwHAgGhpHEcPHgQs7OzcLvdCIfDsv7YXUsH9dWGZVlob2+HZVnYsWOH7b1nn30W+XxekHFeP51KXXPHeSRgwUBeG15NUWJG2O/3I5FIIJ/Po7m5WeaU1CNNE+Ua4zpjVpPzra+BckxklVkBNthwONbprwDwpS99CRMTEyiXy4jFYjh69KgUbFfLxi8tLWF0dBQ9PT0IhUI2+g1l/eDBg7h+/fqGQY5eW5uNjdbDRsGY6ezq82gHRjs3HNq4m0CZfp+D9B6/34+6ujq43W40NTXhrrvuEvSbmYlCoWDbSkHXFmqd6/P5JOtNHRyPxyWjQlo4M96kNfO7dDp7e3vR0dEhziWp36+++qrU+Oj7p64n2q51P6/ZtJvmM6R90I0R+B3KPelctAnFYlEApGQyCbfbbWs2oFsqx2IxW5BB55sZNzqXvGZeYzabRW1trU1mXnjhBQEVmpqaJDuhATK+rx3ns2fP4sCBA9i7dy9+/vOfY21tTYJZysyHPvQhnDx5El6vF4cOHcJzzz0nDYH47GmneU6uVZ2NfKsAwa9iaACsmu7X64XX6PP50NbWJrqJv5m5b21tlTo1PafLy8tYXV1FOByWWjwAElgx60r9SvvIOaJO8vv9CAQC0jGR+38xAOd2EwCkjTztiGVZAnboJlW8Fp5D08kptzqbZALCfJ3vmSwl7W9qkNjv98sm7XfddReOHTsmNFSudwYclEsCMpw7p9OJ5uZmCRBnZmZQLpfR09ODjo4O+Hw+sU0s0WDzjP7+fjz11FNIJBLIZrNS1zo7OyuZOp/Phx07diASiWB6ehqAvbRFB43UodX0+zsBDFQbdwKnWxhUhGZgZCKjGu3g+/r7DQ0N0vWKHZToQLjdbvzpn/6pnPP48eMiTKyFoFHy+/1oaWkRBIGvs7OQbmfb2NgIl6tSmOtwVPaMIYeXhpOBFovkqfCnpqbQ3t6OpqYmXLt2DYuLi8jlcnJv1Rw9s30qaYFE5PT+IsDNwSV/60BILywudu2wa1SOaPrS0hIWFxdhWZa0xuQ1kULCeT906JAUZpObS35wPp/H+Pi47LXEZ8fgTytxbTA0YkqjTVol61nMbMrDDz+MZ555RnjbRIbq6uqQSqWk9ef8/DxGR0dtShaoTpfT8sq//zeBE5+DRs3MLjmmMd0IYfJ4PFJLYVmWtPROJBJIJpM254MyTiecQafP58OVK1dwzz33AADC4TBGR0dl805zOJ1Oedb6Nd0VbrORz+dFxvUol8s4ceIEZmZmANidRE2JpQzTgWbgwDWjr4mOr5430t5IB+QaJkJtPiOOao1C9DADRV5XKpXC8PCwOOelUmWz3S9/+csStD788MM2tNJ0IAh4HD9+HLFYDLFYDJlMRoIxOqzbt2/fNIOp50H/bQYy1b6nszbmqAYsvNUgrdqxNvoug1xmRhnwfuADH5CGMbpDIbMx1Fe0F7wXFnHTYQTWQYBdu3aJ3eAzYVaTxdsOR4VC3dDQgM7OTgESSHlaWFjAxYsXsbq6itraWsTjcYyNjcn7rEkkkMaAnM9fO/m0EVqv8z2+Rp2hWRhc/1p+ef+RSAT19fVyP05npeaQwSPrmug883qou3ksh8MhWWrSmBYXF4VKurq6ildeeQXf//73hQrY1NQka1bPgxk4AcDY2Bi6u7vR2dmJT37yk3j66aexurqKzs5OJJNJnDhxAg8++CD+8R//EX/7t38Ly7Lwvve9D9/97nelsF7bEa4tM9tzu0e17JIGePWz5Jw0NzcjEAjIPZAm9vDDDwMAzp07JzKrGwqsrq7i6tWrsrE9nWxNj6M+ZdBA2q8uM3C5XGhpaZGutqxxZeDEoUEo+kvAekMf6jRmd7SuNbNdzJjqphI8Bz9LCjd1OrOp+phOp1Pqmfg5ba8++tGP4nOf+xxqamrQ19eHUCiEc+fOYXR0FAAEgCBwws7Nu3btQnd3t+z5BgA7d+5ETU0NnnvuOVl7BNHD4TC2b9+Ovr4++P1+dHR0SPMMl8uF1tZWXL58GQCkcUVLS4sETpQF/q3vj8GdZmu8U/JdbdwJnG5xVHPCTGSfn9MBFH+HQiH09PQIYsHuchTGeDwuiO7ExIR0b2NxLLCOgBKt1MWRVKxEMVm0zQ3JiLKxsDwSiUh3K2A9Fa05uWfOnJF9dfx+P3K5nGRZ6LhpY8dNZ4mS0Cjm83msrKzY9qnSwYWuKTJRKr5XDfnVjhOpGY2NjVhcXLypXenFixfls7xPKqKBgQF5VnTkSDGZnp7GL37xC7n+YDAo/GxeF+tj9ODrLKKkYSXVb3R0VBxRUqiYFWBjAc53Z2enBHFerxePPvoovva1r9n2wDKDlY2cTy2rb3cdaHS9GoJvokf6WXHuHQ4Huru70dPTI8Ena/FIQ3W5XGhvb8fu3bvh9XoxMTGBy5cvY3FxUYzh2toaEokEXnrpJRw9ehSdnZ0YHR1FLpfD6OioNFrRg9lWDqLQACTLqwcztZQLTXfiGBsbw/T0tHTx0nV5RMI1cswMM6k+pFZx7ehsgt7Hi+cfHx/H1q1bRRapC7RDwqGD81t91hcvXsTIyAi2b98uVNhPf/rTspF2Z2enoPp0Jpht0K1sHY5Ke/9CoYDa2lpZPzoIj0Qi6OzsxNWrV22I7GbXv1nQBMCmV6qNzV43v2fKuv7bpGWa16iRWtK1XS4XOjo6EIvFpOPcD37wA5ET0uwcjkor7+XlZdkg2eFwYN++fWhubkYymRRqHWl7zc3NYmMIeJHq7fV6BT2ura2VmjTqLNYzTE9PS4MJ1s9xHRAQY4actsrMMHE+qgFhwHrRvjmfGhxjUEaHlSyLvr4+RCIRrKysYGxsTACFjo4OsYe6vTjXJK+Rx+b8EoAYHh5GuVzG1q1bxSn/+7//e+my1tnZaevOyfXMNs3MMPP6c7kc3njjDXR2dor9I7PB5/MhlUrhzJkzuPvuu/HpT38a//AP/wDLsvDe974X3/jGN+Ratb+h5VFnim/nqOb3aNoaYGfkuFwu7N+/XwJUOvJHjx4FAFy9elXq6HStMGWFOr2vr0+yovRbOAf0cyzLEto9nwmvoampSbZIIIhZX19v05mkvBKQ1j4IfQcNGmjAmT6bppcCEJYLj6HtI30DBkSUWQDifzmdTrS1tSEajcp8JxIJ8RvD4TD+4i/+AoODg+IP3XfffXA4HLhx44Z0hIzH41hcXERjYyOOHDmCtrY2xGIxrK6uYnZ2Vubuxo0bOHHihASVtDGsY3I4HOLjaAAZqARpBPYBYO/evfjFL35hC5r4bLWepa4wdYfObr6T407g9DaHiXhqlFgPnY50u93iILLehwuG9RTvfe975buDg4M22gCPR8SJ3U8uXLggx6czqBdlqVSSDkbc60lzeQuFguwAbRbjApBdz9mutq6uDm1tbRgaGhKKHYfuwkWDQaSG9Djybkkh1NxwAKI0iLRo9FoHV9WCWCqrpqYm+SwRWcuykEgkBL3lnLndbuzYsQPxeFwCOD7XUqmERCKBEydOIJVKSSOCHTt2wOPxIJPJ2AyZTrcDkPkkUsyFv7KyAp/Ph/n5eam1oWMNAO973/vw9NNPw+FwSGBbW1uLRx55BC+99BKWl5cRDAaxZ88eDA4O2ubPzE7oLJ4OmjaS2bcytNOjM34bOZSm86lR3wcffFCMBOcnHA6ju7sbb7zxBsLhMJ544gk0NDTAsix0dHRg69atuHTpknTcW1lZQSaTwde+9jU88MADYmRSqZRsDN3b23vTfZgZnpqaGtmXgsEIR6FQwPz8vAQkdC7NeSF1kE4kHVneG40Znzk3Q6asMtjQ1EfSrHSLasuyMDU1hVwuJxQ77QzSsOvr16jpWx1DQ0O4ePGioLSrq6t45plncPHiRVmbjY2NANYRWna3crlckgmhsaytrUWpVEI0GkUkEsHc3JzMHb/78MMPY2JioqpcVwuSqgU35t8mMm4+N/O3eZ7NkM+N5N48B3Uou3hR/+zfvx9ra5VGH2trle0giJjT8WdQxTpVUpPq6+vR398v9E1SH1nTyWEyIPisKG+8LjpMlFnqYmY+dfDBY9Hm6OBIO9C8fzo/Wlb5mwE/fwhE0TFdWlqyXQezrmtra8JgqKmpQTqdlrWpG6BoVNukkRLo4/NbW6tsJE8a1OrqKr7//e9jYmJCAqIDBw4IAMfnRN1OOeY8c66npqZw/fp11NfXo7OzE+Pj47hw4YLYp0gkIs/rwx/+ML7+9a9L3RabR1F3mn9zfd1Ox5L2TrMNdHCsM0YaLOIm4/zf7XZj7969AICf//zn6O/vx/j4uDS80b5NuVxp0tTa2mqTR36G9EdgHaBjIEUWSk1NDR566CG0tbXB6XRienoaKysr2Ldvn+3+2LRH1zCZOkdnjoD1mi8dpFFO6PsAkGskBa4a+0bT1Mlw8Hg8aG1tRSwWk0ZeyWRS6HnMWDc2Noq9CgQCOHDgAPr6+uT+aU/Yip11uQ6HQ2iSr7zyCr75zW/K3nu0M2tra9KVtVAoSIMIoLLOJyYm0NnZiQMHDuDll1+WdcZNpXUTGe0/6vVvgujaJ32nx53A6W0MM+MBbIzmas6xz+dDZ2cnamtrEQgEpFUsFQkzUBxjY2O2lLc22ETHA4GA0M5crkorcTYv8Pl8gthzY1yn02nrTsNWxEtLS6LIdHACVIziwsKCjQsciURsaWjNx+X9anoJO4Zp9IXBk14UWumTl8tAiufgQjOzTzwnN3ukMmf91sTEhO25aYdg7969Yvw1D3h+fh4nTpxAOp2WbFpDQ4MYOE2h0MEe253yOEtLSwiFQnKPVIjFYhFjY2PYunWr3CcH63ASiYQUxfb392NgYAD/8i//AofDgcOHD2Nqagpzc3OiYDWiqx1PyulmDuRblX9dd7ORg8n/eV59DXyG+/fvR2Njozj52giNjIzA4XBgx44d8hlmA9vb2xGNRhGNRqXVcLlcxpUrV3D8+HEcPXoUW7duxczMDFZWVjA/P181cOJ86d+BQEB2O2dAAECal9AAc23pMTIyIo4TnzEdZg1+xGIx0QF6t3k6vbW1tbad5Zl10q32iVxqhJTzb9ImAUi3Sq7ztzpefPFFrK6uore3F9lsFpcuXcJnPvMZ27P1+Xw3NbVgO2HqGN6fz+fD9evX0dbWhj179uDYsWOSvWBWraOjA52dnXjzzTdtaORm2Sf9nv6/2thIbk1AppoDqrO75jHN//W1Umez1S+DWNZT+Hw+NDY24oUXXhDkmnPKpg4MPEhnLZfLeO211/DII49Ie/HV1VWpFcrlcpKRLZfL4gjqOlZgfXuMtbU1CXgZTNXW1kqtQqlUwpUrV+ReNT1Jdy8j8q+Dfw0c1NbW2mTY4XDIZrZ0uBlIARDAiraLTrjb7cbVq1fR0dEhdS6kQhEMBHCTY6/BTjqRLJTnBvDJZBKdnZ1Ip9Pw+Xz4xje+IZ+NRCI2YJKBUy6XEydSU8l0syFmbuvr62XvNsuybsqAd3d3o729HZOTk7j77rtx+vRpGyVND8qYyQS4HYOypQNznUUB1utoCDrpFu60qxylUgkdHR3o6uqCZVk4deqUbSsU1l0mEgnJeJDWRsoqGTf5fB7ZbFYYHdznKx6Po7e3V7KxqVQKra2tNloca7MDgQBSqRQAe6CoG5lwvTB45xxw6ECAx9HdKvXekzoLzznUoKLD4ZDOd6zLW1hYQDqdFqYMmwAtLCxgdXVVOkMyUOS6J5WRfhKbdDGoGRsbE/mm3eP1cIuDpaUlARBJa52cnERrayvcbjdCoRDS6TSAir7o6OjA9evXZV60T7JR0MT33o6/8usYdwKnWxxcJNUQRi4CLQxa8NktiUWrXDzkqzqdleLwbDaLiYkJUagc2hkmnQKAoN/5fB6Tk5PSupoIAmkBg4ODuOeee4Tq4HK50NPTg8uXL0vQQMdBK2jLqrQKZ+cZIjxcYDTANCQMGphyzmQykuFhts2keen5pTHieyYFqZpR4LzzuhKJBLq6usRpK5VKGB4etgVl2sDHYjHhPwMVhZJOp3H58mWhbLCNMguOqXSoJGl4eS1EcrPZrK1wleel4826MpPmt3XrVuEEnz9/Xjo5AUBPTw9GRkbg8/nwxBNP4Ec/+pFtU1+N0lRD4jU69HaGqdDMgGyj4EkryFgshoceekgCSs4b5YgbSfb19dkcW66nYDCIu+++G+FwGK+//jqSySQWFxfx1a9+Fe9617sAQCgUzGq8lUEDnE6npQYRgHDQaRzY7U8PbvCs71XPicPhkK0B9P5p2tmgfnA4HJJNo8HSfH7SE7nOSClh3ZeZbWJ7X+3AbjZmZ2fx0ksvyfGXl5cxMTGBT33qU+K8cP2znbCWAdJ42SJd0/EWFxflPFu2bMGlS5ds4AdQCaqvXr1atYvSRnJtBk/8rPk5829TRqutC31c0zE0UfZq10iHOxaLobGxUT4XiURw48YNfPKTnwRQ2ZeFOo9rQWdq9EbEpPP+8Ic/xMc//nFB3fP5vK1rI4MKvd8WASWCbplMBrOzs5idnZX9iFpbWyWrQ303Pj4uelPX7BF003aEQ88Pv8vPUReTQkRdqtcEu7hSx/t8PsmOaZur71uj9aw7ooMNQAJKs7Pryy+/LGyKjo4OZLNZfP7zn8f8/LzMb0tLiw04YWfbRCIBj8eDrq4u1NfXy/5WBM9mOcAWAAAgAElEQVScTicmJyfl+UejUSwvL8vGxxqoAYDf//3fxz/90z9h7969GB4elu1HtIya4OHtROU12FXN6dXPhuuhra1NdAf1eGtrK3K5nIA6bMTgdDpx+PBhjI+PY3p6WgDEQqGA2dlZdHV1iU/B6yGNLBaLwemsdGblpsOs0eM+Z/RtPB4P2tvbbZQ+3gfrqSg/lElti9gpmcA3a4QIjuq50kE89aeZmdU6mjaBIAUDNJYRUOfw2PS1XC4X6urqhJrLEgr6jrwHAjS6WRB1xtLSki1oK5fLUo+mfTXaHX52bW0Np06dwqFDh7Bjxw689tprct+PPfYYvvrVr/7S4NL0X+4ETv9HhxZo4GaHkZ/RCoz/e71e9Pb2wuv1IhwOC0WNtB0KfzqdRjKZxPHjx8XZNpEH0iTm5uZQLpexfft2XLlyRVqPa4QRgDhaV69ehd/vR1dXl6Sz29raEA6HMT8/L86QRlUozLOzs+jp6RGEJ5FI2OhnwDqKQmeVDhAXlub76sWuHUetfIH1jj3k42sU0kQpGPBZVmWPqWQyiYaGBkFauWGdzuxQwRQKBaHMWZaFwcFBjI+PY3Jy8ib0VRcUM9iiEWX9EZ8Xn1+pVMLi4qJ0vdKBE+Wg2qitrUVXVxeuXbsGoNLquq2tDR/4wAfw+c9/HisrK4jFYnjsscfwrW9966ZmB5oqWk1WfxVG1gyatPO40eedTicOHDgggSRlg+hWOp2W/TWIyOtj8trZlj+RSMjGqTdu3MB//dd/4d5770UwGEQ6nUahUMCPfvQjvOc973lL9+RyVdoT19XV2fYDI/rPgNi8T1IeeI3a0ebfDCJ4HhofIu6akpHL5YQjTkRaAw6WZUnmgkaaSKke4+Pj+MUvfoE9e/YIRXiz8YUvfEEcVeqTyclJPPPMMzZKLwDU1dVJraV+PryeRCIhGwprvcLR1dUltYeUH4/HI7VbRJs30rP8n6NalsgcG33GNNZa1wOw6Rj9GmUYWKeh6utzOiv1rd3d3WhqapKAMhAIIBqNor+/X65hfn5edCczTzwudRHpLsxKXrx4ETdu3MDWrVuFdkYkmY4lddDa2pp0tSwWi8hkMkJDHR8fx/z8vNRaAOsbnTOwoAPJFurm/DPQ0061CVSZ4BLrivT+ZvqZUG6oS0k3p+NN28xgXV8XnxnBPYKUzLzpNXzmzBn85Cc/QT6fRygUQjKZxPz8PN588024XC4Eg0F0dnYK44Kyws5+ZDuwblHTtCgz8/PzuHHjhqybpqYmOBwOoUqa41Of+hQ++9nP4oMf/CC+8pWv2DYQNee9Go301zW0Yw/YAye+b65Rp7PSQVWzPehTTE9Pi7yzyYDP55PGA7W1tUin07J/ZaFQwMTEBLZu3SoZegINmUwGPT09sg0Lg3+9xQRp2dlsFrFYTABoyj0DCW4qbjrwDGQ475QPXePGdUz55/cpk+azMu0ofQsdlFDXMDtMv41BE7skcz+qpaUlaWBF0I8Nsxj0UVeUy5UOmrTBiUTCRnskKMfMnQ4Gda0gAGF6UG/x3np7e8U/1T6f6UdomQHWde9vwrgTON3C0EbVfMBUGBopoKFwuVzo6uoSZcuuRUQPGGww45RIJGwoH9FHjW7SyeQioXLQ1Ah9XaVSCdlsFhcuXEAul8OWLVvQ0tKCcrmMPXv24MSJE7aOMzRUVMSzs7MYHh4WRIxIp967iMaLThWRPxo8LnwOrfwZXOnFQwNMp5HOgpnV4+B8kprIPaGoBEzuOc9LRcLnZ1kWXn/9dfk8axFooLXBoCNLjjWPq+kroVDIRjXQtVukcGhuuzncbje2bduGqakpaToAAA899BCOHTuGUqmE1tZWNDc3Y3JyUgy1ye3Xzjvn/604mdXGRt/VmayNjk2qzs6dO2XeiEDX1dUJRZK0C13wrFEpTU3kHi5E1b/3ve8JD5v3XigU8N///d948sknf+n9ccPACxcuSMtiFsRr8ISBL58pUXjTIFJuGezR2FJ2WGeoEWoig3TwzKCpVCrZ6qOAdae9pqZGkOylpSWcO3cO165dw5YtW35pZ73vfve7UuxPJ4AF2azNpEEn8MNMukaXo9EoEomEOLO8PtKC9SBtic+TXZv27duHF1988SZZMlH2asMMevhatdd5Xu0MA/ZgXa8lM/jTdkEHSzyP3+/HwMAAYrEY4vE4stks3G43du3ahebmZvz2b/82AODatWs2gIjOjT4n56e5uRmzs7NYW6vsR/eNb3wDn/rUp2wbT1pWZa+aWCwm1O35+XlMTk4inU6Lk89azlwuJ7Jz5coVuN1u2aiUxd+UX+panR3S86rnUdey0JbRLpCyurS0JDrXDJw4TPpfTU2NZA60E6bpqLR/uuheg3dE1WdnZ4X2u7ZWadh05coVjIyMSGOKbdu22Wr2+JwJFjIjaDqEXP/MXHCvt/r6ekQiEanL2kxnejwevOc978F3vvMdCZj1PJlB4O0YtM/VALpqa7O2tlaybZSF7du3o729Xeo1WfNMmWKgzcYI7II3ODiIVColjVWi0ag052AGnHLATCY3q+frKysr8Pv90nVY0++YieHG6dpx1+ucskc7oIMCBk7aLvI4rBvn5wmW6dpYLbsEzoH17StYAlEsFgUM59ogq4FrhiA3s0yWZUlnQ64DdiEulUq4ePEiyuWy1N0yo0zasG4Axh8GnbQxU1NTsgea1meszTLXCQcBRQ2KU9dspvNv17gTON3iMNO0eujgSSsSt9uN3t5eQdY8Ho9E+Nyok98rFAqYmpqqmlUB1lFHBg9ULlzcZvG46eRnMhkMDw9LR7JgMCioJzf/pOLQDsbKygpSqZTs/Dw5OSmZFVMpEPXWQs/0LrM0zEAxQNMtXKkwdHEwiz61A6mzVFSSpJ/wfERIGbhQIfP+yJlOpVIoFApwu91CeyRCRWoV519TTnRWT6OqLK4EIMXw7MJGfj/nR7fMJrpvFvFz3y/NwR4YGMDVq1cxPj4OAHj88cfx9NNPS3BVLYjWcmymyt/q4LVrdNM8h2lYOIiW7d69G4FAQOaTPw888AAsy8K3vvUtWTvaAWKgoXn+DG7b2towMTGB1dVV3LhxAy+99BLuueceQaYdDofQaRoaGja9R1Jpf/aznyGTyWDnzp3I5XLSUUtnGEZGRmQvJ8qhCazwumnYKOucf+7kTuOgf2hItRPN+W9sbJTvMQAlujgzMyOFwz/96U9tGdfNRjgclsAolUrJJsQEabTDyIY3Gn3le9xwGwAymYxsKsnshh719fWYnp626Syg0oXp9ddfl/osU95Mqof+bY7NgkU6BmamTut6/R6fIc9nOgD6OmtqarBz507ZJ4kIO2tet2/fLsdNJBKYmpqyXRPnlWguHSyNMpfLZYyOjuLrX/86/uqv/krqRlZWVqQmVTtdy8vLsscf9zfLZDJYXl4WZ6xUKuH69etSl+V2u2ULBuo7YJ3RoO/bBLRIkSNKTZlm7R5to9frlQYA1F163nXgQzo6wTw6kJq+RJmtJhvMXi0tLeHGjRs4e/asAE9E86enp5HJZAQgiEajIutaVrk26YCOjo6itbVVMhB0erl+qEf47KPRKM6fP49Lly7JXjp6uN1uYSzs2rULZ86csdVQmvbwdg2tTzYC6Piew+HAPffcIzLA59je3g6gsnfTt771LcnWkClC3c17JVhLeumpU6dw3333CQWPAYIOmvgdNoqinBWLRelwyYwqAVjqIAYKOhjULCBeC2u3NJOGg8dkJpR+iek7sSSBa4oBD/0pnp/3Q/uYTCYxNTWFWCwmmSXeN2tH9bNh0KOZD8zmFYtF5HI5ZDIZ1NSs74FWKpVEF5BGzOeis/Ba3tnYyvTb2tvbcfXqVfm+CUJxTelBG6ftzDs1fjNaVPwfGaaQAOtGAVgvejcfeEdHhwhyY2OjCJHL5UJjY6Ns5mZZFlKpFObn521OLReLdqDMKN/lquwP1dTUJG1j2YKVi5t0IGa1BgcHBeVpbm4WJI0LVhvCcrksO6un02lks1nU19fbNn7VilOjo3Tk6PSTZ0/FqHfgJhJoWRWKEGmJQEWBccNZLny9vwcRTaL6oVAIy8vLSCaTWFhYsNVJabqIVtIzMzP48Y9/LOnvjo4OtLe3o76+3qZM6bDo4mgTcdbPkAobgK1tLz9z6dIlme9qxb9Mj9fW1tpqPt7//vdLZsDv9+PQoUNC7almQDcKaG5l6OesjTV/qqXf+RqDyr1798rrOoPIxin6XAyquAaYTaQMkYJz6NAhtLa2wul0olAoYHJyEidOnMDp06cFRVtZWcGrr776lu6TfPWhoSEMDg7i6tWrQq/S9AXupbW6uopcLifZBJ115lzX1dXJ3OnOZFom+LemYmkajg40qUt00wg6yIuLizh37hxeeeUVCTZp9H7ZYPaba0fz9PWch0IhNDc3A7iZsskOnA6HQwAXIpTLy8u27Gl3d7dkdDk/RJdbWlpsTopJUeL5NguMOKrJ/GbH5TCDpmqfN4Ec6r5IJIJAIACPx4N3vetdwj7gXla6ruXll18W8MvUGbrpSD6ft223QN1+8uRJkW/dJUtffzAYlOYklE2v1ytdyhYWFqTxRDableY0DGi4UShtCzMEJphoZooIGmrqjWYi0MnT9lSjzdTz/Mza2hpaWlrEkWLNl+50yTVBR8+UXzYQuHz5Mq5fvy4UsbW1SsMA1ue6XC709vba2o8zcOGx9IbZCwsLmJqaku+bDrJlWThy5IhNvu6++24UCgWhrerxJ3/yJzJfO3fuFNaK6XOYDvuvc/wy+6LXic/nQ2trK9ra2mx6jPoQqOxZSfoz55j+AYEmygv10+rqKhYXF/Gzn/0MN27ckFKIhoYGG2VaN27QVHnS2Ew/QgNEpOfX1NQgHo/L97n+KS88Dn0Tfb2UX4/HI3tMUWbpI2gZ16wfBvemb8kAkJTQsbExDA0NIZPJ2OwP15W2I9pvBWBrg14sFvH8889L4zI2s2HdmNkBWPuzGrAAKjoxn89jaWlJWBWrq6vYv3+/bU1qoEkHU1qeqrGW3qlxJ3C6hVENTePi0Mqev5lm3rVrF/x+v+ypQeXM+g0WiTscDly7dk2MFoWHzhSVNB1lkyLBhccAQ2/8p5FsXlsul8Pk5KQ4MPX19QiHw6JUNPVibW1NCoPn5uZkY1IaLctap/jp72rUlD88t26rC8CWSqZS0V2XSPFiAEEFx/uko8JzMLNHJJULXD8/OnFAxQnm3lkOhwM9PT2S/mbQxGvRyA2RRh6X96+fG58LAGl3rRHD0dFROBwOKTKtNvSmvnr/oHvvvVccjO3bt6OxsdEmqzpw0TJqBry3sg7M42/0YwZWDodDalf4Px1/HRCyKQLPx9+WZUkDFTYYoHGIRCJ48MEHbc9oaWkJU1NTOHv2rFA3c7mcbMy32fD5fMjlcpidncXJkydl82fWugHrhoHyzLWpKaw6C8Osq372Wk4AiGPHujz97EwDs7CwIHPH9cI1R2Sb65s0YU19rDampqaQzWYxNTUl64bPcnl5GblcTsAJ0l74Pu+X16vXs0ljPnfunJyTRdtcI9R/LpcLAwMDNgBoI+fcnJuNRjWHbyNqmGm8Td2vAygNGHEOamtrsW3bNrjdbnR3d+Pw4cNoaWlBMBiE1+vF9u3bJeOTz+cxNDQk903dYlmW1KDSoaP+j0ajAl4BFR321a9+FePj45LVp7zpe+Ved0T/LctCPB6X1wgulcuV1s+JREL24evo6BDwiiAFj6ufMXWxtkF6zvi61u/VnoeecwYo1PuNjY3iWK+trcmeUjMzM5K54LnosFJX0n5wX7hkMinPjwEYAT2dKeZaYz1JuVzZMJ37cHH+uG8WAzfaPdqgagDZwYMHAUC6uOnxsY99TEDIbdu23YTW67V1qzr97Q7qcG0PGKi0tbXhox/9KP74j/8Yf/iHf4gPfOADIjPMiD7yyCNyrJGRERtgSz+EdsHtdiMQCKC1tdVGFwMq9uK1115DOp2WOjYGMG73ejtyyo7T6ZTNkkOhkPgoOpsLQNguXCM9PT0is7qFvctVacSgMzg64GfQxMCfdoDyo1k5GjzgnOqaUsoArwOoAHILCwuYnJzElStXbBvpAvbNnnl9epDlUlNTg8uXLwvQxXXOgJLbYmiQWAePPJYG8ajTl5eXxe/RnXTNuTKPzTnQNuWdHncCp1sYGjXi0Iuc/+vM0Pbt24UbGgqFZJFQ+bEAPJvNIpVKSW0BgxwaPSpZOi9M9ZooNCkRuplBMBgU4TUFcnFxUVpWEkGmkuDio7FYXl5GIpFAIpGQRc/Fqa8XgAQKRHm4GHgNhUIBi4uLYox1loaOtC7S5IKiIjRRRAA38V9zuRzm5+eRyWSQz+dtxcAawaeDeeXKFZw7d04oe4A9COKz5xzq17Ri4z0C604wAKEBptNpzM/PY3FxUVDkfD4vO3tvNNjtTWcPAUiwYFkV7vIjjzxyE71NKzhe89sJmvhd/VsrTdPR1Oeis/3AAw/Y6sEoY21tbfIdZkb1sSnjuvkIjQiNIot8XS6X1Ha4XC5ks1kMDQ1haWkJy8vLeOONN37pfXo8HiSTScm8ENGkLNIJ47Pg3jFbt261PSe9JvhZUnV4r8wsaadSy47pnAAVeTp79qxsoglA1ky5XEYikUA2m5WMEa95s/GTn/wEMzMzmJyclKyrPjezYQya6ODr58Rr5F5OBJB0baHD4ZAW1xxEpukMUYfu3btXagx47I1oSZvJtAlqmTJqouXVgAB+30RC9escPp8Pu3fvli6cf/Znf4a6ujoBdSKRiDQ+ASoNPIjc6noxBsbFYlGyUHQ22FqZ4BFpOX/zN38jheMatafD73K5EI/HEY/HxYmcm5vDli1b0N3dbXN2SPdkHSgZEjwng/tqc6Dtkp4/HdwT7aY+pLxoHUxAgnNH20LggoBIoVBAOp3GyMiIBPgAxC5y/rgOzp49i9OnT0tgyuwv1zPXn9PptDVqASAZLl4vgwGCE6wr5rrWAFGxWMRzzz13k2wClXVtbqwNQDaZdrsr+w6yLtYEVTbLnP46hqkjvF4venp68J73vEfql9jqm3Pa1NSE3bt3yzGeeeYZCSh5P5RXOuAej0e2Q1lcXEQwGJQ1RDk8efIk0um0jQIOwAayaooagJvqb+iv0QfRXVV37txpA4J4rLq6OqHn6412eTzqdK3f9TNiJop2rFomhjVwpOzzh+cKhUJS6pFKpWwgsQ6yzcCaTYDYNOOHP/yhrDX+6BIF2jmdZaa/qP0rwE7TpR8JQHQisN4Ah3abYKLpW2uf7Z0edwKnWxhmuh2wByI6zcjGCd3d3TbHmQgGW5C7XJXuXXTMeB4KIAMWChyzJnQcWRNDxRAIBBAIBCQIisfjaG5ulpaaRA4aGxulMJDoPZ14ImYaXePf7Nyns0IUaAYmbnelkUJHRwe2bNmCaDQqi0HfFwsRuddCNpuVfUcYtBEdBOw1LgwcNReYc8RnMjMzg5mZGdnAl/xlvTDdbjcaGxsxOjqK69ev2/Y40QaUxyZy5HA4xOHl9dDR53PiNWsaotPplPoCZtt4X9euXauKhuvhcDgkI5XL5eT1Xbt2yfGDwSDi8XjVLCiHmXW6laFlXx9PK81qARr57HpfH66VUqmEe++9V45Xjc7IdcY5I/qlDZjb7RZDGo1GhQpFvvX8/LzUcXz729/e9D6p7LkulpaWhCIDQBA68tppMLu7uyUjpeeezp3OrjGQZpBCedHZC86jOSzLwrVr16QAl0gqa/ump6dtBo+UsWojnU7j+PHjmJqawsjIiDhumrbCtcfGDbx/rgf9nB0Oh9RGcU3T8dbzoQeLu1kEzmyB1+vFli1bbMim+bPRPJmO/EZ/c751drRalpZ/64y6+ToBjJ07d0rm/8knnxRke25uDh6PB+973/ts1/qVr3xFQACdxaYTpSlC/AyDYVLB+bOysoLPfe5z0mWV2Q+dSWFjCIejUsQ9MTGBxcVF2c9Jg2L5fF6Cb72fC9e9vnc6S9WyISYAwCzM3NycjbqpwT3qdtae6i5/bFJUKpUwNTWFRCKB+fl5JBIJTE9Py3fMZkbFYhFnzpzBc889h0QiIcg/KZFcg7xe0nB18K/vna8xs8U6VtKUdD2cZVmSzebQctTb27vhRtV/9Ed/JA7z/v37b5L12z3MoIkO/NGjR22BHQPccrmMhoYGNDQ0oLOzE0Blv0p2edPHZL0NgQI+N8pDKBRCa2ur7I0JAFevXhVKmKb6m8COw+GQrJXJxiFYkclkbI1tHI5Kwxv6QpQ7AJI15nl18MA50DU61JOaxQLAlp3VLB3OB22fznTR9yATp1Ao4NSpU7bgR2fudNDI79KX/Ou//mvxgfL5vMwB/Twd/FNf8rd+3fQf2bSJ69iyLGHGmLqhmg7necy67Xdq3AmcbmHoCNh8eDQYfM3lcuHee+8VpI0F6joTxEJBKnYW1dGx18IC2PeQ0gaN+7x4vV5BYbgJXCgUQjgcFn5xQ0MDGhsb0d7eji1bttj2HaBBpfHl0HUaVBaa8sdr1PQa3b1Gt9PVQQYDtmw2i5mZGdy4cQOZTEYCISIbvDZuSppMJsUgsQuPdnp0FomNKHhMOhqa/+v3+22ovM/nk5oE7ayQAsC9nMz70YFTNTScQY1GfygTHo8HmUwGQ0NDb0kW6+rqZFNjAHjve98rjr5lWdizZ484VtWyQCbafivDzB5W+63PozMkR48etVF2KLcaeZ+amrLRPunM8DmS780AzJzzrq4ueL1eCeL9fr/ssbGwsIBsNivZkO985zsb3icbt/AZ+Xw+/PSnP5X3uXa4DmpqalAoFPDmm29Ka3H9vul8FYtF2ciUBp56gMilRvR0cKoDCG5wSCoSs3Jut1taugeDQRw8eNA2zxwTExN44403pIX/1NSUdBHj3DE4dLlctq5U2rBTNzKQJULPrPbCwoItMFlYWLBRJru6uqRZDR0hdoc8cODATVkhc1TLCun3qn1ef1Y7WDqbb2b6zLWtnwVfb2pqkoA9FArhd37ndwAAb7zxBrxeLz7ykY/YruXHP/6xdIhjRzDOt254w/MwQOb16OCWTsvly5fx7//+77InYDKZlCwUi81DoRCuXLmCZDKJXC4nYBOfJfe1YUBC3c5sKlvfaxnw+/0ij7QbvBfqVDp+q6urSCaTSKVSNqqPdsx0gxTaBACi4wmIsFNgNptFJpPBhQsXMDk5eVPGanl5GYODg/iP//gPZDIZeZ9BJR1fh8Nh269Gsw+0vadN1GCUbvs8NjYmLAa9QWsoFMLw8PBNculyVdpaV6PyAZCMfVtbm3Q8M2X5djiW2hfSrzEzxjlgPSOpcfX19Th8+DCASrbj+PHjtiwNgePp6Wlks1kb/T6TyUhjKvo6TU1NktEqFot49tlnBeyivGg6M+eJND2Cmbp5werqqo2tQh/M7/eLP6JBVV3Do0FT7ZMwq8SMltYvuqbVLHXg86V8slkEj0EfyLIqXfIKhQLOnj2L0dFR27VqRgyw3uG0WCwinU5jcHBQdAkzpvQJzaBJg9Za9jXQSYB4enoaw8PDonOYRXzggQdsAIsONnVWkHZPz9k7ARLocaer3i0MjaZWc9h0xByLxaQ7FVDpGENj4fF40NbWBp/Ph1QqJQu+WrDE4xHV1d2UuNCA9XalkUhEjJpG2Tyeyo7NNLA0ai0tLZiZmRFnlI5PMBi09fqngtQGQxsTGjg6OsxOsZCfiIeuzdJDOwTaAcjlcnI8GrSNnHTt4DAorYZK07HjvAGQoIfOS1NTk2TuLGu9zSadyXK5jGg0isnJSclM8bNaJjZyHHRGjcd0uVxCv/tlg07UwsIC4vE4AOD+++/Hj370I1iWhZaWFgQCAaFxVUNpqgV3v2yYTmS196s9F5fLhd27d8umhACkE6QuggeAc+fOSRMMTYEkusZNEEmxMNP3bW1tGB4eRi6Xk/WgaRuZTEaeTSaTwfHjx/HQQw/ddC9NTU1iKFtaWtDe3i4tnT0eDwYGBpDL5YTi4Ha78cILL+DSpUs2qo+WBRohgh7MLNBYU874P9ef/p52LsrlSgG/zoSSmkUEnA4CnRU9stksLl26hLm5OWQyGbz88stYXV29qfNVKBQSOi/3OmOwqA2yDqAaGhoEAZ6enkYgEEBHR4eNpml212tqahKnO5fLoVyudJXq6upCPB7HzMxM1ezSL5Pjao6k6fBR73D+geobfFZzUjUbwe/34/Dhw+Lw/fM//7Ocp1wu27KWHMePH0epVJJMBfVRqVSSegNmWHl+tgUHKmuJNG8CVaVSSbqvffCDH0RzczNyuZzIqmVZGB4elmfDTmMsLieQR9194cIFNDU1ic6inBFN1xRWHVQXi5V2+2zYo4vKdaae96XRcZ0poPNcLpcFvS+VStLtdWxsDAsLC0KD9Xg86O7uliwBzzc4OGijhhFc02uKa4frk4EVgyauZ+p3DXAw4AoGg8KkmJ6eRkdHh8zbysoK4vG46BezPf9GmWGgoudPnjwJp7PSKOLUqVM2e8rrMh3lX9cw1x73bGOmrlAoCBCze/du2RcPAK5cuSI1csC6/eCWLHqTcPo9uVxOZJCNSgjE0lF//vnn8aEPfUiCFOpaOuGUU23bybbh8ybQ0NjYKLXVgUBAAgjq+FKphPn5eckE6iwk74nAqwYE6W8B6zLP4IiBn54TziVb9/M4ZDFo4Or69ev413/9V3z2s5+V4FrbS/pW+Xwes7OzOHv2LI4dO2YLxDXYTJ+N2W2uD50p03W9tHVcj9pPLZVKUp9YW1srvifPoUEYfb23ExT4ZeNO4PQWhykofE0/WD5sKgjNr62vrxfBcLkq3fRIneNmuJrXqSkfdH74XdY/6OYJdB55jVQSbHtOhJL7SLBjCmsKdLTPwIqf000bzKhfK2ciD1w05INr2pVejBekKQgAACAASURBVHpwHrUy0UGkDj50dyTOF7NH/KFCNVEdYL3AmN2OGIASDdu9e7fQDPR1E63ifDMYvXbtmtA7GDiaqXqNHrINNxX62tqaKFVNV/llo6OjA1evXkUymUQ8HsehQ4fw7LPPSuDY09ODs2fPyufN69oMvd9omM4q/6+mzPT7dXV1eOKJJyQT5PF40NraKhSj1tZW+V4qlZLnbGYCuFkn6xvMQM3hqFDSGHiR1sPnRYPA+pq6ujqMjo6irq4O+/btqzrHIyMjtlqqY8eO4bHHHpOCcGYox8bGcPr0aRtCXs3Z5rrlc+cgzYPdH/VzMp8X3yuVStKOnigfDSzlmsZI15ABlaDpzTffFIfj5z//uSCOzDDpbDf3y2HTFW72Wc2g8Tlwc1t2Gevr6xPwhnRYPWiUKQfpdFqe88DAAObm5m4CXarJmymPmxlbE1QwwRkz02X+r6k3Ho8HTz31lDRsePe73y3HnZmZgdvtlgYAHGwuwjnR9Rl0CEk9ZVaTz5SBFutEqW/pbJbLZVy8eBEOhwOPP/44amtrxSFcXV1FKpVCNBpFR0cHLKtC256YmLDJFwOV5eVlXLhwAfF4XJwhsiUY0PN+uMY5Nxo000GVXid0rjYDx4B1NJrB3eTkpK3+iGts//79aG9vl+Aok8ng2WefxeDgoNgqPfc6e6qpiAQIaUvpxOqaFVOeXC4XIpEISqUSpqenkU6nEYvFUFNTI0g+A6eNMkubjb179+K1117DgQMHMDg4eNP5b5dzqfUvz8nMArC+aarD4cD27dvR2dmJ3t5e+f7169fFnwEgz2Ri4v9j782jI7vO+8Dfe7UXasMOdKOb6A29skm2SFniKtmMN8mOrThj68zIzvGiiSNZEy2xx+PlKLGdxBN7nMSxlEijRFLiiRTFks6RaFkeWRYpiaIoNcleyEY3gUY3gMZWAKoKhdrr1Zs/Xv+++t7FK7BbIqkzObp9+gCoeuu93/2W37fNo91u48iRI6J70CjQ+gtTEwAv7IzRBN/61rfwute9DkeOHEGn0xFPjV4zlopnmwZt1JTLZaytrUnBCvYy27NnD7LZrFRcpPFNMI9lzWm4E1TQ0R+O48ieIQCqK88RMKOeRPrSeeQM82w2mygWi6hWq8KLSV/1eh0f//jH8ba3vU1ANW30sQ3Lk08+iaefflqeh/SjPcmdTsfHYwD4wDVtFPKZLcuSnL9qtYqNjQ0BUkjzjzzyCD7zmc/4AHhtPJEmTP77vR7fN5xuY2jXIRfXVIosy8L4+LjEvFqWhYMHDyKTyaBYLIpCQXcrGTLjSHkfrbDonCcaBq7r+ipusZmaFgCRSESMAx1upBWqUCgkjEA30I1EIlLOWxsqZBRUEvTQhK0RdG4KvQE0Qst55N968DoaAdRd4TlPTMxlGCRDBImW6JK5LNNLBYXCmz1BBgcHJc+LRhPfl9fgZ9lsFgMDA1hdXd1hRJuKFlHNdDotoWda6aDidDvDdV0xnADg2LFjmJ2dRSgUwpkzZ8T9rulCKya3y4RMdN38zkTuAY+G77nnHh9SNTQ0JMZpJBLxCdPLly/Ddb0YaNIYlfjr16+j0WhI7w99X01bRA41s9eN+BzHkbDQVquFp59+GqVSCW984xt97/TLv/zLeP/7349CoYCDBw+KMshmsPQ2AcAzzzwjiqZJ73ou6DlqtVq+YhM0Rkxj0DSg9Htz/amYMjSDSi37tREF5lhfX8cLL7yAfD6PQqGAF154Yccc0SsGQAQj/2v+Qx5jKpChUAgHDx7E0tISVldXsby8jMXFRSmYw3VbWVmRkuZ8p3DYa7RbKBRkf9x33304e/ashHXdjsdJH7MbzZvXCfImmEMjvRMTExKOG4/H8fDDD8tx3/jGN7C9vb3DcPr0pz8taC2V9FAoJOFCrutK/yTznnqv6QIM5PdUBKenp7G8vIyTJ08iHo+Lp6dSqUhZdF43m82KF0YDGJZlSbglw0vpPdGh2zRoWBiIxjYNZhMM4U99jV5rRrok7RDVZjSC6VmmfCiVSvjiF78oCjmvUyqV0G63A6v7EZQEukorPXbaA6LXg7KWv/f396NYLErI3rFjxyQEcnV1VUK+OT/moNFqjvvuuw/PP/+8FAdZX1//niqXeg/k83mRddGo10w5nU7j+PHjktvNUSqVBCwgD5ubm0Or1UJ/fz/S6fQOuUr6oCHEOWg0GlhYWJDwsw984AP4wAc+IIYT27zQu8p+R0Ehd0tLS5ibm8PW1hbW19d9Bn9/fz8uXrzoK+hDzyfzYFOplHjmqWfocGyeS88qQwKpA+r3pEzj+a1WS/Yhq74WCgUJX5yfn0ej0UA0GsXq6qoYsqTlcrmMzc1NLC8v4/HHH8fc3JwYXjp/kbxep2LoPDDudQ1WcQ8CkLliYSAte2u1GpLJJA4ePIj+/n7p4cf31eC6KUO1vP9eje8bTrc5NFMP8pxEIhGcPn1awu9s28bBgwcRj8eRTqcFRUkkErJ5uDFpyFC5AuBj0CQoXYGEjJshbTo3h0JPVyHS3iNukHQ6jeHhYczNzYlQImJJRZ6bQcd3U2HUKAGJmWERDDEKInK9MXrNNb8z4+j1M2lkg7ksNBwZ3gVAGE8mk5H8F84t525oaMhXxU97+ygcKKRDoZB0f19eXgbQ7ZhNZEwzLL4Pk+s3NjaERnjteDweGLrRa9A45nj00UexsLAA1/Xy6rLZrISmaXrS86fD4V5qaONIf6a/M5H/XC6HBx98UJDFSCSC4eFh8cKaigHDCyORCEZHR+WZ2ZPLtm2MjY35FHWN5tEI5vwz7EF7banQsSBJLpfDCy+8gEwm40u6HhwcxOTkJObm5pDP5wUQWVhYQCqVAuAhb4VCAZ/73OdkH5vMnoP3JarIErTaEGGuHYUTDbGgtbBtG4uLi6JgU4mkQkkBOzQ0JNXUNjc3cenSJSwvL6NUKuHKlSsSlqvDvGh08n8kEvF5hPkemv608CNIMTU1JQL8/Pnz2Ldvn3jZG40G5ufnxXCiV9S2bekBBXi0OjQ0hEOHDgmqbNLZboLUNIDM73rNr3m++bm+fzwe93kt3//+98vvxWIRn//85+E4Dt72trf57nPx4kVB0LnWjUZDGpInEgkMDAxIyDINYD4TEWaCajoPljwM8GTEuXPnpCcdDZ/t7W1EIhHJedWKrc5v5T4lKk6+r73xfB7uAfJZ5sRpL6xeQ17bLL6g+RbpjvSmDUfyaZ2bFg6HxbP2qU99SkK8OI80/nxz+Wwbzgl/viwVP3q30um0yBgOPgvnnfPGNgk0nkqlknglFhcXsX//ftm3up8Xx/b2toRy68Fmytvb27jrrrvwt3/7t76IERPEeCWHXhvLsrC6uopSqSSVMAcGBvAjP/IjSCQSGB0dlfPoSdXG89WrV7GysoJoNCrpDabhFHRPytR9+/Zhfn5e5Mzv/u7v4r3vfe+OHCfOESMRCDi1Wi2srq7i2WefFU/k6OioeAodx5F8aK2fcC8wl40eZ+6BZrOJra0tWJYlxhn1M0YK6FwhTfvcY47jIJVKoV6vS3rF2tqahDValiVtA6h3sAIhn7VSqWBmZgbT09M4d+6cr/UNc+W17kOjU/Nl7V3i4BrpKBACmPonj6Essm0bExMTEoJtgo29eO33enzfcLrF0YsZkUD4PfMgSGB08dIYSSQSUs6VG5lokb5mkKJLIaGtfybKcpMQ9SGhmxWZ6E3icSR4LXSALtKljTMqxnTpcqNr75gWirqcq1a2tQJjKiymYqORVZ6rw+9oRNLzo/sMUFGnYGauVzKZlG7wDBdi82AKNX1fE2mmcsB3ZEgNAEGLtcA1vTA0uKik6iRvutjNXg69Rn9/P+bn5yU8Z3R0VIw2y7Jw6tQpfP3rX/edo/O7TCPopUZQWIr+qRkf5/DIkSOyB4hCDQ4Oor+/31dNCQC+8IUv4MCBA1hfX5eS3rzu9evXUa1WJRRPAwD6vjRGuQ5mWKvpOdZC9ezZs2g2mzhz5owgwO9617vwzne+E5cuXcLY2Bii0ShKpRLW1tbEk7O4uIjp6elAxFy/H2mLxxCgoCIKdAWlThI251zP+/b2NpaWlmDbNjY2NsRLtLW15Uu6pnBdXV0VdHR+fh6Li4u+hGadi8lz6Rnj3xR+nU4HW1tbGBsb84U36X3KJrbz8/NYXV3F5cuXcfz4cTHEtre3JWRsfHxcvLD05jHXqdPp4K677sLc3JwURQmiRT2CjKRe9B70ncmPdkM+jx07Jkbwu971Lt91lpaW8MADD+AXf/EXfZ9/+tOf3lFUptVqYWNjA9VqFeFwGBMTE5JoT8WPe9xxHOkLRxmj6VrvA9d1pUUDkXdWTWSPssnJSRw4cEAao9NgJq/VPW0AfwVYzdO1Es/qZToUR3uDX0pJovzifPP+mq+asoWlq5eWlvDVr37VlzvKEuv1eh2hF0KwYCGJJGKIwYWLRrqB+jfraKABFy6aaKKFFppoYn1yHRsbG8IHTPri+pG3hkIh6e1ETwZbJBQKBamOyH6DLN7y4Q9/GBMTE7jzzjulwI05CNicPn0ajz/++A4v//dq1Ot1JJNJMZp/8id/En19fTvk2bPPPuuj+9XVVTzzzDOIxWJ43etetyMfDujqW5q/aAAhkUhIHhIjTz760Y/ivvvuk7klaKWLgDCa4Utf+pKEglNOt9ttrK2t+bxi2igydQMd2k+vEPO4yIfpgeG7a4NJX0v/TmCEbWEYVsvm7pR9OiVhampK9nGlUsHs7Cy++MUvYm1tzWfQUK9jaDvnORwOCx/Re53rouWdBkU02Mdn13KF0VaWZeGuu+6SyBjND/Qe59DA7W5A2Ss9vm843cbYbaGohLM3EwU/0WsqeOzADHj5FefOnZONDHRDkgC/0aA9PlSGKDABrxxmJpORmHeN0nAT63Ab7Ulh6WKG+2lXK9D11GhF1Eyw5PPqPhVBRhGH3lRaCAehwty0nAcqAzT4WBRjYGBAwkHoadNGViKRkJA2HYJSr9dx8uRJXyUgrgOZm6kwUXHUIXdUeFj6XTMRHZfPd+IxtVoNuVxO5o9u9l4lafXI5XK4evUqZmZmcOLECQDAxMQE5ufnYVkWDh8+jK9//es7nl/P7e0YTkEovBbSes0ty/NmPvjgg3L/cDiMffv2YXh4eAedAR59j4+P+2Kted1r166h3W5LuXEd+66fg4KJBojeBzokSu8ThsnZto3r169jeHhYwgdZCOLcuXN47rnncOrUKfHsFItFjI6OSnEF01DSRqQW9qQ9GmcMk6WxqAWLNuCD9kKz2cT169eRSCSwvr6OUqnkA2Y02ug4Dm7cuIFarYbNzU1cuHBBgBBNmxrNt20vl4a8wba9pqcs7T47O+sr+67fG4DkfJbLZeTzeXzta19DNBrFiRMn5LjZ2VkMDAwAgBTgoJHNpHzSzuDgoHjYgsZufLoXrZseDvNz83xTmKfTaUxOTkr4ps4nm52dRSQS2WE01Wo1XLhwQeac9M6Kj52O15SS7QcIRGkwp9ls4saNG5LDwbXWoJUuhkN+RFokyNdqtZDP59FoNDA1NYXXv/71+PznPy+yiXyVvFd71oNAEwBC68lkEq7r7mjXwJw+vpMp+8y15L4haKJDyDknpNFkMon5+XnZX+Gw1+eHCqd1wUIYYaTvTwv4xjWIfzOO1A+lJIy+2WzCqltoVVpoLjbx4pEXYds2RkdHfQCOlmka/EokEti7dy+uXbuGer2OjY0NZDIZ9PX1Cc3btu3rtcWej6xER4+sHmfOnMFjjz2GWCyGwcFByf97NRVKvU7kv4ODg/J5NBrF+Pi46B96rK6uynpXKhX8zd/8DRqNBg4dOuQrMGHqBHquGYbfbDbF28LccRr6juPgySefRC6Xw9GjRwF0K6IyVy0UCuFb3/oWrl69CsuyMDw8LFEfs7OzWF1dRTqdlpzLdDrtS5XQ/Jg8mbKdXk/uF+oMup+f5tN8RxMM0Dm/29vbKJfLvtLnWsbyHRglQZD985//vBiBusofeYcOgwW6e5jrxPzgVColx2sdQjfm5TzwHXRjbaZORCIR2Qv0lOk5IF2ZwPn3erwshpNlWX8I4F4AUwCGANQAXAfwWQD/znXdjYBz7gfw2wBeByAOYAbAfwTwp67rBsYNWZb1ZgDvA3APgBCA5wF8wHXdj70c7/FSI4ghcUFt2xZvEuAJq71796K/v18YO/sncbCHEc8nYkAkjkSticeyLGGwdMHSNayT/1mqm/Gtw8PDSKVSgshoo+n69euYm5tDs9lEOp2Wogp8D6CLRDNEgehHrVbzdW4nQ9CKKedOC9QgBcU8jp+byjiVSxok9F6w5LvjODt6wejNzM9c1xUmxgpqnEMiN/xPRJdKtu5P4LpeSFKtVsNzzz2H/fv3Y3JyUvJsOBdmeEE6nUalUhGld3BwUOKsb9Vw4rV0T5DXvva1WFpaAgAxULRx2wvVupWhDQEOc62BbpXHAwcOYHx8XI5PJpMYHx9HLBYTFPjQoUMAgLNnz/oMY62I1Wo1rK2tAYDQuok881m0p4XPwmenR5C/6zmo1+u+7vXpdFpCS974xjfi7NmzWF9fx8LCghjLRBO3trZ8c2yuj34OfU++n+4bo+mSew3ooq5B156ZmcGePXtQq9V86ObGxgYSiQQOHjyIYrEoHqlKpYInn3xS7qG9EgwHo2BliXBtXNEInZmZQbPZxHPPPYd77rkHIyMjwjO00pPNZnHvvffir//6r1Gv1/G1r30No6Ojgr5Xq1UsLCxgYmICyWRSjNh0Oi20YlleZbmxsTFcuXKlJ332Gr3W5VbODTqen9m2jRMnTkihnd///d+X79nU+siRIzvO/fM//3Phq1T6o9GoVCNlyWmuiVZCyGvZNF2HzWnPv/bYaCMDgC9sm2vFfk/9/f04ffo0vv3tb8s+1aGaPJ6efK28aQOL16eSqPkpeaf2HGlPlTZS2+225Kb29/eLgkaa1DnAvEY+n8fo6ChGR0dRKBQwMzOD9sU2QggheZ/njbDCXU8c7xV6sFsKmVXdCHiuT66jea2JF/Ei8j+Qx6FDh3w0D8AnO9nOYHR0VBRohmlFIhHxtIZCISmtnkwmcffdd8O2vfBURjOY4+DBg6JMnzhxAqurq7vS6is5uF62bePMmTPiYfqlX/olANhhNC0uLvoMzenpaTGy77nnHslBBiDymscSmKUuRJ7PkDXKZRpFNEwajQY2Njak0fTBgwextbUlwAF1Chr51AM0ELy+vo5sNotmsyl7RfNlzb+1Z5O8nSF/9BwHFQYJMp7In7XB6LquRNGQJ1Bv7Ovrw+Sk10N0eXlZQoV1FUzdEDj+iTjqP9ftQaVlL/9myOHi4iJSqRRyuRwcxxH5VKlUBLjXsoT7mkU82u22GM2U96Ojo+IJD3p/PTdBKTKv9ni5PE7vBvAMgP8XwBqAPngG0fsBvN2yrNe5rrvAgy3L+rsA/gJAHcAnAWwC+AkAfwLgAQB/37yBZVnvBPCnADYA/BcATQA/A+CjlmXd6bru+16mdwkcvRAw/XP//v1C3PF4HCdPnhTioCJMbxPgKTua6Kk0U/iR+ZgWNsN4qNiwAlapVJKkd13lzXEcLC4uisdrbGwMuVxO3NCs6ELhwz4dNLAoMJmISaZPBKFUKiGfz4uyagq/3QwmE1kJGnrzMnSQyc+5XA5jY2PSF4tCVJcw1T8Z2sJ5YelduqyJYOkSmp1OR/oQZLNZryLfe5soo4wWWsA/8RSjc+fOYXt7G3Nzc+h0Ojh06JAoMQwj0O/MBqL5fB4XLlzA8ePHfTluDBnYbWxtbaGvrw/1eh3Xrl3D5OQkDh065EOwksmkuOuBbh6JntfbGZruNZMzRzqdxgMPPACg68bPZrNSWW9lZcXn9s/n874CJGSSjUYDFy9eFIbZ39/vQ9A5uL68jkanKRB4jqY70gbgGU/z8/Mi6N/61rcCAE6ePCnClXlDRPlpuBIF1/kefD4KCCJ7FLZmuJIZ9qD3kxZk2hvEUMFsNivnEeGsVqs4ceIEIpEIKpUKCoUCisUinnrqKYTDYUG2CdjwGVkqnr2sSJekTQI2AKRgx7lz5/Da175WwCNtSNq2l+swNTWFS5cuoVKp4Nlnn/Uhy9ynuVxOihfkcjmkUinZi4DX7ymIL77UCBLE+rtew/RGmTQXi8XEw3Tw4EHfuQzbMcfS0pI0waZClcvlJDkegM8DTqOJhgj5GPmSNlZJE6z2SINO8zcep2mLMmh2dhZ33XUX9u3bhwsXLvjoUANolUpFQv0IQgD+QiJUQlm9jHxXh4WbckIbU6Z8IDhJfs176fciss+ee/a7bZzDObTRRuikV/ksFOv2kTJRdu2p4yAyHo/HUTjpNawuzBRw/tR5TE1NSYi++R6k6WQyiQMHDmBlZQWhUAjFYhGxWAxf+cpX8Oijj0r1xGaziampKRw7dkzuTa9U0EilUiiVSrjjjjskNNyk21dqmPtCG04svNBrXLx40SeTr1y5Atu28YY3vEFyRzXvA7qFdSgfAEiYLwEEDXbSoNJFsxqNBq5cuYJCoYC3vvWt4tHrdDqYmJjAc889Jx4sDQ7U63V5J+Y8NRoNzM7O7shrJW+mAaVlrJmvqvk551AbSK7r+kAs5tfpSBiCbhqg37dvn1R1XF1dxfnz54W/p9NpxD4ZQ/TmvxBCsP83G5lPZNB5Z8dXcEXzL75DtVrF9PQ0pqampNAZdRz9TnxXzgmNRu5ZFuSwLAtjY2N48cUXfeF+Qbxay9Nbzct+JcbLZThlXNfd0YDGsqw/APB/APhNAP/o5mcZAB8G4AB4g+u63775+e8A+DKAn7Es6+dc1/2Eus4kgD+CZ2Dd67rutZuf/zMA3wLwXsuy/sJ13W+8TO+zY2jGan5GLwgVZcuysG/fPgBdZJYoABX/druNmZkZCZ+hsk6kNZPJyOYwNxN/UqgCnvdKx7ry3iReHXdLxS8ejyOTyaDZbCKXy2Fzc1M8Rrwm0T0aagx1onLFqkB9fX1YWVnB0tJSIGqoGYFpKJk/zfP08SxznkgkkMvlRLnQaD4Znt703MCc41qtJv1R7r//fpm3wk8WsIENlFHGPObhwEEbbdRRRwcd2LCRQQYJJFD/JS8cI/HvEwi/O4xTp07h/Pnz2N7exvz8PEZHR6UqkH5vKrwMEaFSe+3aNQwPD0suSq1W81WP6zXS6fSOUvlk5uFwGOPj45idnfUxGgqLILq+3WF6WvhzfHwchw4dQjgcltLVmUxGvJQARMn+6le/KmumkelqtYpr167hxRdfBOApEXv37pX9oFErANIMkzkOrOTHXDYKII2IE1HUuVAsif7Zz34WP/VTPyXhkzpHSRtLTPxlyA/RNnOO6BVgKAfPo8HP94lEIr5wQz0039G5iNrg7HQ6GBwcxMTEBO69917hL8ViEefPnxcQhcgpDZNwOCxgBBOcqYgS9dSGJhPAr1+/jkqlgmeeeQb33Xefz1vK57Ftr+/M0tISisWiCN9cLgfbtn15KAwNy+VySKfT2NzcFK/MHXfc4dvvQUPTdBBYs9t5QfQcZDjx+yNHjghdvP3tb99xr6BCL2xhQPpJpVJS3TEUCmF4eBh79+71FevgPUl7ly9flvA30jWVO/JqepV06KvJZ/V7dTpeojrpMpvN+sK7AUgo3MjIiCiQpGkqRnxOFiqhEqaRbG0g6WfRNKzfGYBUK9P7jN5fNowmmh6JRFB5dwXL71hG9rmsR7eD3dwU/uc9tFGq54jPSYCNPHrr2Baa001cvfsqqtUqpqamfLKIyh1BB1apZdjU+vo6Go2GeF85f7czhoeHUSwWMTQ0JMn8t3uN72Zwvmhk6vX56Z/+6Z7nEWR1XRebm5siz1kQQgNqXA+9H6lHbW9vo1AoCK/V0RU8l59rw2thYQGPPfYY7rzzTgkNbrVamJiYwNLSkgB2QDcPVRsmmUwGQ0NDmJmZ8YEKpBcTAONcmWvTixfpd00mk5iYmMChQ4eQzWZlT1P+0XBhpMDg4CCGh4fRbntNsFnxlzqb/Ukb7ttcdCIduDEXCAOu5cKCJUZNPB4XoI2yUYNbpVIJFy5cwLFjxzA+Pu7LB9PywQRrC4UCQqEQ9u/fj9nZWZmzvXv3+sJ+Nf82dZSXQ2f5bsfLYjgFGU03x3+DZzjpOIWfATAM4OM0mngNy7J+G8DfAPhVAJ9Q5/wigBiAP6TRdPOcgmVZ/xzARwD8QwCvqOGkf9eLZ1leLolmlBMTEz6jSodesSDE4uLijpKWRBh0PxOgi1yaXgIyEIaOUXDokDAdbsefZDq6as/w8DDK5bI8S7FYRH9/P2KxmLhgKZApmLhh+/r6BLFhdT4tAE1kKkgZMVEGfYw2Hhm2Q48NGRLRe309Mkv+3v6XbbTQQgEFdNDBFKYQRRSb2MQKVrD09iUUCgUJ3TDDjtrtNspuGQAQ/mIY/ehHCCFE4ZV6v/POO/Hcc89JtbCjR4/uiNElE+JnDPOr1+uIxWLY2NiQynjDw8OBZWo5tIGklcmJiQncuHEDADA5OYmZmRm5v6bbl1JAzbEbwzKvfebMGWGG8XhcmPn8/LzsCcZK79mzB3NzcygUCrInHMfB3NychGWlUik8+OCDvnhsvd7b29t48sknBQhg6CXpViOg3Be6xD1pmnlm29vbmJmZwdNPP41EIoE3velN+MY3viGFPagssvw3sLP6pDl3VJxIk6VSyYeI0sBgU0e9R/T8k34oxIeHh9HpdAsCDA8PY9++fYJIA15fpOeffx6dTkf6x+hqTpFIBIODg9izZ480f+Z9TMOcNBeLxZDJZDA2Noa5uTmUSiWcP38ep06d8vE75izF43E89NBD+PKXv4xWq4UnnngCQ0NDguLqQV7T398vBSwY9pTNZpHP528bUX8po8k8djeji3R18uRJJBIJ/PAP/7Dv2FKpu6jqigAAIABJREFUtCPfCQAKhYLkk1JpK5fL+Na3viWVJJmvaT4fIwump6dRLnt8iFX3dNVUreQQJOBgeBeHRvapWBJ84PNxP1KJYghbKpVCMpnE9PS0vJfpzSbfNHnzbutgfk/vKOURZS0Ns0KhIEn73OvN/7OJwnsLWFtbQ39/v+wPHYbN+2lQAIBvj/K/Bg/YP6h0pgQ8B1Qe8pRMroFW1MkXaRCTv7XbbWlAzYa4ruvi6tWrOzyXvUY2m5V76eart7svvtNhGsKMZCHwETTI8+jZYf+4o0eP7gg7I/1yrbQhxFxAgk309uv8PvJTU5HvdDq4ePEirl69ije+8Y1iCN1zzz2wbRvLy8s+eg/S+eghNOmagLXWd2jQafDS1G304GexWAyHDx/GgQMHkM1mAwtXESigjtnX14dqtYqVlRWp9suqlu4nXZTfXBbQpq+vTwAy+5dsRD8SRfjXwkLj0WhUqnvq/cDoqPPnz6Ner2P//v3SmJd8g55gAjeO42BzcxMAcPz4cVnnUCgkBmEQ3QYBWbert7zc45UuDvETN3+eV5/94M2ffxVw/BMAqgDutywr5rpu4xbO+YJxzK7DsqyzPb461uNzAP78BG5ELmgikcCBAwdEILHKGxUFreBzQ509e9Zn8BDhcF1XFD4TUaPw0RvT3HAMHdHx6HwuovnMe6IHinkf0WhUwgKoCK6trWH//v1Ip9OiQKVSKZ9Q11Vmjh49imQyicuXL6NUKgljMZFEbdjpzcJ36qWwaCOT80AB2ul0RAEmM+Dc8X4ddFD5XypwtjwD1zpioTDo9bGhJ0SjuCZjo2LhOA5CbwwhlA7Bztno+3gf4u/2jIHDhw/j0qVLWFlZwcGDB6Vyks4n4Dvati0lRkOhEDY2NuSZAa830Otf//qXpEuuM8eBAweEae7du1cSMs1xOwJWz4OpQAYZCadOnfLlCjAvAfAY+b59+6Rcqg6VI53UajUsLCxIDPSDDz4ohpYWrlznr33ta1hfX/clFQNA6I9CsGGjc/MfALhw0fnf/SghjXF6CIiQPfnkk3j961+P0dFR3HHHHeKtZaw8aZyeWdK39nhy7rQHlMKIQAnnRnueeglW2+7mVLLvGEc8HsfQ0JAkIhPdXlxc9PEXvf9brZbkdCWTSZ/Szf5vfCfdm42GZyqVwvDwMJaWlrC0tIStrS3ce++94pHmmtI4O336NM6fP49qtYovfOEL2L9/v69UMecslUphcHAQqVRKQB3HcXDHHXfsqEbKc4LoliPICNW/B3lgtNGhj2MVSxbmOXPmjA99D4VCgWFWCwsL2N7eRqvVktLCly9fFu/w4ODgjiIbNFzYc4s5l9lsFkNDQxJCzXUjr2ZUAI1Ss2AIgSh6K3mfYrEoyo8G5+i5HBsbQzqdFiXZcRzMzMxIDp0OSeqlQO+GttNIpMHBsDuG3vJ5KpWKeLx0dEIoFEITTbTLbZFt5C3aUNRzpu/Pe/A5Se8MW6WHb3x8HM6POmh/1QPk2u/ttlfQBiONTcpnoGucVSoV5PN5KapAg/hWxsTEBC5cuCBh6iZA+UoaUKZ3IBQK4a677pJ83V5DG3k0fJn7yrnSHiTtxdHpB2bvLhrGnHPT2NHGGH9ubW3hi1/8Ih599FHxlh09elRKx/Oe5PHaCKOepUEB3secJzPsUI8gXYf3YUqC7q+nZTCP1Wteq9VQKBTESx+NRmF/2kYTTdR/pC7tOQAI8Me5jiOO+GZcKprG43Hs2bMHq6urPiCP67S1tYWrV6+ir68PY2NjkiLSbDZFjnLtWq0W1tfXRQ9iFAj3G0Nde+l/mrb/hzKcLMt6H4AUgCy8YhEPwjOa/qU67OjNnzuye13XbVuWNQfgJICDAC7dwjnLlmVVAExYlpV0XTc4k/K7HGSGJnpHBVGHMQwNDUnFNObe6JhUJh5qlEvnGGgCcRxHlHkyDAo5bi4SkYkgaOWSApHPrjePGYfKnk8Mmdre3sbevXslTI/fUzAwP0r3SRoZGfEhzSYK1itMzDyu10YCuqGEPIabVleLYQNfy7LQ/udtVP9hVRIkE4kECoWCeHi0e53zqQ0cU8ACHuNZX1/H1k9tYeSzI4gjjhhisF/rMfJ83ksgppLLUpzaeGQYJ/N+yGhd18Xi4uKudJnL5XxKbLVaRTKZxAMPPICnnnoKAHxN6DTK9Z0ik0HKvBZGQDech8el02mMj4/j2LFjQitkrMvLy7hx4wYKhYJP+C8vL0sO3yOPPCKNRfWgIl0qlaRxIoVy+994ieDur7voWJ2dytwfA+5v7My/4z5g+NuNGzdw6dIlDA4OSo5iLpfDvffei29/+9ty3VQq5TPmtdeV9yAaqsP1LMuSwiwEPLRAkedFVygTgWfzUoZIsAAN0VfS1OrqKizLQiaTERCH+5hKZTablbxGGk3MkdFFIfRzaMRzZGQErVYLi4uLWF9fx1e+8hU89NBDYojpkK/Dhw+jWCxKRbjp6WlMTEzAtm3ccccdPlpj1TDyGeZRfPvb396BRmr6DPpc0435u1a0gsAcPfg+zH178MEHUavV8OSTT+Luu+/G8PCw5ALpQUW/0/Gqoi4vL+PFF19Eq9USI1h7+jjnLEE8OzsrYdO5XE4AOtIKw0nJx3UjcPIIze+BboU7FidgqCppnWGU7HvEPXf48GFRsPbt2yd8jQn75rxpg0h/pg1VfqbBSY2o6/koFosSLkt+L9XUPhqF9Y6uAUmFmv/N9Q0ami6o+AGQOaRim0gkEP3ZKNKZNJwPe6Hdzm84Pj7Jfa/DJ/lcnY6XL8nr9VKwg8bw8DD6+vrEoNB9sGhMvJKD70caPHjwIFzX9eVocSwuLu4ADTc2NhAKhaRIjOYrWgdyXVfWnHPGvF3SowYAuO7cD7wODRhNa41GA0888QROnTolBbTuvPNOaWhu2912EVy3aDSK4eFhDAwMIJ/Pi1HOa5o0zRHES3YDik3AU+8rbfzTK0ZQi0Yf90UbbTR/rOnLnQW6OX7cZy200Cg1pEEtdRZWjtU9ojjvW1tbWF5elnBR1+1W9aT3lTmZCwsL0kPu0KFDuHLlijzLyMiI5CcHAbR6vv6HMpzgVbzTsOFfAfgHruvm1WfZmz9LPa7Bz3O3eU7fzeN2NZxc131N0OeW54k6E/Qd4Ef2NdFGIhGMjIyIBZ5IJPDwww/7iItCjejE4uIiarWaMEsiH47jiJJBBYUEaIZK8HrcRESg6d3QyJo2XlghiMqlbiYIQASjLmTBZ9S5IRQA3BA07Mwywiw5C/iRmCAlJuizILSSymS1WhWvli6vTsWDTCISicD+Zzac33DEOGUICruc8xmJhujnpZDUIVVcV6KG9Xod7t91vZCQj3aQzWYFTaMhRoGpESLt6WC1vu3tbd8aXrlyBVNTU71IE9lsVrw2JpKqvTJB8/2dIpKmwhpkSHHQq7Znzx55Ng0+lMtlKRShFZ2NjQ1Eo1EcP35cKunpa3MeW60Wrly5Iqjr/sf3I4MM7F+z0XSbaNx0XHMf0fuHXwPsP7Vhv7trFPO9KDAZEnLu3DkcOHBABHEo5FXNLBQKWF5elvhyHXuuwzW0sNaABgf/ZuUh8/ugeWeYHo0d0rXOoywUCsjnPfbLCnXcw1TSKGCZg6n5CUP2OH+8P9+TxxIYYh+mxcVFFItFPP3003jNa16zIw8vFotJWXfHcTA9PY0f+IEfAODtE9IK+dPevXuxtLQk/Ikd54mq9lJI+NOcyyBDSyuBZkiNpm/y83Q6LZ4wNvWl4RAKhaT1gR7lclkUjG984xsoFArCl/ft2+erGEo6KJfLmJubw8rKiqyjzt+j0UzAiP/Jo7lPSONcT/1OPN62bclrKJfLPjmhvVWrq6vScFx7hCqVing2OXcmryBf6mXUaoBKK8+sYhmNRiW3hYa167rdohSfCsH6Xy107I549fj8ZpsMDWCZNMPfSesECklPDEtMJBICjlrvtuCGXTj/yoH7nu4zae8BQ1CJuGsDgHrErY54PI50Oi0VyfS5QbLz5R5631AfSCQSUuBBjy9/+cvSZJm0xFw/FqTS+owGmJh3t7297Ys2AbqhwFS4Od/M4R4YGJDwbuZ5ahAA8HKurl69KoWzKLPYH5FGCUMQQyGvyMixY8dgWRaWl5d90TVAb/kaBPYE6UAEwhkCR74QFI7LuacRDnhNkl3XhfMpB85PdKOPSCfcg6Rtx3HgwEGr0g1lbbVa6O/vF0PRsizRNXR+cKFQwMrKCg4cOCDyXctBDX4xrWJgYEDWLhwO48yZM7hy5cqOAicmvQXx+ld7vKyGk+u6YwBgWdYogPvheZqetSzrza7rPnOLl+GM3I5G952cc+sXVwQK+K3+8fFxX4jem970JvEqMMGbYS40nPL5PEqlklj5tPoZMw50eycBXYSLyj2VJjKDSCQiCo72kpCwtaFHNzm/I1KiFXqi3WwGa9u2FGTQyjk9BhsbG4L+6SoyFMY0ArmJdiP6INTX/F2jHcViEbVaTULB0uk0+vr6JIacCLWFbr4ZQ04YLkMGZxoYOlSD+RWmgaBd8Nvb2144B6K+xnIsaJHJZBCLxeQ4Kj5kkAytKpfLPpR/bW1tV8NJG7FaKcjlcpLkzbhnvg9/3g4DMo/Va6LXzLIsCeNpt9tSzlo3+tXzfO+992J6elroptlsYmVlRehnZGTE5/HT92W+4Pb2NnK5HIY/O4zYO2PyHcNftRGpkTAL3RwQvp/2FvG7TqeDhYUFWJaFgYEB6bvF8LKVlRUkEgmsra1J7LtJW+a8mZ/RSNDCTa+RNlr4jAMDAxgcHBQQRSN+1WpVKp+JsQj4lDn+rYUx+QtLkBOVpQeagwAP92Q4HJZcx0qlgqWlJVy9ehXlchmPPPKIDwwAIKFOS0tL2NzcRKFQgG3bWFtbE8OJa0YPCw2lWCyGyclJFIvFWw4J60W/Qd+RznrtFcuycMcdd4jXjl6yN7/5zcjn875iChwElWKxGB577DFBqsPhMLLZLHK5nPBl8sz19XVcvnxZSlj39/eLIsNnZElunX9qRkVosIc0rcE17i9ei71edJ8YGl2UGzMzM1Iggoa2Ds/RxoBpnJrgjY5AMOVsu+1VfuW+YLEZGpyUUQLqweMzmsfrdw5SbIPC9Uy+RoVOAwjkKzSkJSQfDjrtjgCcen24/+gV5L7lO1FhJRjBYfJNDkaFaEDmOwXEbmfo+9DjXiwW8dBDDwUe//Wvfx179uwRMJHefOZIB9EFiwMRZNYNnvX7a8AQgKRLjI2NiZwlMJVKpbCxsYEbN27I3AOeN5jlyZnXzXXivtS0w0IMBw4cQKVSwebm5m0ZvXoeNahAnYBV9FzXK6BB0ICFw8jDqeOwrySryTqOA+e/OcBbusC4BrvMvQAAnQc6cL7uoPVoq2tMOY7kFg4ODvr4RLvdFsByY2MDhw8fFl2Mui2fJxaL4e6778a1a9ewvr4uwDzvTf1Il98PAle+10YT8ArlOLmuuwrgM5ZlPQMvvO7jAE7d/Jpeo2zQuQAyxnH8fejmOTt6Qqlztr7TZ36poT1NGoliQqNlWTh9+jT27t2LYrEobnnt3gU8xPHatWtYXl4W4qWRxVh0zfyoBLFaHY/R7n5dnlILAP3MmsHxOyqmpteJG6ZeryOTycCyLBSLRaTTaRFANCTIiGZnZ7G1tSXJtwxL0iEXQLBhZCLwJupnbnoKI1F+rW6RhampKV/xAD5DFFGfp4PNg02FiOsVJHx2Q48ASJ4a5zKZTErzRzI3KpucPwpRziWfW5eGZrlfU5DqQc+iFihsKuc4DkZGRrC5uSmGdJBC/1LDNBp7HUNvDOAJsIGBAUGXms2mT6nTz0pkOJ/PY21tDZFIBKdPn/aFj+lBhaFQKCD9sTRGMALnPQ6cULdPDAWZeb54VH63D31/3IcIIuj8UUdyOGgkaG9jOBxGpVLBysoKMpmMCDAaUeFwWBK9zT2sR69559qbiiPnlT/1uTRQuUdo/FDgkWZMb5u+HudDK4MMWaHhz5LSQXTAd+fIZDIYHx8Xz/rCwgKeeuopPPjgg6L40IgiL6MBzJLc9Xrdl2vmuq4UhOC7TE5O4ty5czvmVv/ei17NcLEgAR30tz6O1R3vu+8+3/f0JpiDTW2r1SquXr2KjQ1PlKVSKakqRV7R6Xg9Y86ePYtWq4VYLIb+/n6pckfPj/YyaeNXgz3k2VrZ0sYAFUIqiWyYySqrNBTIP0OhECqVCmq1Gi5duoQzZ85IuOfa2lqgcRJE76YM4GfaYCJ4YUYFsDCJWSo/+pkoor8cRcfqyP6nR0p7BIIQfk0L+hjyNK2ga4PPdV0pey3Axa820fpgC+H3hIXeyJ+5FvQOJ5NJ8Q5T/l++fBljY2MSKgV4MotyQo9wOCz95PR8vxoKpt47zK3cLYxqbW1NPE7FYlHyFpm7CnSN0VqthpmZGaysrIg+1d/fL7zKNLT4PPQ2DQ0NSQSPPp6FsJaXl8V7xXvqpvYEIAicUX4RSND54clkUsLjeukJuwGPlDOkNeY16RB7zbN0+xQTCAG8aJzaJ2twf8IPivM5dN77jmd9yIXzVQfW37Hg/pUL58c8WcKCNQMDA+jv70ej0ZBiFIxmYF4lQTcNzgDA6dOnhZ84joPjx4/j0iUvI4ehzYVCwUdfmn+Yuu2rARAEjVe0OITrutcty3oBwN2WZQ25rrsO4DK6zXJ9hRosywoDOACgDeCq+uoyPMNpCkblPMuyxuGF6S26r1B+08377FAWYrEYcrmcGE4/+IM/KEg3CTQUCiGVSkmvpY985CPY2vLsO111iugCzydRVKtV6XuSSCR8casUmrw/0A3R0sq/3pC8vkZytReIrmge02635b4UDgxf4rVHR0dRrVYlZI/Gg34PvemBLnPspZTwbzIu7YanscgQCaK+DzzwgHT0Zkw+q8fYsCVfrFQqiWKsN6KJ8Gujje8QhNRoRbfVaiH842Ek/zKJJJKII44OOrB+s+sFHBgYwPr6ulTRAyBryP4oZOKZTEYUmd0MJyoaWoFNpVLI5/OC+FBwBykstzJMRNi8P48Jh8O45557AHTLW2ezWaEhGpR6kIHX63XJ6zpy5IgvRI/3IdNtNpuovrOKBBLI/EHGE8adooQamc9JWopEIhJalE6nEfsPNxtNv89FG23EEYcNG7Vf9xtP9AyyWatuPwBAUD8zLO9W5lX/NJV/81jOAQs/mCF4nB9TWNMrRJrWz629TaQXCu1arebrd8P10DxOzwOLzCSTSRQKBXQ6HczPz2NlZQVjY2NyPg1Szq8ufUuvay6XE++8bigNwNdPpdc891JizLkxkW491/pd+b+vr08Q6be85S2+6xNx1YMhd+yTRE8Zi6SkUilZU1asOnv2rITLEXzgfNGLwvXiuppGt87/oTeK60/+p0skcz0JutBw4rxzD9FQWl5exuXLlzEyMoIbN25gfX1daK+X8s7PgxQibTgGGbB8VgJnOmQpFAohgYQolOSZzBOhTCOIZdKI5m0aldffmXNMWux0OigWi5IX0mw2sYUt2Nu2eFN4PD2KlF3MTV1eXhbPFQ3QSqUi3sxyuSzRJXr09fWJEfBqK5J6fQcHB6UNizmuXbvmq3rXarXEq6nDhrW+sLKy4ss95vpTH6DhTw8W9RkalwSUTAOLcjaZTEqKBCv16nBOGue2bUvKAb2tzKfe3t6W0D89H6ZRpD/rNY96P5C+dSVlggP9/f2iT2pwgUZ3vV5H+RNlOHBgf84GfqLbgJi8mjQYZHy4rgvnYQd4ArB/yIb1N5a0ZRn8B4PiPerr68Pw8LBcm+tLnqSNOd1D6s4770Q+n0elUvHpk9RtzVDeIDBMAxzfi/FKV9UDgD03f9K0/TKA/xnAjwL4r8axDwNIAnjC7VbU4zkP3DzHLDn+Y+qYV2yYC2TbtiQAa0FKQqarUlege+GFF4Txa+ZOxIVCkfdrtVq4fv26hFsxDE0LLwoPXpOGD5kAP9fPTcIkc+CGI9oYiUQkBliHu5FxE20oFovI5XISNpPP56Vjtom4mwLJJHxTKddKHP9zXtl0DYCvmhCPI5rFzRoKhdBBR8rWEok0lX1zU2rFUtNBr2em0G+32wj/XBjRVBSh/zuEzrs6QJ9XkIMoEj0s2jgDIIo9lRrL6noPdkMRY7GYrxEm0O0/YYaMaeF0u4bTbn/zWvF4HPfccw9CoZCvhw1zyhzHkapcsVgMzz33nBiyCwten+xEIoGhoSExKPXcUvg2Gg2EEELuX+fgxB1ZX93PRa8hFXVWGtMoWSgUgvUxCxE3gnArDPtXbESzUfFMMpSWiotlWVJ6tVAo4Nq1a7hw4YJvroM8Rnr+9eekA42k6T2iz9PnlEol2Q/kKQB8SiKFLmnPVP44BzSsdL6LrrrHSo9S2tZAeYGuMq49VoAXNjUzM4Ph4WFf0YLx8XFRjlZXV30IPoUyQxHZW4vvMzo6ir6+Pt+cB9HjrXweRMu96N22bUxOTgpP1nuOoSnmmJ2dxcrKCgqFAr75zW/KcXv27BHe3263sb29ja2tLSwtLUnYTSaT8VVOJG1retHPqPe3BskA+BQarhlzdTRP1DyKc0vaYtgZq2e9+OKLWFlZEd6vrxM070Fr0utz7lkTHCT9SIjeYyFE/qcIQgj5jqPiSuOfck8j/EFAksnX9X4EunSuFbxGo4FKpSI0sf1j26h/oY7M+zJiZPN6juP1qGNxD4J8zC2mQaH7+K2traHT6eyoPplKpXD16lV57t2M1pdzmMr+0NBQYOVWwMtvYogz6WhmZkYibcxol62tLTz77LOo1Wq+70lburKnqWto4If0YZ5vWRaGhoakKApppFQqCShrWd28QfJD5m0zdHl9fR2bm5u+6JVeYJf+m+/KESSXGXlCHY+hzdRVdJ4X0AV/NzY20HjU033ssA37L21Yb7F28AtdyMgERF3XhfsGF67twv1BF67lohFqYP2v15FFFjnkEEMMccQRgqdfWb9nyXpRZ6TRRD7EKtOA1x5jcHBQQBjbtnH//ffjxo0bO8q8m3NpAvGv9viuDSfLso4BKLquu2J8bgP4PQAjAJ50XZf+t/8O4A8B/JxlWX/qdhvgxgH8/s1jPmjc5j8B+HUA77Qs6z+53Qa4/fD6RAHAv/9u32W3EYQ8HT9+XJT106dPo9PpSPIiczpyuZwsdKfj9Sq4fv26hL6wVDYRSl2Ji1WnOh2vmSWNFCr6Gjmm0qNDc7gx+FMjw9ycRCoojMhwLKtbsKJarSIej8NxHOlVkUgkBA2NRLxeJgDw9NNP+xR9Cj7+reO0gxiIieqRYegy48wdA/xd6ufn57F3715sbm5K9RcqGw68fChTsGuUXhswQchRkHJmGnuce+aJ2e+w4f6Ziw46cP/Y6zWki0VoRkDBquO0m80mpqenMTo66st7MgfRfSaR6gZ9QDc0yXyv78ZwCpoD2/aqSjLBlgigVlharZYk0+7ZswelUgl9fX0oFosS3zw5OelTziksGc7X6XRgvcdC/M/icMOuoN9cX/1smt5omOp+K5x/HhuNRmF/xEbot0Jw4aL+j+vSTZ1VrGjQMoz24sWLWF5e9glxPYIMJU2DfBZ9/G7KPBXqXC4nQp1DI/4EZnRYE/kEhZrmCwy1MEP+zGTsXgo7lXUaxwsLCxLOsrKygnw+LyEf4XBYvH6VSkVC11zX9cW5A90wjkwmg2KxKMhrOp0Wj1SvuQtSjIPol4LeXDP+zr87nQ727dsH27Z3lBtncrw5rl69KgbRiy++CMdxkM1mkc1mfU1T19fXsbS0hPX1dViW1wCYhTCY16RRdjOs2DTE9XzwGJ7D9eJ7aw+8ZVnioSKNAN3WE5Q3RN6ZG6I9l3ruTaUsaA3MnwQHtazjtXS4djgcRvTvRxGNReGiqzxbliU5o6VSSXiDBic1uNLLkNb8QdOC5tt8T3o/LcvyclnRwdramo9/89m055Dhl5Zl+ZR2bZSzGMba2hpGRkYAeOGfzzzzDFZWVnweJw3q3Q6Pv92hZXokEkE6nUaj0djRg4xGEucxFApJA/rR0VHfOnQ6HSwtLaFcLkvkBQ1lDvJZXovPwufQLV10CKUGWQYGBsQLzM9ZPILnE1jWRT2azSY2Nze9JshbW2I0aQ/RbkZU0AiiN35OXsv8d90rTctdAsa1z9c8QwYWwggj8XMJWDHLx8NpoOpiYyZgZz5bp9NB4+80sBHawHZsGyMjIwKEua4LWN2qqxqk4O80jgBIf8FYLIapqSmcPXsWnY6XikIPcS9668WvX83xcnicfhTAv7Is6wkAs/BykEYBPAKvpPgKgF/hwa7rblmW9SvwDKivWJb1CQCbAH4SXtnx/w7gk/oGruvOWZb1TwD8WwDftizrkwCa8JrpTgD4Y9d1X7HmtxzaYg+Hw1IdKRQK4fjx4+IhchwHg4ODkixLV68WLABE4Pf39wuSSkJwHAdXrlxBpVJBMpmUMA099ObRyBwZMlFibjS9OchkKJSoSPJvKlqs9EbmxdA9Kv2bm5uS47F//360221cvXrV59nhs9GLpdZ1x+9BhpMuA60NPy1cIpEIisWiL/5fKzp11CXHx1Ssewl3fR/9TOZPTR8cdO3bto3QPwqhGWvC/RMX7r/xnolzqkP/uB40BGl8dzpe08tstldaYPf+FN5kQqFQSPqdmIxGC9eXGkFzE3QNy/K6gHOv6Fht7ot0Oo3p6WlZM+YE0utEw5yMnQo8Qyzt37aRQALJ/5CEFfGayq6urkq4BJ/RFAIaYDDDy3SYCPdp7EMxJMoJxP91HHXU4bzDEcWGc02Ukl6pl1JUgmiI96OHRxtfQTTGRofMgTANJ/6uy8zqPCjuRx6jhTSPpTKiQ2D4TFo51nus3W4LImvbNvbu3YsrV65IbobrunjxxRdx9OhRed9oNIr9+/dLQ9etrS3xIm1tbSGT8dJX2XBtgYO1AAAgAElEQVR0eHhYiqsAXngQq7gFGax63nsJ2V4Kc9C68Vh6EA4fPizHsGm2Oaanp0UWLCwsoFQqCR/VYEij0fCFuyUSCUxOTmLPnj0CaPFY5p3pHAf+53pwD+pQO9K5XrsgRUl7Z4kYM0ypVqtJDhfXkYom6cAEMHabY83/xIMU6pYg16Ab15CRF+l0GolPJODCK8jQ/vk23JDrm6dSqSRhh9qA5j01DzP5WlA4uaYjDXjxfjSeOp0OWvBAIspMDZB0Oh0BJVk5TedOki/y+pVKRXihprlr167tKEzwahlOvEcymcThw4dx9OjRwIbtnG+CraSneDyOQ4cO+XQb7n2G5LHPkw69o3HJKpTlctnXwkF7ZAkGARD9oN1uI5lMYnR0VHQk8lumG+g8RQIJfF9dDRGALySUAIQ2nm7FYOIgsEUdS+8pLR+0Psl832KxCAcO8AYgFA8hmev2EOU60FOsS5EHranrur531u/jOA6WlpZQq9UwPj4uMoPPRlrk3tWRQFxHfs48cEYqZbNZWQ8+j7kHucY6zPjVHC+H4fQlAB+CF0p3F7wy4hV4RSH+M4B/67rupj7Bdd3PWpb1CIDfAvD3AMQBzAB4z83jd+x013X/1LKsa/BKnv88ABvACwB+23Xdj70M79FzmILFtm1JfiODz+Vy6HQ6PgVVJ3a2220pu0wUlygHj9HKG6u0dDodCZ8jkTDWn89CQ46ChpsD8Fey0wRH1EuH52jFmgoUXdK6Es7q6qr076hWq6hWqxLWEYvFMDY2hkgkIqXCWZ40Go2iVCoFhsrxp3ar04BjyWWgK4D53po5WpYl4WpUGHifbWz7QlI4TCTaRBW18WTSg1a6+bkIzJvGSqfTQeTPI6ijjhRS2J/cL0bkxsaGjxkxv4HoGoWtLgnsOI4v/E0Prr3ruiiVStjY2EAikcD6+jqKxeKOue5lAPYaJvPUn3POOp0OTp06JQYzSzYzzyIWi6FSqYiCyFwPFgcIh8MSqqJL2QPdSpPuH7iI/lZUPFmFQgGFQkHWlQxcG7xa8WLPNB3mqYWQiWpFfieC0O+FZI0YXsN+GcxX4L7UCrypoJrzqYWSzifRNKnP5X5g2At5h0Z+zfxGKt0cVIqpAJgAjFbASX9E/839w/1Bw5deXc7ta17zGjzzzDNoNBqwLK/IzMrKCg4fPizCk+EarutidnYWQ0NDcBzPQ0zDCYDkjzCWPhwOY2JiAufOndsx5+YIUmL0/DJsmUpIkGHB8xjiGYlEcP/998s1GLNvDvZWm5qawsTEBD7zmc8Ikq3nj2E/LKAyMjKCvXv3SslvzeeoXOnQb82PTBBO/9f7nmup+S6/Yy4p+Q4jJDToo9F4y7IkVzccDvsKrAQZIHpdTP7KCrNUsvW+JSDIPLrEO7xn7HzYr7TRaNLN4/V+03/r/W5+bj4z58s0wgC/0p/JZFB9pIrY4zG04TXIjf3TmFyLcl7fk14b8iKGPgGepyEcDvu8nMViUbxpQfR6q7z9uxlc98HBwR1hhBykd4JbNL4ty/KVImfUDsNUGSKtjSamC7CKIeDtPeYNa3Ca96ZiTy8p4O0L9pxkaD/1hUKh4DNydXQI5drIyIgUhAC6oaE65/JWQDRznlhwgfMDQHRL9qnk4PO1Wi0UPlxA69GWZzR9JYTkW5ICqlEeanCLvKMXv9QeUa2T8Z2azaYXFthoYGRkBAN/NoD2H7R91+Wc0MghrZJnlMtlDAwMYM+ePZidnYXjODh69CjW19cFiNR8Su9RDVi82uO7Npxc170I4B3fwXlfB/Djt3nO5wB87nbv9d0OjT4BHvEcOnRICOjUqVOSd6E9LERF6Ka8ePGilNMlOmKG1tG1yd4wruuKRa4RZI2qkDApTF3XlXKaGlHQSLEZ6qARZr4nDUPeWyMdy8vLEo7V6XQktIQCNR6Pi9KrUTPXdUVZ5obVm1JX/SIzJhMxUWV6jzRizw3P4zivZZR9SaR8Fm7IXmi0aaDq59bPr8Oj+L/VasH+tI32z3pzt5xdxv4f2C/n6iRX05Dh71RY8vk8+vr6hPmcOHFiR9ge358hlaQxnZ+iadq8124jSBCbigPpmZUNQyGvuh6VXY7z588jn8+LIsDiI1SGdeNczgGVtHA4jND7Qoh+OArXciWp2lQcNFPVRlO73ZYO6PRmtVotJBIJ8eqaCnWn04H9azbaH2hj+93bGBgYQCgUkl5sLIDB2PxqtSr5gaYyY84/79ErT0cfSy9kf3+/7D2dSK/DcSl04vG4hPfqueH66CIwGojgHtRrw5+6ca+eY+41vnsqlUIqlcKJEyfw/PPPi7fi+eefx+TkpCgGLBbC3l00NHgd0g4BBB3COTY21nNeb2doT4xWNIDu3ud37GfCSADAix5g9bugweqj165d8yljXDsWjSC4w75nuVxOUHWTJnQIGz/TBrDmddp44RoHKdom/dFwppygMkvliB4z0guLdbCaGUG3Xuui51iDYMlkEplMxodk12o1qfTHe8fjcYT/LIwWWnDf1g2dI5/c2tryKXLme5JP6P2pjVA9n+QjHFqh5HHtdlsKOQng8JYoWqkWtj++DbvaBTK47rpQ0fr6ungza7UaNjY2hG64D7TizKaiej313L6ShpPmKclkUsrzB41kMukDCthglU3NtWG/srKCUskrqhyPx0UHYH5pIpHYsS8oG9jPSvNeGk7Uj7SxwXBhph7Qc1WpVCSChSAe6VCHoVEucf25F7Q+YM7XbkAaCxcReNL7jkChBoH4d71eR/3NdeBLgA0bkR+NID7QjRzgnJdKJZFPvGfQc+hn5X+tV/G6dAi4rosMMkLP1Fn1+1P2tlotDAwMCCBg2zYeeughzM3NwXVdKX1uRsdofYN7MohnvRrj1SgO8f/7YSIYrutifHxcPmOuExeeJRspGNvtNq5fv458Pi+GBRFO3beJhoBuqqkNGjIYEq4mcL2RabhQkeFzUMmigKOXif+5MXgMUaJYLCZMjU3gmENEJVefSyWLxhwJPRaLIZvNwrK8+G96xViFih4moktsYMcYWh1WxPfRG4ibiO/N41qtFsooSzIplQeupd6QWhEJUjqoxGslxWQqHI7joPamGqzHLLhv8r5bWlpCPB6XctlE8sk0dTgH78uET10q1bIs3HnnnT46ZSIpkUwq0WwcGWTo3A7TCVIo9DwBXjPewcFB33proymfz4sSbfZFITpGFJtrwdDD8LvDCCOM0IdCsEO2CFmdN8ahn430bOb90QsCeOgZPbukKcBoiAwPAGF4jc4dTKVSgoa7rit5eDp0Q9NVkGDaTaDq/UBBXSwWEYlEMDg46FMANaCgQ8H0ntaf67h3CmjSDhUhvgvgrybG62oDiIaV4zjSh6tSqeDSpUtot9tYWFhAsVj08Z+xsTFfM1sqA6urq1LanuEqpEXXdcW78VIhG6bgDfreXPNexw0NDSEej2NsbEw+p3Fg5jdRqd2zZw9s28bjjz8ue4JeS+5RNoG2bRu5XE7uQ35APtuL93Ft+FMb3FrJ1cYxv9OeSh3SRyObcoDVvGicU6Zo4I6IuwYFeW89/9wH+h70SlOx4jrrio70osp+hYXOL3dz63h8EKqu11l/bg5Nh0F7leeaxhgVVM4r5c/W1hbWf3wdib9MYP+790vPLh6v+RDDL6mkA8CFCxfkvbe3t8UTu7a2Jq1KXu2h3z2VSvX0Nl25csVX1Mp1vVzfRCIhxS90wZ+5uTmZw76+PoyMjEgVVA0Ma3DMsry8Xtft5kdST9JyVRdW0CGhPC4Wi2F9fT2wUAR5Ob3r+Xxe6JKD8iuoiWsQXw/6mz8JyNEjp4/TRjvD2MV7/KiNRLrblJnyTjcQ5rMGGR8mXQftEb0vSMON9zQQ/r/CqP6RF3KqPamdTkfkuNZ/GWnCtBeGdWezWQFDdwMAvhdGE/B9w+mWhhZODGFj6XAqKozftCwLBw4c8PUbYPUVMwSEwoIbmTHkS0tLvm7iOsSC9yLRaQSFzIAIC6/LY6ko6l4qfCd9H74vvQFkUIypB7qbhcaOFhxEJPWzua4r1cyYw2DbtvQA0PH+VAy0QkeFVKOdVPB0ArE2Yrhh6x+po/FIw4fO00jSm9JEI/k7lUC+t0ang4wHAP7nh4tOwztvenraFy6ZyWR2dFnndbVBS2SHsb9kgFR+aVjxeFOx0safftbbYTwm89bPyt+HhobkGIaOmtfQHiQ92LRP59Bp1DyGGEIfDwFxCMCwsbEh9BBkeJiGE+lOryHPoQdKx8drD5T7dhetD7VQQgn4g67Hk/dgqIcOq7Jt2xe6odegF/1o2uSzRSJevyjdsoDKdrPZlBK12tDjviAd0GjSigTRUdKI7glkWZZck4oNlTyirhzasNNGEw3gw4cPY3NzUwChxcVFabDdbrfR398vgpLJ2a1WC+Vy2dcTjL3i+F5UajTwsxvdmnOtaUQjmfTYmNcIhUJSBt3ct1S89NjY2BCj0nVdPP/882Jg6r26trYmYFQ8Hpeka9ISFTsAgaFAGsgx/+u8Sa6Hpgkdmqmvow0e8ivuWcor7inuWW10UjniM+uiCIBfMSTd8Rg+B9F+trogjWYyGQHbHDiSs6Flo5mor9c2SFHkfGpQqZehxL9NMImyiqAnFWjX9cK/oogiW8rKPjafz7IsTE9PSwlyGuKU1/RGAF4e7crKCjY3fZkQO+jilRykzdHRUcnxMb1OTzzxhK8PoeN4BafYZJsAAgFC7oO+vj4cPnzYl0ND+jG9fTSSGEZNmqWxT35HumQepvauc67oGanX61KIRld1dN1uoSKgG8anAWPTa80RJEP5O+my2WyKjkZPnamH6L3EZ3W/4ML9IW8e6PEkHyPvNkPe9BxyPYNkO4/ZbQ9UKhWkkJJ3oPyjscoww3Q6LdEmtm1jZWUFJ0+exC/8wi/gQx/6ENrttpQs18+7m8x8tcf3DadbGHrRbNuW2Fomp+pymdFoFBMTEz5ko1qtYnNzc8eik/g5yDjW19dFidObUh/LXh80vkyFn+gf85S0MsYNqtFGMhRtTHQ6HZ8xQ0ZBwUdUmBuUc6CVUm5i27ZFyWEZbiLfutoXr0uFQgsuKmtUfjU6rvNTAH8z3/rfq6P9eBvu67pKdJAwDNqIWkEJQqxNAayfXxR2OGg1vfVijlco5PVz0gnfZIztdtunAGsBTiOKFRd1jw+ui14z13WRz+d9zxVE3y819B7Qn2matm2vRHTQnHCwpD2rL7FkPIUE6UTnHpHBRhCBHe4WwLhx44YviZT36+XCJ03pvzWizeRsvS+pQHI9mz/fROnjJURr3UbVDAtibor2JnBNtQHIETSfpvLOz6k0Mc+I39XrdckN4/7iNbivtJJM5Zc/tVJOo5VhMVoJoFHAvMZyubyj0S/5Fb1AVPCYp3Dffffhq1/9KprNJmZnZ7F37155ZgJS7XYbi4uLolBp7wCbTDIUhIh0r3k1FdMgmtbn8H3Na+lr9PX1icfoyJEjcpz2znFsb2+j1WphamoKAPDBD35QKolxjqhos9Ie4DUQNhVA8kr+Te+m5pGmwsN1J39kaBvnlN/pUDs9J9qjRCOEgAd5uvaAk8bS6bTsNd20VBukOkSKdKn3Io2lRqOB7e1tCfEhXbP6Fv4EcH/NlfAqXXBHG/d6X2naCFIOg37XNKPn2aQTAGLskQfzs1qthiaaMq/agNNK/NramniXOp0ONjc3feGP3Ff03Jph2NrweyUNJ01jg4ODvuqLeqytrUkTYvLRWq0mYcRAlzcvLCwIeHDw4EEpjGIq9Pyp5b7WaQjcklZNUNbcB0C3FQj5bKVSQaFQEFolnWpapyfWdV2RAWb0Q9C86Z/6c8oLXp9zw71OnUzrWuVy2dufcH17VEcradBb7wGTToJ0od2el2sQCoUkf00DBuRb3LsES9bW1iRCplqt4ktf+hJOnz6NwcFBFItFDAwMSHEycx++GrT9UuP7htMtDC4UCXhyclII++6778bw8LBUfslmsyLgarUaKpUK5ubmRGBScHCTa2XWcRwpw8nNowUsFRMie3Tl09VMJY/IjmVZ4g3S3i5ToGqmo4dOHCZqQ68YPVH6mhptI4Pku1EhjkajohTo+e21CfT8UGHWJVwpaLWhohlOvV5H6S9KcF7Xzd3STIPPTcWRBiPvZ9KB+ftuqIcgkA+3UHmigtqJmghNGpCJRAKHDx/2Ga46bplMGYAoowwTuH79uq/PB9cpkUggnU5LiVqWyQ56vlsder1MRquPYZlcKjiVSsXXsJHGIhVmCiJ6zzQCqL0AoV8MwfpzC7C8dV1fX8fW1pbPSDeVHlOh1IJbe5R4LpOS9WfcY/Qmtdtt1FDzhRnqBojstWbbXvhVuVyWteba77YG5nxq5ZlKqa9q1839trGxgaGhIZ8RS48vf6fxw71MA4oGERVargmFMOAvkc+Ql3K57Au5BCBrSK+V9kAPDQ3h4YcfxlNPPYVarYYbN25gcnLSl7vRbrd96+C6Lp599llpqFwsFuWdqSDoJri9FN/djHmtsLyUMNbeIlbUIx2ajUkZmpjJZGBZFr785S+j0+lIaWrtSWaPnkgkguHhYaTTaR/ApXvJ8J110R7SQxCIoA0vyg5+z7/1/ib9aMWLHiael0qlxLtIA1EDWVTyWNiHdKxRaE2ffFYNjHHPEIAgHbPYjPXvLLj/uOuVYqsCrndQmJ7JK0zwZ7dxO8ea+5xr3TrcwsrMCobeM7TD88W5aLfbWFlZQTQaxcrKisw3vcwcLIXNnE39nPp5X8nBdeNeCLofi9jQi0zPA415y7JErjNclw2ftaeJQ+sVGjTl/iVf43+Cs9S9aCDRM8l14LsQ/GFxp62tLZGp3CvsA0gDzXEcKaRFWu3l2TSNd62XcK/yP3WqarUqxiYrDANeFFD9U3U4cOD+cDdvj/uMz0Ua0QBJ0H4wQcegY/U7mF67yO9FYP+ODecD3VBxeql5TiwWw/79+wUgo17oOA7OnDmDb37zmzLHfG79PBy9ANJXY3zfcHqJoYmEf4+Pj8sGOnToEMLhMK5fvw7XdaUUM9B1pZ87d04S6KjMdzodQY8p8JiQSMWOCesUPNzQsVhMEqd1CB4VDx3ixo1INFxvEDOXhu+nCVErptzIGk3UhhddwmRg5oak0qYZnVkOk9fme1GI0pDgtbWnRuc08b5U/qofraJ6f9VnBJqIixbogL9Es157jl5KmIlgcu46nQ6aaO7oIwLAp/iYjEAbn0QcGYLJUBAKZD6Lrh7EUAN2oQ9aX/MdXmrs5jVxXRdjY2M+ploulyUEBwAWFxdljhKJxI6CJ1wHGizi9UB3HbivdPnZoGcxh1YsOYfaSKhWq5IQzD1WLpdRqVREYWm323Df6qL9X9uw3ueFJ7AwgG13Q08ZhkkvCvdrkPJlKvymcOWxjuNgZGREctZYYpnCvVarifKuzzcNJ42acu56eThNg5l7l/fh3uPccn9ReeE5XNPBwUFMTU3h2rVruHr1Kvbu3SvgDovZhMNhWRvHcbC8vCyGk0aUacT09fWhXC775s+k1yDQw/yMvMcMtdE0xWR2wCuFDkAS2c3Bd2g0GoKka8WfhjV7mgFeEQk2xeXaBHnWafgyPI2yQCfZa/5PBUUroVx/zeP02mvggcdq0IrIfDweF+NR05Rt275QZD6Pfh9+TrrhnBOhppHFsD8dotdBB1anG7aqc1j1PjLXUa+5ucfMfRjEK3fjob2QcB7fbDZx/eh1DFwewIHfPOCjRQ3Y8V1ohHLO9H1DoZCEy/fK8XwlDSfObzKZxMjIiKybORihw9xeALIPKBei0SjW19fl/ZjXpME0GpU6BBOA6BUEdTkICukwOz43v9ORAFw75thUKhVUKhU4joNyuezrDcWWENS9XNeVMGjdToMyn+9PQ4IAAUP+KM9TqRQGBgbE829ZHgDPqrGkDd6z/uE6nB934Dpd4FWnLjDEWsseLRv0MGmXc2xGYJhGE//TEO2gm4ep82W1dzGVSuHNb34z5ubm0Gw2kclk4DiOAI+djtcrb21tbccz9jLyXs3xfcPpFoYmNIYeUACwwhbDZYaHh+W8crmMixcvIp/P+5RgEyXnf91vKRqNYnh4GIODgxgaGhKi0wiy7njNjasFmyZyEjAFCwUvAJ+ho5/Jp/izoetNRYoeNk28Zvysvp+O1Tdd5Dp8joYAk/ApMImc8Fp0vVNpYyNGvrfE1qOxI1ch6DlMBdwcpnKrrxek+OrPXPdmA1wDAaeSqJFukxHQ0OLn9Dq4rosHHngAACREQBuTDBVZXl6Wsvbm8wcZhb3GSx3HeaUxRES5Xq8jn89jfHwcQLfXDY8x0W/Sm65KFw6HEYJ3XKPRkHwQ04OojWKdz9ZrTXgcv282m1hdXRUjtdVqoVAoSCEPrdx00AEciNeFdErDiR4FKuJBdKKfPehZtfHOv2koRCIRXxGGRqOBra0tjIyMyDzwPUnv2svEe5Lf6L2v8/PMudPKbCKRQL1e9ykPen9pbyLfJRaL4Y477pC2DAsLCzh58qTPkwVAFAnXdbG1tSXPooW0NgB6KYq95j1ocI45d0HX0uE5HKVSaUcZcs4fQbaZmRlBinWlw6WlJczPzwudDA0NSQ9A3ito/ikDGM6lFSTm+wCeQkqwLWietMKvwy61Icw8GwJtOs+C0Q6kQV6Tz8jcJV6TdMFrablhGqzcU4lEQryiBOvs/2Kj86sdwIbwftOrruWfuZ691tgcQd9rkMFUQHvdk3yb63MFV7C32QUN9DPpQV5YLpeFJ9EDAmBHmJ5+pldaoSQt9PX1YWxsTCrd6fGxj30M1WpVvDWcOxonWr9YXFwUD47uW0ZjgIVHtLHDcN2+vj6fd4VKuy6sQBokndCAIc1rfSWRSGBsbEyayuvwSx1az3wkwONtzNcjffN9BgcHfZFBNIAY9syqfbpaquM40paGOYJ853A4DOdfOGj+bFPWnPxB9+GjbqTBCRO0MOWOlp2ajkzjSXvVKOu2/+k24v8ijkgqIh5gHkNexvB89iHM5/MIhbyGyDQe6/U6jh49imeeeWaH3qT54CsJDOw2vm84vcQwiYTN6UKhEPr7+9Hf3w+gm/yqvSCVSkUqiHFTAt2iBhQ4PJ75H5blJdnv27cP/f39vupCmmg6nY7EfnOz08ChgDFzFHgNMiJz45CRacXJDNMgoyNz0ggAq/mREREVM5kM31kLaKAbXkdmAkBCBInC8VytUNDlzmsAgPtBF40fbfgEkvZq9BpB32lmbQpK/txNmFrwF3tgKCZDTHTSL69DhYhGHUMcXvOa1+DQoUNyfe1t4H1peDIptJfCvts8mMfv9h2/189AwaHPZQU8GrkmIsz1JBrnvsNFDDHg//HoMJ/PS0EIvR96vZtpXPEczfS14cpyqtwb9HpS+Sd62EEHruPuiB1nARSGb+hy/1qA62Eq9hpM0YazzqFKpVKSuMxztre3dwgTrSBqRQSACDbyBm3EakCEwpdrSQGojSfSKp9VG2ta2bYsL+zo8OHDmJmZkXC9gYEB2LYtPbw416YRt3//fuTz+R0ekCBlcTfl0dyjL3UO6YxKEb1NgEfTusIe8P+x96ZBkmVXmeD3nu8e7h4RHltGZkRmVmaVSpWSEMgKCpkWow1GNqZuzdiMTdO0ySRoQCwNSNCAgBEzNN3TDYMMMBiaBgHGZg0YzYCGaQMb2lowGhYzqUqIWlSqyqrMyNgXjwh3D9/d33vzw/M7/r0bLyKz1FUSP/KmhUWkL+/dd++553znO+eeCzz11FOIovEZVRyT1dXV2Fqk7iSb7HmeVYqjzFBvqiOtBR70ubV0PGWS11JglSSHHG8XSDK9j8B0ZmbG0k85z2TfKa+ajuyCHHW8mcqpqXj8vD4HHS6uoVQqhdQ/S8H7dQ/BdwQGppOcQZ1PXVdulC1JDty/k2TrrPHU1/k30y/r9To66KBWq2F1ddV0kRv90+vSrtOZjqIItVrNtgC4z3nWc72ajXpkdXUV5XLZykhre9vb3oZPfOITRoICwPHxcaxwUBiG2NrasuJaMzMzpmP4oySC6nTKJp0gcyruEhFKDquOovPGFDGdS8ohyQsSk5RHz5sU0lLSmhEpFj4gUcXiV66zzghLtVq19RZFYwK92WxaQRS1lalUKlawS/c4KunOcer3+5ZGruNJOVN97XlerDKlrh8dH5UvxWMAEL0vQvTbEbLIIvjVMaalHaZN5FgCsNLy/H4Yhrh8+TIajYZlbmgxnCSS4l57yl6L9sBxukdTBej7vuXr+v4kr5cgOJvNGoAfDAY4OjqyqJAqQ3fjXhRFlsPK85dWV1cxNzcXYw8ogFT8dOAo7FywFDI9L4LMlv6fwFYjGqqYdLFQGQEw5eGeW0KjRkeGz0qnh0qeip/PpGkIBMxk+ckAc1ypfKgYXdZcWa0AkypqbGqcXOCgik3HQ8ee7+tvfX5+lk1BsRsRSafHVYiYHsbS7uo4sS8E8r1eLxbVBMZMV71eN4AVRZGNtbtZ9Sz25ryWNB7aVMFyfLkGON9sdBSDIDAZBCZkAmWZ5VN9+Cj/ZhmBPy65WqvVLEXNBQY6ry6gOWuuNAqc9DyaikZjORqNECBAOAot8kXZ0zNvyNZrkQbXSTpvXggGuUb4jOn05JBERl09z7P1oul3vKfKHjDZwM51xXOG2G+VQ12TUTSpjqkRBQJgTROmI0nCRp2v5eVl7O/vo9Pp4Pbt25bWqOSHzgnPdrp06VLsHBKNPLnzm+SQuvPPphHoswAndS4dPI5Nt9vF1atXY5+lM8AxZqSV/aUzfnR0FEtL00glx4HllQnOpqamDFwmOQAEkXxOlXU+h76vz60ARcEa7Y5u9tYy6UwbBGCHgjIqyughdbYrjwpk2S869Z1OB/1+36J8nuch9YcppJGG/90+4MPum+Rw6Non0ONvBUKwRAQAACAASURBVIz34zy5+l/Hy9UxOtY6nnNzc0in02jeaOKlz72EpQ8vndL7rkM8HA4xMzNjdpJlsgnu+Z0kWb+Xbv+vaXQOvvqrvxr9fh/Hx8dGJLPNzc3FHHKua7X5YRjihRdeQL/fR6FQwPLycgyUE3/QiVf9zui7rgPqQCXHGIV1o1XshxKUdCCoC2dnZ63KsWYG0DHhuUTUhdy3RUJKUwV1vfF+tIPU+Vz71LkcL+p+6skRJmmLmu5P/U+9QycFmKwBPm8SieA6kUl4R6PC/Cx14cH7DpD+7TSy3awVKGO/SYZrZLJSqaDZbFqa49vf/na8+OKLAGBZK9pcXPalaA8cp3s015DzLIFUalyCkxsa0+m0ne1Etv/JJ5+MLTIAtvA1gkQni47I8vIyZmdnUSwWTykKGjFddOwbN7Gz30ylAyaliQli1WBRWfA6umgAGFtCxoVGjc4GDbFb5YmpRcCYldUTwXu9HsrlslWoslBvq4VarYajo6NYxKlcLmNlZQVRFFn5VVXEauTT6TSiX4ww+MaJ03AWuGJTx8w1QAo+9HtngXSOPxXwaDRC6s0ppG6m4D02UUapVMqqRnEDuf4ooNCoRaPRsHM8gPHm2/X1dRuPIBiX6mb0TlOl9DnUOH0hLWmcNHWEsqAn3R8eHppTzH0cJB1UETebzXF1HVQNdO/t7dn5X9pvd35c8Kcsuq5HOiYu0+4+owu4oyjC6DtG8H7JQ/SVk3sR3On+Hua767lULpvnXltBmsojv0/5IcvPRh3gpmVp43OyiqAL8Fk9Sg2S5uLTsFOXMCqhQIPNZXzZRqMR8vk8Ll++jM9//vM4ODiwQ0OT1lIYhjg+PrYDM6lnCNx0reg43gsMu6DXvW+Ss819WGzr6+un0qXq9ToA2D4mnstHAMj+8ugJzimfhSXfmf6n4Ihyy9RG6mlXjvQ1BUi8l9o1dWJUBl1QwjHmXloFXXq0BotWMJWPZIIb0UyKhtK+UNYoo2EYTs4CQgr4AJAqjq9HGXavrfZB5/ML0XmuTOhYKZA7y4HRqFKlUhnvU0QLm5ubuHbtWmz/sI4713Sj0bDKdZ/4xCeMkKTtS3qms9bAq9mCILBiT81mE41GA9PT0/b+Jz/5ydh+ZcoAvxNF44hrvV5HOp3GhQsXzPHQcSBJQ+eBTjRTAHX9MpLJ/1OmmO1APc1x09Q1JTb5m84+sRWAWLrecDhEu902kkhLzbvOOeVR5YE2kNdy93MBjpP1U3fJ4x8MTCcoviQe05LpiumUfFY7o9iSfXYdJ5V51y7RrnS7Xex/0z5Kv1FCHnn0f79v2QepVAoXL160PWTcK8s5IyFFh7harcbS8tm+GLJ9XnvgON1n4yRdvnzZlBU3pPIQzqWlJQPDzWbTNgS7xoWLgcbw6OjINsHRmdCcf80p1yiRMhBk3bTsoy4SOlgKJIFJCU6tTAcgtqhZ/pXOETen83NcMDx/wU3lKZVKmJ2dxZ07d8yo9vt91Go1zM3NWWUp/mb/qCzS6TTe8IY3WBWncrmMzc3NWHoJwYQyxzy3gO+rMT0LoLkAQuf/LMaaY8X5dK/teeMUHx8+gkw8+sP50sNA9bvaV/ap0WhgdXU11pdmsxkzONx7wmd3jXvSM53V9P5JTQ0CS9LSGaKBYaOc06lksQIlEoIgsHPPyhiXNj48PDRnmqAtycnn97XvGpnU59ZI63ljoQZEN9mGCGMyRzaehpgyx9fc67uRaP7WudIxcVMo3NPVVQb5XXeOGDHTwxzVidSqlzTAvKamTvm+b3sUcrmcnYui0S4CZgCWRkZd4XmeseiDwQDr6+uYm5szB0IJD+6FWlpawvz8fAwskPjRMdRndudRxzjJSXabgvsoGp8to9HOz3zmM6cY0U6ng1wuZ+QXKwEqECQbXK/XzUYw2sSqqrq/Sfvh+75V2GK0wn1G/b864rqWKaOs4EUgznsooOOc698qv3Sk1cn2fd9IRUYLmH6jqavcN8zKceyrFjqycfgjH/gGYFSYrEN3PZ81p3xmvu7qjaR1p051kv5zbYV+zgWrHD+Smp03d7D2d2u4+AMXTxWK4pzR6eA+L5Zdp7OuVQTP6ptry16tRjzBrJjhcIj19fXYwey3bt2yfTxMq9OoTBiGuH37thEKTPWmTHLOqE+IB1gkiY4Cm+sYUG81Gg10Oh0bD0ZtFGPoGJHMZR9dXRtFk3L3JEF4TAJtmhLRtEGaRUP9yOeiTqAMuIen+/7dI13gIfpf4ke2qI3iOmYaOe/vkgrnyYyOpSv7rrzrb67DbreL3X++i6lfnEJxWDRc6Pvj7IZr167F7kvSjI1nPV2/fh2bm5unSCDe60vVHjhO92hqsGZmZnDp0iVzNh577DFks1lsbW0BiO/vODw8tAM9gcnmUDJyZAQ6nQ5efvlljEYjuz5zdplqR8DCvlBp6HlIehAkU3lsI62wi1zACvDpnKnjAExSfdTYUIloIQpg7LBx0dOgk21fWVlBPp/HG9/4RjQaDYs8HR0d4dlnn0W9XrfnX1lZwezsrJ2nw8pZZJpZrjSTyZxK2YqiyBRiiNDO9dB9IupUKjBQx1Gfl3Ovi1QjdHSI3QXNa8UYo8dT8NIeos9EiBBhgAE6b+gYq3pycmL7Yzim3IPCdMfRaHzSNtvzzz+Pvb097O3tARhvRu/1ejY2VoHKUfr6+17NVY7a9BqZTAYvv/wyvuIrviI2hsyxZv/oMAIwo0unvNfr4dlnn0W/38fln7mM3K/lsL6xjjt37sSqZqnRCIIgVvaUBtN1jHUduE4unQ5tGoVS42yA73uyWPjrBURvjWzfkTobrVbLKu7pmCeBWR3PswA9U95Go5EBiWKxiFarhVQqZdU31UGhsSITyGdxWVD2l+9z/dGR4RxxvyPJD+5NmpqastTMMAwtTYXgx/cnBzGqHrtx4wY+9alP4cUXX8TMzAyuXbsWS7dtt9toNpsWoaYBZkSC/Ulyfs9y9N2WZPzZVB8S3HY6HTz++OMYDod2cK+23d1dW4O1Wg1bW1u26fvg4ACdTgftdhvPPPOMReCvXr2K173udSiVSjHCQeWTc+6SDSrHLsBxHQsF8XRKKTcE5vyu6gzNKNB1xFQ82iEexsk+NRoNIzy4Tq9evYpisYhqtYrp6Wlsbm4in8/jiSeeQKlUwiOPPIKXXnoJhUIBlUrFDlUtl8sooAAv49keYm6+J/AE4us/yXlWkKxzfpZjrWv2PPnh327UVdea7u3wfR85TNYI7Tyjt5yffD6P97///fA8D3/7t38bO5R1dXXVbHFS03u/2o1yND09jSAY7zU7OTmJpextbm5aX9/1rnfh9u3bhlGiKMLGxgbW1tbMea5UKrh06ZJlyxA3MQKh0SXqE5as1vVAgpcEInUTU8R0XTHawTUCTCIgHFc+gzpKum+LxPH8/LytUS0Yw/XEyBudP80m6XQ65twxWs3IOnFX7ndyiH44QpgKrWiFyhyPpqD+cPvAMVQyTokMkh4uqedGnnQMXXmgvDWbTTz/rc+j/attfPkff7mdvafFfrRp+t5DDz2E4+NjPPHEE/jzP/9zk98kHPOlaA8cp3s0FRI6QqlUCisrK5YuRWVIR6LZbOKZZ56JAS5uNHRPfSejRBaKRlGZbHVsgMlJ1TSmwERB0wAm7VdwBU2dQiDOsigzTIXE75Ch4TPQsBDA0MlTI69OHb87NzeHt771reYIESgpcGKfdHMm9/Kw7zFm8JfvLuTvROxzbApWdUwI7O4lC8pocdyS0iR0vqjkbdM0POBNQNSPEPhBDARqqiXHn3LH52+1Wtjd3cXu7i6Oj49jwG1zc9NSKckmuyCB88bX7gUwXRb1LKYqDEPLVfY8z/a0aFMjpaCC8sxNsdlsFtOYRhAF2Nvbi+0zUrDPZ+Ha083w+hneR9nysyISbJT7pGdmikflfRU0/6YJ/2sn+7oouzTayponATU1Sm6/FBBrxInOi5IAWvadgECBchK7ruwsWU6twgSMDdrU1JSlf/L7rGBFg8hS3QR+buoeAY1LdKRSKbRaLdy6dQvLy8t2Hd6D9+NGY9fBcR1RHdt7ySybjknSelGZ0GMVFhcXYzK+v7+P4+NjO2es3+/b/kNek07ozs4Oomi83/TGjRuYmZkx3eqCE4IeJaSS9k643+Naoe7hvLifo7xQBvmsScSBa0uom3T/FnU45ZSfOTk5wdNPP23rmVE2APibv/kbXLp0CYuLi2g2m8hms5ifnzfnMpvNwnufh+i3I4TvjR9XwMilzv15wMqdW46VKzdnycFZ19NxT7oWG/e0llGOjbPqN+qRTCaDZrMZs4/T09NW2EDlL+nZ75dAeKWN/e10OrZ/q91um9NE5zcIAnzrt34rpqamsLOzEyO8Pve5zwEASqUS5ufn7cBbAnnue2GEivfrdidnIroEFPUMnXp1Lty9jEm4SLGKW9yIc0PbptfQz9IeqT7mfFJeNaVadR11NZ1LYsFsNmvVZblH1dVbdPa4plV/6HYG3kexpPZFyShgQrq78u3KltoVXmf/u/fR+oUW5v963j5Tr9cxMzNzpmwtLS1hMBjgda973alUVJfk+FK0B47TfTYCWP7NKkpRFFnYnAuWEQAVLtvQJ4tNjSeNiDoXagzJqGlUhAvL87xYdIm5tq6gK6viAjQCAmUTVcEkfV6dD2UoaIR5PRo4KnldzHxO7b8aalVU7uJ1DVMmk0H4bSH8j/k2F3xPlar29TwDp8DWBeB8X1kqNh1nVSRBECB4JkDqTanYZxuNRqzcKKu68YeKjmPYaDTwqU99yhgrRhXCcLwXhFX2KHdMydGmsnk/jtP9vK9pJfw/HQg2pmG50U0q9Js3byL6uQiXcRnp307jzuYdY8DO2oukyl6NAMfcvZemI50FqF25cNtgMECpVBoD2HdlEP6XEMF/F9hGfjoQTK1h9DMpyqRzcFYaBUEnGX8aTtUXJF747Eq+8JlcoKWOK/WClvzlOPHaJDAIFKj7GF0iWCZxwvHWPVIuYGE62/b2NlqtllWWA2DgMJVKmaOo46WMsTbX+XHBT9Jnk8CA6kGXheV+Mi2QwwwCOkpkppVQ4oZn6sKHH34Y1Wo1lpqk/eEc5/N5TE9PW9qWprsp28v+qe5kNgAdLnWE+Hn9vo4NXyOJpfLD+SDzPxwOreqXAjTVNYyec/M728nJCQ4ODjAzM4MrV65YeWvukRwMBgh/O0SIEKPBKDY+SY6myoSr6+7lSN+PzktyTvRZdVx1vPmZdDqNWcwmEnHqSHmeZxXnuLaWl5dND7j3SyJeXosWBIGdZTQajfD6178+9v4nP/lJ0wPlchm9Xg/5fN70C1P4stkslpaWcO3aNUv/5Tpgap/uM+LZemrTXGeI0RSOgTorur8pSdfyeur46Nqnc0Iik98nYUDZY8quFguiTtYUPUawqM8pH9zHxe8XCgUUULA+M+JEEo/9oI53SUlGlly7x/f1hw6nVsBz1w/vy6Y6l+NAfLyHPVwaXrI+HR8fn+s4raysYHd3F9VqFaVSCY1GI+Yk8j5fqvbAcbqPxoXINIpisYjHH38cAOyMHCrCwWCAra2tU+CEPzrxQRBgf3/f0iW4QDRNw2W9NXzMxaWVS1z2QL+newNUqfAZuUiV+dIf1xjwGdgn9j+fz1vqIEGTKjKXYaNBYKREn0EBMcF1oVDA8fGxPZ/v+2asRx8bIfrAJBXMnUdgsplYnTAXSOjcJYEJ4HR0gO8pEHMjXOHrQ3if95C++w83JoqOMsQ0AyrldrsdAztqGGZnx4Z3f38fo9EI9XrdDpklc5/kOCXN5XnNBRyqJFWhMhXL8yYREspHvV7H1NRUrCoaQTEAS28KviPA3C/NwUuPFSyVeJLT4fZJS3ZzzFQWXObcBVdJz6jzx0ajkc/n4f+Zj+BrA/TT472NmtbB4gBudSN3DtRZU6OufWVpWgIIrbbGlBaNQCkB4zoDvE/SGNABZroMSRWmTakO4VpiShGdffaBoKDVasVkmrpBC87w3KyFhQU77DmbzVraM1MUc7mcESnUWUnjer/tLEfZJYWiKLIUGvdoBbYnn3wSGxsbdugs924qgRSGIW7dumX7MlkcgDpPC4koyOIZYfq86pi4jh/l5PDw0NJlmfrLuVddooTaWXpRdRDHjvqFAHp+ft70NoG+EklK3un92CfVD6nUuJhCLpdDu93GwT85GKfs/mGI1DekYsBNbaX2U8EjIMdVJOgy/b8rC0nyorZRnTh1pKiLdD1ST2YQ1+sqhzpeqiN0D+PS0pJVL9T+6fVeqxaG42JZnuclHgJ9584dA+u9Xg+NRsPSsfr9Pm7evIlMZnwQ7vXr1y3iynHk2V2cY16DBYJ0DtQO6WvUQ4zYTE1NGZnoOheuPtboDCOqHH+VIc4H1zOv3e/30ev1LA2RMkDsofZJz6hkv7gvlLKbyWTgwze9qXpYdQCQXDBFM5SUkNf3KIvsuxJtLu45i3jUYhscl+0f3MbDH30Y05+ctiyYTqdjY7C/v49cLmckiZZQLxQKFnE9i7D4YrcHjtM9GieGofVisWglyYGxMLmbwW/dunWKqXMjKUEQoF6vGxtPxlZLUwI49T2NZlDwtQSyazTc79BIurmxr4Slco0fARSBpAKmMAytb1Q26myROSIjrQd0UmEBiDmHVCJMcaTDEUURRu8fYfRbIwTvDWJzpHPJMeH4umwgozf6WVdJ6zi4zmWSAeZcDYdDRDciFD9XhP82H8PS0Nj0UqmE6elp9Ho92zSu40VQS6Yvl8tZ5PPmzZs2F5QpOq90YPh82rdXYlzPAxaUJTVENCij0QgvvfQSfH+8d0ZZazVAGxsbGAwGKP9KGZn/mMEwGhpATnJwtP86R/y8pqqqcXGBpgua3THT99Tg0Kin/mEKw/8yxOhrRxYtZBEBsqOuI3+e46rASZ+TByby7CTOM5lU7ptwDaUy2mp4+BleX9/n/PC72WwWMzMzxhaT4FDQwGp5TP+gXjg5OcHJyYk5DgQbjIQw+gAAa2truHjxIsrlsgGd6elpKydM8KnXSSrnnNTuFxjr/11nGYBVd+MY6P3+7u/+DvV63eZDx5Brt9fr4ejoCKlUCuVy2fbG0Qkky05dR+DNSBP1gKtvtL9cB+12GycnJ5YCzD1Bes6fOk+cTwVZfN21SVzHSmzQuaRc0rmnfGjaoOpNji/lhk6YVu/jmAwGA4wwigFVJdpUF2l0mfPg+/HMD3fekxwpV8e7oFEdWCVKGW3RaCLnBQAinAb9SSSN7lXlmLNokzuOXwzHifI1MzMDz/NiVV7ZqOunp6exu7trB2XTOTg4OLA01UqlEiMyNZWNUdNGo5EYuVe5VP2smQfMgOG+cX0O1ZccNx1DlSH3mpr1Q6KJc8yIIM9SIn7kXlWuK2YlcJ0HQWBEFdcJ136IyT4p9teVF/abRJNLpCuRoLKq40bn3nUQXbnn2HB8NEtGidOTkxMc4ADFYdHIp7W1NVsjjUYDU1NT5jitr69bVC+JoGKfXkti4Lz2wHE6p7kMEos2sDJeOj0+U4F7Sajsp6amYvs7yD5rWD2KIrz44osWadAyxq5AA5OqeExXAyYl0tWJ0fQNN30FiB9m67Lv+rcaM41W8X3NL3bToYIgMLDEwgaMZNFQM8LEczpYoZCL12WM6CixAqDm1LOfHN8IEcIgjB2ip3PqMkxJSsVVnGqUXOPGz+g93P/T8FOZTf+30yj8VQGj94wsysSCHlEUWQEQDf1z/qJonP5WKBSs9CuNjQIGOvVJB0zqXN9rb5fLoroKS9+jYU+n02g2m2YQuUa4kVijnpSHF154AaPRCK/D6+B5Hg4PD2OHHifdS51x1ynSqIA6U2xqJPRarlOpzhV/eEp8GI437fbRR4TIgDHH3WVH1cjoM+nfrhNz3lxpFFYrRSlI1KiTGkmVCZVhGnPuieE1pqamMDs7a2kolEWdTwWzwCSKSIeL8tHtdk1H6Brb39/HyckJKpWKyQ7XAtNP2XeC8aWlpcTor+tAnTWu7neSdCGdFTogXKO6z2gwGGBvb89IocPDQ8zMzJgjwTGiI51Oj8sva6YAKzPq+V/80T1sKgtJEWOCzWazGXNYw3CcGsyCOxwPOrHUOS7g4jgouGREyd23S/2tzLNLcLgOiMqmpnkHQWAHBPv+3SIk/2GA4T8aYpAamMyTudb1QZ3ozq86MO68a9+SmkYfXVnRSrjsU6VSiRWNodMwGAwQ/VaENNKxPnGs3P6SpKGu4lqgk850ULe9lsAyiiIsLCzYGV7uuFFXUOcrYbq2tmZyzqM4dBy1Uh+LPDASqVhEbRP1lDoBdEY0lRg4Hc0jgOcaVVmnzVa75/u+nWfG6BAPu+a1GDk+OTkxPciIGzFUp9PB/v6+pTFyz99oNLLqpiwek81m0f9gH72f7yH4liBGfKht5rPzt8qkjpfaP9Wp1Ce6L9OVSf0NxKuouvqIuuIAB7iCK7Z3jGOiek8b54KYKEm/n7VOX+v2wHE6p+lEEZz4/vjwQ07y9vY2+v0+FhYWbDGWy2WLGKiS1jN1jo+PYwaBwqP3UwFNOkRTHSYFhkngnk0BooImNXyatqEKxgWUbMpS8h40plSoNGC6YVP/r4vWHKC79yDDzKpgqvDIImkhiBCnn5HjyLFWZatAU5WK+8x8Nhdw6ljweu7/aUgJtvL5PKYxjexyFsHHAkx9aFzZiuyTOkoADIzTgaQTqcxmGIZWfXBvb8/k5iyZvhdISGpJTpMrC1SMBwcHCIIAi4uLBqKYY64VvKJonI7Y6XTg/7qP6u9XAX9cmVIBnwu2kpS59pMRAe23m56hjibXpl7PvS4NWalUMkA/+4ez6KKLoTcmJMIwjO1t4nWSHFBe050fNzLI72vhFRptAkolXNSgqi7RpmPJZycwYwSY7ChlXlPmWPxCqx0CkwOyOQdc4xpF0LPgmGZLZpYFULrdrgFGOqKj0cjO/6IO4bkpSbLqjrX7t76mY+1+hu+zQhd1o+5veuaZZ2J6s9vt2rzwmrQDnKv5+fkYMcKovaZeq8xo33RN6BxzPrVCFvUrnaSjoyMD+sA45Zz7TaampmzcKbPuuiC45PzyPfaFJFihUEC327VqYW50SJl+OhZ0NhSE9Xo962v+fXkM/tMA+O8nkXySjkp+qC5O0nUuSZHUVMfruCd9h7aI1ySxlcvlJnsGf3r8nQwyCP9ZiHQljagaB+RJNpoRx3K5jEajgZOTE3uGYrFoqXJJBEKSY/1qtZWVFYsOueNLstT3/ZiNb7Va2NvbQyqVsu+r40PSIIoiq9KoBUY0Cqk/mg5JHcl037PAv46R2gPFQZrOpuNbqVRsviqVip1J5PvjzAra3qmpKSsa0263MT09bVEYVkbO5/OxVEXuLWKa3/LyMoIgwM7ODgbfNED0GxH898X3NbIvrmPkkvB8fnWk2KijlMQG4jKfNHYaaeJ1+Jv64/iHj9H9yS7Kn5pUl+bh1uVyGXNzc/b5xcVFdLtdwzzu+uV8vpayfV574DjdR6MwKXPOtrGxgdFoZOzKzZs38fLLL8fOU+IipKEPwxDb29tmgJXxoJDxN4Eo2QuWfKXzoaygG5IFkvdmJDkD+j5/CKb4/O6Y8B5UinpfNdY884njxx8CIZfJcSNqqjD5GZel5YbrIAgQIbLImi52HSNexwWoblPAoEaZz6bjkbSQFTDrBv5MJoPct+eQ/VgW3gc9TP/8NIJfGDP9LNepSpwywRPjCUQ5VsViEWEYYmlpCUtLS/jrv/5rY7+4J4T9cefwrGd3x8EFHa4TEEWRsY+eN448Ujmq/HC+NMJxcHCAwWCAKqoxZj4JwCZFoFyjpzKsrPlZ/XflRJ01/Q4jLzSS6Q+mcfnHL6P1uRZOsifWt06ng8PDQyMNeE0FjS4Ac4G7AihgDKo1oqOVmxj9cmVc93q51+O86jrjvCl5oq+ROGKlryQiR/ULiwYoI80okjp4hULBHCbeq9FooFqtIpPJYHZ21uSIQI2Rcz0OwJ3nJPlx23lOuD5LFI1L7BL0UK4Icubm5mLyz9RKMtFcq0zLAWCpTjrWbh/4ngIddy5dEoBRQ40KMr2Hzhv1B508RmgZCeC4Ul6prznHdM7MKfAmKVbsd7k8qRrHfQocT123lFkCRUbf3fRzYGxH0kgj/L9C+PCR+paU6VR3L6TKp/6tqYU6fu66TNLznAsFrIVCIRZ98X3fCnmYjfnfI3g/5MELPRS6BYxyI3PGNXIJTFIbCaSbzaaV/udh4CQRqtWqRTqTdNxr1TzPw8WLFwHAopfaisWipRTy82EYml5ktU72k7JDkphEi5sKCkyyBfjDbQ780SgLMCGEz1rnaqd1jnXdUX9ThjKZjFU3JDGoWI42jme61et1K4hBcokp0KyCrBVJ9dwqLVkfhmO55zjonneXKE6y9/pe0hqh/qXtcN9XjMd5U4eJdoRZSRzXVquFXeyi3B3rBFZHHA6HuHbtGtLpNI6OjpDP57GwsIB6vY5ut5tILCbN2RezPXCczmm6iKgAuHDY9vf3EYahAXcCpXQ6jenpaQMCbn7/zs7OZBH4k0XAe1JhaPhZnSutMsf7UciTFKYCMWUBNILCxqiPAgq9nsvk8Rq6EVg3L6rh57VoyLU/wCTVywXAmm/rpvJppT4A4wPiotP7NJRB0edIAskKBPUargOhzievoTLiLnQ6wJYu+SEf/s/7GPzwAJ3qGGASlLH6DxUR9yZwPC5dumRsDME02XemjipYdwE6+31eO8v4nqWUFxYWYnusMpmMncXj5pAr8NjY2EC/38c85g1ss4qcex/tv4IuNQKuUUxi3lynj6/pZ3R/WSaTsQOqyW57v+Ch9GMlXPnwFWxubloBBKanMVVCGXaXGUxizbRPGo3wvEm1Ja4hgoYk0Mjv0enStNokB1Tvz+enc6ApKZSrwAAAIABJREFUviwzrOtXjyPgb0aQKJN2zpqAezKydEparRYWFxdjjC8LI9TrddNNPA+PMv9KQGLSZ1VudI50PBqNBprNZixdmGd1zc3N4caNG3j++edjDicJHF6Xnyez7pJd3LvpbkbneX1KQFGuKFu8Rrfbtf2j7IPr3FIWc7kcFhcX0e/3US6XY3tyFHBqai3nz937xOspcIqi8cHBWppcx4NrhOf/cR+KFlWgTTLy6n+MEIURUnMp5H4th+ibo1P7X7SvbgRH14nOvf7ounRBtxKehUIB169ft0IJGhHBT4w/n0YaESJE/iSLgtc9Pj62ueUc6loFYNsDSFjQCQ3D0FIB+TwuQH4tWHnKUrVaRSqVMgJA28rKCg4PD2OOdL/ft2MNGDkGTkd8KBfEN7ynvk7ZYMEurg21Cfyea+doE6ibgMmRLkmOk4ur6OQpplAHUNeMEjxMb00iEHhfyo9WzhwMBrH9WT58RH68+nCSDOvz8x5uOh3xra5LTQN2nTF+h+Ose/h1XShJkUqN94RuYAMr3RUrLx9FkaVhzs/PWzSe0cjbt2+fSuH7+9AeOE73aBQYTZ1QBur4+Bi+76Ner6NarWJlZQVvectbjBFitSiN3Gg6lgok07G4oHVRMByqaQn8nhs5cRk2Zd/5HXXQNF3QBSAuw+AuUAV4ZMmCYLK5l2NFBaPXSnLcXMbanQfehwaSjgQXoud5SCGeo68sVZIDqE6izq2CQjWm+v8kI61GK8kY83uDwQDZX84CHwLaYdvYFRdwU7nTESHrzjQgAAYoWeKTTLIafNewufN3VksC1O57fL5qtWoHA3I8mQZ0+fJllEqlWNSRxunll19Gq9VCBmMCYm9vz8gBF/CpPFH2VXm7wIiycNYz6Guq9CkvNCiVSsUiIATu3LDL/T+s/sVDaQka1JArIKWhVeOr0aEoiixywH4x2sX5ZQ4/1zPBOK9DnUFyQ2Wc11TZ1MY1zPPCmFZBZ4b9YF+5V4YpYtQrdBKot9h3jvH169dx+/ZtBEGAtbU1PProozE2VQE5HXNGZqvVqqXyJc2vq6+SWhKQccfC9330ej0Ui0W7NwkzppI98sgj2NnZMXCkDi1lkc61ste8Hwvm0BaoA0KQznEAYOBKo/SMdnIdKgjiOlFmP5VKYXl5eVLpTZwV9lsjV7q/VdekS/K54J2Mukao9H3Vx9wDpuuWjUDP+7/Huj77vVmkS+lY+qdrR5SEcMks/qZ8sB+uzkgifIrFIlZWVrCwsGARr+gnx4ebDzFE/4N9iz6o7dOU1bW1NZycnGBmZgYXL17E0tJSzFkcjUYoFovo9Xo4OTkxO0GdwnOUkgCzvnYvPf9KG9OVaWvc9sQTT+DTn/60ZTt0u110u100m00Mh8MYIFbZ0igP7R3XCudPU1r1QGjXVrnEB5viEdV/rn5yM2LUEeCz055znXH/ttpfRmc9z4vtCQuCwHQJnWMefEt7wb1QdJw8b1yV10t7p+yeO54AYo6njgc/k0Tsc4yA+HYHftd1dPWzOpa63oIgQAstHBwcYGVlJXY+4I0bN2wcea1SqRSz/2e110K279UeOE7nNFU4Gi4tlUqxzxHcshgCIwrck6MLKwiCWJUjClgqlcLJyYkBZHVseCglAdL09HTiPh1lJ9nUYUv6LNMvaCSUAdLIjhtpcZkIAJaaxTQyBa/u4uVrauRcBaW/tfFzBIH82yrvIW0bN2mg1KC4xjLp+vrb/Z46P65i1kXsgnp13HzfR/TrEcLvCgE/XiJdFbAqdWVpPM/D/v4+FhYWEEWRnfNBI0M5ZHognWZ9xqRnd9t5TlPS+BQKhfFG0IMDk1NGEdbW1vDQQw/Z+lDHYG1tDcCYmaWh0BQNTXVVp8lN2QAmURIXBCnL68qbyoNrTPm7VCqZI8T1nv2pLPLImzHl+zSMjUYjFjHiHBNIaXoKx5TPppHcVquFfr+PpaUl5PN5c6QoF5oOqH3nc2m6jBspYlP2X8ey3W6jXq+bDoqiyFKwuKdD1yTTMzlmPGpBjawyoLlcDgsLC5iZmcHx8TF2d3dNXrmHio4E51BJIJZhP+8IgvPkVxtBW5J8ALCxYWobnVrq5q2tLSM4oigycKjA5Pj4OLafS51cnmuk8qpgko4Hx0KBCcmYWq0WizZxrOlkcb+Mrhl3f62SEq4DwmwILdxC2dF0c9otTUnXaLyrH3k9PeeJh/2Sxed+qeFwiPQ/SiP8T5PqmTMzM6bzea3zdNxZxBb1hpJkKgt81nK5jEuXLmF5eXmy6f9fRsAPAWEvxGg4qRyqKcPce0YbzIIoTE0qFot2nhFt9/b2NtLpNLa2tmwcc7mc7UNkOrb29SwZfrUaS2wzZS2pqT4ilmHBEsUlCuJ9f3IGnNo9YLLu6TBpdEqbkkMATmEMzoU6NCrzlGvFJyqbvAYQ168AYoVw2A+1X3QI+X+mKHMPX1JqKLNQ2K/Md2WQ+rUUCt9QsMg7+8vfigdch1qv7dpZ6lEl53UdcY50fQCT4ih8L4lkCTBJNU+n01hdXcU73/lOuzZJx0uXLgGAnfXmOkf3wnCvdXvgON2jcbJYJSUIAsvrBYArV66YUWJlm/X1dezv75vDpUxJEIzLkAMTFpqKQYsCqLNFo+ICLQXirnJPUpyukLFfalx5DxeI8f4uMON3uAAJdNiUadfx1Nc1j5nNXeQKuPQzNOR61lER4/z4SqWCKJrsS1CgqH1SoOzen591mXntm8vSJC1q3bSKjwN55OF/s48oP5kDlxHipmtltThOLFCg94miSeWx6elp7O/vo9VqoVqt2gGYSWN7L8N6nnOpLQxDY/9ZQa9YLCKTyWBnZ8cKQOTz+Viaz8bGxlj2Xwjh/bSHQWpwynFSWdY5oNFUUK0RGxpErdSljC8/x2fSudW/8/k8KpUK0um0AcLeT/XQ+2APUXmSYgGMdcXc3ByKxWLs3nQy1MDosyibStZf10kQBLhw4cKE2Y7ikTh9LpVbyhD/Jrg8a671e2Qj6SDQiEdRZFGkqampmOFlFJgVsxhpUkfXZVbz+TwuXrxoZ17xzC8ach72mM/ncXx8jIODg1huvyvTZ8nreZ9LApy6Jj3PM3Jmfn4ehUIBe3t76HQ6thbf/e5349Of/jReeukl2zOkelP3fHU6HbTbbSvB64IWfkf1Mx0NlQ3qwNFofI4bD9S26m3RJO2HY63OrMqKri+SHgo2VU75PfaHfWLUUQ/o5Njxt2sH1BZxDKjv6DTz/xpV4jXS6XRsP1W9Xrdogcq2PhP7rzLv6n2XPAHGe3eq1Srm5uasaqLneQh/JIT/4/HjADhuOkduxJGRstFohGaziUajEXsWAKjVakin01b5kBGobreLN77xjeh2u5Yi6sq72odXs129etXSx+fm5hI/4zqbPMCWWIFRbI47wbZbZVjPHqOj4jo4vB8zXsIwtGiU6ko2lTd1RhXTqAxx/WoUij8a8VLspjbGzWzhs/D/rhOockoy0pykfwekv2eMARihdu25Em98PiC+BUXJcx0b1X0uZtR1op/jvkS1M5R1c6IQz+ip1+tYXV2115jBRcepXq+jXq+fiqpp3x44Tn/Pmk6KlodligoA3Lhxw5Rgp9PB7u4uDg4OYqk1OslRNDnxmULIDZJc8K1WywyMy6aPRiMcHh5azj8dHOB0ahlwOnXPVaL6PnP2ucg0xx5ALErA72tKBwGlpugo+FRlrpEv1zAnOXoaOeCid9kq9jFAgKw/KW9JBZ10n/PGRwGT3l9TuNTpU8Ok4FMNvP9HPvx/7CNbyMLLeBYNc9lyPptuOtXKQvl8HleuXAEAvPDCCwbcjo6OkM1mMT8/j2effRaDwQAzMzNYX1//ggznK1FKjEDk83lLW1taWsI73vEO/MEf/AHq9bodcKpO7/b29jhiiIylKXJMXeZQ5ZbgX3PegXhqAo2abjR3SQa9rsqbGoiZmRljFW1D/N2y95R5RrrI6FcqFRSLRStDq7KrTJzbD5eJ5w/PKwJgjhVlWzeSu46ROsyqK5LSmfSzalz5WQI/rrnp6WlkMhmr5sjXmFLGaBj3YXEMuGeKBQsymQyWlpbwuc99Dp7nYWtrC4uLi7H5Yp4/wYCCqGw2G4vw65yqLLvz7MqW/ujnOK8E8K9//esBAHt7e7HDP/v9Pubn59FoNHBwcHDq3rVaLSYvzWYzBno0bVqjORoN5PPSEVGHgimVmmbkgn8Wf3DJMVcmCKqYbk5dR5BFG0F9z764e43IsEdRZM/FvtHh4vxyrPhMbMrcKwkZfUuE6Nci4COw6Dor3LLsO+/LH+2vji11rQv2+TmuaZb+Jyj3ftAbA8KfgMk6gNgccs1plELljrquXq9jY2MjRpAMh0M0Gg2kUilLAeO+UY7j61//ejtUWdcAn+PVbr7v4w1veMOZ6ZT6zLSb1AHc980qjlrBkeuCZ7ZxX6RGg5LIWI4hCYlOpwPfHxeyUXxF2dVKbUnyr86Oyok7h66zoXqTjgNxkzonigk0U4Fkhh5hw2fTSNfw24bIfSyHzHeOz31Th46NMqBrTaN0fG7qYeIN27/rkGgawVWnnv11z8jSPvD74XeFCP5dgOj/HT/T4eEhNjY2zHkKw9BSsQEYqcCxT8IwDxynv2dNgTQrteTzeSwtLQEYLxSmJo1GI2xsbODw8NBCzTTyLElM5UzFAcD2qihQozC7DBj7pIfm8rpqAF0vnErABVCuA6FA1XXWNOdWowUUaJbIVkXpKmx+XllG9keVURKDrAuYionK8FQkBVEsCjEajVCr1WKnq7vPHfu+ACd1mAgEdaw1n5nXcMGK9iWNNPzsBGRwLHXPWxRFscpWBEjugb9sa2trtjnW0hXvGp3hcGhOlcrH/bazPusymAQnPJmdinp+fh65XA7vfe978Uu/9Es4OTnB/Py8RW7CMLQT5j14iQVDkuZGHVXXuLn9VsBE1td1nPQ7ys5xLbN6ku03+qiP9PelEaQCM8j8vJZmJWBQtlHHT50VBYTsL2Wc75N9B2Ape1zbXIuuI6+sqo5hEljg+9oUaBKccI1mMhlzKkulkqVX0VHVaBvBCiMhHAf+cHN8r9fDyy+/jIceesj2exDQssLe3t6e6ROWsmWJZgUz2tRJdGVEP5P0PuerUCgYs+p5Hv7kT/4EURThPe95DwDgueeeQ61WM2dIwZXnjaujqY5lmg7T/ZS1dkG9OqAKfDh/BBm8L2WPcslrcl54H8qMpcClJyWAKe/KTGs1VBI6lAUgnkbJMVQHy7VHaveUHHPXucogXx+NRuOiCzJnPD/J8zxj6Olg01lMGttCoWBnNbpjpedE8fnS6TT87/cR/nQIL5jMGUtgc8yUTCTAZKq+rnWu793dXbRardj5Ru12284zIsFKjEBn+vLly3jhhRcSMcOrDS49b1xRj3r+vKY2KwgC23vH9HLaLcq3pjGr88LKc+rws3Hsms2mOcyqe4DJmXJhGFp1W8UpGhnk3HHeNM3aTZHlmqRcEA9xS4ZiMso1P0tcNRqNrDR3bC+TbGegLQp/OUSIENF3j/tTLBZjmNKdJ9XzfE0JtLMIFte+63fVgWLWAc8a1etlMpmYPgDGx8WwX6PRCLdu3TLHKYqiWNrj0dERer3eqf64z/jFbg8cp3s0Tgo34iuTqwvL9yeb+nlivB6oxhaGoUWUfN+PlV6lgmZkSx0nKn/+nwpc81cVbLrATBlICqELpKgM1KjoddgUBNLgMu0GiLP1CmaVPdcF6PZf03rYJ01X0/QPBcLGxCJ+ECGNOxk6PnMS269/04hzTnkgHQE/FSqNuT6DHrbneR78P77r9H1DhNCbRByYnsESrTSG3PdBhcRxp6LVvivQpyFOpcZVaY6OjlAul1EsFu1sMXVov1Cl4xpjzhELBwRBEDsnBoA5S+w3DUytVhsfyImSzSdZJn1Wdahc4O86z/qb8s69BZwr/Zx+35VdzgGBGDDei4WfBfroI/zQJKXWdV7I5qmDr0yirjmXvVdAyYju4eEhut0uSqXSqbXsEhucFwIt/t9lSXVNuWykCzI1FZBzyn0orJzG5ybDSdKJ3yeYdFNzyeR3u13UajUcHR3ZeuBzDYdDA0NKSF2+fBlra2sx5yjJ0Or7SbKSBDrd716/fh2dTgfAuDCFjgf1DKNfGrUfDodYX18HMNaFpVIpVhGNrxMc6rip7tT+qFMNIFaSW/W76tkkvcfIJedNgbymYfJv/gyHQ6t+SSCq+4tUnnhv9lXJQeo8Pivv49pBBeAcbxJlGsWlw6PnCDJ6QceGoM/9UbvHMWM/UqkU8P3ACKMxAMSETKA9VkeBfzN10gXDHCslTVhRVKPcYRhaYQgCSbXR2WwWDz/8MF566aWYjjxLrv9rmzoZxWIRGxsbyGQyRoqxz3oOHIDYoeYnJycWNSf+YRop7SqBOA+IJbmi16TdbLfbp/aPq/5kpUkF9ao31alXh9d1etg8b0yoUxfr3jxGXamjNS1Wda72Tx02jdCr4wQA4QdChL8yOWiemFExnvZRiRiVSfaZz059w7lTO6FrkNenE1ksFm3O1O4AsGMjOA5BEIxtZnh67xUw1qd63/39/dhnXHyrr30x2wPH6Zymk6T7kGq1mqVjUHgpkLr/AIgXZwBgjAgX3eLiou2d0E1zZzkYVJYaHlcjyf7q/Zlew/C3brZMAhfu/VyHRRc6D6hzQRCNjZZwV2XvLhouVIJtAi4FnGRltKCF7vMiG5z/53lkfjGD9A9O0tymp6cRRZGxUWcxMPoMnM9cLodKpRLbmwOMFUfmtzKI3hsZ0AfGDnPq4ymECDHCmBEN3hMg8uNAmcqcVefYH0bJoiiyKm50wqlwWDBAmeZut4v19XXcuHEDS0tLePOb34xut2sOzfHxcQwQnzX/SbKgn016ja8TWNOINBoNzM/P22fZd8/z0Ol08PTTTyOKIqx+dhWPffgxRNnI0o1U1nRNqSEjaBkMBqb0XVaM46aHLSc9H/uoziUjwlqVzv9JH4X/rQD8KDD6/hGG0TDWJ03fVDDn9ksBmqaBEfiR+db0G0YoGH1kxIlGTx0lNWIaJVK55zNp2qMaVl23rj7gs/Z6PTvHpVKpAICtB93jydeZvuI6ZtSBQTA++42RGDrhTEUrFAqYm5szkBIEAb78y78cn/zkJ085BffTXMfClXX+n2O9uLiIjY0NDIdDvOlNb4qllvi+b3s4GCnj/HW7Xezv7wMYOzhXrlzB3NxcjChKOkeJ91fZVb2nc8cSz5x/1wFQkKjfV+ee8kAQp2lyvCa/y4g7r6HMMOeUTgrXH3WY66zT9vFeSgi5Dq+C0OD7Ang/68H/iG+yr+mFbpofnReNiNLuaHQzDEOE3xeOzwXECD58hAjR/vG2lU2mjaIdVALPLTWvNocOA4uuqMyGYYharYarV6+avWa0hEU/9NocZx4gmtReC8fJ9307CmB7e9vW7cMPPwwAODk5MTml7d7Y2LA5ZGq/7k3V/XIaydKsAsU3HK9+v28RU43ukXTUojUcf7Up6kRQX+p642ta+IHRRQAxZ8nV94x06jokWcG50eeizOo5jZoVE0XRuKqeN9mTzqwSOuiuTuN4KG5UjMY1oHLKZ1dCnOPNMVQ5VKKUdoi2mxkGYRiihZaRCCQv2Kanp2NYcmtr65S90qZY5ovZHjhO5zTXeeDi3d/fR6lUMgCgp4VTGJVZpRBGUYS9vT0AYyPH8sZMY6HCVmPpMkup1LgMJpV8EvBjo3PjKlw3l9sVPL0vgBj4I3ggYFIGXx07LkYteUtGWY22qxC4+PjDRUMjTuXHak26l0xz/1OYgFKyKUy3ajQasT1PCkJcYKtnRChg9H7HQwYZeN/uIf0f0sj+T5M0kNT/mQK+HgiHIUa9eBECZbvoPLmVZziOnU4H+/v7KBaLKJfLsXltNpvG9HJcyMBfuHDBKumtrq6i1+tZhTtlx1Vmz5P/JBlJalEU2ZkkNIiVSgWj0Qh/9Vd/ZePDOaMzsvT/LGH2Q7NIFceVJZlWqY66y/bp//n8yuwp083Pu7KmjoGuOV2DTENIp9PmhPrwUfrREsKfCVH36rF+ajRFjaGCAk1F4vdouJRAoFHW1ChutuW64L2YIkeGkgZUjZ3+n43fVbDhGkiNgqkecjdeqxEnKFHnkU6Tgnrei0BKU6E0/YSR2X6/bwUn8vm8OYQXLlzAwsICtre3z5RNV7aT3k+SM/27Vquh0WjYGta0SM/zsL6+fmpvDp9he3vb5mB6ehqXL1+2tFZeT4s2UBbcox0ojxqJ41hyTlKplBWK0f6pE6zzr/qHc5C0YZz6iY6PHoCrBB7lnecykTDh53VcFORSnnhvJUY0W0D7PxwOESIE/g3Q+84ejo6OjChUIK2OH8eO6yX4yN3I3d1/0d1/wY9P9pYQyLOAAx1Vyi7XEUkcdZ40KsX7t9vtWJETbaywS9vZ7/etQieJlSQSMp/PWyrcefL+X9s439RlrpMKxM+4TKVSODw8xPHxcazvuVzOUm1Vrl19bI6s6CTqTo4N8RjnlZFFknTUnQAS7QtJA43c8HWWUdf9g57nGQ7RSoE6bxrlUcKVto+fpWwpgaHPq2s49TspeIhXASSxy/1dxDdKALpRL+It4jSXaHSxpNoy19nr9/uGY9Xu0vHn9VKpFAYY70NjyvFwOMSLL76Ihx56yNIq9b6uTmb/v5TtgeN0TlMB6XQ6ppy63S4ajQYODw/jIVRZeHqmhCr54+NjW1QUdj3fhIuDQqa5v1woen4Amy5yZTXU2eC1db+Dfl/ZSXUW3aIQNGzKVKshyuVyts+BUaCpqSkDdryPhqtdJlRTNjgWHA8+Q6vVQrvdNpChkboQIfBT42cbYYToOyJTpp7nmRFKipSpA0hAg18cf6aHMbuc+aYM0sU0kAJSSBnb7/2eB/xTYBBMqmdptI73IYuur1F+FIju7e3hwoULMScmisZVo1qtlqUujUYjA3Scn16vZyzk3NwcCoWCOVf6zMpCuU3v6b6mf/v+OPWo0WjYvF28eBH5fB7NZtPO6GE1KDr/09PT6HxPB9n/I4vgw0GscpCOmSpPVeK8vzLflBMDReLYK4NN2XLBsT4T0xx9f7z3JvXjKaT+TQq5j+QQ5iZ7Swj0dL8b9zNwbxzLmWuai+5VIOAlgCYTx891Oh0rPANMQLlGIjk+/I5rDHU+NdLA53VZXnVk1AGko0fdlORkARNgSj3U6XRO7YHRseA1uL4VbPIcmNFoZA45n2l2dhZXr17Fzs7OuUb2PCLgLPZSAQOjRhcuXMCVK1ewvr6OtbU1KxNdr9djgJIAbDQa4c6dOzY+MzMztime19ZIB50Mt0opx6dcLp8qX6z7P5giw+dSh0c3nlOuVE8xVVYLPLjEkupn6kvdP0TCYXZ2FpVKxVJduV4I7uh8lEqlWClz6i8WQWg0Gqd0qMp1gADBhwO0/30bNdTQ/IpmjLBin/n9qeemMI1plFBCEUWE/3RCfLTbbZRKJUs7pvzQ7tbrdezu7iIIxufmMcrH9UJ7pMSc7g+LonH0YnNzE8fHx7HIMPvLyruUi6OjI4toMNLMzAT+v9PpxIoeJMn/q9HUGWdklI7h/v4+Hn30UQCIpcVRlllWmyl58/PzWFxctP1LaoPVHlImqN/5jMPh0FJjNV2SgF0dEnUGNKWN99IoOv9mNPH4+NjIZ8qmzpm7Z1NxjOsMaoSddoE6lDpOq9GpDQSA8L0h/Ckf/sd84EPje5JImpqaQqPRwNHRkelN7Y+r39g/NwNInUqNzCnRpY4T519ljTKv+C6dTiP9M2kM/sUAwR8FZjMBYHV11fZJsXELiPaBTefvi90eOE7nNAUZzJ0tl8um2KgAdSMiNwZrfiubnsdE5aHGRg039w6ow6TRJ35elS2VDKM9yoJT8AhQlNF0nSJlA8moJClfCjiNBhlnMm2lUgnz8/O2P8wF3DTUNC7qPGlom/fSlD86ZCcnJ3YuChVUFEXA9wGjaDSpNvOxCCFC+N88cTxpxNkP///zwX8ppMbhcNy9/3fcPUT45G6eenGi5FMfSCH7u1lEuKvYUnGw7yovBSwaoXBZsFQqhUajga2tLVy+fNkUMceATPTCwgJWV1fN4XjqqacwPT1t+ee5XA6PP/44nnrqKVN0r0T+z/rbfa1areLw8BA7OzvwfR+PPvoo5ufnTaYoKzSCqVQK169fR+p/TqHzYx0cdY/MOGlT5a3KnSCUY6IOkm7U1bQfNxKlzoQ+C2VM9xmkP5RGDjmUZkrI/loWo/SEveTY87qsNLe0tITZ2VkDGElOKgGBpg+p0deoIh1kN32CBEwmk7FjEdz1zWvxN+VHn5nfo96gXlH2k4ypptVynngtlZFMZnxIrKaRsPH63PzO+Uqn08bicv74eZ6BRMCSTo/PcHrjG9+IT33qU2eCxqR5TmpnrRHK1ebmJr7qq77Kogn9fh9PP/00Go2GkVKaYhOG4ypoTJVVZ0PlgdkBBGfqyPD+BDqcH9ogjhnJKSXClNnmvHE+WTZcdY9GBpVhVpDF/tBR4HueN456VKtVLCwsWIVFjTYTUOn33LRrdf7b7Tb29/exvb1tFWnZByMtf+hu2jOOcPKWE7T/to3hQ5PKnLoGvF0PrSst1FI1W/8kAwCYTWDflJigPjs+PsZgMMDGxgaKxSIWFxdRKBRi88Bzlji3xAokQA4ODmy+2Td1BnjoqTp8GtVR4o3Ok9px1XGvtvMUReNoBcuQU29o2pVGsDudDmq1mqWwVioVLC8vY3l52SIVKqPEKsBk365Gevg60zIVXPO+msVD+VJZcB1qrkvVm71ez87X4rU1csk1ouQHf+jIMKqsZehZobFcLsf21ZEwOjg4wPHxsTmELo5Ip8eFpvBzAP4FTA8r6cB9mKrbFVtxHDQKreNEWVOy0bX5qit5Der0TqfSw5wsAAAgAElEQVQTI8MYhc1kMlbQhbaNUUNmxSwvLwOYHAqc5Dh9KdsDx+mcpo4JzwLSyjwaKSLjrmkvFCQKPgWZwqk1712vnAtBjRR/q/BygXPTqOd5FvLmM/C3pirF8rhFsSrbqeBclTGBHo2kGjuCv1KphEuXLsUquqkjqiF+d/EqGHYjHvqa5qYzbU2NL5VQt9uF9/Xjzefp30zD+5aJcWf4vf+f+/D/wcSQW757OoUgH2CYHcYYFGWCACD7geyEGfNHprzVgCkIYXhfoxVu6gDn/tatW7hx4wbm5uZMRnK5nLFcMzMzqFQqePvb346dnR3s7u5a1TFGPR577DHk83ljAXUsz2NsXHDnsjwaaaxWq1Z5DgA2Njbwtre97VQUEYCNY/afZLH464vYze/i8PDQxkIZMl2HKg/KTrrpA8DpgwRd4+OSD2w0bIwKpFIpRO+NkPvVHFKjFFLZeJEE16nLZrOoVqtYXV3F3NxcrEoXf/Re2mcgHjnQdVepVBAEATY3N9FoNGyN0jnRfZLuOCvAUnDMZ3DTfvkZN22LINPVYRxDHXMlQtz0F/70ej0cHx/j5OTEACsBNisq0RnR83vYd0ZQM5kMVldXUa1WUavVYpGJ+yELXP2q8sDnKBQKmJ+fx+c//3ns7e3hypUrSKVSOD4+thRsLUbA64xGIxwcHNieWEauhsOhpS67ulXJLl1zLrAh4KADyQipEmAKJjlfBPIcd84NAQ/nJJVK2REDrm7ms2m/PM/DysoKlpaWLMKqOpkyqmOtf+taYH+55yufz2Ntbc2cJ50fy074h2Od52FyuKmlHB4DHjz48z4CP4itL1cn6PxT349GI+zt7cWiUBzber2O6elpc5p4GC9lgudrUZ5JJLhOE38Ph0Ps7+9jcXHRrjk1NYV6vW6gXfEH+/laOElJLZvNmnwAk72gtPcADC/xGW/evIkoimxv98WLFw2rUC4oM0EwPuyYjiujmDo/o9EoVu6bdoel4jVtjHpR9cFwOIxlwFDP6PVbrZbpJcoH17iuS3Nm7qanzs/P21lvGnWnA6H7uFTuR6PJYdrlchn7+/t23IHKajqdRvrDd9OkfyaC/yMT20KnLIom+6jYV0ac3XRZEt7MiNAUWTfy5K5Z/qijymtTxjULBBhXPtY1l8lk7Py5VCpljpNGtfgcaiu/VM7UA8fpPhsNTKFQQLVaRaVSsYMagckEElQw+kGwTedLUxoUJHMx6AKnIVUBz+fzxkIBMBDB/vG7WtUtKaQai84gXuZZK1lpnjvZXq0QRIZJ88CnpqawvLyMmZkZUxp6Hyoh/b8LLPX5XLCuf2sEjo6ppW8EgR26SsWaRx75II/sb4yr7xVRRArjfStebsKqKgClElemlE4q+6EAWJWsOsZkLcksMQ3HzWmmPJCd6nQ6uHnzpu3RUhafDjsB8ZNPPok7d+6gWCxidXU1ZkQWFxdRq9Vi8npec4GMa+D12QiwVlZWDBg9/vjjxuIqu+cyokxF4Tzxs24fXWPlAi+CN+2zC6D5t8q/ri9Ggqenp61a0mAwQIDJoYqcRwJcne98Po/l5WWsrq4aCFCZcPvHfrt903FSp3BlZQX5fN4O2XbnKpVK2bklAKzPlCXqJLKBjBiwGIsSKKp7+KwacWDjZzUNL5VKmdy54FAZX1aUJBgh2xxFkYEWGlNNaWJUnxFxOuwPP/wwms1mLOWV6ylJnpJknr9V1jKZDB566CFUq1X0+338yq/8Cubn51Gr1XBycpKYQkTdF4ah7X3ic5+cnKBer1skkuNIXXCW00RHgp9rNptWREMdZtW7/K7uner3+5biRH1OIEpHsNfrxc6XUecoiqLJYZyYOC+5XA5Xr161kso6JuyXEgcKhAmguF5cYoRyd+fOHZM1grOpqSl71nw+j+ybsuhudG3PUogQ3owHeEDona7C6eoVd11RxqkPXJkZDAZotVo2R/v7+xY15v7TpL1kLhBUYF+r1ez+jF4wisV1TseJ9yVQdvt3Hjn2hbadnR1zKkiasjDEpz/96VgEqtFoYHNzE77vm9PEFEfiCKZsknDkHkKOu0bg6RS7VR89z7Non+IsjgMwsSM82kEJC36Oa1gLRFCXazEYXZfZbBblchkXL15EtVq1z/Oe3LOq2ID34rrgeJC8KxQK2NzcRL1ej5EpMScfcceGzin3mpJkYlo/C2Nw7OjAaUot7QLXqpIwvL9rx919+v1+3yJmlA++x5LklA/qeS0WAsCegWOov1VXf7HbA8fpnKaMFBcpAEurIbvC17mA9SwCRm2YK6spHBrmVZCqDo7uI6KC1tOt3YIJNJAM8yvIViEfDAanmDMgfpo2/8/3B4OBbbzVcDgAA12FQgGLi4uYnZ21RZHEhHHxKQhzFYqyvxyjpMXi++O9KDSkOm9awCIIArT/mzbwn4HZrx+XgU8NUsgMM8AQQD5etYnKgQpUFTjnMwiCmDOrBlaVoioUVyGrEtLx4e8gCLCxsYHHHnvMwA8NKBm54XCIj3/843jyySfRaDSsqAXPwQHGRSOef/75V8zauM61yorKLBlEXntmZgbAeJMwQbGmSwTB+BDZ4XBoaUy8j+7r0Hvq/GgKgRod7ZMLgHVuNaqjwI3OZhiGaH9bG0c4wvCHh7YnkTKpaaY02EtLS7hx4wbK5fKpcUuS7aT+Ul5U7vl8XF+e5xlhAkwiRsooDodD21PAfWWUXTLxGu3UtDvOL9cNHa1isRgzoHyf4FD3mOn4qxOljhP1qkYa+T7T26iruLapz+g4MW0PGOfJr62toV6vxwoX3E87b02USiUsLy8jm80aGPjoRz+K97znPXYfyo8WMmC6j0bBgLHNWFtbw9TUlJ3XwzF1CTXKqqb+aMTJTS1Sdl4jAlxX1OVMFaYNabVa2N3djel4RqeA+EGqYRjGUoEIghYWFk6dt+M6CHxGPhuv7RJNmvbE15eXlxGGITY2NiwLhKCLhUK4t/bk6gnQBqJhhCiMEEZhbL0lzbOrG4EJUD8vmkMgSnvPA1h5Tf3R+XV1k/arVquh0+kY4GaBI+oB3XTPdX2WDXktwOXBwYERHalUChcvXrT3VH8Ph0Pcvn0bwNjBYyVhyiZJFu57pa0ktuD48jftHYlH6inKPaOcbvRD7RbJA76u6WDU765jQZ3mEl+UuQsXLmB5edn2H7pYJclBdu2ArgcrdHXXvtTr9dj5cIYbPhwh+KkAwQ8GMUcWgOlKyvDx8bH1Q8lC6pdcLgf/I3dJc4zQ+ZGOYVVXP3LclKDXn1KpFNvrbwT8d4fo/2Yf6alJeqybkcBG59q15ezDl6o9cJzOacr+MKKRzWbRarWsxHK73Uaj0UC1WsXW1pYZHAAxgaKQERhw8aty42LWDcVaVlhzcXkPhlNV8JiGQ6XG61OJ0KDqawpc9PO8X7/fx/7+Pvb29gwkEsQzP9z3fVSrVczOzp6q4KIGIYnR49/3ampo1JmiwuQCZ7/5XGRc+v0+hhhi5/d3kEMOU5hC6h+krGqe3keZGd30z3liFIpONMc7DEMDmKy6SAVBZjKWQpIgd9qPMAxxfHyMo6Mjc0bcfQp/+Zd/iZs3b2J9fd0Yyaeffhrvete7zJnR/HMdw7OaOhU69u58hGFoTLOy7IzY/Omf/in6/T6mp6djSjsMx+Xaj46ODBxrGpAru8BpgKUAM0lGNKrqRgI9zzODzcgi7xEEAbof7mL727cNOI5GI0udUaeYUcDV1VXcuHHDwA2fw2WXFQgmMdz6vjLvAGLOU71ex9HRUSxFlWubOoCVGZvNJpaWlnDx4sXYRn1NC9NiDzq23NSteyipNzRNhkYylUqZk8Z7kVEGEHM0WEVJZYxz3+/3sba2hre85S02nhqRZi4/NxCnUuOy+1/zNV+Dp59+Gi+//HIspetezZ0HladsNourV68il8uh0+lYat7Nmzct+szUKc61rk9mJqhNOTk5wcnJie3xUKZVI5scR02Zo16iDCq5MxwOjXVX8OXOkzqezWYT29vbODg4sD2w3GOr2QvaPy1xn81mMTc3Z+mLusZ0TCk3CiY1okrd7RJjtDNTU1O4dOmS7YujnDM6yTVCZt3tg6svkvSGa5NdJ0efJ0lX097oe9QT6ryedU22er2Oer2OmZkZm2fuF6YDTfKVDnsSCefK3avRwjDE9va2FXbQtrm5iSAIrLQ09+xQb1YqlVjZanc/EsdRi5Rw7buEC2WeZDZ1r2asaNYPMAHpJGEA2PpRB42RGn6ONlf1PzAmJarVKq5cuYKpqakzCWE+r9p86vvzMBHPimNk2SUegiBAgAAnHz3BnXfdQb/fR6lUsvHneHCciG2or5himc1m4X/Eh/eTd524yMfoJ0YYfP8gVlBG7Smfj8QWSTLK+9TUlBFjLBrWRRdec4KrOS4cg9FohJ2dHYxGI6ysrJyKfGlLkvUvRnvgON1n00iCKqebN28CACqVCq5fv47d3V20223z4DWlxw3Tu4uZSlUdJ402AZPNoVxsvI4yYgQ0ynoqy8vr8B568CHBpF6HQGFnZyd2WB0FlmCOub0aaQLimwbV2QHihkzZHn6ffdTr8HvaGIVR1oI5y3RWLd3udeP5aKONY+84xoozJ5kLfzQa2RlLCtaoaNlXpk3xflpSvVwuo1KpGIhirjuZMFXCCvr1/8PhENvb27h27ZopKsrUSy+9ZOw805QA4MUXX8Q73vEOGx+N6ujY36ud9RkFHzMzM1hYWIDneZaGxJLoLItMWSTDHUXj81EYNSFIpHy6KRZuv1XZUsZdmeM6USXPxtQKGgWureFwiIODA7S+qYXhbwyRen/KxlsZR7KChUIBpVIJX/ZlX2YHQHJtaqoblb4LknV81XFyjaqCy0wmg8uXL2NrawvtdvsUSaOb0Dc2Ngy8dLtdrK6uolAo2DOTree1FSgrccC1xXWgnyNDy7Q5FmwIgsmZMyzdzHOoCKI09cwFGFwrunlco4XsOzBm5FnW+OLFi/j4xz+OO3funEqtuh8ZdwEx02HZz3K5jF6vh/39/dg+BtU3lNGdnR2TdzbqK1Yc5RjxGpr+pFWvOC6qezhPu7u72N/fx2g0QqFQwMLCAh555JHY+T6q8+kQ87Bh7ilj3+g4qZ3RtEL2lWk+V69eRbVaPeU0KYvuOgzKtCs4UjvBeedr3D97cHBghySTjOJnM5kMCoWCZXm4gFWd8KS51yievp6kC9V2nSVTCrKBSWq7+76ugW63i4ODA1y+fNlkvlwuW+RRdVs6nY5FXt3+vZqN2GB9fd3ODdRWr9ctSjYajVCv1w0IV6vV2JEkCuAV45CQZuohn5VjzT3dmmWiBT6UoFaSUiOUJGfo3LEAGK9Fp44kBJ0DzQhIp8fnZz3yyCMWOXYdJ127inXYT8044Gu0FexLtVrF3Nwcms3mKQyYTqfR+2AP+3f20fizBkYYofdED41Gw1IfKT96PAyfjfon/NEQ0b+OjCjyfR+pf5WC/9M+0kgj+rZJZM6NvjKtEoARFtxf3e/3EfxcgCqqyCKLzo910Bw1LWNGo3PUT1tbW8hms1hdXTXb68ogf7/a8n0/7YHjdB+Ni4HeM2vlMweZC13T75RJ1TOHCLh1czYdFWUNdTN2EhOqgFqdJipSAkD2T4VcWRWmbHDfE9liALZvYXNzE/v7+8Zw8rm0TwQtdBYVAPEz6uzdqynz5BpRdyy0Dxpyp8OlDimBrMskMhLkRiTYBz6T7mvRMdD/e54Xi6CwKhTH1GWk3Wdhn1WZhmGIg4ODWKoXDUe73Tbl7qZfHR4e4ujoCKlUCgcHB/ccd21nOakK5Dmvjz76qEW6Dg4O8NRTTxnTTjmm8ms2m6jVauNoBMZjRZmjs6pEg6Zj6Hjw/jQKykhqZEKjN2qwdSNyFEV2roqdPv8fAe/rPWSK8TNmVEZoUK9cuYKlpaXYZn+uPx0nfkf7qkBR++waVI45X19YWMDy8jK2t7djESc6q7qJPggCNJtNPPfcc2g2m7h+/fqpTcIcb1ZBo7wyUssKVgpwFERQn6kxY/ofnb1CoWDX5PtTU1MWhdKCKhrhJfPL6/KeL7/8MkajEcrlcmyDebFYxLvf/W783u/9nkWHXqnsq+66dOmSVfljyqLvj/eLaQoqnWI+XxRF2NjYOKXzPG9cxGdubs6cMuoszr+CA61wyA331GF09J977jnbb0Ub1Ov18JVf+ZWxFFoy+a1WC3t7e6jVarbfiXNCOer1evZ83PhOm8KoYT6fx+rqKhYWFiyq4rLsKreqV9zXVMaB0+WPCRhnZmZw5coVc8I1iknnn6WZuWfXBaduFE37qOz8K5Ubt6k8s2/pdDq2P0c/q/qSjjB1Fgk9riklYBh9TuqPOh2vRqPTcXR0dOo9Rl2CILD0Xdqe+fl505kknjQ7hY4NnXnOHT/H1HTVNZQvOpN8jXOo56Dx/yRRe72eVThk5DqbzWJ2dtZIDT1nk7aGemp2dhY3btzAzMxMTJZdx0nlwMUzOjfuD1s2m8XKygr29vbs4Hv2R7OCIkQIvyLE6G9HCBBg+MTQIrDqoI5GI+A3xkeppDA+FypChNFw4ohaNO57hxh2hvA+5sH7lgkmUnuqESemNxIze//Sg/+vx3pCZXo4HGJ2djaWZk4ZYHofdeTW1tY9SYtXS7bvpz1wnO6j6WI4OTnB3t4e/uIv/sJYdd/3UavVYiCcqVoUaAJ3gl06Id1u19hfAgSNFin7DCBmjNSx4HsK9pkaqCBE/6YSoQLR7xSLRQyHQxwdHaFWq8U2Auvip4HkQYcaxlajoIrEBeRJxkbvpaBT76/RAxoRnrLugg03PcJVThqtS+oTjZYyV25kTPumY62Mt86VzkXSwncZSTrnHEtNoaJzp+xwEIzPRdrZ2UGj0TgFIL8QpkYNsUZe3vzmNxsg4xlnP/ADP4CrV68in8+jUqlYBbVnn30WpVIJCwsLSCFl+8PS6bStDY3qdTodnJycxKrAuayZpjCxqfOhssp9TIyMhmGIo6Mj3Pm3d9BDD+H/ECL6owiZf5xBLj9h3mnUeb4LADsc+ZFHHrHnIKhnH7imaIyUeVeZ5hjouLJ/SQxlPp/HQw89ZHtVKKODwfgUezo5PKyb/b916xZOTk4s8kRDSkKIhSI4nnQomca1tLSERx991FJys9mszRP7TaeRUSg6lMp60vAyasdnUPBIfUgdwPf6/T6eeeYZqzjVarVw69YtVCoVfN3XfR2mpqawsLBgcnGeUdV1oE4fv5NKpawEPPvIsdboEjCJKPC10WiEw8PDU7pO2WymWREAUW9qRJpzrxXpOJ9bW1t48sknbc8PZa/dbuO5557D3NwcLl++bGw8C0PwQNJGo2HVCek00xEh2OF5eZVKBb7vG0mSTqdx6dIlK1rCZ1ObpfqCz6ERJFcPcUx1Pjj//F46ncbKyoqdhcR0LiUQmGZI/euCUZe11j7ej8zcjx3Te+n9ea8kIpKfD8MQOzs7aDablubM9UF9xH4wApS0T+RefftCGseMxYYAxFLnKJt0cphGOT09PalYm0rFHBKVaRY94drXDA7adm36Hm2uYi7tG/FOq9XC/v6+9Y9rkH8zLb5cLsfIOZ69lMlkTlW7dQlenWdX9lwZ4ppPwmrA2NZcuHAB6+vrAOKFsZgxkHlbBsgA3hN3o6afHp9x1kPPjlbJITcuiPWNPsKpEGEpBHJAlJqkbgOTyN/29vbYifnGKXi/6QHvj+MALRhEWfR9H+nvHR/nkvv5HPxZ31Lw9vb2jDzs9Xq2341l22njqf/m5uaws7Njtj1p3X6x2wPH6YyWxIxF0aR87t7enuVWM6zJ3F1GlGjgKQAEgmRwR6MR9vf3MTU1BWBSMEIZaO2P6xi5ipif5wLUTdVsCtSUUWOuO5kYFlvgwW80Pm7UiMBJD7BjH/g7SZkkNWUckhaF++xqnBW4EFy4h6fpguNvBaRuFErvy35p39jOMlKu86jvK8N0r8brsJKU7lfg5nDKlLtH6LOf/SwA4KmnnjJG+X6VjbI57rNpVGR6ehrz8/PGMs7Pz2M4HGJtbQ39fh83btxAFI33dPzu7/4u2u023vrWt2Jubg7pn06j9L+WUP7Zsn1f9+3RCchkMiaLrFhWKBRQLpct2qCRV+0r146WgKWD4Xnjw5Cf+7fPof11Y3Do/ZmH7HuySOfSMXlinjkLn6TTaczOzuLSpUuxsuM6bjQiXAdJ7CN/CCTUCKsM0EhRF/m+b2Vvm82mRXtVLug4aaEERi8Hg4E5F9QHuqeAr3U6HTuAczgcYmtrC/V6HdeuXbPIOtMxOQ6MZhEEBUEQq9qna4TOFKNxui4IfKhblMBiNDOKxkc9NJtNHBwcYHNzE+985zttHM4CwUlynbQ20um0pesSxBFYUT4oUwrc6XQyhUqvyxRgFu0AJpE1JWeUoHL1er/fx87OjjlNJIf0GdrtNj7zmc+g3W5jYWHBqrzx7DutkkpHg44S+6V74EgCMPI1NTWFhx56yPS/C/bOGlPKsGsb+B5lI+kalIFKpYIrV65Yqp4ShZ43KRKhZ8mwacRO78154uv344CoLk9as3yfuluvq8+f9H3K9MzMjD0THVZGYyhPPNTdtXOvVaMeYSNZw8ON6bzcunXLIpckmpN+6DipHqKOVrl3o7EALBLFtcMMH8Veurb6/T5u374duz6fiWuNxCQjUIyU8byuxcVFKxjD9aoyqrpdyVbFI4otNaNCn011/9LSUsxZ5ZipTeR4hmGI3lf2EAaTrI2NaAONSgMXL160M0mHw6HZOEZv+/0+Dg8Psb6+jmaziUKhMD7MGpWx4yVpgnoOFf7VuF8+fKT+/d3U+8IEb968edPOeZydncXMzIydlUj93263Y0QGj+F4rcmAV9IeOE7nNFXWhULBDiNlnXyyKJ7nmQPF3Hfdq0QjqqWBuZhv376NcrlsG0CpDHUx0VAQ/AGTvSLqFFGwNB2QAEaZKBesEXjQkA8GA6u+QmVDAKhsobIvTOFwHQLXWVIGRvf3uAb0LMDuOkBUenoNsk90Xt0c4yTHyL23q8DYVzW+yoyqMTzrt8suaUtSCu6z0rnN5XLGxPHZG40G6vW6gTc++9raGnZ2dtBqtWJA4X6M63mKiTKZyWRw7dq12DOyEhSNO/c6PfPMM9jY2MBwOMRnP/tZXLp0aexs/KyH7PdlkfvVu4z4t/Yxwgg+fIQIMcAA05hG4QMF7O3t2R7CSqVi6Rk6TzpXKhN6bhoNaLfbxVNPPYVjHCPVvJsG87U5+FnfSj9rGhUwdhK4B4SOE9NTOGdcL0lyonPOcdN1rs+jn9X1z+8WCgXMzc2ZnBOsc/4B2LlSw+HQnJgwDO2QTVazAmBgR6OW3JPG16Mowvr6OjqdjkUneOjutWvX8Ja3vMUcQN3PRiaTQF0ZVq5RVlHi3FFfApNDsH3ftz0tBDoA7F7NZhN//Md/jGw2axGp85oLYlwg7HmekRKcY2YV0HEig6rRxjAM7Xw5V58FQYBarYa9vb1YtUMlWlTfqNNNB7ZWq+G5555D6/9n7816I72us9HnrSqOVaxikUWySPbAntXdkloe5NhQAtiwjc8xAthBEiS5Pudc5hd8F+cA5+L8iIMD5NK5iZ3ESWBbiS1rSCSopW7Jknpwj5zJIlkzx6o6F5Vn8XkXd7FbtqR8F70bBJtV77CHtdd61rjr9SP3cU5arRbW1tZQr9dRLBaRz+etCivHdXBwYPkhHBvphoCU86vhmZlMBufOnbO8Vq9oeP4dkgHeM6XXhwxoqlQNDAxgZmbGCm9o3gqfzRwLAEZHbKG8Ca84eSVHr/Wfhcbg/2aEhz5D/+9l4d7eHu7du4dLly5ZqCRzMrlO3MvVarXn+z39fRaNvEZ5mCoHxCD37t3D3t6eeSt70QXv03xQPkfzQvmM/f3DqqHFYjGWK8P7FH9RIdjZ2cHm5qaVj+fearcPz1hilAEAqyiazWatmMLQ0BBOnToV9Gj3whohox7XJiT/PR1SiRgdHTVDFferFqhROu7v77e8Rc5prVbDwsICxsfHUSgU7LooimKK78OHDy3KgNVED757gIlfTGDofxsyD7gVYvk/E2j9Xy0k+hNABoj6o5i8ZXgwI0dqtRo2NzcxPj5uBV8UF3GO9Gyp4+bo8zYUaHumOD2hcXHOnj1roU9TU1NmOWHZYRKCnpVBAaPuVM2PIePZ2tqyBGMSI8GX9kOBE12qyhAViCgQU6CujIXPWV1dtRymZDJp50XoJuS9Goo3ODiIkZGR2Mnw+g7td0ho+qYhSipIeoF8r+hwrRgHrpYa9UjwXRoup5YhNmVy6iZWZq/v136ElDO9X9cttOlD83NwcIAHDx5gfHzchC/XemNjwxikAm8FwU+aR99UgIf6R6vvd77znZhgW11dxejoKGZnZ63EKQB88MEHFjK2tLSEtbW1LuP9n91cp77/vQ9JJJH629SR0MPh5jCi/zfqhhz8IELrH1o4+MtDb0Sr1UK5XLYzgXgyPcGtrfX/3T3TpYUWGmjgE3yCNayhfaUdO6i2v7/fBCX3Ivd5o9FAJpPB+Pi4We60SpQKShV6uk+5/gr81Yunz1Ivhu4N/k1BSgVGvSNcu/7+foyOjlqosPYLQKy0r9I3DSfcV/x8d3fXQj8J5KMosvNGvvWtb8XOsKL1WJ9J4w8BLc8aYx4UQ2N1/Ko8MBSI/Irrw3LQ6m0OtdDnuk/9PvC5Alp2mwUu9Nncl1xvzi3lQ7PZxK1btzAwMIDR0VGbJ/8c8nka31ZWVuyQawJXzydJV7y/Xq/j8ePHWF5eNivx4OCgzT2rS3K+WLhC6ZBKCS3b2WwWJ06cMCu30qXOpTdMqdIUUlQps0JASnkV+c+JEyfQbh8WEtGIBHoHaNDp5ZEOgd2Q4sP58DJO5ymksOg4Q+Hg3CdehtKrw7nSQ0S5VjTA0t05wM4AACAASURBVFMcan7uPovW6XTw8OHDI8qK5rq0293S8TSe6F7QOaEizz2r2KnZbNphuBz7/v4+yuUyqtVqDHNR0ffymvcwr49hjcBhqX7OMRUj8h3mjHY6Hdvr2WzWDjzWddP15t+hfRHiL0qDnBvNGaVc4vlxaijTPDjOI+/l0RoaTscQ4mazacdbJJNJK17FFA16cjV0dwQjyP5/Xc9TCqnu2Zj4L+90Kp5PSMMX575er8fopVar4e2338b3vvc9M4Bw/YmTx8fHjyhJHEcoOuOLaM8Upx7NE/G5c+eQSqVQrVaxuLiIfD5vhKuxs8x/IGMgIbN0qFbTIXCg50rd1h50KWjoFcrW6XSsYgw3gg9BI6ExMXV1dRWPHj2yMAeNJdZ7PXBptVrIZrNmAeNz2Q9lFprfpABSNxjnPCQ4Qmvjx66bSCv1sO90p3MOCEg5Fm5yvs/Pl1eolDGEFBKdAw/G9Ln+c73et06ng3v37uHLX/7ykfBLDVXxgvw45fNp2nH3nD9/HhMTEzHgFEURRkZGcPLkydjBqpubm3bNwcEBHj16hHw+j8T/k0B7pI12uo1E6rB4gyapHxwcoPU/W9h4fwO1f6mh9lINOzd2kHq+qxBXb1XRwX/tK7SRQgpVVDGLWYxjHK3/+nfwfxxYyN3m5ia2NrfQ2mnFlGiG4DE0ye8xhikVi0WMj4/HLJ0677p3vbFAQ4X4PRU8zqG/h/PiFadcLmfjoUWP1+v6sfofK41x7xK4UKnSfU/rPfkJ+04FBcARsH/v3j1cu3bNeKR67NQqzTBAAlsWdsjlcjYG4DC/kB5upbOBgQGk02n09fWhVqsZiOiV69GLlo/zANMjc+LECeTzedRqNWQyGbNK02ignjTOvT+fTN+1t7eH1dVV3L59G6dPn0Yi0a18ub+/j9HRUfMsc2+zummpVIodW6HPVgDu+ZR6jDxf5zgAxJRDBXGkBx4CPzs7a8qjjot/H6d4qPxSUKR5TMpfQzKi3W4bkKThgOHZwOFh1qr0a1EB7VcveeP3UC/lKfRZSAkLybuQLNd3qiGEe57eE3qRHzx4EKRtxTGfZWNfJyYmsLS0ZDJIzxFqt7v5QgsLC0Z/Sk8AYt439cyTHnkfeRuNC8zP44Gp6+vrOHv2LIrFos2Px03NZhOLi4uYn583JZN8iNeSR5L2uTb0qA8NDSGXyxnP0bXySrIqT4oruEc9LlPaUJqggkf+zyqZ5Amaf04+Ojw8jHa7baG4AGIHnhOXNhoN3Lt3D2tra8jlcpb7WK/XrWgY+x9F3ciqxv9ooDPXwfBY93gEVlTe29tDOxnHT0qnPFuU/IdzylBORswwZJhywxtwOE7OMeWD90h9nu2Z4tSjKRMbHh7G5OQkWq1WTIhtbm6askGiJhhRAuU1CjBIBK1WC5ubmzh58qQxeLWwKnFoKVPV2plEube3h5WVFWxvbyOTycTCjNTKwzOZmBhMYKChJhRiCtIUINIyo8nsn2ZeVeHQ0D9vVQhtFq846d+0CjOnghtezyHoZYV+knAJgbDjlCYvnPndcXPlrVH+fWtra2g0GrGwBw1v8HOnIE6f/yQlLTRefUYi0Y1Hfumll8zjUS6XUSqV0Gq1kMlkUCgUjGbK5bJVA+IzdnZ2zEs7ODgYswjTsse13NnZwdLSEu7du4cyyth/vI/2aBudcgcddBDlDgsvtFot7Hf2MT8wj63MFqamppDL5Ww+mAzM+dJ9Njg4iMnJyVhVTP2e+3xychLFYhFDQ0NHaAGIJ8D7vCYAQWNCyDPr10GfRXofGRlBPp+3ymgeGPL/AwMDKBQKJqDy+bwdoqnlfSnUfClgBf7q2Vah3el0bK1Onz4d3DMa/kdQSOVjcHAQExMTWFtbs+dp/hABDcMjGTLGkOGtrS3UarWeYLHX/iJtUInTzyn0Z2ZmcOLECSuTTH6vCiVzK6KoG5a1vr7ekw/s7++jUqnYWVAjIyNYWlqy8vI09mhVQ3phevGY43iHKlTM7aDyp7yehVNCRqx2u1uKfWZmxhL9CQR5LZVcT38hUOjXRt9JutPxet7PCInp6WlUq1Wsra3FPDpMOqcMrdfrVtJZZZCfw16f+/dzPCEFNrTmvcbt109/s+gKr6GXg6FP9+7dw9bW1pE117F8HsoTAPPokZ65f7gGWnBBi7wQl7D6Z6fTiYVTDw4OmkLAqpubm5vY3d1FqVTC4uKihcEmEglsbm6iXC7j0qVLljZAfkEDWKlUwsrKCg4ODmKh/Ko0jYyMxMJOuWYsOJXJZGLFgRRbAYe83BsEdE1DeyOkaCkGUznFsHCG1KniBCDGO6IoMt6o+ZZqzCIfXlhYiBUnU48v+Tb3T61WQz6fN6WJ71N5QBpVowajkxh+V6lUkEwm8fHHH6NYLNr6U362Wq3YcQo6b6QZRlKoU+Lzbs8Upx5NNdrR0VFcuXIF09PTmJ+fx4cffoi1tTULe2BJXSZns0AElQ3gUFCSmBW8b29vm4VVvSVsegghLfAkZOZd8f9LS0tmGSGwUPd1KpUyVyxBluZP0dLDfqv1ThO0GZfP5t3QIaEExIGo3quMQd3KXtj6tQEOwaQK04GBAWSz2VhiM8fPZ3EOyXw98PDAwdOHjjfEIEMWJP6/F6gL3ae/m80mKpUKpqenTTh0Oh1LoFRPhgdLoXacchQCASr8p6ence3aNfT392NlZQX37t3D+vo6KpUK8vm85au0Wi3zaur6tdttA/F9fX1WHY5J3VqdslQq4ZNPPumeNTOyExMUAJBoHyofHP/e3p4B82q1GttXpDfNp8lkMpienjbB5OeDzy8UCpibmzPDARBXJngd10bH6+lL3xMyBPQCZGrAGBgYwNjYGNbX143v+LAfAq5sNmuV9HjoIUPi6K1W5YsKiyrmOlZPPwS7DPPgflODDBVhWpCZNE7Ft1gs4vbt2/YuDUPhuPL5PKamprC/v4+xsTFks1mMjY3hvffeeyJIPG4/e0MDcGicqtVqGB0dRV9fnxkItPqgjxRYW1tDuVw+wg+UDzD088GDBxgYGDCFnk338XFhh36tPd1wbCHLNkES9yEV1ZCCkMlkMDMzg2w2G1SugPiBn3yvjj/kSfUhN/4zBbH6OZXubDaLmZkZ3L9/P/ZcBdDkK8PDw9jY2IgV1PDzyH6HvtPxqedAm++v7v8Q/fG53jPBdyj/IUitVCq4d+8eFhYWjoTp9XrHZ9kIjL2sUfqioZk8RPtGTEQFht5vPXcIgCnnDMdeWlpCuVy2d0dRFKvmNzIyYodFc913dnbMSKw8jfNJuvDRM+wvjd4Myw4ZLXrJWZVLbLoPSU+98IHHR8zBSiYPq30qj6ExWz35UXTondcDsEmXzGFVpSc0PnqxtHiHx4FK75rLSsNoMpnE+Pg4Tp48adVRHz58iEqlYsYY0kqn07GiNvqZ7oXR0VFUKpWYYfbzbs8Upx6NwCeZTGJubg7f/e53EUURhoeH8cYbb+Du3btGBASAIyMjmJubi7mHNVZTLZpKmKxipKF4/qwDDeNhrlSz2cTDhw/NUkDGQAtJtVqNbSK1nnCTaCgRvVpU1LhJvOUjiiKrKAUc9QTxs+Pygjxj9/fydyhRnt+pdUeZDZnH9PS0hS6pQst1IRBjgruuSS/woe9m0+t6hXrodb2Emme8vcDP0tISnnvuuRijZUlPH6ak8/JpmYoHetqvvr4+XL161eb0+vXr1j8ySFbtOTg4sOp+CgAajYYVrtje3kYi0S0mkMvlLI9rY2MDpVIJt27dwvz8vAFL61P6v56ZiAMLFdIE66R3KnMK6NLptCX7kq5UIed6DwwMYHp6GuPj42Y1AxATXsrYdc0VCKlxwYPB0F7wglT7Re+vHr6r+5r3kuYJKvhsrWjEs4oY7qFzp332+83TBw+9jKIoVnxCw/wSiW7yPueR814sFq2wSK1WMwGv+zyRSGB6ehrNZtOqM5Fv+j34aVsIgDabTdy/fx+vvPIK0um0lf6mksGCPLwnlUphcXExVgq7l3JGizw9fPp5iB8cxz/0R4Esv9fQFqUNDY31fJ2tv78fs7OzpjSp15TXK6/Xv5/Ee0JRC34veDmizx0YGMDk5CQKhYLxH82J0THSqLaxsYHV1VWTcbpGHgiHZCT3A+Wkr2rojSgaptoLaPeaK/USpNNpFItFvPPOOyiVSlZNz7cn7dPft7FoA4sskAcqT7t7966NqdFoWGgux6LYiEoU+84wb84XPRdaeVjHt7+/j62tLTtSAYDxMZ1X9o2eEhoLNH9b14OygNeHlCCOJ4SF9Dm+ha7tpZSR79Mgn0gkLBya92tuGDGYenA4loGBAVMGSau9+KbuP33O9vY2SqUSUqnuwcxjY2OxMwrJD4k/l5eXsb6+juHhYYyPj+O5555Dq9XC4uKinaeVz+fNOQB05QVL8Yf4Cz2FNGB9Ue2Z4tSjcRESiQTm5uasnOaPf/xj3L592w6boybPCiy8xzNGje8H4iB7b28P1WrVwj729/fNmq0CjcyJZxxUq1WsrKxgY2Mj5iYPWfuAw7r4vI5KlQoEulHVyqwgkJYhVrHhJg1ZDP189gKF2kcvrELXhDaPhmeQOYyNjaFQKGB1dTUmFDXZvdPp2Bxvbm6a0A0xEy9U2Udl4CEQGQJiIYHp7wu1RCKBhYUFC3ug0GbOTbVaDSpMvh+fpnnhy7m7cOECDg4O8P7772NtbQ0nT540K97g4ODhqeH/VVRFlQtaTJksevfuXctfYX5UIpHAysoK7t+/j0qlYmujc6Zrwu80T0I9qTzQUAuF0FvMEuMacqH5RPTCsm9UsDyNaj88zYbmX9dIlR1v9VT6UsWI3/X19WFqagrZbNbCdqgo6ZoxLJLn8zBXhsVumCM0MDCAfD4PAGbJCwlzT88MY15YWMB//ud/4oUXXkCxWLTT6VUBZeEOnat2u21eMXrBuF/Jfzjn6XTalKVsNmsGHvbPz/Fxrdc1ysfn5+dRq9Usx4GKjSoj2lZXV2PKub7HKzX+Ov0s1Kde/VT+70Es11/PwiGAZMiev19pZ3x8HJOTk7F17EUTvYCi71cI3Id4pCp5atHWfTA0NISzZ89agRjKJ65Rp9OxfZ9KpZDL5ZDL5bC4uGiVCTnvnt4Z/pROpy2/jd/zIFh6UNknjdbwRrVeY/a4gf/n2hwcHCCXy6FYLGJtbc3CtTz99JIzn2VLpVJWhU3P0VM+ePfuXTOC7Ozs4JNPPsH09LQpHzQmE+BrVWEWHWFxAtJqaG+rPKdhmFiKnmHuUWIcjT5RPulbIpFAJpPB7OysYR2dX42Q0Xacos/m8Zofk16nP6RpVmTWc8zU+K1hzslkt/hDqVRCFEW27+n9D9GM9p8h1lxnFntot9toNBoYGxuLFS/TfbS3t4eFhQULK8zlcjh37hz29/cxOTmJBw8eYHl5GS+88EJMPnOcfl1UWfURWl9Ee6Y49Wjc+MlkEpcuXcK9e/ewvLyM27dvWwU6Mggm85JwlbjJHKrVqikj+jnQJbJyuWynKNN6qTlFJEBWQ6lUKhZrqmCPP7SiqJJACwM3v1bo8YfSAYhZK9TaQeuCClrPsJWRqUWkl9APeWr02T4kwgt4fw/QjdUvFotoNpu2ybRyFDd0FB2WMF9bWzMmzZyFXn3jfHCujrN4hCyvIQGp4wnNUxRFpkRo+NPAwAAuXryIUqlkpUmfVmEKfd8LwPBvgu5KpYLr16/HzoMZHh7GD3/4Q7MWhvJOmPTugSTX5tGjR0ilUmal9BURQ0KOjF0tbn4sPDKAzJa/KTg5n9wLpDt6ak6ePGkJyJ5GuT85R6pUaz9CwFLBtxeY+ixvOeS4U6lumdwLFy5gYWEhBgiYO8RQFAIGjk2PG1A+wRAoLS1OYKN8zs8zf/b3902pYd5MKP+FXih9hoZQatnokFWbPInjISjrZZw4ToENfc77Go0GPvzwQ7zyyisYHh420Eo+zf6Qr/i8E31WL6B83H7txV9If55Xq3eDuT5afZDWeK6P0h77oFEPxWLR6EGv8TJA+6u8W+fAj5/r5sep/EHH6vcI+z49PY1isYh6vW60rvRIGUCv9Pj4OHK5HNbW1lCpVMyrwefy/eQbY2NjyOfzyOVyln9JRU0rwlGO893MU+J6eENbyOim49NCOQxnomz1ZdU9TT2Jfn7XxvzKSqVifVTDbCKRQLVaNZprtVpWOEbzUWmsofLu+Rz7znMmFVvxO4avUTap0qrr0t/fb2tHEM/1UqVIaTuVSqFQKFgVvdB+9fexhbCRz63VpvvDr6NiG343ODiImZmZWK768PAwRkdHMTIyYu/TMuvMi+L5m8Q5rIiqz9d+AYfnhWWzWbtOQ9KBwxBO7ont7W2sra2ZZ5ceKirQjBZ4+PBhrDovx64eRm2KwUKK6+fZnilOxzQSw8bGBm7dumWlflm5h9+rJ0mVEeCwepY/B4XP5zU8h2FoaCjmRaCXCYgfmsiSu1F0tGKcEp9aYXVMCqrUc6QWWzIaZSgUoARh2rwwU2VLP/dMT4VqLxCvINQLav1OQQSrdE1OTqJUKsWsE5xjnmVDBjo+Po6trS1bJzJv7ZtaO3RMoY3tLY0h8OYZVIj56jzs7OxgY2MD6XTaPqPH88yZM6jX67EKX09qIYH6JCG7t7eHGzduoFQq2QG1VI7S6bSFDiYSCSwvL1s5V47R981bhAlyFHSFgLrvLxUBCkI+g5UrM5kMTp48iXQ6bbk8AGLlx1U5oDWO9HT+/PmY1VP7461t3vOrVlalJSDuHQqtBedHaV8FK2nyypUruHnzphWuGR4exsjICLLZbGx8mk9Gqy+fQwWUQjidTtshw8yN1MRqrjNDWajIz83N4eTJk7EDg5X+dW11Tvh+Nl+pS/cUq0wxzFBLrfM92o5TkHo1vmt3dxfvvPMOvva1r5lit7OzY5ZxriMAKw2vNNJrz/s+KF/x1x5nLFIPqNKFzgXlEb2no6OjFurCMBvvcaEHeWZm5kjBIb47xCd1rEq//js/Rp0Hr2Toj+fDiUS3wuTp06extrZm/SYfIHDjZ6R/KpXlchmNRgO1Ws0KgPDdg4ODGBsbM0WLVdUIXlOpFB49emTAvr+/3wAr6ZbfqbLo17pX0zFTaQqFjekcHkdHn0UrFosoFAqWM0O5qsaxKIqsSh3PGnz33Xfx7W9/28LFGL1DHqJjZvGC9fV13LlzB5ubm0f2N+lAvdfk6/qswcFBTE1NIZ1Ox3JvNGrGK+/s0+XLl2Nh3H5/sC9+7v28H7cWfv/7PePHTTo7f/685RbTk8rCPwzdp4ctiroVbwcHB81Ttb+/j/Pnz2NhYQEbGxumqISMT/QusRy6ygfOJ3kfC+UsLy/jww8/jBmXl5aWjN88//zzuHHjhuXp82wpzutvf/vbI145nSf294tszxSnHo2EeXBwgP/4j//AK6+8glqtho2NjVjJWS4wF45eGCo8JEC1ROsPGSirxYyNjR2JySWgrFarWF1dNTc2z+3RyjZ8dxRFsRPTmVfgAR2VI+03Xdlk0LpxWcGIFiMv1Pg+Xh+aV2Us+n+9z8+TNh0jEFdkdE7VwsTNxTBECrUoisz6xHVlwjY3uh8H36fWb37ux6bz0Ov70PyEmCV/t1rdMvIsYUyAu7+/j/HxcVy7dg03b97E0tJSz4TypxGiva4hALtx4wYePXqEgYEBA6/JZBIvvfSShYEeHBzg448/DuZv+FAWAmK1WvJ9utdC4Es/08IGOnZ+pgm++/v7GBoaQrFYRC6XM+DP++r1OhYWFtBqtTA2NmYhqpx3r0CTtrxXxV/nxxXykCkd8P7jwmKTySRGR0dx+fJl3Lx5E4lEt9DC2NhYzJpLpefg4MCEK6tGUZGq1+sWTsdQZIY1amK97rEzZ86Y9ZBGCFZRYsUsNSawD1SSVclVBZoeR15DjxkNN1NTU6a4Kzg9ThkKKVS99iN/t9ttrKys4JNPPsGZM2fMU8b11tyNxcXFI4q+V3a4rp7f6ZoqjZPvEND4PeHpR4EX173T6dgZTPl83vLdRkZGMD4+jv7+fruOYZftdhuZTMbyWj3o133AedK+KLDUudC+ab978UvvUfP7hvQ7PT0N4LCMPPc6Q7jUs3twcICRkREDyJTFS0tLVsWNihONDzQQaOQGeTDD5gHEQuiGhoZM/vaiM7/mXkZSCdnd3TXvQL1eDz6rFz1/Vq3dbuO5555DLpezv/W7drub61ooFMzI8O6776LVatn+OXPmDLa3ty1MMpFIWJEtrgOLsqysrFheZCaTiXn4SA+qBJEGyaczmQympqYwOjpqaz8yMmL8grxEDXpR1DUuz8zMYHp6Oua99HTOcXss5Ncj9D2v8e1plN9Eopvn9Pzzz+Pu3btotVoYGhqKHeALHOaxEi/SK8XKjK1WC6dPn8bAwIClLOiY9H1UcChfmGdVr9djIeD1eh1ra2t2fqNi5ffffx8/+clP8Nd//df46le/ih/96EdIJpPmlCBPiaIIN27ciO15nXtWiPaVBT/v9kxxOqZReHzyySdWvWRzc9MsKVxYWkgnJiZsA6oAAg6r03HR+X82epPK5bJtbuCQcBuNRrei2M5OrPwucwEITEmYDJ0i46flwQsu3kOmwMRB5lspoSaTSUxOTiKXy8WSi3Vze4YdUnq8FyHEUJ6kYKiQ9cBEBTLDUViykuOkcOMBvtls1g4ApgBmDK9WDuJ8hfqpffOfeVdyr00eepaf11arZWFAZO4EB4lEAmNjY/iDP/gDvPbaa1hbW/udynQeZxljP1lK9Ic//CGuXbuGzc1NA8wUQFtbW7h3715PQeKBtM6L0kRovf0c6bNYLprWcNIBz5bq7+83K9zIyAgymYyBSM4xLdb03j333HNWqdLHurMpuO01Zt93/5xehgIFAwpIFSAnk0lcvXrVyu5mMhnjF6lUKuYdpxeIxQ5KpRKALsjb2tqypG+CRM7RxMQEVldXsbW1ZWDn4sWLOH36tFllaYChkkOvKP9m3oI3PrTbbWxubtp3DCFRCzKfR6BLUEDvsecHvebVt+OMCezj7u4uXn/9dQwPD1uOAGmBY2HYiadVzxf0O1WsQ33R9VZ6V0XCN64DG0M2qTRls1nL2eHfLPbCNWK4rS+GEvKA6jzpfHva7yUfeilSXnEKzQnv536mp4LXeUMNDRzcM7SaR1Fk+czZbBa1Ws2ULRY58REaHDvlNmXuzs6OhaGl02kzxvWiQ+V3fu6o7DGskmukOa3+WZ9nIxYg3bPUNI0d+/v7WFlZsagPDc3b3d3FL3/5S2Sz2VgxI55JRT6xu7trfKjT6ZhXg94tpUUgfiYUeT5DhcfHx2O4iUayarVqihONICzW1Wq1MDw8jOeffz7mVVbZGMItes3T0H3ob36mcsTLCb6XxoJms2kHAlOZp6Fc0yoYqsoCGpwLpjH09fWhUqmgVqsdyc1XuVev17GysgLgUJZwz/GYhQcPHlhaAZW5RKKbS/urX/0Kf/mXfwkAOHv2LB4/fozf/va3GB8fj+Wf+bw2nRuGRDOi5ItqzxSnY1qn07EY3Pn5eQPcyswIFPr6+vDd734XAwMDFrqkniY9/FM3nL6LuU6aDE2i5VkH3ABMVKVAoHV/b2/P8kL08LJQjDg3pSZNMrSHAJH9bLVatkH1VG02/l8tFKok6jX+c86nB4Sh5i2rXpB66wi9ZyyNrX2k0CQo1VKkCqxZ2UsFL9/tw1p0PCGLEb8P0Zr/O6QQkiY0VIrXUVmhgP3Wt76Ff/3XfzXvgH/WcUDRAxj/Hd83PDyMb37zmxbuAhwqia1WCysrK5aM2mtueimRXlFSoKiKl9KiV8jZLx7YyQRWKkvs68DAgOUBAbA8h1QqhampKSSTSZw8edJoxFv5tVFBOa6FhKjnCwqO9f/cq7xXaTCKuqW6r127hgcPHpgApWCjkYXAgmGVDJvZ3t620L5yuYydnR1TNGlUIRBhyPDw8DBmZ2djHgkPMkiXWso3BPharRaWlpZiVZVqtVrMMMQ50MqAQDekg4fGPik8tteaHGcoiKKuh+Lhw4f4+c9/jsuXL+PFF1+MhbiRHyu/92vsgZaubcgjoWDa04RXHFTJ0LDrvr4+O6eGilOhULB8P+V35IdazXVmZiYGZvhcpU3lLd5QqKHkobGF5vtJaxQCsIlEtzpkLpczBYNykfKMkQZ6rhBpW0EmvUSag6cJ98oHlP/Ra8tr6ekaHBy08CVPD542PP9lHxkCmEwmzcDg99FxfP2zaqRzyiB6f4hj1BtGehgbGzNvcrlcxm9+8xucPHnS6DSRSFjeLM9Z4vUspV0qlUwec058CDDXhJ5UHibd19eHiYkJq9KmFTjJS7jHmTNULBbNIK6eU8+ze/Ez74nzeIyt1z5g03erzCdtDA8P49SpU1hdXTWspvKSBn1686hctVqtmOGQZ4IyioB5nJSHek4pFeTFxUVUq1W8/PLLqFQqWF9fx+rqqh2PwXnRaAmNgkokElYg4tatW7h69apVyevv78ef/umf4u2337YzqDgPnE+GnX/exgJtzxSnHk0VFwC2wCoABgcHMT09jU6ngxMnTqBYLJqiRWIlMymXy/asEGPUTVutVpHJZIzAeVgkLWRU2qg4UTA0m01sbGyYWxQIVyOiQkErAy3D+XzeYrcZdqX3UfCqtQeIMwdvedWQRs9gVBFot9sxC7VfCyBsiWfzygW/5zqwYpseHkyFkOOkdYVAcnd310KMKpVKrCCIWj+fVmnyax6yRPmxeUUAgFntNCSNVjLOI5Xcb33rW3j11VetfDLf9yTh2ouRe+B29uxZs9Tyeipp+/v7uH//vllFQ2PtNXZ9hwJGv3d8X6lEcc1HRkYsDG9sbMwOMOThfaRTFcJ8BkHByMiIGRN6eYc8mCOvYFNFwhsX9BpPuypouG9p8e4Vy9/X14cTJ05Ygi731c83SAAAIABJREFUOemd4HFgYMCs5BSgFELs5/b2NnZ3d2PherQa0gpLK65WN/KKge5zBdIeWGxvb1sVTP5oiXRdI3oAaFm9ceOGWZXX19ePzM3TNk/3OoYoiqxCFACcPHkS3/jGN7C7u2shncwDCAEpfYfyxOP64ulNjQXeEMLvFKywoiTPt8lms5iamkKhUDAgzvt8kjzDmxllwKZKQ2hM3rPC/nC91WinvM4rlf7ZobXx/EyVH3qAWAzDF31ReUiwFkWRnVXD79l3KmYEot6owXeTRwOHhYNCxhY/Hj9OgkcqwlQCVlZWLBfX7zXed5y8/H1bMnl49AXf7Y/B2N3dtX5ks1nkcjkrF95qtXDnzh07g45nKfX19Vn+NvtPRZReRCqznBPN9eIaDA4OmpeJvIue1f7+/lgOJ0OWlZeQfnhERS/MFsIz/FxlN398KLqnW10n3ed+X3gDBCMCNPqI7yLt8ToawYgT+Png4CDq9bpF5kxMTGBgYMBCswGYlz2KIlOO6VEqlUq4f/++Vc8DYPuE3iGOJ5VK4eWXX7b/j42N2fxUq1WMjY3ZXE9OTuLq1at44403jhjcARzhNV9Ee6Y4PUVT7ZaNrmqeVH3q1CnbhB7sMubzOIAMHAKH5eVlq57DA8tqtZoxZYIX4LCiFsNrFEyrgNDwIQoJxmpTCWPyOJuCSHoxyKS033yPWv2eRMy8npYLD0DVm6KgRQFCCHR4BYrCnsw3FArG/vJwPIav0EpIKzkT672Fv9e7jwMOSh+hps/2cwPALGL8nH3XvJ50Oo2rV6/inXfeiZWU9oI71IdQGBr7ogz+7NmzBjg4L6TBer2OTz75xA5B1PeHlB9tCkS8ouEVKV1HCoRMJoNTp05hcnLSFHIWhsjn85YMTyCsa8bwMwCmYNAar+vhmypNveg2NJ+heVAwptdqkYXjlEd6gXgILYGOelbVethut42P5XI5UwJYtVPPOiGd8V3qmQjRLD9jqXrdB/r/VqtlQpprn0gkzHuj66t5Cp1OB7VazYDXiRMn8Mtf/tJo8ri1etrP/ZqxBPX29jby+byBSAK8kLLT6/m9AG5IWehFFwT/anjS0Lx0Om2Hoo+NjSGXy1k4Ng1ttOxrmCVDbDQxXtcGOFq+m+PtpQiRR+g4+J236isf9+HOygt4nwJF0gsVQc3F0pxgKkN8vuayaJEZVcRDVn9VwigvABiQDSmEfs1DnxOoRlGEsbExJJNJrK2t9Tx6wtPa5wEq+/v7cenSJeOfVGo0GoD9e+WVV3Dx4kXzIj18+NAKM927d8/y53hUhHqaVJFdX1+3z4HDsDGCfu6D/v5+O4AdgOGbmZkZUxqoHDFXXPO6oyiyCpTMfwutk2IqVZb89Z4XqMGrl/FBm5d1ob5wnAyLpDdIjQMabqfVVTmHfX19GB8fx9LSkslA5vTREKTGB+aCMw9ya2sLpVLJCqHxuVEUWQE0oBsKznOcSCtTU1MYGxvD2toa3nvvPZw6dcruSyQS+NrXvoY333zzWFn6RbZnitNTNlWGgC7Bnzt3DqdPnzYrtoICBcqaxNhLkAOHLm3GVatQpsWVIRVUnFRI12q1WMwumZoKW/U0kYkMDw/b4WXsB3BY6Uutyr7yVwgQeHDkNz2VJY0p1uepRZogzytN7Kf/OwRCOHaN3wcOq6AlEglLhuT8UPBxDrREuWdKxzE09klDV0KKy9MwAn0PLTqcG5av5yGCXGMAuHTpkpWo9s/z/X3axnump6djViQd78bGBubn54+ETrGpAhbqG8GPVxzJ7FWgqNU4k8ng/PnzOHHiBJLJpJWMHh8fN08TjQ28j/uI4JE/mssQsrKHmtIhx+YBjo5Lv9MxKW3z+icBcqVHGjrUKw3Axs6wDSrdrDZGbyurCSqA1KIx6kHSMAztB4UngCN5SgpcyasePnwI4LDITqdzmEunYVH0vNFruLi4aMJ4ZmYGr7322pE1CfGtUFN67KXUkgY1L478vdVqWViRKv1e2fHrp+sd2i8hpUl5mxqHWDWvUCiYvBgaGkImk7E8GXrwyIu5Bxi6p0Y6tXxrbk/ISOQNafod6YYKDpVp/Z7361yHnqfzqp8r3fFzlTHqbfLhXnyGGu64vgy5o9KlihyfxbFoxIlX9j096VjYLzUsjI+P2/hZrZRheqHQzpA8CcnG36d1Oh0Ui0ULjd3d3UWj0YjR4ObmJgYGBnDu3Dnzls3MzBjAJpheWFiIVe4EYEULWFDj4cOHWFhYMCWUir2GoFLm8Uw6hiSzIqTmZpO30yDGSA1+zwILodL7/O3xB/vqMQl/aySOegr1uWq41u+8USq0xqq0e/moij/lpPfS8Rm8fnBw0NIySOuK6wCY8XF7exu1Ws3mNEQvrVbLig4Vi0UrPgMAhUIBL7/8Mv7hH/4B8/PzWFlZwdzcnMmeCxcuBJXK/672THEKtBDT4Ybg9yMjIzh37hympqZsI3Y6nVjpXHoxdnZ27Gwdv6H4PBIur2VsdLPZtMMjgcNcAa/AMPeACdv+LCa+Q2PZeR1L0mqIklrQ6ObmJvF9p9DwoXkhYE6XLeNmtWoWw0l8UrkPcfDKSgjk8DplblSKVPDRmqjfcw7U48HKhYwfZjgT19yHKYQEVcgqGKK34xqv3dvbM6CrNEDX+czMjDGws2fP4tVXX43NSagfofcc1yjIFQCrgGF5U/9d6D1egQyBIf+jVmVa13O5HObm5nD69GlLemXoLPeR5vwQGKlxg59pQjD7oOCnFzjx+U2qZPjPfeiSji00duVD+p2fU44xkUhY+Ab7TxCdSCQMCLLQAul+cnISq6urBqbT6XQsRElBG40RyscUtHK/qadC9wdDBXd2dvD48WNEUWSgpdFoWIEWjo3P4Bh3d3dx/fp1dDodXL161YB+iF6Po+tefMTPre7BcrlsYIvW2na7HTzJ/rh979c6BNT0Oz6LwJF7neuVyWRQKBQsqkDBJemeVmbN9dBwNM158ntO54EGJTb1EqsioFEGer335KpM8d5bb2zw8+uVpyg6LA3O+WG/+HzOiUZJ8P00MgBdOqXnXi35IQVYPWAATMEOycUnjeO5556zUEPS++PHj4NKk2+9AP/v22hgGhsbw+DgIB4+fGjhb4ohGHoVRRFu375tBYTYt1qthvv376PdbluhJo5zfX0dy8vLFnHDAgDEMAyfpuGae46Ftjqdrod+ZmYGxWLRilcAMLnPNaYCz79pbOC8cTza/Fxy3UgbpAvN/6KhyhsMeL+XcfquEG/g39xzNJirkandbpvxkphPjWZ8L9eKSiRDfLk3iGl1/TqdjuXzdzodK+TAnHDd95yX0dFRjI6OYmFhARcuXDAl9cKFC+jr60O9Xsft27dN4SZG7e/vj+X/+/ZZ0fbTtGeKU4/Wi6mRKIvFIk6dOhVz65NQdQMBMNcl7+/FaEmYtA50Ot2QkEwmE4sB5XcUOHwPmYh6IbTcr+ZHEFwxMZCKFBUWDdHTnKdeQA04tIqHrOOcSyZ/VqtViz0nCGs2m2a1oiJI17A+W+er17qFPueY1dPE+VPvGj9TpkkBS8Gv4I3hLv6cruP687TNM08FTATG/GxwcNAS9hnL3el0rNCHJiU/qSkTDynKpA31xigdtNttLC0txQ6B7GX19MJdP+ePAjadd7U65nI5nD17FqdPn8bY2Biy2ayFYjQaDRMiXmHW5wGHhSJ0ftm/Xt5P4GjCND/jftbwDABW5MMriapgUNB5uvSC0SvrnDPdO/S0aUl+hlRwzdjHoaEhjI6Oolar2ZgYvqKgl/kG9XrdCmvwvVqMQveM0o96EpaWlrC1tWVhNBwPeRgbw5MJ2Nvtth3oSIu8rtmTFCZPb54WQ/u50+lWOn38+DG2trYwOTmJqakpU5z0UFz/PG899n1Q4O33jn5PrxL5pOaKptPpWOW/XC5nxh+uNXm7Krl8p/eSqJzyfef1oRxeAic1LOnRGHoUBj2f7FMvY4tfF/5WWlLlPIq6hQC4B2ntVy+qykulVXpm+Zz9/f1YWXM/Lyozdnd3sb29beuhMpT7k9cqbfBdlMOnTp3C/v4+Ll++jIGBAbz99tvY3NyMAXRPP71wy2fVKG8Y0kxASx5KhSGZTKJSqaBUKmF+ft5ytUkvDPHa39/H6OgooiiyXFIaWDnXNPYQDzF6gAZEGmV5ZiBD12ZnZ81oRvrzHlSVXZQpvbyQOtekcS8P+B1z3fRMsGaziWazaQoD1ybUp9CPN+bxfaQdNXpT7lPOJJNJwwPkowwx3tnZQbVaNd6ayWQs5520zAgmKrgcO4uScW65jzTSod3uhoMzLG9gYADlctkMcul0GmfOnMEHH3yAd999F3/2Z39muIsV+UJlxz9r2n6a9kxx+h1aIpEwbZhWW+DwhGYgLhC1olkvQalCRi0VZBw8byKKIoslJkigQkV3OMMvFMiTABVUMOZdlRNN8Pb36WfHKSiq5GjIwcHBATY3N+3Q1FAuAJUrnqtE5qJCNOTO7uUi53pp/DpBjQpWCmu1jKjHUKuT7e3tWR6GAneebK4nl4eUgV6gKTSXvf5PV7vOcSqVsqRaeu7U0tWrfRpwonNK6xDnU0MegO4hd2ql0+Im/tl+njyY4BqqVZBCkwnvxWIRFy5cwMmTJy1/h9UnuU+2t7fNks65IYBipSEKBQUB7Ic3ePRaI72ewlPDQaMoMmGTSCTMG6AhI/xNYBkCrJ6edK0VfLMIDIWk8prQmrPPXvHlczlffB7BJsemcfAKJmlp9UBhe3sb169fN88Y9x7HpAVv2Heu4cLCAvL5vClrflwh5T/UlB/4exU8kS7a7Tbu37+Phw8f4tSpU3jppZfw4YcfGujwtKLP9F43NRAocOJ1mjubTCbtCAVWxlMlleutRU0IHPVsIVWsCVR9+FkvpUmbVxgIMAnG1FtAhYKV0egJAw7PXaJFmnwl9B5dM/2tc65zzP1E2uD8MhxRFVPONb3YVEqV/wOH5wb5d3OMVG5o+BgdHcXKykqw6qPSnfIb5jlvb2/jG9/4BqIosoplKvN033vlydPh0xrPjmuJRMIOYAcQo1d6LjqdDs6cOYO+vj6sr69b6B1BPEPgWRCLe+fcuXN2XiQjUkg/WtWT5/EpVup0Ds+iSyS6nnNWT1WepIoG+RXpQpUm8tBeclCblwmtVgvNZtNKqlNxZ4EMpkiQPrhPiXf8GnraD32mPJ/9JZ3QSKAFG/geVhLUs0E1B577hhiHOfg0BqTTaZPvLA+uRjn+MHw4l8uhr68PpVLJKnYCwFe+8hW88847tue0gJmfD1VWe/H0z6s9U5wC7UkL0W63MTk5aQqLlv32C8vrlTGHlCcPZPQzKk6s8pZKpQxI0P1MYtZ6/HyeWoDZUqmUJQgTBFMwqGWG94WEaGg8ypz9NY1GAxsbG2g0GrHDeD1zYt+bzSY2NzcxOjpqzwaOWmw9oOzFbPi35ofxebScqVA8ODiwkqoE6Mnk4TkdtKSr14UlcBuNhj0rtOa9AIBvISsTACv9rFZ35jl5L93KysoR2lQa69VCCo2Op9PpYH19PQaWCRT4HgpSFea9lCcdrwp7zq3GtWcyGYyPj8eSeE+fPo3Tp0+b8UC9hJ1OxwQrlRUNPWUffZhGyLrVa52oDGiCOu+v1WpYXV01sJhKpVCv100BZ8gLLXWDg4PI5/P2+XEA1oMXIG4d5Zxzr1Gx13A7Vab29/extbVl4EzL+VMIa0hOu922pGRVhvgd+6j8SK/d29vDjRs38PjxYzM+sSIg71faVuv+7u4u5ufnMTw8jMuXL2N/fx9LS0uf6bkenr9o29rawv379/GDH/wAQHdf1ut1FIvFWIhY6P5eQJbzo2GRvCaZ7B7gPDk5GauCyjUm4B8ZGcHExIQpVRo1wPxIAkXyLQVdHpQon1bA7hUVBaMMKSPdK20yTLvT6cT4FT0UavBQgOf5vn+/Vx44J97oQYME6YlKve4lgnANGycPUp5LWaF7SKvyUa7m83mMjo4aL1IF1ivRHM/U1JQpwjROfPjhh1hfX48ZE9X79EWASM4N369e7Ha7jY8//hjJZNKKWczOzlr4FueESgzQ3d/r6+u4ffs2RkdH7QiJRCJhB7JyX9BQRuxCbNTpdGJFf6Lo0CBK2uS+0rXm2npvEz/rhS+AQ7rj2ug+3Nvbw9LSEubn562AQqfTMdqv1Wqx0MV0Oo3Tp09b7lhIUeolJ9nYX/5Wfp1MJm2fa3QTx0R8GUWRKTbEjCMjI0gmk3bWaKPRwP7+PiYnJ00+segSAJTLZesHj7pgzmyhUEAUdb23euRFo9Gwisbs1/DwMDKZTPA8yuPm5/NuzxSnHs0DciXS4eFhTE5OGrNl/LGGK/A+IF6aWJ/prY1eadLwPhaLqFarGB4eNmFKgtZqb7T00XrgvUhRFMUOgVMwo5sFgCkFIfCggj+kQPmx0fJIIcPPdW6U+Fmph6BJBZ//7ddKGYxaUTVUi2tFpsLvCCrr9bopAqxCSMGQz+cBdHPSKpWKvZPAm2FzzN/qdI7muTxpo6vSoHSRSCTw5S9/OVaGlUVFMpkMJiYmTIA3Go3YAbQhugu9V3/773hfq9XC3bt3TcDQ0sf4aYZ1PS0zC9EW14oCjeFJZ86csQMR6X2dnp62fD0ybdIyKzZxT1GpBQ5zNGigUA8lEA/b9PMSElxcL/4+ODjA4uIiFhcXjZaTyaQpB0BXsWKiNQHXxMQEXnzxRTMccJ/22ot8JwWmggMFVfSiailh/tDyOD8/D6CbTzAxMYGJiQlT6jzQ4Px6Iwj3uSqnfD/putVq4cGDB/jVr34VO6DalzomKFKATWCUz+ctATyRSOD69euxWPiQoSrUnhZwUjmJoq6l+8aNG/bdzMwMlpeXMTY2hkKhgOXl5SMywYNb5XukeQJAgnLSMytDjo+PxyIIaLnnvfl83uaFCpIWkCBQ4r7wCrf2R9e113x5o0wUdS3P8/PzqFarsVwK70VTLzIVe3qQVZnzVnhVpvy8hj7jPbxPQ2BVhmiuI/eqGtl4D3mEKk6cQ6V7jouHR0dRZIc1U+ZwPpReE4kEnnvuOSSTScvRqdVq5sUIGb2Oo+EQ0P5dGxVjzhU9/MQpPE9obGwM6XTaPD88WFbHTB54cHBg0Sj0SmUyGXQ6HcszIxCnFwKAAWoq2+l02jxclUrlSJ439wJ5GWlEC2/58HOO2fNc3k9eqLyuWq1ifn7eKuByvZjzRLrhs2jsyWazhuuU7nUN+TlwNLqGn+l+o2LLved5EnkCDe/j4+Mx7Ee6LxaLWFlZsYNnk8mk5TXRUzU7O4tEImHKU6FQMCy0u7uL5eVlAF0ZPDk5ic3NTcO029vbxrNSqZSF2z9+/NjyC3X+/fi/qPZMcerRQiCO/2d4QafTsZA4TSbXsDaCABI040I1nCsEZHVD6vvVWkgLuoYVsbY+GYYKB/Z/cHAQU1NT5mXhfRr+pe/1DCQkpPyc+blTQalAzQsKrzxqIrEqRU8SAgokOY/+c81pUiWO4QEAYq5oCgsyIjJqWi75PQEMv2fBBh1vCHSEGsNFmOdBJeHKlStmkSZDZBLlxMSEPXN5eRmLi4uf2hpzHCgCDvN5WD46l8uZIBseHsb+/j5yuVwwHCykaPdq3tOUy+Vw8eJFFAoFEwB9fX2YnJzEyMhITKByDfguGhhUkOoPED8TwoNGT3OqpOiYvKVyc3MTi4uLVtJVC4uQtnlgNS2VVHwKhQKKxWJMkdM1UiDqjTMUehquSeGkXgyuJ0NQWfGKseVzc3MW5875o5Kp4PI4pUBBHsfd6XRLFr/++uvmFeXcKajp7++3g4uVl3HcMzMzluewurqK9957L8gfQnQcmk//feg5ClyoHCWTSVy6dAkffvghstksvvSlL6HRaKBSqRwxDvE5fh8QfPBoiN3dXezs7BjYGx8fx+TkpBkHaCRTukun02b9Ve8vjWIMIaLsIt+nx1gBExU5z+OVvkMAvt1uY3V11XJZ9TqvOPEdHEOn07HDM9V7EDJYqDLVS3nSaA71YKmcVvCofVKlkn2gh49GNpWZnENVeEkr9ASmUt1za1ZWVizUudM5PMiTjR6IZDKJM2fOAOjKo48++ih2rqOuy3HtswSYURTFcrc1H5RjZ3pBp9M9xzKfz6PVasWOgaDnRVuz2bTqawTQeri6VoSkp4m8ampqKlZRmJErWlaca6Wh+aq8e/rX1ivEkrSkhsy1tTULSdXiDEprui5RFGFzcxNra2uYnZ21vavv68Wf9BnkC9ov3cOUOZwHyiRWISwUCmYI41xwb+pZhq1Wy/Y3q5sSHxeLRbsmn89jZ2cH9+/fR7PZxDvvvGP5+BcuXMDExARmZmZwcNA9XJx5+olEwhS4t956y+b2ON7+RbVnitOnbFEUWUw2AHMT+xwh3WDNZjMWxqQWB+BoSJRuKAVh+n8Nf6IFtNPplu7d3NyMJVDrO9QaScZES5e3CoYsLt7q1wuEeAEbEri8PwQgvCDTd4WsPgRbfq30nSpIVUhr6MjOzk7s8DYm9VIB1jXRMsQUqCwJTwBCQfn48WOsr68DQIxp+r56BkiLTrvdtrO8Ll68aOFo2h+GgFFZ2Nvbwy9+8Qs7PyH0jlDrxZhD67O5uYlHjx7hypUrxpwJNhhq4UMCntQUqJBx9/X1IZvN4uLFi1YxkIKI4QIqGNkP9Z4y9JTPprKp1sXQ2P2P0rLOj4JpztfOzg5u374dAzn6fu2z3sdwnwcPHmBubs5Cg3v1za+V7xstu1SatOIRz+OgFRyAFcc4c+YMcrlcLIdJjT46h9ynobwPnzvDghJ37tzB3bt3zbjEhORarWZGiv7+fgNEOnccO4vbtFot/PKXv7TS+7322KdpIZ6jYIug8P3338dXv/pVO9dsZ2cHk5OTmJmZsf3H52mOlAf8yWTS5oB0ybyl4eFh86gSbNOYwrVggQzNi1Oa5/Nppd/Z2bEQZF7nQ5U8D9fWyyjSarVQqVRi4VnKz3mNenPVCECvw3GV6EL7wRvI9Pk6RgXOlMUqF0jXIZ7A9WPIF9eHBjXuN84xx0zlmkbW/v5+PHr0KBYtwpZIJDAxMWEy5uWXXwYA3L9/H0tLS0c8+V4m6m8/R59Fa7fbWF9fx8zMTIxPc3xUGnmUwMrKCpaWllCr1ayohDfoUqaqHCHPIb/RAhuMDKGMZO4Mv1tbW0Or1cLm5qYZ2tS4RZ6le4+fK05RzMWxa7/1Orb9/X1UKhUzNpEW2Hd9hq49z7dS75DOT6/19HTvlSYNI6XRS/m/zyEj5tGQfyrEGgXD/DQNLUwmk3ZWE8P/VAYxSoeVEx89eoQf/OAHGBwcxNbWllXY05zLTz755EiIcC/6/yLaM8XpCc0zTgonXTw94DaKIgtVYmNVGE2OV5CvxO6JwTNyPWxUNzc9TaVSyQCit1LTclsoFAwYcUwq1Aj6NSzGM5QQkNbGueCPWuRC1n4VcMrg1AL4JCtDL2Cpa6c/KsC5hrTeUggwjprKlQJuPa+AAC6TyRizZNhMNptFNpvFBx98gI2NjSNhHdpHb5nmWpCJDQ8P4zvf+U4MIBMAUBgD3RDClZUVU6QajUZszj4NowmtM9dmY2MDDx8+xJkzZwyAkWkXCoUj4ashIKqfc36p9FBpyuVyOHPmjJ1mzsIms7OzZnWn4suQPo1tVyuZAm81LihwC9FRSFHx3yu9djodrK2tYXd310IguPakL3orKVQ0bCWR6IYt3b59OxY/7oGkCk/dK1RaSVMEcwRx/L2zs2OJ2+RvLDqQz+fNU9fpdCwcx1fKU8s85y/kZWE7ODjAxsYG3nzzTWxsbNg9IyMjlrvG/MJcLmehaeRPBI5cw06ng+XlZbz22msWDuQNLiG60xai8xBg59g417SifvWrXwUAzM3N4fbt20aPqlAqCFPFiY10TSMI5Qa918w1i6LDSAY1rLGSnio+WlaZa8WwKc2d1ZBY7j1V6Hk//9Y58vO6t7dnYcqUVWxegdL55LMZFurXL0T3qnj24m/kk9xvvEajGrQ/nAfd0x7EqnwkLXAPqveJ49OwLMqWdDqNjY0Ny/lVuXf16tUj++anP/0pyuVykEfp2EM0/1mDSx4pQjrlmMvlMhKJbt5mo9FAo9HAG2+8gVKpZMYb8kQakylTh4eHrSCGFvHhnGr1SIJ9emJpMOh0OpaXWa1WUalU0Gw2TalV76MvAuHpXmWFrq/SKtfXYx7y2pCixfXyfEXD9/Qe7vnQPuQ1bJ4OOIfcV6o08bw+5pDRu6dKl8rwRqNh+JZzWavVMD4+brJT5SrD6zgGH0UEAI8ePcJPfvITPP/886jX60in07h06VIsnP7OnTvHGm4+K4PA07ZnilOgHQeU1IWrShDdwlHUdVUSZCtTJ2H5qjpPs/gkajIOfsb+cAN0Op2YcsLn9vX1YWxsDMVi0coGK3gj0PfgT8OkQuFCoaYbhe9XsOgt7aoAhOZMwaAHGvo+XhuaSw+A+JtgksBVGaomBhNwk8mz4owqm/xuZGTEkv6p0KTTaVy7dg3vvfeelXgO5cMpwOG80aqcTqfxF3/xFxb7H0VR7PwWVfDK5TJarRYuX76Mdrtb8tW/q1fzNO+ZO/9ut9uo1+u4desWrl27ZtbGKIpMSdcqVJyP0Fj5fKXzvr7ueROFQsG8bKykVygUMD09bYoqgRYP4eP5UvrMRCJhaxza38rwed9xCpOfsxCAYygOlWpa3Ohd4floAKwcLL0+FDLb29uo1+s2t36d9Ee9PTqnqkR5YKXKXCqVsryXkHGA4KXZbFpf1SvQKwRFG8Nnbt++jUePHh0JnaLHZXFxEa1WCzMzM/YcCl+Gr1GI7+3t4Wc/+5mVwO/17hDIP66vSiv+c461Xq/bwb0A8NJLL+HBgwdHvIzey+FlAK+lgYT8kACSFfI4z6RXVh4l7yevptGBYVTqZZepAAAgAElEQVTsD0OPuWd2dnaM13kDmd/7qgD5OdMxkM59+Jsaw/y6kI8mEomYx4bfq9Eu1Df2LyQjlHYBxPiv58MKIFWmKD9RcK0l+nWeNBTQK4LsTz6ftwgR7XcqlcKZM2dihp1qtYq33norVvik11z4Pf55tJ2dHWxublpkARXF9957z7zEzFvS5H7SHIBYREV/f78dj6KGL84HjYKdTsfC+dRYoCHDVKaazSaSySTK5bI9l+tB3uaV4BDf98qONyDoviCdcf+qQsH8KWJAPlejfXS/8Hne2+QVJ+BwD3n5xu+IPVXZ0zP4mD/MPaLGA17LqrQ0BK6vr9tz1bDHZ9LA1m63USgUDIewD1yv1dVVKzP/5S9/2WQAAPz617+2+0K8+Gnk82fdnilOPZpnRgqk1KWvLkrmW6TTaXNRA4dVkbyXwTN4vwl4rT/DRGvyR9FhKU4KRv1RC+Ps7KwlW3KjUjGi4GU/6bXSREluVi/0tO+6UXUO2V9V/ri5Qs9TAM3nhRSjkAAOrZ32S61GFGgUagQbzFfj/FOgE8QwgZFWdzIAKgzMadrb28PAwAByuZyFeH788cdW+tODCgXA/D9jiOfm5nDx4kXzULC/auFkngrDXKanp9FoNPDhhx/G6OhpWi9GpOAgiiLcuXMH5XLZcozYf1oBGcPOuVfPq1cEOMc8SX58fBwXLlxALpcz6/nIyIidA0EBxcTTKIosUZ5CkoKMQkCFh9It114ND2qA6NX8PlZ+QMEeRV1PNPOcWHSBHk0AsTh+Al6GQTSbzeDe8gYSADGgx33rjRG8nspZItEN9cxkMrE9T8OBVyR5Lg69O+wv388+KM/gc/b29rC6uoqbN29adVDOf61Ws3UaHh7GwcEBzp07F1NmAZh3OJ1OW9jQW2+9daTy0nH0+zTtOADKMTYaDZRKJZTLZYyOjuLkyZNGq/TYMXSa//cGBL6DynMmk7G/O52OVRLTUCXue4IMAjA+iwUmfM6GgiR6ohlOxPVWevLzoaDNg0qusz+WQWmOf4fGz/tZvr/dbgejFNg87eu6aB8VFKsyp95/VUi5B9Vwx7FTbuoe1PHwnZrv5IEy54DKmacHnsOlc/eTn/zEIkpCjX3s9flnBS6V9og7yId5CDtlarVaxaNHj4zvaX86nU4sbC+VSmFqaspoX6NqSMPtdrfg0fLysoH18fFxkwWcq/7+foyOjlpp7HK5bKW/OQf7+/vmjSV9qLIToi39fy+lXmWO4kPKLp6nRt7JcwY1vUJppdf7FePoZ5SxXrlT477SiipIrKZHRZbeqoODA1NCeS5cX1+fVXPe3d01Oce14/qyOAyPz6H8Z649q9xub2/j7NmzOHHiBPr6+nD58mUAwI9+9KPY/vK0yN/PFKf/5hYC3/zNkLhOp2PWEiak1+t1Ax4UTgDsQDY+g8RN4M0WUqJUwWDFLYZW8CRlHnrqBVkURRbzPjU1ZSWs6cHwBSGAwwo1Gg7DOfHz4/sc+k7v03AQDWPwIJpCh4JfrS1P2hx+7UIC1SvAXllhyJsCAeCw2ABd2VppiYoT71flZm9vz5jQuXPnkMvlcOvWLTx+/NgSgkPj57zs7+9jaGgI586di32moJYMrtFoYH19HVEUYWpqyqzXrNim833cHPZqnklHUYTFxUX8+te/xl/91V/F5n90dBSnT5/G8vKyASDSnw9T4p7IZDK4fPkyTpw4YWCeYWrMz5icnLQcJ+6zXC5nIJCMX5VjKgM8E4VChP1SZUUNBU+jNIXmlGsURZFZ8QgoKdTVusdnUGFnmWkKWYZ/UjF9Ut/8+iogJCDh/qYwJN0qiFBF14NdDfdggRBev7OzYwoW+RxpvNVq4ZNPPsHq6qo9Sz3n9N6OjY1hd3cXV65csb1Ea2cq1T2SgRWrfvOb39jhs79r87Tteba/lt+zrO78/DxGR0eRSCTMcDI1NWVj09AvvsP/Zm4EAVa73TbPpJamJ7gi6OExEjQaEIRpCGWI1qIoMsMe7/Nhab0UFW9cUJlBvqY8Xi3xPseXtMT3srrj9PR0jLfq2H2f/Fr5e3zYMPurBk02VVB1HnQc+k4N1VMjAwGrehT8c7hHlKZYtRc4zKkiwPaGGm0h+uJ7P43B4EmNe5TPJ/9st9uYnZ3Fo0ePUC6XUSqV8MEHH1iBEI1a4fiZNpBOpzE3N2cGJD5beXGr1cLKyorxeuCwgJIabmgMnpmZsfMEa7WaXcOQY/UMqhL8JKWFffM/nGd68Bl2y/Fls1kbH2VTvV7H0tISGo2G5eD5MFWPD3phMH6mvFpDUfVeVfBY7p7yh0o993W1WjUFh4fYEpeQ16lnm1iDRYV2dnYs8oYRKAwF5xl83/ve9zA7O2tHv7CS4q9//etjZd1nTdtP054pToHmwxSAuCJTrVaxsbGBYrGITqdbEvzg4MAAq5aF7evrO8LsuFHV8t6r8T56mqhw8PPt7W3T+oH4purr68PExASKxaKFBHnARcu8Jgbrs4B4PL8nYM+ojxsPy33u7e0ZkFQFgeMk01GLDS0oCti0D09S5DyoDSmECqB5j4JLMmgVmmTSZJYAYoI1kejG+fK5PPTuzJkzds6DByqDg4PIZrNmdY2iCNlsFqdOnbK1odDXssssV18qlZBMJjE5OWkhTSHP3HHC17eQsOacHBwc4K233sL3v/99CyMkaDt//jzefvtt+4zMVc914TuHhobw4osv4sKFC0aH9BRx7orFornwCahSqZQdxkeGrdY27puhoSETZgBifeB+peL0tGGpSrtqyaZCQUGj4bAUSmpJVyHW398fO1+NSl69XjdhEhKoofXyQJjroIol97/SrIa9+FAlGm+4l6MoQqPRsP1KRY/vJ2Cl4SGRSOD27ds2Dm+tZZls5q+xzDiv5z7k8Qa1Wg2vvfZa0KN6HD8IAaGnWWt/T7vdxsbGBm7fvo0XXngBQDcvq9PpGBCkN5RKog+pVMDFMTFskh4lWnlVoeN6Kv0yNyw0dn2vKuqqPBBoEWT6udN5854c0lulUom9n0ZGhtuSd9HAUKvVrCgP31EqlazwEhU78maVobzHr6PuSW8E472h7yk7CT79fZ5mtWgQ5RmVRho8/B5UWmD0gvLoCxcu2P+5Dvfv348VGvFr06t9HsCSRi1GUagi+Id/+IdYXl5Gs9nE2tqa4SHODfeC3jc8PIyzZ8+iUCjEMI6OgfOqRmIAppiQf+k6EvewUi6jXVh8hWPRAiq6vn4e+dvvF+0rFSIeQs0+MtRWZUu73TZPzdraGjqdToznh7y7vm/KO5VPqlzxGI3PURlEzyEVJ/Ia5sDSGDM+Po5MJmMOAc5HL0Mb16tYLOLUqVP4u7/7u1iUA8/smpiYMBo5d+4cAODnP/85tra2YjTsf/93tGeKU48WEjrA4angjx49stAJHnrK71RBSiaTR0r/qqBRAg8RggIkxn2TSTD5WM/50HeMjIxgZmbGrKB8r080pKDk9xriRIbey+ocUqZCY6FFYmhoyMpe0nuj3jcyRvVQULiGcqB6CUydP28V0mRTgjoyC7XQKgOmgNOyq/yeIIBAlAxImYp6nfis6elpU3o5vkKhgBMnTiCKIjtlPooiKxHKZ3EsmvS6vb0dC28BYPlbPq/ud2meWTOcjkxzbW0NV69etTCl/v5+nD59+siaEaQr0B0YGMDp06dx6dKlWEEO7iGGPdETQ1pUJY0Cxx+2SebP+Y+iyOLquQc1N+Q4ENKrKW0BMOUhiiLbrxxPCBDwHirOGqJKWtOS9roexylP2lSwsa8cO+kaQEyJ8hb53d1dlMtl7O3tWTU7WpMJ2D2vZJ8VVHLtFUSQx62trWF6ehrT09N44YUXDEhp4jJDRxYWFnDz5k08evToifzT02+vNTyuhXh1u91GqVTCRx99hD//8z8H0M3T2traQiqVwtzcnFUO9EYM3Rf8m99TaaKMoUdQARVBO9eNRgl+p2GBXGv19gOwoiUaAuj7qONXxVPlDvkk15DvSSaTyOVymJyctLxHffb29jbK5TIqlUos9LNWq1lZanrUvSe4l1Kg/F6NBPq5H5P+rXzAH6OhcpDPVz7EZ2v5fr9vlX95pWlgYACXLl0yWfHSSy9hb28Py8vLQcWpF8APfaYY4fdpXI/Z2VnLp223u2f3TUxM4MqVK7h58yYajYbxFtI+aVarFk5OTmJqaiqWV+bDblnBTedQeZd6QCmHBwYGMDo6amcKMUKHMoXP0hyq43ip7n/vsVReTW8MaYfRAxriCRxixEKhYDKjv78fzWbT+KvSuOZ98Tn6fv7mNYpR/D5RvEO+ogZ0yoparWZrwYPnuf5USjWiQCOYiFHa7W6OE4356+vrVkQkl8thZmbGMNPAwAAKhQIA4G//9m9jXuJQU370RbVnilOgKXMNLcb+/j6uX79um51WahKxbmL/HP2MIOo4Ye2VE4YrMflWw6/I8Kn8jIyMIJfLWaw0v+fm0AMmNedJQ5W84kSgqc/Tjarj0d+cF3oOaIFUdz83OA9L07kiCFDFTecztIYhy5D+1vvU0sLrdS0JZhXk7u/vW9Uehj1yPAyDoVJaqVRsHWixT6VSKBQK2NvbszKtly5dwsTEBJrNJhYXF+39aqnibxa0UIZNK/WpU6cslJNlgXW8n9Zqo/PMdT958iS+/vWv486dO+ZyZyPTnZqawtDQEBqNho2ZjFqFeT6fx7Vr16wwgVplCUh4ZhaBvSpOvSzR7C9BPL1X9H4y5JFel1709KS5AeK5Pcz/odDUfawKFhvpXhUMGi88uPJCnPcrn/B8g/NIJZ90ybXgPqbnQhUs/uzt7Rm4jaLIQix4mjwTgak0axgqcEj3rVbLCqho4xg3NjaQSCTw8ssvmzcfOLQs01K5sbGBf/mXf8HCwoIpqb3WTudB59C34wRwyEjDz5koXyqVUCgU8Ed/9Ef40Y9+hGQyiYsXL+LWrVsx0Bjikcrjx8bGkM1mjV41JI8gtNPpWDQDDV8McfYh3UpzvE69+5oDpWNk/zwYOm5ONjc3zcBHI8rY2BgmJyeRTqdj9Mvv+Vl/f795nlqtluVOeoMdEN9v2oeQksT55f8J9kJjVvkdepaGdqlxjftWDYEKWHUuyeNarZbJOv7k8/mYZ/GVV17BwsICtra2jN97fuzXJdQ+S2DZ6XTw29/+Fn/zN3+D3/zmN6jVauh0OoaFvvGNb1hl1+HhYSuIwznXUGDKEipNqhgAhwW5yLfovVdvj1dKuT9oQN7e3o55VjTvnAZoen78fPp5Jf2oJ1HXhJXrBgcHYwdTe6Ocyj/mDbG6HZ+hfVGaVPlIevPrq+PrlXahfVLsx7XY2dmxPLZ2u23V8wDEDnPvdLrGyZGREVNAKWtY2EHlLPtULpfxzW9+00L0SDsA8O677+L9998/Nm/Vy7svqj1TnHq044RDq9VCqVTCO++8g29+85sW2w/AQlho/fbhDn6T83fIG0BQw42hZ3SwYpEnHFpOfGUlMiRuDG5EBWPqVQpZ9rT/+rdn5Hqd/lBgDA0NWf6SVy7VEqXWVDLJkMUsxOx0zVT49WIgaglSkEqQoUB/d3fXQiSr1WrsIOIoiiwkbHBw0EJWNjc3jekoM0smk5bcOjU1ZTkRLOfLfo6OjhqdqDWIQoB9zWazGB0dtWpjiUQC169fP8J4ngZk9vqOP1NTU7h06RK+9KUvAejGLKsCSWE0PT2NO3fuAIDl+BAwJRIJs1ISiCuw4Pyrt0g/V0svPyPIV9qkZ1HPXNMDq/kZ8Omtsl7AttttK7mr3gE/t0pvzF8MCT+9T9+l7/P70t/DeVMwyLEqgOGccA5Jpyw6whLWTOrm8zTJOVQkQhVGehTUWqvj3d3dRaPRwMjIiFmp1eASRV2v3MbGBhYWFmIlv0Pj12cfBy51DnvxO322XsuiDu+88w6+//3vY25uDkNDQ9jf37fc0u3tbePZoX5wjUZHRzE9PR0rtMK1I62TzllRUvkVQ+FoLFCvHvP9PE2qB4VrF1LGda78nPJ3vV5HFEVHFKdcLmceKcoDyqjd3V2riMky1YlEws5zokVc515B69OsqXoifIifygUFk6GQMfXcMqSK4wm9lzSsf7MvpVIJtVotBoIZpqd9unHjBubn54P9CdGRrodfs8+idTod3Lp1CwBw/vx5fPDBBzHv/ejoKL797W9jcnISr776Kh4+fGhyj/yWNNzX12eHnrL/nAsAZuilQq34hykSoXPeFDfxMHbSkBquyH9paDgOhJOHkS/qMzWklOPS4hPaJ6/4Uh7xmT6Chc9XGgbiHqgQtiSNhkJa/d8qK8lvms1mLBKCBuSdnR0sLS3FzjCr1WrGs5PJbuXAlZUVlMtlpFIpZLNZALAaASwqceLECZsnxcs//vGPsb6+3hOz+XV6pjj9L9S8kgDAwqVWV1exsrJih5yqNWB4eNiUqJGREbPIkGCAw83biyjUmp5IJCz0Tq0pej1DIvhuhrNo/9SiQ4buLWrKnD1xeqbtvw+FQ6hg4eandcELaI3/Z44I50rPLenVB98/Xb+QhYrPUysJr2F/uam57lSaWFKVTCadTlviZ6vVPeCzXq/bOmxtbSGbzZpFiZYUKhf5fN4SvG/evGmgJ5FI4PTp0/bc/f1989apNUYtRUA3mfjx48dYWVn51EpSL2CnP1tbWxgbG7NnaOUdCqOBgQGcO3fOclo03p3KJc/sYEiOKkea+B4Ca/xb7+E5NhqeqFYy9ovr2suyeNyc+Pt8fxTQKg1ScPpCAQrmdO/pc/VMnJChhXs3ZADwigA/U4MK5x/oGgeoOBFU0LtNIajhhxpy20s5UDBEcKDGGjWisNQweYIPc+l0Orh9+3as3O2T2nHGAj+PvT7rBUabzSYePnyI+fl5+45eNYYLMQwtpIxwnIODg7hw4UJsvOphUmWD+50GFiq0agUm32RfuZ46t8DRQz6Bw6qQ3gPgad0b3+hBIV8dHh4245BXeDgeetRVAUwmk2g0GtjZ2TFDkNKz0os2rwTyWjWe6Xg8ONWy17xH+YjSuXryFQPoO3gt9y7XZH19HQ8ePIgpXX19fXjxxRfNsMAohffffx+lUikof/XvT8PDfp/GPcpCO1HUzV1iqFki0Y0uuXjxIpaXl7GysmIAPpVK2RlW1WrVDnb3XkXSpHrwUqmUVccrlUpot9tYWFjAqVOnjsgPzg/fB8DAOnBI88ChsYvhwCGjMcftMQTv5+cauqm53KExqvFFC3552lOlXvGVx6f+b61sqdd4I4TOFw0HGgURRZEZPvb397G+vo56vW78P5fLWUgfANRqNdy9excfffSRhXXTiKx87Dvf+Y71LZFI4Pz58/b3v//7vwfD9Hopf88Up//mpkK8V6Nl7NatWxaPrPfqJpiZmcHCwkIstwDAEQHiGT2TCxnbPjY2ZqEr3Jhk1HxnPp9HLpezMpxra2t2foEyA7VgAocMISRcdFN5S4k2L6z4t1oMQqFaupn4Pnqj1JpC1zXHwhbqh24mr8B54aOWHFXytLIS38+cMs4PQcrg4CAymUyMGdLLwetZtIEHB1KpopeIoWN37txBtVo14JLL5WKHyWr4F5M2VUgAXQVhaWkJ//Zv/xbz3D2NoNX11vn0NLC8vIxKpWKJ8PV6HdVq1ZRiPvvFF1/Ez372s1g/+B7mcXB99L1krqRxKtKdTsdC7TQmW2mHHl96fZTGt7e3LWSAZbWfxHRDtO2/UwWW1keuP/M9VFHX/aiHlPJ6zoUCQf7wGgW1+r0Hu37dvdLE+aTApOLEUBPynP7+fmQyGTMAkEZ5v5ZKJhD276bhwMfda780JI3rq6Bhc3MTd+7cOUJTx/HtTwsan3S95y3z8/O4deuWfXb27Fmsrq6i1WrhwoULWFhYsOeGnh1FkR0Aqp5ATwMKcDRnVC3+rHbF9VTQpiE2CpxCFvEQkA3lS3BcmrtG40ihUDBjBr3saiSg0p7L5cwYpUqd5kL6EGrto+ctfA7vCfF/XQ/KFl8cSIErx8S+6LsU4GsIpIJVhncvLCygXC4f8RZPTExgfHwcQDfX6eWXXwYArK+vxyrJ/XeARW3kQXfv3sXIyIjJM2IQhvAmEglcuXIFb775ZoyXMHqG+ZL1eh35fP4I/+dv0k1fX/d8JtIED5R/9OjRkeMw1NDKz2jsCc2bHqCuctyPGzhqsFXFCYDhP3rB+H81eukeo8zQKsdqwFWDhvId/e1pm7JHeQb76vugRgwqe1SE2+1uCkAul0MqlbJKgLwvnU5jYmLC8hSjKMLPfvYzNBoN4zWzs7PY3NxEs9lEPp/H9vY2Tp06hUuXLqHTOYwQmZiYAAC8/vrrxi85vl40/0xx+l+k+YVQKyk/z+VyVlJ4dXUVZ86ciblNKQzoinzjjTfsfiVcPk83A601ExMTVtNeQ/A0N0ABEMs9Mk9keXkZrVa3fCfLYSoo9sqHuoHJ6AkqfdUZNt2soXhfnzToc4m0D/p8fZ8yP75T3x9aO/4/xFD8WmqeFfukCfKcBz0HQRmdFhZQsEyvA8EkregbGxtYWVkxQUNGRavXvXv3LKm+3W7j+eeft35Tkbpy5QrW19extbVlViUyvna7jbW1NfzTP/0TqtVqkNF6xcjP/3FMiPO5vr6OGzdu4OWXX0YicVg9cGJiwvoeRRFOnTplBz3qO6g40ZtULpetMIQaBui9Y4lrAJYsPzQ0hLGxMVMiuA5aiINeCY6TyhPDRVjaPERPvcbv96z/nclkMDw8jHq9bkKegpygUueZlk5WUlT645x5BUoV5qddM64JQTPnWaur0ZuqZfI5t6zwpoox+d74+DgqlYrtaQJlP2ftdtssmfyOwlnHosnaXE/ymPfee88s8MfxAB3/0zS/rv4Zyje9ol+pVHDnzh18/PHHuHr1Kv7oj/4IN2/eRKfTwdmzZ/H666/HPBRqFOJvnnXCvmjuGfmQFp5Rb6zyX8oeHZfyUAJR/7kqU37eVLbxO8+L+VzNRWMYFelX71fAxmIz9KBRhno+3svb6teRCpryOVVUQsqUKqv+PZQVauDwvIBrxH1Fz/fu7i4qlQo2NzdRLpct7Ez3dDKZxJe+9KWYYfXrX/86ANhB0exHL/rs1Xop679rI7BeWFjA+Pg46vW6KUo8kHZzcxPtdhu5XA6nTp3Cm2++afyBhuDV1VVsbW3h1VdfxR//8R8b/1e5n0gkDIDTMMw+8DD5SqWC7e1tC2nnWqlXG+gqNCyJ7Q0RGtamirfuUyrFyo917dnIz2ng0lBzz6tJhx5PEItpKLniN680eRlG/BHao14p5H7RKCaG6VFOcx7oYfSGEeYz8dwuKsgTExOYnJy0Yxu2t7eRTqfxJ3/yJyZzFIcBwD//8z/Hzv5i3xWb+/F/ke2Z4hRoHkjyNwlncHAQX//613HixAlzQSvQU6CRTCatnK4qJPp8r6AxEX5ubg6FQiEWQ5tKpVAul2PEQgGVz+ctxCOV6h56SwDEE54ZFuWVH2VWFBpeEKjC45mF34Rsaq3T+0MAXv9Wa50yGx23MgzvsdPvVWD69SVQYPU6riE9AFSCvJD0uWR8LkPpms1mLESm0+lWj1pfX8fS0pLFegNdZt5sNtFoNPDw4UMDPFHUtUDzIDgy0a985SsGdEulEu7du2cV9crlMprNJq5fv2504uk6NN/aPG1oU2vdwcEBfvGLX6Cvr3sOxM7ODq5cuYIXXnjBGGKn063EMzU1daQ/yWTSBF25XMZHH31klfOUiZOBshQ371UgxvnNZDIYGRmxNeI68UBO0itzirQQhQLI41povvycJZPdBH+uG+eCJbs1VBU49L7x2kajYXH/qkhqaBvfpUKkV9/UIKL7ix46ziXz9zRHjAB2cHDQBDufxznjOtOqzrGGqjnu7OwcKVeta5BKpTA9PW25UGqJ5Vj+8R//8akOuw01Dxqe5jrd+/q9zjm9ym+99RauXr2KKOrmAT5+/BjZbNaAol8f5VMEI8rz9DPyIhqWqHCQZ1CxItgKVYQjj+L+8OPyio32U2WVDy3lbx6k3Gq1kM1mY7lpHjgqvx8YGEA2m7U+UobpWX6UR6rgqEzQZ2u/NC+FnzFcWmnU54x4xUpp0EeMsH+6RzudjkV+rK2tHTm3T+XnwMAALl++bPv8xIkTtiZra2vWJ11LT4uh9lmDSs7L6uqqeRWazSYqlQp2d3exvr6OCxcuYGZmBnfu3EEURXjhhRfw05/+1NZucnIS2WwWk5OTWF9fx/LyMv7+7/8e3/72tzE1NWV8hnTeaDSM1lmAYmJiAtls1rwfGxv/P3tvGiTnWZ6NXm/39Oz7rn0kW7uFLdsSki1s2cbYDsY4XgKUCYZUOCcETr7i+MuBSg6EpXKSqkAqJ0D4AgnEhy9gCBhjY2wCNmAbWQbJki20jZZZNDM9a/fMdPesPf2eH63rnut95u3R2Jadc6r8VE3NTPe7PMv93Mt1L88ImpqaAoBAmOe2uLg41HgA8vuHhSSUvoB5Pq40EQYeAPNGv+/7ph+6nkk2NVYIFmk0Efvvgsx8X1g/GEbq9pl/c9z8XPPOPM+zaAMAZrBy3lhFkVEVlZWV5uGbnp42Wq2rq0Nzc7PR8fj4OM6dO4fZ2VlUVVWhra3NjOJoNIrrr7/e+n/s2LFQA1H7HqbvvVHtTcPJaWGM3f0+Go1i27ZtRthkdMrg1XCqr6/Hli1bcOTIkQWhLLoZKDgrKyuxbNkytLa2WoUkAAFlXjdAcXExWlpa0NTUFEhGbGlpMYNpZmbGSnLyHkWNVTHQfnFjuWcxaAtj4u5mdjdB2HWukaphWu7mUWOpEPPi58wf0fwlrpHLjMg8qBgwz8M1pukp0rANVgPU8t8UpETFhoaGDLGJRvOFIXh469mzZzEyMmLrHYnkc5vKysrs/TxDIRrNV1fctGkTurq67ODMX/7yl1bFRhGosPnhWHZ8crsAACAASURBVFyGU+jasM+Gh4fx6KOPIhaLoaWlBTt27Fig5OZyOWzcuBHt7e2B9SotLUVjYyM8z0M8HkcymcTTTz+NXbt2YcWKFWbQ0nCnEkkDEpivRkdEkmFL9Lpq0QgmmrNPzEEMU1bDWhg4oECJCkSOr76+3ioTkca1Cqc+k/mQjB3ngbc6BtcIcYEEd41UadQiAqpEEN1kqIprNClfoLDks5mLQUHKQ1sZTqo8hnstlUotQBN1z7NQCg0z8h8gT9Ojo6NGS2E0Gsaf3BamNF3oOfpZ2FzT03vq1CnE43G0trZi2bJl6OjoQC6Xw1ve8hY8/fTToWfu8X/lhVRolNdwnTQRXkMk+ZvzqN5Orp3yROX1Ssvq9VIlS8cfxmdzuVwAAGCVLR2rO/caMcG+sypfZWWlgYFq0Lg8bbE1YuipGiyUIwqKFTKa3HlRvsb3kc65zyhnJicnEY/H0dvba+feuAof52DZsmUB/va+970PQB75j8fjF+TF7jPDePtSAIOlNN/37TxL5lTzMOqenh6sX78e9fX1Nk9tbW2ora1FIpEwkKioqAgtLS1ob2+3kvRPPPEEtm3bhp07d1p4JxVygmDkQ6xEx/BOFmriXnHBGDVyyUtdPkxdiXuOa0P6dulH11P1FNd7o3lRhdbf1X/4XtezzWv4o+/lGLQUvr47rNCCC84wIoN6DkPfyXvpWWSKQklJCYD5HGfyp9bWVos+YZVgRt383u/9XoDv8GxFIH/gbX9/v323FANpMbn9erQ3DadFWpjRBCCwgYj8z8zMGIpMRsrqar7v413vehfi8TgGBweN4XJzqjHFxOuqqqpA2JEyZz14LBaLoba2Fq2trXY2DVG18vJyrFy5EiMjI/Y50RkePKaKv6IsbBQuVF50U7OpsHc3smuAKjNQI0ibIiCqOOk7XEah6Dc/47MpHN2wQRdRUqOJ7wzLy+Fa6NwRqdLr+a5cLn8g5NjYmPWzpKQEra2t2LRpE2ZnZ3HmzBkkEglDiTjO7du3mzHAxFhVaisrKy3xMpfLWcy3GpXunLlGrtsKKSSq8KhSkkqlLBSntbXV5pGnkUciEaxbty4gYLgWjY2NFt6RSqUwODiIp59+GnfffbflKQF5g7G5udkMWiJqHCPnfXJy0srDM1yOyierwHGO6U3UXDZ3nGyF5o//EyjhervhTxRM9Gwqkuj782emMUafiq5bgtrdd2Hr5Qp3KnNKC6R3TYTX6kt8H2mcc6jPdb3opEk28i6uEQ/HPXPmzIKqh2ycx9raWjP0NOQvm83iwIEDZlwWolV3jpbynWvIFbonbP9wTdPptOUWvv/978f111+PF154Ab7vo7m5ObBXlRfxb4YEcz9pGLDLO5UPMCzNzbPg5+SF5LWkfQX6XL7I/5V/hM0Zn893V1ZW2qGumlvLZyhv0jnltaQZ9eovZrDqmuk+Zd/cyoNsrhfWzWnVtVWlXecPCHoX9F2zs7Po7e3FuXPn7Aw2Vx6yzyUlJbjuuuvsXt0XHR0dJrcvRJ+LtYutWDIfd82aNZiensbAwAAqKyuxbt06u2bFihVob2/HzMwMPvCBD+BrX/saPM8LhALX19fbQbmTk5N4+eWX4fs+9u7di2g0auCl0hHXhEVXKAN4SLgq5cB82DBpmjQWpnATMHVBApcm3M/Ve6PRQ6onuPzDBU6AYLl6FyQu1LSvNDTJM9m0/+6+V+8ejS4auDwOgBEtlCUVFRVobGwMlIdnbj2vZ84Tc2Y9z0N1dTUuvfRSM2YZoso2PT2NkZGRUPmm8x42b29Ue9NwCmlhqIBuskgkgv7+fqsoRncjwx/ICMvLy5FMJi3O953vfCceeughS9pltRcKS2D+PCEyC42NBWDKOe+vqalBS0uLHQzqosplZWVYtmwZxsfHDW1nWVwq8GoQamiQblYXXXGZTSGlXImahM2Np0iIXu8ioMB8NRn9XK9V5Y1jUYGuIVHaH/aDwo/PYiiXu0HJCPW9rLSnDE4NLN+fP2+FykxtbS02btyI6upqTE1NWZKsMtfm5mYsW7bMnlVTU2PID4W2KiHj4+OB9XfnK4zOFxOmYd+7iov2hUqOGlVcIyqNnAd6fHje1fLly5FMJjE5OYlMJoNjx47hiiuuMM9FY2OjCUQqMPSQkNF7Xh4t45lR3FO8T8NXmUfhhq+FMWa2xeZK6VQVRH7nots0nMKeS2OJaJ67J3VNdQ+4iez8zK0uSDrVapEsekKFlbSqRqEWvFAlnHOvHinuFXe/TU9P48UXXwz00UVWqRBxb7l0/LOf/SxA04XovJCiocq12wrxtws9k2OmsnzmzBn7btOmTTh06BAqKyuxdu1aHDlyJNToI59IJBLmZXF5jY6RoYycM4JD5Gc0dtmUv5MeuWcUYQfmvUuul8dV+LluyrfUQ673unOr9yvNqIHi9qGQAefSA/k+PahqULrKLxCMEOGeUJpUAEOBOD6HuUzkv3Nzc3ZAs5bL1/HzvSUlJVi7di1qa2sB5HnI3r177RrKBXe8Ohb3uTrv+r877tfannzySWzYsMEKYTU2NtpB2ACwZs0aHD9+3P5evnw5EokEkskkotEoJicnzXNB43JmZgYnTpzAypUrsWHDBuPjbotGo+ZxYqGN4eHhwFmAri5D3qcVadXwYdNQeg1dDVPiNaqkkCHk6jZh+iV/axg1P1N+H9Z0DGG5TfoOgmJ8Lvc++YLmcldWVtrxACxm5Xn5wmVNTU0mW2lsDg4OWgg89RHdU+Xl5bjrrrvsHoI3DGt/6aWXQkO5C+kvYXP5RrQ3DaclNFeJUhSPn7tejVwuh9raWqxcuRJnz55FJBLB5s2bsWrVKpw+fdoWm2WlqTj7fj4mOp1O21km3HjpdNpcmJFIPhl7xYoV5tJWVyuJkgy/rq7OFEqiEjxBWxkDnw0Ek5M1X4ctbDOHfe96dyi0VWAqA3MNqjBm5P6t71blTpVi/d41nCisiRS6uRkcR1g4BwUmmRAVSD6XY+FcFxUVoaqqyhD4wcFBq46n/b3pppsChlgkErHQFaI4dKunUil0dnZavwopK2ECM2xOXZovZEhw/gDY+Vxh9MCEYRosuVw+j2diYgKlpaVobm7G2NgY+vr6kMvlK5Rt2rQpMJ/AvIJDxZ8FFRRQYJ8oiCsqKqwiUDSaL1fOPaA07Cpe6j1ZrPGdul9U8aSQoAJFWgibY4ZXUJiRLnVPqjKgCqyuPeeYlaxU+JKOeR/j2bmOpFMi8OpJU++465mg0cUxMcSDCvns7Cwee+wxy3XT/aRGIct3M25eFZJEImGl7XXelXb188WMJ7eFKZlh94QpJPpdb28v4vG4ldHesmULjh8/Dt/3sXbtWpw6dSpgQLMRsT19+jSi0Sja2trsma6hrR4PggLuflSDip+rJ1RD1HitOz7SsdJzmLKnY3HDOdWwCgsrUh7F/U0AxpUFhdbBlS8EAxQQ4D2cO50nApSKWuv3Gq5EJVGNKjVGCYR2dXUFzuJjP126qa2txdve9jbjEwBwzTXXAMiHQh85ciTgPQijXfe5r4T/v5rG/ZtMJnHkyBErTDU9PY3KykqcOHECmzZtAgCsX7/ezvH74Ac/iH/6p3+yCms8JJy8mDQ+PT2NF154wXIdlc8pD2toaLA1mZyctCNAysvLjX+R7hX8VX6jBhXXlICT7j2dQ1c3cY1Sd/712WFzGUbjqreo0aXrqGOi/FAezfvCAELd06o7Kl1TnjMckjJ0+fLlgaNXkskkRkZGDEBm3zSn0PM8VFVVoaqqKhDJpGc3jY+PB8670zldjP/yfW9Ue+N8W/8/aWGL426E6elpJJPJABEC84RCl3NjYyPWr19vyvXc3JxVEiHhFhcXY8OGDbjyyiutHGcmk8HY2FigwAAPE0ulUgBgxpCen0Lhx7wIbiQgj2IzBFCNIfVyqFGjCB3DRTSULcxocUP0XGPDFWyqzLnojXtN2DvdFnZ/GArvrjWFtTLMMCbnxi1T+SYDIHqoh/sqsgXMh3jMzs4imUyiv78fBw8eXKCQNjc3Y82aNWY4UPksKytDbW0tampqUF1djaGhIYyOjmJwcBC9vb0BpuWOOczwudB8hs1ZmLHs+74lcpO29Jry8nIr2qB7iYfolZSUYOPGjdi5cyeqq6vh+74dfseQP7dwAY2nsrIyVFVVGdKo9DQ9PY10Om3x91QUq6qqDHBQ2ltsLsIEYti8kOZd5JDfu8ABf6iQsYw6DRG3gIUaTW7fdOy6v7WpMUQARZXEWCxmFQvpydb3qUfTVZr5DN/37TgFegsnJiawf//+BXH25KM0hNeuXWtKDwtDULHt6OiwHD7evxS6XWortL4X+l7XkpWlnnvuOQD5A0Lr6+utbC9RWtewI79OJpM4efIkurq6Ah435SE0CADYPiAta7glFX72UT0i5F3kR9wfYcq2y7cLKS804lxPFe9VvuTuJ6Vv3TthBrB7r7uXSPtufgcjCTTnSb1crpwC5uUfv+N8cbwMr1XPQzqdRldXl62R7mNVgCORCC677DIDcyKRCN72trfZ97/73e8sv2kpdL2Y0eT+fTEa81pYMXBgYACelz8mg/v0kksuMYW7rq7OQvsGBweRTCatIp7K6mw2i9HRUYyMjFhJbHcOCCS2tLRg2bJlgTwczSl1510jdnTOVGcg/ZBeworc6JyTh7lRC4XWTGWou7fCrlMdyNU3OW/ss8oBHZ/uLz5baZ5AGwCLhqLRNTExYbTe0tJiR9x4Xt7LnkqlMDAwEChIofyFPGnr1q22TpTFt99+O4B85chYLIZEIhGQ466+4c6LzuEb1d40nAq0QsyGwu306dMA5vMXANgGY4wpz+dpaWmxDdHQ0GAKJAlyzZo12Lp1KzZt2hRAp5PJpMWM8oRxujZ5vhONJqLZdHuT6Gm0AbCESj0kVUNutFHQqPFEIawJlWGMWA0SVfpchbHQO1XIsrkIeyGmo4ykkKKrjIfCSoWle60yLrevylBVOBIpikQixsR5/eTkJPr6+nD8+HEcOXLEymzzHWVlZbjrrrvMu9TS0oK2tjYrT88Wi8Vw+PBhTE9P4/Tp00ilUqHjLqTs6FjcuXHXttBa6xqw8W+dr6KiImzZsiVQ+n12dhadnZ3IZDImBBsaGqwyUm9vrzFwvps5VTQsKAAZGlteXh5QIvkeCneuBUtrc5+4wsXd8+78LNZcWpmZmbH3lpaWLjh4151n7htXILvKpPbP7SPH7Rpo6p0gKq8eKRqiPMxZc2tcw46CWhVuRTa1ZHxZWRkefPDBgEKjY6CHq7y8HGvWrAmMnblp0WgUTz31VEH+sdT1WaoSGnZf2P3us2ZnZ9HV1YWOjg77jGBKU1MTWlpaFgWgstksxsfH0dHRgb6+PkPcwwwAIuU0PAEEFBUawbqGqgxqhIQqOWF8kP1zeYwLFqhydqG1UsPZ9fi48kPf7/I0fq5KrxuupNEEiqzrGTt6He91gQN+F4lEAtEe7Mfc3By6u7utnLPuO/XIel4+HHvbtm2BA9hvuOEGALBCQidPnlxgCIUplUuh64tpOKniriXX+/r6EIlErLoaAFx33XUGgNx9992oqakJHNcR9jM9PY3Dhw9b6XZg/gBbfsY839bWVrS2tlq6AlMTOOYwnSWMlwJBr6SGv7rAMOeA6xvmlVIZ7L5DadZ9vrveYR5FNfQoY1x+r3oU54GNfab+yntpIDFqRvPzqqqqUFtba/fkcjk7xJjgJOduenraokpYqXDVqlXGi2ZnZwO5TWvWrEFpaWkgokDHHxZpwflYjM+8Hu1NwymkFUIx9efcuXMYGBgwxZmIONFbJviWlJRYpSkiVTt37jRByDKbxcXFVsKWhDUwMIBTp06hv78fw8PDxrBZdY+19fX93MRUgFRgAvNIglbVU2XHRZbDGIYrsMLmzZ1DohmKgLub32VW6s4t9Hx9xmJMKMwbxr91Hlw0XBP7w+aGSo2i+FRK+W4m+tMoJspPtI0CnM/Zs2cPVq9ejfLyctTW1qKhocE8fjwBHQB+8YtfYGpqCuPj4zh9+nTAa1WIdi/UXonB5K4Fi19wvjT8paioCNdee60VeGC/4vE4Tp8+baEAACzXjCeRs98aYsBT6xVdp2Li5oYAsDmnMuN5wYpBhQxznQOlGTXyC4EAfG86ncbExIShgYUS3mk0c3/y+WFKl/uuMIHughSq3AJYEMZXXFxsxqcWgqBSxITuqakpC4tJJBLo7e3F8PDwAiWD+Vlzc3P49re/beE6HI8qMzr3BJoIBLHi0sDAAA4dOrRkIbnYNYuBAItdd6HveU0ikcDx48eNPnlgcHFxMXbt2mWVMcPuJ68cGxuzpHmdL/I6GgFA8MwjKrKcV8oCpVs1INhnyi3SjcszXYVFm6vYcN1VthS6jzSpfVBgROfJVZj0N+/lOWSuAkm65Hs5JvJWzg/llO/Ph1e73wHzuYjkM+R5ExMTVnaZc8BwMfVulZSU4JZbbrHqh5FIBLfddpvNDb1ihw4dWjBvSn/K55QGw65dCj9/JU0NnZmZGUxMTOC73/1uwHsBwI4ziETyBQfuvvvugC6hoIDK8r6+PsuVUQOBvJyyk7ncPIR+YmLCjCeCa2rUkw5UrocZoWE6iQIGbIWUemA+z1T3leqD+uww3Yv9UVpSoJg0T3pxPT3K/5UWSPsKsPv+vAeWfVHPtkZ1UOccHx/H8PBwoFgTDzUeGxtDKpXCzMwM1q1bh5qaGrs3Go1i7dq1gXmamZnB0aNHA/106TVsrd7o9qbhVKAtxqB9P39Y5wsvvGBnMygSS4HP55BAudkuvfRSE4CZTAb79+83QtdzLyg8h4eHA0gtQ+6IXisqx40FzDN2Mij1jJSWlgaUIxehcI1BDeljCzOe3O/YVCjru8g8XGagIRausHM3k4vSuGEhhYw8FZpqpCmj0dARvlMZGDCvtCiST8HP8puVlZWoqakJzK2GBPI95eXl2LVrlyE+VOy12AEAOxskl8vht7/9rSlQi9FymBK4mEEVhp4t9o6RkRGkUqnAdZqj1NTUhHXr1gWY8uTkJDo7O9Hb22tlqvm8ubl8CXeeFcL14hynUqkAGsZ1UqVIDSgVMmowqGGymHK42NyFzU0ul7NiF1w/RfV4n4sKUpBx71F5DMu5ClNwOVYX5VTEkbyK+4xVB8vKygJ8gaGOLDM7MzODVCqF0dFRDA8Po6enB/39/UgkEoFCHapwPPzww3jiiSeM1sOUFd33PPeO88v9eeLECfT391/Qg6rj1b+Xoji6z12M9hd73szMDF5++WVLjL/lllts3MuXLzcvg47fBac497lczjxHymNoxBII0EpcmiBOkEBlgQsmkWYUuS4EOLlyMWxuyd8KIfX6Xq41eTD3qB7LoHta/3cNo+npaRu7q/Ty/eRHxcXFxl/ZL86p7/sBfkP61CJArmxl/7q6umzdOFb2hbymtLQUbeejCPhdUVERdu7cCQCWt/q73/0Ovb29BY3PC/0fRtMXq7nylmv3u9/9DhMTE4FiIwCwbt06A4VWr16Ntra2QISGu18BWLEVGgbUtRhFwBwpz8sXMlixYoVVdMxkMoHv1ch1ASXX+FQ65V5TfuneG0abKne4xm5ETRjgG2bwhwHL7JN67rR/auC5njU1mgAsyHFVPUYBGA1LnZ2dRTqdxujoKM6dO7cAaFD9rry8HDt27DD+5Hke3vOe9wTmnPzy7NmzoQDVYnz4jW5vGk4hrdBCKOqVzWbR3d2NZ599Fh0dHbapqJCokltbWxtIJm1sbERTU5M9r7+/H93d3YjH4ygtLUVFRYUhkhSgwMJwNQoA5o8QqefmU2GqaA4wH7etjF8VekWPSfxEnN2NzRZmgPFvLQGtwlQZmIsIuYJdkaMwo7aQQhDG0OghCivZG7ZpVVArEwSwALHM5XKGysfjcQBAY2Mj6uvrF8RAs38cW1tbG+rr6wPrzDCfsrIyJBIJo5lMJoN4PI6zZ88uUJIL0e9SmUyY0unOsztP4+Pj6OrqCqDFumfKysrw1re+1Q7To3GUSqVw+vRpdHd3Wzl1KvgEJjTGmqF7c3PzVbNcGtK11zlXIci1DhMsr6S588D/aTjRYNIQIlWqwhQQ0ph6yFwjvhASx3v5mRqQrhIAwMIWeXwC+04EmQg+lbmRkRH09/cjHo9b6fdUKoXx8fFAf6enp/H444/jW9/6lvFDIs9u+BPnh7wxGo2awUAe9tOf/jSgAIfN/WLr4s7TYnw+7PmFDIUwICeXyx8N8NRTT5lnlOMqLi7G9ddfj7a2NuPZbKrEMeRobm7ODCf1kPq+bwc7814amZqXQUVfz53TsWqfVQFWPq30545beaPSjitD3LVj4/ca6q5VTXXOXaNJ5RPlbpjyqGPQuVZlWvP9aGxyvmiU0YOhRU/U6CcPdMMEuS+JtDc3N+Ouu+4KHEfyiU98wq6nQvrTn/7UvIcunbk82W2vh7HkNld/4No///zzC2h72bJlNp+xWAy33nprIByYz3PHyjP+0uk0UqmUra+CsUBep6mrq7OQvVwuZ/yLhrCutxtdUsjoVL3IPQ+P97pzErav2F/1CoUZRtovPsOdY4bCqTGn7wsbl35GvgrA9g+/12I+3AslJSWmkwKwcMlkMomhoSELt6dOqmtYVFSEvXv3mkHr+z7a2toCc9bd3Y2enh489thjBr4qXRcCs1S/eCPbm1X1nOYugIsE6udTU1OIx+NWhrylpQWRSMQYHduGDRtw4MCBgAF0xRVXmCIwOjqK48ePo7S01LxV9DqRWWsY2NxcPvmUzFvDk3TjkGjV7atKmBoM+rneH8YEVHipZ81VBvm3elcUnXMFC1Ehfe5iIVQuosdxuH1X4a5KpKL+YWFXYSifMkEyY7dgxOzsLDKZDIaHhy0Uk8yIDJ3zqBu/oqIC119/vZ0JpgZwQ0ODxcHzMONUKoV9+/YZXbl0+2rbUpiQKkmKGD/55JO46aabEIvF7GwmjiEWi2Hr1q249957cfz4cTz//PPIZDLIZrNIJpOIRCKoq6tDTU0NysvLkU6nce7cOVRXV6O4uBhNTU2mHHqeZ+gvvTIMVVKBoMoWMB+uoF6eVztHYQqLfkZBqcqd7/uG3HG/8j4N6SFt0JPNCkYurfEZbj9UgHHcbj+4JsxBorGiRhO9SORDo6Ojpsy7HoX+/v5AifMf/vCH+P73vx+aIE+a4DxyrW666SbL7yopKcGKFSsQjUZx7tw5HD58eNE1KaRAvtJWSAkNA2t0DO716XQaHR0dOHfunFVAZaJ/UVERbr31Vvzwhz80tBYIFhDJ5XKWIN/W1maKvPJUeoi4fqwy6fv5cJmwUDJViIB5PqoAAxUz9kkV2zADUnkxjSDSBemae1Ofwevd3AzlmS4fZ+P+Ij/mc9w+uyi+gixqGNGrQRnsIu/kVQBsXnUtJiYmcPbs2YC3yTUsuSY333yzheNms9mAIjk0NISRkREcO3bMDk8uRKeFlH1Xtup3F7uFKeYPP/ww3vGOd2B8fBzV1dV2LcO2IpEILr30Ulx99dV44YUXzKhW/YBzNjk5ie7ubuRyOfPWcf4JTlGm84gWYD50nGdgMcwMQMBocenKVcy1L6Q3NfZ4XZiSDyys+EjPoxr/Kk8JlOizOCekBT7H1bmU7nQ8ulbKR7LZrBmWwHyEiOoejKghvRNEz2QyGB0dxdDQUCA/UfP9otEoLrnkEouy8n0fdXV12LNnDwDg5MmTmJ6eRk9PD771rW9h3759BcvPu3o4n6e/36j2puHktMUm310kbqShoSHs378fW7duxaWXXmoMka2srAxXXHEFnn32WUPTN2/ejP3792N0dNQ8E25ie1FRkQlGDSmIxWKGNJaUlKCqqgqVlZWBJFUqYIoQKKMgs+Aho8qwdKwu46CizLlif1xXt84ZN3iYkhE23+y3JhvzWWpEqYIJBIsS6PeqNGtfyWzUC6ZNQ4qU6fFaNfD4fjLyVCqFc+fOYW5uznI2xsfHA8n2OrexWAw7duxAZWWloZIUDMlkEi0tLRa+Nzk5ieHhYfT39+PMmTML0JewNSjU3HtcAbLYOul1nJuXXnoJfX192LZtGzZs2GDIaTabRXFxMaqqqvDWt74VNTU1OHz4sCkZPIsjm81aSFIkEsH4+DgOHz6M6upqy/sC8kp4RUWF0RaVRRokrsLIH3ruiIbqfghTvNVwDgNV+Fv3DT+nYkuFjv9nMhmUl5cvKNJCoaw5ULxP9527Jm6/mEOhRo2i6VxnKtr04KnRT08ec+jGx8ctdJB7RueBAnh6ehqRSAQdHR146qmnFgAZSi/ab8/zsGzZMrztbW+zSpTl5eV2LszPfvYzC9NbjNe8EqP/lQhaVzl0/3YNCt/3MTY2hv7+fgwNDaGhoQGXXnopXnzxRUxPTyMWi6GmpgaXX345hoaGbF6BYIW+2dlZnD17FpdffnmAf6lXheWXGWZZUlJi65fNZgPncZGvKM9zc6iAeaOE43GBK/d/jRRw86ToDYpEIgEDXY0s8nbOK+8LM0iB+SIB6mFyPQjufYrYU8nmfCt6DyCgCJK22U8NF2Y/p6am0N/fj/b29gWeNbcva9euxfLlywHAzqu5//777Xt6d3/zm99gfHx8gYFeSIHkOF8P4yisFaL/XC6Hrq4uHD58GLW1tQHDibyMdPr2t78dx44ds/Mu+SxV7H0/nzPIYjN9fX2IRqMWmcFwMupAsVj+AG3P86ygViaTged5Rn+e55mnlrSj9Mff7hqqzqCeFXcOSG+ka9I89wb1O10v0mOheXZpWA0819gLa6R5zq3mnHueF5A7uq5hIMLk5KQZTZprxjXkWKqrq/Hud7/bPKu+7+Nd73qXPb+8vBx9fX34xje+gX379pkRtxRjv5Ch+ka0N0P1nBaGnrhCn79JyNPT03bewvDwsHmRtF1yySV2XySSIZfdnwAAIABJREFUr4p3+eWX2ybIZDIYHx9HOp02xkl0i2gYMF9Fhht/YmLCike4LmluBP6ogaEETjRBDRI35Ek3rQpFjSvX8Azd4Opp4py68+vOuRs6VUhgUBlmvLqOWWPYtaS6CqCwsBQqKG5ZXTehWpVeVULGx8cxMjJinkeW01ZkTMdEQ3rdunWYm5tDSUkJKioq7AwoHsZXV1cHAFZu9dChQ+bWdhn7UpiJS9s6t2670PM4l729vfjxj3+MiYkJFBcXY/v27VZFksoTQ1GVVlRJHxwctLwgVsM7fPgwenp67ABdVfzJsPkMMnEttBCLxcxIoGeK60WDZnJyEhMTExYSkkqlLL+HNK607oa0aqiFemS4H2OxGObm8lWKEomEeQ1ZkWh0dNRQbd0DarCHrYO7jmoglpWVBUot06gsKytDZWWlFZjxfd8SfZk7xvUYGxsL5CfSsHcFKvdHKpVCT0+PhZjyOhft1f5Ho1HcfffdZkyWlJRg9erV8P28J+uJJ55YdOyL0e5S6fiVGlRh17uGc39/P06fPo2ysjI0NTXhrrvuMqWlpKQE69evD5Qn5zMU+BkdHTWjkTTPw7AB2DqR3xBZ55rqPPEdGmpGwz7M2KCBogfJ8kfHyj0ZiUQC+5rhtO7+YXI/jXL15mhTOmF/aKjoPnR/a4K87knOrcoBLeoEzHtGVT4oeEE61tD8sbExHD161PgTm8tb6+rq8Pu///vwPA9jY2OIRqO47777Fozx5ZdfDpzfFAbMuHT4RhpN+u6wH+Y2utEQV155pe1xAoZ33HHHAg8L/6bRPTk5aaXJJycnMTQ0ZHRDGUHgzffzHt3q6mqryElA0y0oFBb2qSCq6nkKgOnvMI9gIf1GDR6NcFGQ2AV89V431cFtYYAy+asWgtACKp7nme6kc6H38l3czwRER0dHbR40/5Kev3vuucfOq0yn0xgfH7e+Ukc6ePAgnnvuuVCjKWx8Lt3p/29Ue108Tp7n/SGA/+f8vx/2ff9fQq65HcB/B7AdQBTAUQD/5Pv+g4s8934AHwWwBcAcgEMAvuD7/o8v7ggWb4qssOVyOSQSCYyMjGD16tWmKJeVlQHI5zlVVFTYgXiRSP78hn379lnuEDAfZ63x1RRqrJ3PMx+YKElDjWdHUahy8+h5BWqMUQhozLwaT2wu2hWmKHADuhtfNzyFq7YwgaDP5H18Ppmi208qcAxNdJmP3q+M0D2/RBEW3qfXq/HH5+k1U1NTSCQSGBwchOd5aG1txdxc/pBbGg56tlMkkj/IePPmzabgrlixwkJqGOrHsxMmJydx7tw5dHR04OjRowsUC/d3GFLJzy+k+F2I/t2/SauPPfYYbrvtNmzYsAGlpaW46qqrLFR1bm4OFRUV2LZtG2666SY88sgjxsCJ6Pb392N0dBTRaNQQ85mZGXR0dKC6utoMA4IBrEoFwJRHlhmn54mImu4Fz/MCRo574roaIi4ir95NrcrH+1zho2ifhq4y/FLD57QKGvtO2tP8pjAwxzUkOAc6Fj6HYaOks1QqZbyISiEVSu4pzndtbS183zcFhnOivKi0tBR1dXWGSBYVFZny4aK7y5cvx9vf/nZ4nmehiVSmHn/8cfT09BQEWXTOXbpcqhEUdt9iz3DpXtFWtlwuh76+PsTjcXR1dWHz5s1YtmyZGRexWAzLli1Dc3MzxsfHA2MhL4tEIshkMjh27BiWLVtmNMyzy5LJpCklPNuPod48B5Bz7/JeNQ40TNTlGXwGoyVUEeN+Clsb0haRbY6Je0PzkrjHFBRxlUs+m/dpOXU+0w1VcvkZ+87vaRhqKKFbnVBDG93iHDTiuM5ubpO2srIyvPe97zUaB4BNmzZh48aNds309DQ6Ojpw8uRJKwqxWCtkuBRqLlD2WpvyQfYHyOsXBw4cQE9PD1auXInKykoAQGtrKxoaGvDLX/4S2WwW5eXl2LJlC6655hr86le/CoRa6h4kjY+OjqKiogKTk5MYHBy08/jIV6PRKKqrq834pS5EA476koKo/HHle9i4SJ+kO6WlsHl1dSl3z7BRfqgBxXtVv9D94PI+V96rjqSRLi4QQFCP60keHUZHBBp4Zlc6nbbrGSYciUTQ2NiIO+64ww675dp8+MMfDtBOPB7Ht771LYuIuhBtujqO+/cb1S66x8nzvFUAvgQgvcg1HwPwGIDLAPxPAF8HsBzAv3me94UC93wBwL8BWHb++v8JYBuAx84/72L0PfTvQk0RADJgxrDncrkFMfk8x4bMu7GxEW3nY5sV+VbPDX+TSVNJo1LCRHt6vkZGRjAwMGAlPElUFLaKKijCpxtLma9rDCmj0Hnghg4TWGHKjsvglTFwXmdnZw0l4rywUICeQ+IKTJf5uOvpGk0uAqX9cT0JYWNgn2dmZjA8PIy+vj54nme5OVQkFdEkU6usrMRll11mdFFaWop0Om1jKioqQmNjI1pbWxGNRnHq1CnE43Hs27fP8od0bl0mciGhutTPLtRUIHd1deFLX/qSVV+LRqPYsWOHHVJIOrrrrrtw77332sHPmreRyWRsHiorK+H7Pnp6etDV1WUV3tQwodcUmN9LZMQMC3GNHobgjI2NBdBLeluIak9MTAS8T0TrWNVJUXNNyOecKACgZXl1rnmthpJSqLm5R3y39tOtaBdm/PF8Jp5fReWUY6CXW/cHFYVYLH+Adk1NDRobG+0Q5sbGRpSUlJjimkqlcODAAcTjcQuhqaioQENDA2pqagIKgSon999/vz0jGo1i1apV8DwPZ86cwfe+973AWS4u31iMXl8LHV9IyQzjle73qVQKfX196O3ttc81dKW8vBz33ntvIJ+HRgnBm5mZGfT29qKzs9MUjEgkEjhwmtEHVFzU8NRjKtRDqGAC95/L59xwOy0UEuaFUkSdz9O/1TBXr6zep/Sh0RF8jltgZbHmGk1qQHJMnBt6qDWUSQs9aX6eyuV0Om3n0em+V/qJRqO44YYb0NTUhNnZWQt9/YM/+INAfzs7O9Hd3W1lnAspiMrv3dAtjrXQz8VuauDqz/T0NH7wgx8syFmJxWLYs2ePRQE0NDTgfe97H9asWWPgEsPyNE+TACT5kpaNB/LrOTY2hmQyiUwmY8YuC25p/iX3EYAFBovbXOPHnXf9YXN1D/6EGUZh36vR40bfuH3TProAkhs9RL2JNM/IJN5H+cv11Hwl0nsmk8GZM2fQ2dkZqGpbUlKC6upqVFdX46677rJiWOzPunXrLFcXADKZDA4ePIi+vr6Ce7kQMBBG64VCuF+PdlE9Tl5+Fb8JYATAw8h7lNxr2gB8AUACwNW+73ee//xzAH4L4AHP837g+/7zcs81AB4AcAbADt/3k+c//zsABwF8wfO8H/NZF6tdSOgqkwTyihhRp9LSUnR1dWH37t12/bXXXovx8XH09PRYjOy1115rB9wp82H5cgoYAObKZL6IllRl2eO5uTkLe6Bw1ZLQ3IhEYIgyqoeIfeH/5+c6sHldRZ2bfrE4XUUU1MjiXHKcGjIHBDe/GlbRaNQ8DYokqvfM3WRUPlV4q7DWvqrxpNcrI2N/GKLX3d1tOQzV1dWWu0PElYybHoirrrrK4rG5PgxJYN4CS9QyGXN0dBQvvviijXup9Mr2WgSoK7zd51CJe/bZZ5FIJAzta2lpwYoVKwLnTcViMbz97W/HmjVr8A//8A9WkY3zyjnyPA+ZTAZjY2MoKirC2rVrA8nZNDZKSkos8dg14El7ZNDqadFcCq47ha7+6HOU/vm3Kr/8XVpaGhDuVHTpidbna2leKr8MNeG+d41GFbz8nwnUDJPTtdK8DoZdqOdaFWAq1jS6IpGIJbcXFxcjm82ioqIC5eXlZridOXMGw8PDgSR70jHXiMYlx79p0ybs2rULnucZ7+TZTV/84hfR3d1dEIRZjBbDaNcFPsKucf++kPGk6+0+k4dTJ5NJHD9+HJs3b8all15qyn99fT1Wr16Nq6++GgcOHLBQXc/zApUfx8bG8PLLL6O+vh7Lly+34w+qqqpM0aGRT8O8rKxsgdeJXkauMz0sHIeLuKvx4kYV8Bl6FIMaP7xfIw/02AQFpUjHrmKp+1fXMEx+sLk04hrqaoC5dM5nMXRXkXn1glEmpFIpdHZ22nlb2lQ5XrFiBbZv327yGQA++clPBuiou7sbHR0dyGQyRgs6jjAj3QUNdN616VxerMbnFVJYfd/Hz372M9x///3Ytm2b7WkAZqQyT7uiogL3338//vZv/9YAJubqUTmPRvPFsgYGBlBeXr4g+oMAE8O8aXyp7qOhm9PT04HqwmoYF5pTlQVuOJ3SiP64XiLdD/qesIITqte4BrLyfJdG+B59JsF3vkvPayLNa/SNGq2kefJ4Hu7N/FjdY7W1taivr7ccfY771ltvDdDH3Nwcjh49umCv83qdH3c9VL97PcCAC7WLbaL9GYAbAXwIQKbANX8EoATAl9XQOW8M/V/n//0T5x7+/9c0ms7f0wngK+ef96HX2HdrFxKU/O3+zM3NIZFIoL+/H57n2UnK2pqamgwpLCkpwSWXXGLVwvQd7qbzzyM4RMGUwEpLS1FbW4vGxkZT3mZmZpBMJi0fhkyGaI4qVUqgrqeG34chiryezIfGXKFnaOgGhQLH6ybQ63v4fvczxp9r7LzGuWsYh15PRcJlTm5Okzt2fZ72i8mn586ds7Kczc3NAPJlw+kxU4W3uLgYbW1taG5uNi+AGrm5XA6VlZW46aabbJ7Onj2LmZkZnDhxAkNDQ6F0u9jPUujbFRJLucdtvp9H2l944QUz6EdHRwPCj+E51dXVuOqqq/De977XaFdpjQACvSKnT5/GqVOnLLyG8w/AlHTSNtdI6UZzJIjQa6iSrjeVJypQ6ll2c51Id+5ZH8wpchVLRTlJe1odk8aPJklTMdZqd0Rd3byR4eFhJJNJM4rUk8AfzoMKS/aN76cQ5LwyZ0yFJed5dHQUHR0dAS+D5o5RyQZg/SkvL8fHP/5x40WxWAwrVqxANpvFM888g5///OcBD0ghegujY5f2F9sThfaBvsMV3mHKqWvIzs3NGQ/o6+uzaz/5yU+itLQU4+PjKCkpwYc//GE7IJJ8QA2WyclJKz4wOjpqwBcNV2Be4afRr7mt3CMKRnBcLqrt8jY3l0/5NL1P6u3U+VJvq36mwJSrALvz7socrQTJgjmFIiKUt7v5eO58cJ8pmOAaTRw/eX5PT495m5Q+lA7KysosIZ4A2jXXXIOqqiq7fmBgAIODg0in0zh+/Dg6OzsXGPFhYEEh2nfbUkCAV9P0ea4+BADJZBLf+9730Nvbu8DzdNVVVyEajRoYc9lll2Hr1q1WNY8GOd9Dw4eh3BpSpgY915Fyh4AygECIKemA/HQpHigFuRjiprzb3UtK63q/qx+pQUZPqPaH/Fjpnd+579L50vA8LcJCmaSyRSOUNNWDdM+Ipt/85jeYnp5GVVUVamtrLZKJUU2sqssCTi0tLfjABz6wgHZ837eD08O+K0RXYUbtG90umuHked5mAH8L4P/2ff+ZRS698fzvJ0O+e8K55rXc85qby8gXM5rI4DVcz/d9HDhwIPBMTcLl82644YZA5SNuXGDeqOH3qVTKwr5cxb+8vBwNDQ2GAjCMgMneqmBq2J725UKonxocquCpwqrCS4lcQxE1REMVLKJFOjY+xzViaAjxeQwlcU/Rdt3pLqNVgeuut3sPf2iIkUF3d3djeHgYACyPoaenB6lUKqBMe14+dKm5uRkbNmyw8tu1tbVobm7GqlWrsG3bNrS1tWHv3r0B2mFI2W9+85sA0hLGUArRs7smYfQeFmYQ9vzFBHQul8PXvvY1i9PPZrOoqanBW97yFmPknpfPRaqursa9995rh4Tq3LP4A9cyk8ngt7/9Lfr7+02xcRUhCjQNq2FYHs8b0j1RKNRIjQsKV7diGK/jvHHs6hl1FX+lO/1RmtS1otDSUDoFE3QPsa/pdBrJZBIjIyNIJBIBT5WG/vJ5qhAoEELllPzALSdNJXpychInT57E1NSU0YYCFgwnpKeY4/zjP/5jrF271hQZ8rmxsTF86UtfCi21vxTD52K0pbxD5yJMIQKARCJhOUwasldVVYV0Om3I90c/+lFcdtllKC4uNkVOaSiTyaCzsxPxeNwU9eLiYtTW1lohGc61hinRO0TFSBVCVbZcmi6krPBaBa64N7Qwg4ZQU1a4c8NwLSqE7BvlCOmf/VevF++trKy0yrKsVqkFglwl0FVINSSS+1zDmVQZp7zhcRM9PT2BQkAubcZiMezduxfV1dW2R4uKinDLLbcE5iGdTiMej2N0dBTPP/+8PY905dIc1+BCPB9443NAXJ3oe9/7Hs6cOYPe3l47hxCAhUWS7oqKivCRj3wEjY2NdmaQG2YK5CNvTp8+HdBpeMC8HuANwHgTK4VyLrQACNdFjWXqNzQA3OINaiyF5Q9SdoTJF1cXUd2Ghlw6nQ4UTOH7eZSFW8nYlUMaoUOQzY3iKGQ0ubm87FNfXx++//3vG79iLpnKreXLl6OmpsaAm927d+O2225bEInE87hGRkZeFUj1X90uiuHkeV4RgG8B6AbwFxe4nJmQ7e4Xvu/HkfdUrfQ8r/z8sysArACQPv+9206d/71hiX09GPYDYNMi94R+rgusC93d3W2EpLH5ALBmzRpL/OamXb9+PVpbW20DKjqmm8HzPGPsevChvp8hYtXV1fA8L6BQ6QahkqTImLv5uDHd8ZOhqGBShZfNZQ4Mt2LfFcVXJN8dl4ZpuN4vV0l1PQDq4VIlwV1fVxiRiamQVRSZTJFI8uDgIIqK5s/yokKkwo1G5oYNG7B9+3Y0NDTYc4uLi1FTU4Nly5Zh06ZNuOKKKwJ9PHv2LJLJJAYGBix0qZBADWuuEC6kEL0apbTQs+LxOL7xjW8E5qG4uBiXXnopIpFIIOm6rKwMf/7nf47du3cbLTHciEo1PxsbG8OvfvUrDAwMmFHCNXH7ooKRIEImkzEjxAVDXHSbe4jeHqJ2ek0Yoq2IOpUtop4aYsufsFAhGtxUUjlX2lfuHfXYqmeMuWLMwVIFV9FJ/lYQwUVeXWRzbm7Ocl1GR0fR19dnHiz1KKuSzQqRpaWluPHGG3HPPfeguLjY0Oiamhpks1ns378fL774YmC/hq2t25bCqwvdq58X2hc6Ty7IojSjnzMnIJ1Oo7u727770Ic+hFwuZ+HdzA1wc4eUlhKJBOLxeEAJZKEIKqFcExpJ9NoqDRbK5wgzltzxugad66nV+aKBoxVPVQFl9UdVdl1EXKvouZ5TvkuVSubylZeXG6DnFhTSPQvMH+jphsHyewUbWMWwt7cXfX19gXNwlE6i0ShWr16NrVu3wvd9u+6jH/1oYM4Z8sfy9eqZDKOvCxm1Yfe8Hi3s2WF7bGpqCn//939vOaTa9uzZg5KSEkxMTMDzPDQ2NuJP/uRPAoYmMM8zaQykUim0t7cbT+E1FRUVqKqqQk1NjRXeoYHgetjdwlgq15U3akRAWGSKuzbk3xyvRkdQFhDc1f1D0IOGHmWVlskH5qOGuEfUsNN0Cc171H1PGULdyAXPaCxxT2QyGfT39+Phhx9GKpVCJBJBa2uryXDOWUlJCa6++mrjFVu2bMHKlStDaYfewIGBgQV7J+zHba4eU4geX692sTxOn0a+Ot4Hfd+fvMC1Ned/jxX4fsy5bqnX116ok0tpYSiPKxALCWF+n0gkkM3myzMmkxZZCCDvjdiyZQvq6+tRW1tritPtt99uHhvN3wDmiZ0EPzk5aQnpRBG030VFRSgvL0dFRcWCuGyNY3WTkF1hpAaUxsSqQNKN6ApUFXbMJ1HFSpFJKoVkVByPKoM0FvRdruHkhphQAXVD99z1VqWZ9+s7eY0K0EwmY9WUotEoamtrrXJYOp1eoGzFYjHU19dj2bJlqKysNAZbUVGBd73rXVi9ejXWrVtnqClbd3c3jhw5gmQyaUUhwpiNS8dLMazUMF2sXcigChPkMzMzOHDgAA4fPmyV8QBgxYoVuO666xCJRMwgAfJG/6c//WlccsklVj2SoWFcWwrOwcFBvPjii1ZVjMze9WQqkkflXYspqPHE5noz1SgJMzhc1NClRxpt4+Pj5vkJEww0RAiOkP70WaRHfuYeBaDgh+4VKnv0tHEcrgeJe49C2KUd3W/ZbNbKqZ89e9bC8VxvOBUXzjmQB5A+9rGPwfd9E9A0oD3Pw4MPPmgHHC9GZxcynnT/ufR7sQRtob5w7qenp7Fv3z5TUMbG5kXZAw88gGg0iv7+fvi+j6qqKtx6662WA6e8ToEalgHmPFdXV9s9WoQBQMD7ynVX44XPcNFz5YkuOs4f0op6ZVy54XpQXaNf+bV6Z/k8erSoxKn3VD1bYcaeenI1rJzjJP2RFygqr5XGFIwYHx9HZ2cn2tvbDTlXGuO7qqqqcNtttyEajdq+qKqqCoToTU9P48SJEzh16hQymQx+/etfB3Iudc5cWluMJ4cZ8a9XC5OnbKS5Q4cO4dixYwBgXmk2Gv3UmTZs2ICNGzfaQdvkxUq3c3NzGB4eRnt7+wKaIE2Wl5ebAaW8UNMBaKS7qQsujYfxa5cPqTdfjSalVUY98JBj5cXMYaWxRJ6uRr2uux45wbMJaTQpD+A41UhUg0fXT2UFI1wSiQSeeuopk9NNTU3mDaQ8mZmZwWWXXWbRTtXV1YFqkW4rKipCZ2enHU6sgGChFgZYhdHgG9Fec3EIz/N2Iu9l+qIvBR1eyyPP/36lM7Gk633fvyr0pXmv05VhwlUXNuR5CxaSCkptba0ZC6oI19TUGAMoKyvD7OwsGhsbcfnll+P48eNGHC7aSsRubGzMcgWmp6cDhhb7w01CtJ5CiHHCZC56oCKZjhIn0Uq9XgWla5RxjojuKOqkHgFFdrjJycQYGqQISDabXWDgqdLvbj7P80wwK5JZqLmoqXoNAATmkEhOPB7HwMAAioqKLEQylUqhq6vLGCbnk6VRN2/eHEj4r6qqwh/+4R+ad5JlW9ni8ThOnTqFsbEx9Pb2LkDhC9El50R/u0y/0D3KnN1nXai5yNvs7Cy++93v4uabbzZFBMgr6PX19RgeHjZBylL6f/M3f4NPfOITmJvL58RQeNAIKSoqwvT0NNrb21FVVYU9e/agoqICvj+PqrthFGEGNtddPa9c60KhbLzfNXj0OXwG6XZ6ehrpdBqzs7MB+tY5U48ZAENL+W59ptKim9OioU7aP94zMzNjCL+uhSrSaqCFASL8O5PJYGRkBGfOnDFPCvvP60j/VB5isRgqKirw8Y9/HE1NTQDyIaiRSARXXnklJiYm8Mwzz+Cll14K9FvnajEEcim0upgyWYjfu8qS+wx3r7nKSEdHBw4ePIgbbrhhgTH4p3/6p/jXf/1XDA8Po66uDtdddx3S6TQee+wx46GkSd/3MTAwgI6ODrS0tJjnn4UiWE0VmA9HIu9mX3R/KK9z84PC5oTr6fu+Id9acERBBddg4m+G3BL4Y+5cZWWl0a4aK0pzyttdo8gNXfI8z/aGOx59vu4hdyxK+5rLeuLECVPsXZqiJ2379u3G6ym/Pv7xjwf6Qk9tOp1Gb28vjh07FkrzhVohOg1bQ/29mNx4Ja3QftR3AXlF/nOf+xwee+yxBfR/2WWX4cCBA5brFIvFcPPNN+MXv/iFPYNGhZ73NDU1hTNnziASyR/tMjExYce+8DquBZuCB1wT1/jX+XGVeXfeXP2AMooAse6Hubk5M0QmJiYQjebP5GR1ZM/zDEikl5b7hfoV5YfSOvUm8lnqKHw3I4Pc0HXX4CfYnUwmAwedHz9+3KI7qqqqUFJSYv1UAG7Lli0GfN12220FaYZAxbe//e0FodiF+Oti/N0Fx94II+o1GU7efIheO4BPLfG2MQCNyHuSRkK+5zHT43I9MO95ctuFPFKvqYUJQqBw9RoAhjCT4Q4PDwdcls3NzUilUgE3aSQSwRVXXIGenh5DQzRpjsKOFazS6TSi0SjS6bTFAyvRqPLEDcKNQARM8xaoFKmw01AFjtUlYFf4KJoY9hkRDQokluXN5XIBDwPfxb6p4RfGuNz1Yd84DqJZiqbytyqFLnqpoWBkFplMBl1dXeZVam1txbJlyzA1NYX29nY724CMq6ioCHV1ddi1a5eddg7kFdYPfOAD8P18kiTDqmg8jY+Po729Hclk0g5Ydg9WDmthTKYQAvlqEMnFmFMY4njmzBkcPHgQ73znOwPfXX755Th48KAd3pxOp9HQ0IB169bhL//yL/HlL3/ZjHoq3qlUytDEbDaLF198ES0tLdi6davNq0tzGopBRUuND98PVobiWmvFRlUAXWWJBpUi+Bw76YmoOctFM7xCDRNgXtDTQ8cKdpqHofdQCFJgM1+EfVUkVJUF3eca7+8CEKo0qneYMe9dXV04ffq0gUCe5wW8ZS4tep6H9evXWyjq4OAgIpEIdu3aBSCf9/DjH/8YY2NjC8CLC9FhIaX/ldC4qyjp52H/u31QQ1efNTU1hSeffBKtra1Yv369lWZnu+OOO/D4449jbGwMFRUVuOWWW9DR0YGXXnrJ5ADnlHyhqanJwtKi0aiVuqdCMzk5afSje4N8Xo0NrrWrhLhjV4OICpneT8VUvftKe0Tj9YgG0itDj1QmcO8rT1ZZ4Hq1XINdPUu6D7Sp0ux6VJUGp6amcO7cObz00kuBMsw6N5yX1atXY/v27ca/ioqKcN111wXey/O5kskkZmdn8dxzz1lOj9L9hYydC9G3y/tfDc9f7NmLKazKT4aGhvDNb34Tn/jEJwLXeJ5nZ1xmMhlUVlaioaEBN954Ix5++GGjJYblKf+emprC6dOnMTk5iU2bNqG+vh41NTVoaGiw6pTkbaQJjWAg7+cYwn7U+OGYXBlC2tKwaVeHID2zYFckkq9SynM5+T4aXZUYTBRfAAAgAElEQVSVlQHDn/PoeV5gT+vYtL9uXqruQdVNAJiMYlQEx9PZ2Yljx44hm81aGojv+5ZLDsBC9EpKStDY2Igbb1y83MDY2Bja29tx4sSJwDyFgVbu2AvR4BvdXmuoXiXyuUWbAUx5nufzB8Bfnb/m6+c/+4fz/588/3tBTpLnecsAVADo8X1/AgB8388A6AVQef57t60//3tBztSrbWFIQ1grJKipxJDoWX5U28aNG80Fy+saGxvxlre8JeCRUqZPtBiAHTzJJEIVFq5i5KLjWqRBNxATwd2KNu686AbUvCT90TAnZTQU6PxOUX0yGLfvGmfuJueHKbWFEjJ1XcMUQjd+Xo1CrVZ29OhRjIyMIJfLYcWKFVi1ahWKiorM06jMAMgffrx3714L5SMzq66uRi6XL59KlOrQoUOGriWTSXPRU4lSb8crFYAuXbvPKaQsLWUfuM/Rd2UyGTz88MNmUGq76qqrbG3p8o/FYtixYwc+8pGPoLi42A5Y9f35fAcqWdPT0/jJT36Cjo6OgIKlYXmkT3ePKM3QKNYT0TUPiiG0msDuhgJpRUR6UaempgKld3m2Fc+E4jtpUBE48H3fvlMjRNdChaLv50OOxsbGTHEOmwM3nFHnhPPhGmV6ng29Z729vejp6bGytDxXrqysbAHv1P8rKystt4d8QsGZw4cP49lnnw1VcBejPfc92lzBfDEEbSHAplA/crkcOjs78dBDD2H//v2BcD0gH/6ye/duQ509z8Mf/dEfWViM8qTp6WkMDQ3hxRdfREdHh4WLeZ5nFVspg0gLpB+36BAwn7/pGg58Z1i4Ng10zr0aOW4RFeZ0pFIpDAwMYGhoKAAOTk1N2Tq6Ydz6XA291mIjlAt6DhtBKP4w8kNpX+dE6d9VgMmPT548iUOHDhU8r4n7qL6+Hnv37jXAjuPYs2dPYM0HBgbscOjh4WF0dHSEyiqX5sLo0G1hfP3VyIwLtbBnuv9zHNPT0/jOd76DU6dOLUhh2LJlC66++moAMJ3o9ttvR03NPF7uKv763N7eXhw9ehTxeBxDQ0MYGBiw9dZCUWxuSoRL9y5fcT2QqhcwX8nVd7S4CUE4Gkn6DB7VwIgeDU91ASvVmZSH82+N2qE3+ELe1Ww2a54wF/A/evSoRXnwXMpcLhfwNl166aXYvXs3tm7dekGjKZFIIJlM4qmnnkIikQidd5d2ltJcsOH1bq81VG8awL8W+O5K5POenkPeWGIY39MArgVwq3zGdptco+1pAH94/p5vLvGe19wWY0r6fRjyFI/HsXXrVgDA8PBwIN6T3g8KK26a8vJyXHvttSgvL8fzzz+/AL1mcmllZSWGh4fR29tr4S/AfKwwr2dfXATZVZ4BBIwkFyXWeXDRkzCDRI0gAMZAVMhqIiOVTQCWB6Pop1be0Q2mXjW+K8wb4PbdVcrUo8HPldnQGzIyMmKHUDIWu7GxEZ7noaOjAydOnDAUhn2sqKjAlVdeGTi3p7i4GE1NTbjvvvuMCbGsJ93eWno6kUjgV7/6lXmblqIoFlrLV9Jcob1UoavXcr7379+P/fv3Y+/evcjlcoZUA7B46Uwmg0wmYwneu3btQl9fH77yla/YulIR07CysbEx/OAHP8D73/9+LF++PFDWXD1BhXItNPlchR/DyngOkVtqX3+Ivisdq6FYU1ODoaEhE4jMzWIoaV1dHdra2mwfKrrKQi+q4PJvGllUEDgOGulhhrLriVMFVZVUfsbn8j08ZLurqwtjY2OIRqOWzJ1IJAKGniqUZWVluOWWW3DFFVcgEokgHo/D8zzs2LHDaOHIkSPo7u629X61bSl0Xwj4WuzasO8vtC/4/czMDE6dOoVvfvObKCkpwa233hoI4d64cSMSiQTOnj1ra/+hD30IX/3qVzE6OhrwvDPXifmDq1atQkVFhdEL3zc9PW0hdZQN6mFRFDtsLnTvaIUxfu8CTKzqyOtV2RsdHcXIyAh837eKatls1s7xIX1x7JrwrqGzpA0NMy+k+LpypBAw5BpLmts4MTGBF154AR0dHebxDUPCPS9fxfCaa66B7/sGmsRiMWzaFKw9derUKStjPjs7a14s7sXFjKbF9I+l0uLFaEuRJ/o+Gohf+cpX8KlP5QOU6urqAtfv3LkThw8fhu/nUxMeeOAB/NVf/VXA0640q8r/8PAwZmZmsGnTJvi+b5Ee1LXI2zQ0W3mk6lr0zIcBQHw3ZYeuWaF5os5TVFSE2tpaC1Gjl9jdh3Nzcxa6T/6poXaFcn0AWIRCmE5DWcX3MTwvnU5bJFA2m0UymcShQ4cM0GPVSgAGilO/ufnmm1FSUoJt27ZdkB6YD/vwww8HDOBC7ZXoLKrrvt7tNRlOfr4QxB+Hfed53meQN5we9H3/X+SrbwL4PwB8zPO8b/rzB+DWYb4i3/9wHvc/kDec/tLzvEf8+QNw2wB8FHkDzjWoXnErhLjr92FIo0v0vu+jq6vLwuF4mnVZWRkGBwcxOTmJaDSKuro6jI2NWaUpJvvt3LkTo6OjOHjwoCEV3PSJRAK1tbX2f09Pj20SAIGwPfbNzUfSH+bh8HtFf92QBddAUiainhrNC9EwIxoEVEo1jILMjcKX9xQKsyDjonDntfztoqgcD9dHlQYilvxevVUTExMYHh7G0NAQhoaGbK02bdqEhoYGeJ6Hs2fP4tixY+ZZVEVxx44dqKqqMpQnGo1i5cqVuP/++22eGYPt+37grIv29nYMDw/j+eefN3SGzy9Eo2xhwv21CM3F3uka4fxMUdl0Oo0vf/nL2LRpE+rq6lBcXGyM+O1vfzseffRROyeCNFNUVITbb78dR48exY9+9COj1Ww2i7GxMQt3yuXy1cYee+wx3H333aivrw8kdod5YwEEwgDT6XQAjeNcu+imroECA8wF5DUMZaCRGInkD6NmUr8+n89Zt26dfU40ncpnISGuXidWYuL4tFwsGw0hjoG0rxX8qKRSkdXjD7gf+vr60N3dDc/Le8qLiorMS8dnq3CPxWK47rrr8N/+23+zojmZTAa1tfM1fXp6eqwUcyFlcCm0H0b37vXKNxZ7hntP2LsXMzzc76empnDw4EE89NBDRt/adu/ejYmJCQwMDCASiWDVqlW47bbb8PDDD1t4GJBXFNPpNDo6OixcT0tvV1VVmWefPIX7yvUS8G/XE8vrtJKYKwMpHxjmw/fR4CFvj0ajZtTr+2OxmCnPXHfNvdX3uxXAOC71yHEc2j/XiGdTWg+LmJiYmMDg4CCOHDmCwcHB0NBdXedYLIbLL7/cysnHYjFs3boVNTU1ForKlkqlzBOWTqfx8ssvL9nLuhgvX4wWL6bRFNbc54ft0bm5OTz++ON43/veZ7LAbVdccQWOHDmCbDaLtWvXYs+ePXjmmWdsvVW2AAjQy+TkJI4ePYr169cbrRNEUvmvXlSlDx2H6wVRPYTXsS9hocmkI4JafK8W7WJaggKD+i53fimbdE9rX3R+CFjwveTJ+nwCfIyuyGazSCQSOHr0qFU65HEz3HOam3jvvffaYeiHDh3C9u3bC9LH0NAQhoeH8fnPfx7xeHxJtM6+umN0v9N1eyPaay4O8Uqb7/sdnuf9OYB/BHDA87zvApgBcA+AlQgpMuH7/j7P8/4ewP8O4GXP874PoBjAewDUA/jffDlM97U0lyku5Xr3t+d5GBgYQDKZRE1NjaEHMzMz6OzsRE1NDS6//HJs2bIFQ0NDePLJJ02ZYjWxq6++GvF4HOfOnbPviK5TQDIkorOz0xLsm5qaLNxHE8C1b9w0LkNwKwmRcaiw4vUu0atxwr/5PDIGlh2lV0WNND53dnbWil+owadxwxwLGQIFq7t+Yf1Uo4lMSA0lIowzMzNIpVLo6+uz85k8L1/167LLLjOEtL29HV1dXRgdHbVxxWIxVFZW4rrrrkNlZWVAUa6rqwsYTe76ZDIZJBIJ9PX1YWxsDOfOncOvf/3rQOENdyz8u9AzAQTmUu/Xa8KUi1eC3rhro0prNpvFyy+/jB//+Me48847rQoQ6e2OO+7AI488gnQ6jXPnzmFubg4NDQ0oKirCAw88gJGRETz33HM2j4ODgwBgAjGXy+Hs2bP49re/jXe84x1oa2szJE9pU8EBNXIY163CmLk/VLB4L4WP683i82ls0EtDoVVVVRUQiDzkVENElQZJb7r3NNzEXUuGjHB+yEtU4Oj+57q4lZ8UqdTQqZmZGQwPD1ty/OzsLOrq6qyAB4EFl46YOPyJT3wCsVgMmUwGp0+fRlFREXbu3GljePnll/H0008vSckLE5hLUdz0nsVAAPd5F9oHroFWCEzw/Xxo0bPPPmuH/W7bti3g8b/pppvwyCOPYHJyEpFIBHv27EFPT0+AD5DOUqmUyZSysjJUV1ebElleXo5IZL5kMAADrNg3Ba+AIOjkKpO8RoE3Vb7oYc1ms5ZHosoaC7yoEss+8LnAPI3T6A/j/bxevc+uYqj8P8xLRpBOj62gccaDaM+ePbvgcFSNFuG6ExDTXOYPf/jDGB0dtfPQ2BhWSMPp5MmT5lEshMCHAQaFALFCtBrG+19r0zlYah8mJyfx6U9/Gv/8z/+M5cuXh163bds24zH33HMP+vv77eBz952sYFhRUWG89+TJkxgYGMAVV1xh0TwuPdNrEpbewHeE0ZxGMug+UXqjXCF90dBw5bH7Lt1jaqC5Oo2CeWGVMJlCQU+Xa+CRfzAcnHSfTCZx4sQJpNNpALC0Dc/Ln6U4PDxsXuydO3eisbHR+tvd3R1qODE0fWRkBF//+tdx4sSJgFHo5motRkcu3w4DgN6I9oYbTgDg+/6XPM/rBPDfAXwA+VyrYwD+T9/3HyxwzwOe570M4GMA/hcAOQAvAvg73/d//IZ0fL4vF7xmfHwcfX19WLVqlSlCpaWlaGxsxJYtW+y6pqYm3HjjjYao0A3b3NyMG264AT/4wQ8svAHIC5XR0VEjfjJ7RWNqa2tRWVmJsrKyBQyB4RG6yXVTuR4oFTRAUClWBNLdmO5cUbioweMKAypqei6GGmLKTNQTpRtOP6fSzN9hjJBMcG5uzmLk0+k0EokEBgYGrFxmWVkZli1bZtVvpqam0N3djXg8bqdfUwlobm7GVVddhcbGRuvPjh077PT4Qu3w4cOW1zQ4OIjx8XH85Cc/Mc+FaygthQ51bsKUxTCkbbF2IYXTfZbSxuzsLP7t3/4NGzZswObNm5HL5UzgAcC73/1uPProo5iYmEBPTw983zev0qc//Wl8/etfx1NPPYVkMomZmRkMDAygqqrKvD2zs7Po6urCf/zHf+Cd73wnNm/eHBBWYcKJZxDRU0L0sqamxry3LKaia8x509BYzenQPUlllcKaAAkVRt/3TdHMZrNWjpaFUXRPai4egEDiM5Fuhl+wOpOiqtyDpHnmimg1JjUgNVRvfHwcPT09dn5KNJo/SJsheqlUagENRKNRXHLJJfjc5z6H0tJSTE1N4fjx4/B9P7Afzp49i0ceeQR9fX0XNJxc+lvsele5fC3Koz5rqc9Tg0qVr3Q6jV/96ldobm7Ghz70IaxZsyZQpvrOO+/Ev//7v5uH++6778bAwADa29sDOZRTU1MYHBzE0aNHUV5ejksuucQOxKXXm94aXVcNX6Lhwf6qd1z3iipcajTxeAzuD2A+vBqYDzui0js3N2fnilVVVQVC2ji3GhKuZZN1L3IvEaxSkE7XgnuadO/mSjFEl+Po7+9He3s7xsbGAnJPn6O8hB6+q666yvJVPv/5zyOXyxc8am5uDtDEb3/7W3t2KpXCz3/+c9u3YfTmfhZGd0tVGi+WweQ+bzGF1+1fNpvFiRMn8C//8i/4zGc+E8hj0rZp0yb09PQgmUzivvvuw3e+8x3zRKkcZH42Q1VHR0ctxP3Xv/41du3aZXnIkUjESo+7Oo4LFmi0go5RQ0MJmLnGk+b7MXJAD6kmLZKGOR4F4bTIigLAvFbpXPcvZY8bPUGAgH2njCD9J5NJnDp1yowm9eQxF5Ghe01NTdi1a5ft82g0ine/+92h60iAYN++ffj+978fAP/cOXf1mkJ74GLT8Sttr5vh5Pv+ZwB8ZpHvHwPw2Ct85oMAQg2ri9XCEJRXskhK1MePH8fu3bsB5CuJrF69OvRAsBUrVuDKK6/E/v37kclkTNitWbMGN998s8WD0tggOq4K1MTEBHp7exd4mTSh3UVHFH0opIi7SIaO0w1bYp/ClHtlLur94HPU6KISyk2voVZkCOwbFVfdeMpQKNi03/rD/vLcgqmpKQwPDyMej5uXoaysDJdccokJ7eHhYfT391tZUTKoiooKbN++HatXr0ZlZaUJ8yuvvHLBSfFhjQdhMuzl+eefR39/f2iopGtEFWqu0vZqmU6hZyzVeOOa9vf34+/+7u/wqU99Cm1tbab40MDZvXs3nnnmGTsoubW1FQ0NDSguLsZHP/pR3HffffjCF76A559/Htls/hwhnqTOfg0ODuLRRx9FNpvF5s2bTZlhI62xmIIWb2E+CJPsdb+oUNQcPQAB40aBCSq3RUVFGBsbs3mk4kpBybEQ7db51tA6ClUFPYD8Pq+oqLCEYip6Lhqv+0QTjTVxWNdNvQlDQ0M4deqUVYSiN3VychLxeDxwPw25jRs34q//+q9RX1+P2dlZnDp1CnNzcwFlaXJyEvv27cMTTzyxoHiIjlHpLkxRDFMgFxO6hWj3QjStNFGoFeoL783l8od4/uQnP0FzczPuvPNOtLS0WLg2ANx333148MEHTVn54Ac/iH/8x39EX19fAEyamprC0NAQTp48iUgkgjVr1qC+vt689twb5COawA4sDG3mGEm/VAJd7z2Tyulp8rx8/kRpaamVUqaBomfPTU5O4uzZs/B9H2vWrMHKlSvN+0yZRqVRw/X4TjV8iK6Th9Bg5I9GPSgSTz47NjZmhVqGh4dx+vRpJBKJQC6TRjWocsz5KC4uxlvf+lYDWnbv3o1sNovy8vKAMQwATzzxRKCoxTPPPIPh4eEFniaX7yxmoBei+TAd5mIrnGHAm4IF+n7tz+zsLH70ox/hPe95D6688spAzqu2lStXYnR0FJlMBu973/vMQ6cGAz33npcPK2OkAs8YeuaZZ7Bt2zYL35uZmUFVVVWgkA3vd3USHacWqXL1RHcNcrmcFY7wPM/yz2l00eAg/6Xe5nn5KAOCWbOzs4H9q8a6VkPVvUoe6qY56AHu5Pd8B2k/k8nY87UqM3Ouo9Eotm3bhltvvdXmfWZmJlDyXRujEBKJBL74xS+a59uln1eiU/xXG00AEP3MZz7zX92H/0+0z372s/+r53nLND+IbTFhHeY5UWPhmmuusTyFxQ4Eq6+vt2pJFJQATABpuJgiCmzsg6JwVJzUuFAFyjV+CjFr3ZjuvLgbVl3ZqlgSXWMYh4vUM/adiJCGaSijoleO76AS6ib+hgkbVTbIMFjZcGBgAKlUCslkEv39/aYI19TUYMOGDYhGoyZcR0ZGMDw8HFAYKisrcf3116PtfIhYcXEx6urqsG7dugt6mgDgP//zPy0kZGpqCkeOHMHjjz9uuSeF1iKMiSi9Ks0qk3cFHj0IbiVFl+ZdQaHPWuwzrge9E2fOnLESphwjUcMVK1bg5MmTAWbNsLvS0lLs2bMHg4OD6OrqCggGMnkNYZqbm0Ntba0JJipeExMTdgihhjHxXA01tlxFTA9MVOHEddHf3BPT09NWRQvAAoHHv2n4RKNRM95UYCudK+/hXqEyCeTzHXnmh0sL9BZoErwLhMzMzGB0dBTJZBIjIyOBPD6WHqd3UA+rpQJ988034y/+4i9QXV2NbDaLs2fPIpfLobm5Gddee60Zk+3t7fjsZz+Lzs7OgHHh0ncY/w1rrsKovMClU1eQc23c5GuXti/UpzCFKqwPU1NT6OnpwcqVK00GMN8VyNNkPB43ZaatrQ2HDx8O5NsA8zmwvu/bGTD0Nirfd3k/6c/l+3yeHr6pNO77+ZDD0dHRgJFB0EE9Q9zzVCQ7Ojoskb+0tBQrV65EQ0OD7SUNW1fAQ2WXGlcKhFD+UaFWY4ceAI6LdB2Px/G73/0Op0+fxtjYmCmoYeCD7nWuz4YNG7BlyxaUlpZixYoV2LlzJ0pKShYYTT09PVZRcGZmBocPH8ZPf/pTC+lV+gjLvwszmAop7ovRpmsUvJZGAEkBVvfd7p7hdTMzMxgcHMRNN91kUQdhjce3RCIR7Ny5E7/4xS+M5mioU3bp+ZXKEwcGBjA4OGgRI77vmwdI+6vyhDzR/dExhF3HCCPSUjQatbwmAmSqvzHnV2UmQTaCASojgHnQOAz0YN9UBjH1QCsa04sUj8ftIGE2rqfuq0gkgrVr1+Kee+4xcIeyDUBocYj+/n6k02l85StfweHDhxfQXZieoL/dawvdx76EAW9h7TOf+cxnl3Rhgfam4XS+uYbThRaOzVVe2MioL7/8cjQ0NFgxiPLy8tD3e17+tGUeDKjJ2ewLy86S8HkfjQcijETVKDwUhdO+uiEaOgbXcCpkiHADan4EBReVNqISPJuF/eFYWOYbgHnb9B2u0eCWU6aA1LwplxEqY6PRRFd1JpNBZ2cnRkZGMD4+bgxrzZo15uKfmprCyMiIrY+WpC0rK8P27dvR1tZmRl9DQwPuvPPOBUnBYe3ZZ5+1UDEqmA899JCVotY5cEP2FmuqhBaiac4VDacwgc1rwoyosB+3Dy7dzM3NYWhoCMlkEuvXr0csFrNQnqqqKpSWlqKiogLnzp0zZJlhp6S5bdu2obq6GmfOnDFjQZUoCq/u7m6Mj4/b+RNTU1PIZDJIJpNIJBKGPjM8tqGhwd6lY6KCoMoYMG+AUAi63iB6ZIaGhjA4OGilXV0vKPcI9095ebkVd+BzKYTV66SoJz2ynA9WJ3T3OBFHBSBUKPt+Pg8hkUhYBb2jR48ajdIITafTiMfjC3JAampq8M53vhN/9md/hpKSEkxNTZnRVFFRgS1btsDzPCQSCfT29uKrX/0qnnrqqYBXOoz+ltp47VKUwzDDyQ1vdp9dyIharC+FPvd938412rZtG4qLiy13DMgrjQwZZq5GaWkpTp8+HTBUgfmiNqwGyXLEahRRqXQLKig9qSHC/aGKGOmaBQ4IWvDMKMo4XjszM4N4PI5kMomenh709/cH9kxjY6OVXdfIAzVc1Jhw5axGLBDI0kIY7K96mkZGRqwSKsPydJx8nwvI6f6OxWLYuHGjHcC9cuVKM6BaW1sD0R89PT3o7e213Ka+vj78v+y9eXBcV5U//nmtltRSt/Z9lzd5jx3HNtnjhJAEAoSEQAJhm5qN/6bgjxmYqZoqqqagimFgij9mWGYYimWAACmGMHGIE2dxYsexndiOd1n7vqsXtdZWf/8Qn+Pzru573U488Kv6+VapJHW/d9999557zvmce5af/exnIhO9aMYP9Nual6FB36f3+rtt2n3RbNns2aGhIWzcuBEbNmxYZbTTra6uDvF4XDJIHjlyxOWJwndibLc2apHWZmZmMDg4iJKSEjHEmd4cGmiY2fJMWcr9ZtIfQRONSeFwWLwX5ufn5USTdM5yFbpvFkynLPAyfpsgW4M3jk+7bvOZqVQKiUQCly9flkzBul+tZxGg7t69Gx/60IdEPgIrtchSqZV45LY2d4WhiYkJTExM4MSJE/jP//xPicO3gWv9uf7tRcN6LrR+eh04/ZEbgZNWivwYlk1RNBXTVCqFvLw8bNq0SQCM6e+sG4+rmYaaftfLy8soLi5GYWGhbEqtZFAY8viZStjMzIwAGNNdTwsH2ybUhKjdNLTw4ObSp0AUhrQC0TJJlx+eRC0uLsqpQXd3t1SrpoubHo+eV50qme/AuTWVBBMw8X1mZ2dddT4mJyfR29srQjccDkusAI/2p6enXZmQCA6ZLILxNMFgEDU1NXj44YfR0NCQke5isZgolUtLS+jr65O4NpuV1w80ZVLk/KyBVOht9OzXZ6Zneu2P5eWVYNLR0VFJT00f6pKSEpSXl6O8vBzd3d0CbILBoNBbOp1Gc3MzcnNz0dHRIQzTnKfFxUWMjIygt7dXQHo8Hkc8HheXGcdZsZRXV1e74gJt76DHr2vJaCav9wZd3Ai6dfpa9m0aKAKBACoqKlwCkwCNyhjp27yX7lOLi4uu4qi2udE/FPo8RWAmyYGBAVy+fFlchTkv8Xgc4+PjYi2n8aa5uRl/8Rd/gY985CMIBAJIJpPo7u4GANTU1GDt2rUAgMHBQVy6dAk/+MEP8Otf/9plCHondGZe67dH2LwErakw81p+p8dje5Yp8P3GSSUlGo1K2upgMIilpSXJOrl+/Xo51QNW4mJ56m2CTQIExunRkq3pTbu/2WSY/tF8nz+kkenpadfpDI0KrCNFumLcUH9/P/r7+wVo83sWLNVxUfqU15S1JqjSckcbOrSCS76RSCTQ3t6Oo0eP4uLFixKfqnmd13M1HQSDQaxZswb33XcfCgsLUVJSgpaWFlGCddIDppifmJgQfvCLX/xiVdp9bejSc85xabqxNRvNexmyriVw8tKZ/MaowX57ezseeughSb3t1ZhoIRwOo6qqChcvXpQ+ub4AxGDLU0+e1AMQt2LWOqI818bfubk5V3ZQG+/x8sCZnZ3F1NSUnCrRgMWEKEySQN1jYWFBjA3Ul5ggK5VaSdjF70w61PxYAzetj9FATJ2Fesb09DQuXbok2SK5fzlnOrFEZWUlHnvsMWzcuNFlhF9cXMTU1BSWlpbwyU9+ctV6MYnQ17/+dYyNjfnSnGlcZctkeNJ//zGBk5ON5fr/D81xnBOBQGAXBY363FNo+y02GXBhYSEefPBBPPjggwiHw9i0aRPC4TCWl5dRVVXlOZ5oNIqhoSE8/fTTiMfjWF6+Egvy+uuvS6pyDZxKSkpQV1eH/Px8LCwsYHh4GOl0GkVFRWhra0N1dRES3WUAACAASURBVDUKCwtdjE6/n82yprOJOY477bgOftQKBYM1dXB7NBrF5OSkbNre3l7pWyslPK1pbW2VTFG01mj/dlqKdeFe7ZqiwQaZoa6LNDk5iZmZGUm1XFRUhLq6OheTI7hiamm6GgIrJ2NtbW3YuHGjFIYjeC0rK0NbWxtaWlpcbmJmGx0dxbFjx8TH+KmnnkJ7e7vU8zCBn8msTUXCizZ181IEdCIBUwj6tWwVRN2XZviO4yA/Px933XUX/uqv/goVFRWIRCKora0VV5cDBw5gfHxcTn0YMM8TFVoqf/CDH+CNN95wASJNs3x2Xl4eKisrhcby8vJQXFyMxsZGyUqpA81t8R0UzOQX2upJa15/fz8GBwfFBZQnxhR6BOqOs1LHqampCQUFBSgpKUFzc7OAHrMOSVFRkbhv0EhC+ohGo+jp6ZG4qubmZqlloq353L+zs7OYmJiQ/UBDQmdnp8Sl8DQ3lUpJHKB2la2oqMDnPvc53H777XLCFY/H0dfXJ4YEnvhNTEzglVdewVNPPSUnDyataXr2o8FslTMv8E5Fx2w60UA2/Zkg2ARZXu9hgpeCggLs27cPn/vc59DS0oJwOIzi4mJXPNi3v/1t4QOjo6P47//+bwnmNsF+fn4+mpqacPvtt6OyslJOhPQ+91PO9f90yWEBZ/JBurcyuUNOTo7LmJBMJtHe3o7jx49jdHTUBcQ45oKCAlRUVGDNmjVoaWlBRUWFJLjQvJzj0MYCGhdZh0YnOeF1TNve39/vcmW1GQ/1OhLU6FMvJju5//77ha/n5+ejrq4O5eXlrljWdDqNM2fOYHBwUGJiX3zxRbz66quuuEVeq9fBpk/o5rUv/PaLnkNd9uLdNLqF2vaKpi+b3NJ6R2VlJX7yk5/gxhtv9IyX0e2HP/yhxONMT0/j+eefx9TUlCj7NITR4KRdPGOxGFKpFGpra7Fu3TpX2QbyW9JZMBhEeXm5GLX1Xjf1pcXFRczMzGB0dFTc+GkECwQCiEajcgrDLIrBYBBVVVVoaGiQREizs7NSpiYvLw+NjY2i1+k5Nl3FyZMJngigmD0yFouht7dXwI65p3gvvXhuuOEG3HnnnQiHw7JPdIHe5eVl1NfX4+677wawkuAnGo0iEAggkUjgq1/9Ko4fPy5JYczTO/42aUa/o/m3VyOf0CUb/Fo6nc7ehcHSrp84/aGZrnp6Ea/G2gnAxWSBFUvJ9u3bhQBDoZAQri6AqBsz8N12223io0vCraqqEh9t0+rsOI4rHTmtGrFYTIJ2tXLsBQhtgspsZMBaGdPWZ25qxpNQwPX398sJRzgcRjgcdvnMktlxUxH46KBgDZ6oUJvMmswsHo9L1q+xsTEMDg5KzRFgBXw1NTWJAGAs09TUlJz8madpO3bswKZNm0RxD4fDKCoqkmKO1dXVKCoqWuXnrtuxY8ckg9qhQ4dw7NgxeU+9pubcsplrSOZmNhs9m41gxGZRz0T7fkYFvSbmWLXVsb+/HxcvXkRbWxsKCwtl/ZmYg8UiGQ/Fd9WGg507d2LNmjWSnl8rPJqGyWApwDjfXGdNT9qHXc+/rpmjaY3ZiU6fPo2TJ0+iv7/fFQdSUFAg7og6lTrdtYArijut6QBce8lcK3POeaLKfU8XXgIlCnCeKNGNanJyEj09Pejo6BALJQA5pY3H4yIEucfXr1+PL3/5y9i5c6c8J5lMoqurC4FAAHV1ddi2bZvEb54/fx7f+973XPOu6cKmMHopZeb12dCl2bxOnMyTbi8LpxcgMveNbSzmflxeXikQWlxcjA0bNgBYiVnVtW7e8573oKurCwAklnJgYMBl3DJ538DAAObm5gQ48Vnam8B01dO/6epD6zxPH2lwoHcBlRdeMzc3h8nJSRw/fhzDw8NiYDNjl1KplAB4xvjSGKVdWDVfp1xgIp1oNIrp6WlJ9sD9dPnyZZw/f14s65qGuM4210y9tvw+GFwper5v3z6pXUP5Wlpaio9+9KNyfzwex7Fjx0SOjIyM4JlnnsEbb7whoMmPLrx0D+69q9FHzKbdDd9t0/FEbOb4vYzKGrAuLi5iYGAA9957r2+8E1skEsHQ0BAikQhaW1tx0003ieGINJ1MJoVn0fjD9eb3k5OTSKfTLl7OcXKeKBcIRvS+4I+OB+SPjvlOJBKIxWLiuUL+yX1IQMKTKOoB9FqiK5+WM1xLPpveODpj5MzMDMbHx9HT0yNu63ovzc/Py36hwSMUCuGRRx7B1q1bZV5Yby03NxcDAwNwHAdbt27FrbfeKmtCw8Tc3ByefPJJHDhwwJU+3uSVNoOWDVRnMgJrfmxzvba1665616h95Stf+etAIFBnMgGzZRLYJmMAVpTS6upqNDY2SpwCFTVbATizrV+/HsPDw8IAAoGVdJBFRUUYHBx0nU5w82hARqARi8XkiNqWTEFbU9i0wq6FMpmFtsbzvkAgINYRpstl9rLh4WGpUVNdXY2qqiqUlJSgrKxMlDvHccSSSKZKJkjlWTMw7VZhuklNTk5iaGgIw8PDGB8fl7gWAAJ4KioqkJubi/n5ebmGiqd2qwJWrIubN29GW1ubyyrNhAGRSAR79uyR9MJetNTV1YXBwUHMzMygr68Pv/zlL12FRjnP+uTMpDFzrUxm4yVgswFOXteZzzGvsTFHG3AyWyqVwsTEBM6cOYMtW7agqKjIJeAbGhqEMZPmdIIRYIXuysvLceuttyIcDmNsbMxlWTMVYiqE0WhUChyPjY0hkUi4kklo8KKDobWVa3R0FCMjIxgYGMBrr72GCxcuuFKcs8ZOOBwWYMQTMwYN0z+etE+QRMsnBQPpm++u3WT5bnRJ5B7giWssFsPU1JQkfRgcHER/fz86OjrQ3t6OyclJEdicI13nie9TVVWFz3zmM/jUpz6FyspKma9kMonOzk6pev/ggw8iPz8fFy5cwMTEBL71rW+JxZMnVl405vW/je4yGbq86M8GnGj0yrR3vE5rbP97NVNRW1hYwMDAAFpbW1FdXQ3HuZKpjm379u1Cp3l5eQIeOB7TvZexfu3t7WIRNk9Iyct5YqPjBen2TdrkujGOimNnP+TRjKE4f/688PX8/HyJ0zKNXDQGDg4OYmBgAEVFRQgGg6LU0XJOTwHKBIIm0vXY2Bj6+vowMDCAqakpF9jn2uo9rOWgBo0muKqoqMBdd90lrogLCwviHfC3f/u3rnU9evQohoaGxNPi4MGDOHbsmAs0aTrx4uf8nemEKRt6M2X4tWikT6/3sO1L2wmf4zgYGhrC+vXrsXXrVt/3IbBgplvWq2tubsbatWuRn5+PaDTq4luUFzwhC4VCAm7ouk0AZRZ75loTwOs09jRS8SR2enoasVjMVVCcfJ0JpRzHETdqra+Ysl7/phGERi56v+ix8XSJ7qAMg2CMpOZ17JP7Wsem7927F9u3b5fvCewikYjIzPvuu29VTNPQ0BCSySR+9atf4cknn3QlPfEyMNk+03TipWeY1/Kdsj1JfbfA6U9Sx+n/y81rgcl4bd/bPtO+57Ozszh69Ci2b9+OQCCAsbExcS/LtjU1NbkqwYdCIbS1tSESiWD//v0uJkEFiidcBQUFmJmZQTQaxblz5zA7O4uGhgZx+TGJj7+1wqkbrfCm5V/PBzfixMQEotEoksmkFEJLp1eSL1RWVkpME13uAIgVjxZL08eXjFcfTzMZRjqdFqt6IpGQgGAKdn2Uz2KROTk5GB8fF79ivd5sgcBKxe8NGzZg3bp14irFuSYg/vjHP+4b5NrV1SXW98nJSYyPj+MXv/iFHH17nTQB/gL0apqmZfM92d6NRdPWbP2Z77K4uFKH6etf/zr+5m/+Bps3bxYFPBKJ4LbbbsPo6Cj6+voQjUYBwKXI6XiLO++8E+9973tx9OhR/O53v8Pk5KR1fil4qHwODw+jq6sLnZ2d2Lp1K2pra8VdlJnKNM1Ho1FcvHgRly9fxsTEhGtPBINBlJaWori4WE5jSIcA5H8qxvF4HIuLi5iYmBBLKU+w6ErKeaSQpM8513N+fl6EIS3/LMTIGMmRkRExEExPT686xTPXSPOBYDCIG264AY8//jgikYjLvYPxI/Pz81JVHgB6e3uRSCTQ29vrSq9vo4F3S4uZrtXPy3RaZfI0L9CUqS9zbOa1uq9UKoXh4WH87Gc/ExedsbGxVbVuKisrJbve9u3bEQqFcObMGYkjtdF5NBrFsWPHcObMGVRWVmL9+vVoampCcXGx0JCu+6UBFk+ntPLF7zRY09m7hoaG8NZbb4kyw3hbekSUlpaKFV67JRN89/f3o6ioCBUVFSgvL3cVkXUcR06NTfdR0yWV15tJWTg/ZpyReV8gsJLw5K677nIV9qUsueuuu1x9dnV1iXIbi8Xw+9//XkBTNnRiGsn4mUl/XveY7Z2C+nfaTDmlx+71bMrwr33ta9i7dy/Wr1/v2X8kEsFbb72FnJwclJSUyCkT+e2uXbtQWVmJ06dPSyF5goCSkhJxWy0qKhLj1szMDPr7+xGNRlFfXy8u3DrmW//m39RTqJtpYzL1JPJyAhN6HWj9kG7QTCLGmPTl5WUBdjR65+fnC4BzHMdlAGRSCg2ETJdh0jw9gHgSnJOTg/Lyctx8881YXFxELBaTxBaFhYUIh8MIBoO49957V63j9PQ0BgYG8O1vfxtnz551eQzZDL9eLVtDgA1QmUba/8t2PcbpD81xnBM5OTm7bBlivKxBpnAyFQ9tXSkrK8MHPvAB7Nu3Twq15ebmor6+3jdNObCiHPb19eHNN98UYaEBw9DQEPbv3y/uNcFgEKFQSLKTMcEBGXdhYSEqKyuxdu1a8d81U/DarB/aQkkhqVNxaos3NzxrZNCdgicb1dXVWLt2rbi60YUkGo2KpZAbn4Jc1yfQpyOcB9OlyuaSyFS/+pmzs7NScFVn5tMul4WFhdi0aRMaGxslvTwV9fz8fGzcuBGf+tSnrK5yAPDss8+ioqJCFN6pqSl0dnbit7/9LTo6Olwndza3Gb0G/NtPIJoMyE/QUgnRgsKLCel+bX3bFGEv4W9ewzXNy8tDfX09vvCFL6CtrU1Oa+hKSRcHuh8sLCwIuNHgiRa9WCyGp556ChcvXnQF7dosexwP17yyshLV1dUoKysTl1IW3B0eHsbFixeRTCZdPvKs31JQUCDj0kVzub461T7nmtkbtQUyPz9f4v6qq6tlLywvr2SRovEhlVpJ+T86Oorx8XERuDRc0F1Qu3foubAJIv6m292f//mfo6qqapUhgienyWQSkUgEX/7ylwEAAwMD6OvrQywWw/e//30cOHDAOveafkxFywvoZwJdfrKNfZknAMCVuBs/Q1m2cjMbJYHX6b0XDofx0EMP4bOf/azQExNrsH3pS1+S+QgGg+js7MRrr73msi5rPqnj0sjjAEgcFTM5lpaWiqJEWUUAzriNvLw8lJSUyJ4kD04kErIvBwYGJP2+46ycNlVXV4sC5jiOuKGzb5tbrMkbHMcRI6GmC15roy1t7NAg1Q/EMt6lsLAQd999NxobG12nvTk5OfjqV7/qmsuzZ89icHAQfX19mJqawqFDh/Dqq6+K9T2b5geczPfz2gv6XlMu8BTxWuh+PE03n+W1v70UXl4bDAZx880343vf+x5qampcc6vb//7v/yKVSgl9kv5mZ2ddcpwxZbFYDMvLK4kaysvLV7lKa68FAjC622vdSNNQKrVSG4mubjRa0QBGQKLfVWe8BOAqDM05YC03xvMycx3DAXJzcxGLxRCLxSR5mAZE7Mfk34A7VpGnSY6zkoWyoaFBUo3T2PHFL34RiUQCZ8+eRX19PZqamlzrQGA4OjqKT3/60xgcHHRl4rR5zNhiP029wtQbbIDKpDm6RGZpnHhX1oPrJ05ZNj/w5GVN1ws4OzuL1157Da2trWhra5NNS8u5X6Nwr6mpwdDQkLjtAFfck+6//34cPHhQrHc6cxEtddyIsVhM3Bw2bty4KiCeBK/fRfvEU1DqFK+sP5NOX8lww9gIHq1rgVteXi4nTTqmo7y8XISsVnIJOPRJnk355JzQHYMB/Cx2p/2T6XdMpsf7uLa0wLKWU01NjRR94zwUFBSgrq4ODzzwgCtJhm7PP/+8MOTFxUVxJ3n++efR2dnp8jnm2LyEv5dFJhsmYyoZtvt1eyeC1WZtNPv0AnikucXFRQwODuJf/uVf8JnPfAZ79+6VddE1O5qamhAIBNDZ2YmZmRk5FQKuVEkPBoOIRCL45Cc/iZGRERw8eBDt7e0S4G5apvk3s9MREABXlFB94kn6ys3NlYxapaWliEQirlpqtrnm+2qwTqsiA4xTqZQkbejp6REgSbcoGmB4HS34jOGjrzz3glnE01wrk2aCwSDq6urwvve9Dzt27BAeMT09LUoK3UN4z1//9V9LHxSkyWQSZ86ccQlSG9AxlUK9L7xoyva5qWR6KdRe/diUV/O7qwFwNpq3PZfXzc/P49VXX8Wdd96J1tZWLC4uIhwOo6amRq5//PHH8eSTTyInJwcNDQ1Yt24dAODVV18VZUu/u1ZG9ImfjrvQbnjMFseEQlQwaa1n/Fw6vZI+eWRkROLmdG0n0mhhYaErORHpi7GhdEcyT2a4HwF3+nib8cacZ1MJsxmkbP1QFoRCIWzfvh3Nzc0AINb8QCCAb3zjG671YywXT3PffvttHDp0yOUqaK63bn76hB6jHxg3m1b0rwVQMls2oNV2vZdsWlpawvHjx/GFL3wB3/nOd8QoxBaNRnH+/HnxNmGmUcdxJJse+WYoFMI999yD3bt348CBA3jrrbdE54rFYqioqBAvAtIEDUJ0266pqZGkWqZ+NDc3J3HTdJ1LJpOr3CApH7SBkPF5OnudXmMmstKePUzw4DiO6EN6j5s0rueXc0+jLU9oAYgB/7HHHkMwGBTQ9MgjjwBY8QAqKipaBZoAYGRkBLFYDIcOHZKwEa6xOQ49Fi8asfF5L53Ha6/8Mdr1GKc/tK985St/nZOTs6oArsms/Cw8tqYtggsLCxgcHMS2bdtcCjhdkbxaTk4OpqamJDsMYwR0unIS/+joqHymLYtaYNDlghtR+7ECcJ0i6eckEglEo1FxF2QgIwsbEkjRB50Z6XRShbKyMpSVlSESichJl3kyRODEa6h88gSKn2lmp8ESrfA1NTWora11uSNqX/qpqSlXXBEVSyrGzMyzadMmyY5HK2kgEMC2bduwbt06bNu2TcCn2To7OzE/P4+KigoAK0faPT09OHbsGF5//XUBg6QVWoX5v4052Kx2psLpdY/Z+BktydrqbWte/fhd4wfyvK6hy86pU6cwNTWF+vp6yeymhQlPdMbGxpBMJl3uQxTEfA6zWu7YsQPFxcUut1bbfGpBpA0HOkiYAruwsFDGwpMpKogmwNc+7aQzjpsnoryfRhJa45mha2RkROKTurq60NHRIf7vOrBY+9rrDGgARPCaijX3WHV1NT7+8Y/jIx/5CGpqauR9ZmZmJL06LaY5OTnYsGED/vIv/1ISopw5c0ZcAZ977jkcPnzY5Ral29Uqdn5C09wffgqnbTw0mNh4vh/N+n1uUxTN70wFnqcwO3bsQDq9cjpWV1cn99XW1kphWWZkZD0kygu/8dkMBqRP8nHGiA4MDGB0dNQVC9jf34/u7m60t7cL/VE+aADCvaETSWhPAl6vA/e9lCXbZ+Z6eylr+iRf969PBTgOnjTt3LkTN910kyi7zIT2rW99y/WMzs5OnDt3DiMjI5iamsKFCxfw29/+1gUC/cadCRSZ19pkgI3GzDgucx7ebaNuY5NFmUCtlm+mwsyaV/fcc4/L8MS4UBqzgCsngzU1Nbj11lvR09ODqakpAFeyPm7duhXbt2/HwMCAGGRnZ2fFTZq8VoMS7f7GUAjGtY2OjqK3txf9/f2YmpqS8AIAYgymwZbgjMZhnRBD8x/tGkvQZGumMUmvtY7h1ddT34vH4y5wl5ubi5qaGnziE5+QBBUAcO+992L9+vUS80qjDBuTeUxNTeHIkSP46le/6jJy2/bg1QB/2ztkc88fK8bpuqveH5rjOCeCweAum8A0m97wfsyB/1M5olX6nnvuwXvf+17JcFdaWorbb7894xiPHTsmmYKY8U3Xr+HmeP755zE5OQnHuVIIkGMhY9DWQP4uKytDbW2tuFJoFzmdBpwnRTxRYrAkT07I6Ah2mH2JLks8qqaA0uAoEAi4irXpjHp6LOybx+I82k6lUqJ40o+Y6aDJLOkTz2NqjoNjYgaZxsZG1NTUiAsbmWA8HsfNN9+M5uZmSSeqFRrdaHGfnZ3F8PAwzp8/j8OHD+Pw4cOubH0ETaa7ox9I0rRo0px5LfvwsggyfbUZkJmNdd58pjmWbK2tet9xTajAbN26FZ/97GdRX1+PSCQiFkCCidHRUTkBIihh1XWOwbTsLS0toaenB2+88QYuXbokGYfMOkt6nvW7aIBfUlLiKt5LF1muK2mNxgn6gNP1gmvPfUC6JzjhnmCslu20jPPG/U4LKPc7T3sJfvQpkeNcScVbVVWF973vfdi7d6/0z73Pk1oq7Ol0GpFIBA899JCchjCdOcfQ3t6Ob37zm5LBKhMtZQNO/Czz5n02KybgrnpvNmax0vd57TO/PWD7zmtstj3Q0tKCf/qnf0JRUZEkKNiyZYvrGc8884zwRbpn9vf345VXXhFXVk2/tvnw25/6bxNk2N5Xuz3pZBCFhYWIRCJyMuw4jgSyc4w8RaAlnntXZzX1AwvZrJP5nf6ee7qoqAh79uxBW1ubKLkAsHnzZjzxxBNy//z8PE6dOoXe3l6MjIxgcnIS586dw/PPP78q1X2mcfA7v+/Nv3Uzeb35btrbQhvs3k1znCsnPX7v5zVeG3BkX8XFxfjhD3+Iffv2We8fGBjA6dOnJdHCtm3bxCj0/e9/H47joKSkROoxEhD19PTgd7/7HXp6epCfn4+qqirh1+QJ2rVZhwZoGa1BON+FGfB0Bj82HTuogbiWD+l0WmSQ1t8cx3HFxuowCS2nHcdtqGNiLZ3YhWMNhUJYs2YNHnnkEeTl5Ylb7U033YQ777wT58+fx4EDB3DHHXdgz5498h7Dw8NS1P3Xv/41fvrTn2Jubk6ereVSJt7op7tkaibtLC8v/9Fc9a4Dpz80R8U4acWfzXRd+8M9q/qxuWrRgktFrrS0FB/60IewdetW+aykpMSV2tGrvfDCC7h06RLGx8fltITuEkTbyWQSBw4cwPT09CrmScDB8evNT2s3LSRMcmATuLRsmPNCBkPXDPoI8zSIFnkyx3A4LIkWyFBo0eYpCBkJAQwrUAOQtLe0zNOCTkA2Pz8vNTQ0AKQyyXHRNSUUCmHt2rWorKwUSxSwYkV6+OGHhQkzSLiwsNC3qHFfXx9mZmbQ1dWF7u5uvPnmm3j++eflHXSCC50NSzcvC6NNGfJSynRfts85hybIzgTK/KyLmcCarV/9jgRPzITU0tKCJ554Alu3bkVJSYm4WNBtrKSkBMFgEFNTUxgYGMDi4qLQW25uruuUSBsGlpdX0kAfPnwY7e3tGB8fl3hBzZRtLpQcGy3qhYWFsqe1lZH0TeBE8F9aWiqn0XSpo5CkYYLgh1kfzWyW5vxxvDQU6DTMGjjyxCs3NxfFxcVobW3FnXfeiba2NvmcSTNYKJQGExoDAoEAbrnlFjQ3N6O4uBg9PT3ispGTk4P+/n58+9vfxsTEhOsk1UaPNsX3agWp+beXcs858gJOrEflpciaY/cbq21vmnJC82RN/4WFhfi7v/s7bN68WYDI1q1b5QSbbWJiAi+88IK4oC4tLWFkZASHDx9GR0fHqlgIL+Cp38tUuvX4/NxwtDsrk/5wjzApEl2nmYKcYzJjTviZTRkz59ecSy857fU/XfMaGhpw4403SjIWumV/8IMfxN69e+W+RCKBV155Bd3d3aKcXr58Gfv37xc3VnNNM4GiTPSWqZl8VO8p/lxr4MQYJy/wnY1M0mPm34FAAK2trfi3f/s33Hzzzb7jmJ6eRmlpqeuzJ598EoFAwBUDCkD45z//8z/LqRPdT3kdwTv1CTavbL4cM0+ZdDkJzrMOH2ApgVAohPn5eUmXD1w5EeRpmBnnRZ2IvCsnJ8fF5zl+njDpumrc14WFhdi7dy/uu+8+BINBkTP19fV4+OGHAQDnz5/HwYMHAUCyRl64cAGxWAyJRAJPPfUU/ud//kdo3QSTXjSgZZSX4SjTHjfnnf2xtlemdh04XaPmGMkhtOXDBhD+cI/Zh/Uz7S/NWholJSV47LHH0NraKhutsbERmzdvzjjWn/zkJ1K00nFW0nrPzs5ienpaLBbRaBQnTpzAyMiIK9BcAx4dMMjvCJzoRmcqM16KMrMx8d7i4mJx2eE1PLXRcSq0pNLCkpOzUkCxv78fqVRKTgzoIuE4jitFNAUb3afI8OhqYtZEMN0UGNxaW1uLsrIyNDQ0SEE8jjE/Px933323rA0BHYuVerWZmRm8/vrrGB4exvT0NM6dO4f9+/dL/JkGTWR4NsXRJgw5r16C1ovxeCkNFCBmMKvZzHW3KWFagfIapylMbYwQgKSQ5VoUFxfj7rvvxsMPP4yqqioRTul0Wmg2nV5xdbh48aKAYwJex3HEKpVOp13FGxn/Nz4+jo6ODnR3d0t2LGZNMhU4TUcaKGk3VJ5CUXHkyajjOK6Uy3Tr0QCLCRwIorQBwJw3giVtxdTB9pxbjikQCEhymnvuucdVkDudXklUMTg4KKe/THxRUlIicYp6P46Pj4uQ5kngD3/4Q4yMjLjWPhvl8Z00L8XNvCYb4MQsiLZ+/ACH+b2XUcNLsdXfU2488MAD+PSnPy1GqfLyctx0003WMfz4xz/G/Py81Bnq6+vDM888IydPXm5wXn/b3kErSOb7k760DKXRkB4W3JPpdFpcgUjvZlwW+aJN/tqMRraxmXzTL52BzwAAIABJREFUtn482W5sbMStt94q3gqkjz/7sz9b5a70ox/9SAwZs7Oz6O7uxu9//3vJbGg+3zaX5pz7ASdzrjPRJXm5ng/Op2l4eafNBpz8QKLtc/M+E4g0Njbiu9/9Ltra2iSVeDZteHgYb7zxhvBUwG2wiMVi2L9/vyRnItBnunmb14FZlkHTO2UU6V3HMqXTaZEPNCZUVlaKR8sbb7yB8fFxmRuOQ+8Z9gtA6qpRHi0sLEisIr2AtN7Hd6fecv/990vtveXlZczOzkpWYAI27sloNIqSkhKkUim88soriMfj2L9/P55++mk5GdZ6laZNUz/w2gt6nk0a0X2Z/ejn0b0/m3YdOF2j5hiueqZCksX9np9rlzRdvb2mpgYPPfQQWlpaJAvehg0b0NjY6PssxgoUFxejqqoK+fn5kvL84sWLmJmZERefoaEhnD17VvxaSWS22I5AYCXldiQSEZBnZkDRGYXS6bRYobV7Hy3YoVDIBQyoENLCQ8uj4ziuY/GFhQVMTEwgmUyK5ZdrYJ7O0FrPujU6KN70E+bm1kI9EomgpaUFLS0tkiZXW4Wqq6uxfv16bNy4UbLiLS8vo7y83DPjD7BSAPHIkSMYHR3FxMQE9u/fj4sXL4ryQuVSW2hsWZ78lBsbiNFrZWvmPexndnZ2Vf0K230mkLb1bxOgmqnqa81xmGPj3tHJDcLhMNatW4ePfexj2Lx5sytZCvdXOp0WY8LExISAL55wLiwsSGKWVColLh6aGbMW2Pj4OHp7e9HT0yMxDIlEQoSoKRy0Hzs/ZzalSCQi8XLa111bgGnA0KetOqaQp6X6OUwIYwPfeu7phtrU1IT77rsPGzZskBNr7iUmTdGZLQsKClBRUSEV7PmuVAxYYJpJNZ577jmcPn1alEgvoZgN2PGiMy9jTrb30TJra2aGyUx96euyAU7A6uxSNmU7EAigubkZ//AP/4Di4mIXeG1ubrbWAfzVr34lyjH54He/+11R8rVCaJ58mXtUv4M5XhsfYJ96LvQ86hNtxuARSOn9AsAVK6G/03LZZrgxwaGeS1vLyclBUVER1qxZg9tuu02yrc7MzAAAdu/ejUcffVSuj0ajePnll9HV1SWp/48fP44TJ05knT3PNs/6u3fSbPzT1uf/FXDi/5mAk+07m9zgmuXm5qKhoQH/+q//inXr1iEcDq86XbK1RCKBQ4cOieFHn/wQFLDO5IEDBzA6Oiou1KRhnXFYj0mHOOiTJxo7tBFNx8aRzlkPsrW1FUVFRYhGo/j5z38ucbo0MBPA0MBLo9vMzAxGRkbkVCyRSGB0dNRlgGPjeAoKClBWVoa9e/di7dq14s1B3lNdXY2dO3eirKzMdaJ96dIlTExMYG5uDqdPn8ZPf/pTqanI/ecVM+e3zvzeRi8mb7ftZ30tf/RJr1+7DpyuUXMc50Rubu6qdOReaFd/rxfedo3jOBKvoYMRmQLy4YcfRl1dnRD39u3bV7li6DY6Oorh4WE4joOqqiqxLo6MjODy5cvo6uoS6+/c3ByGh4dx6dIlV1VtzUg0MTJmg5vWjD+i8kUByExyZAo6wxg3uTlHOu6JCisLHFKg8oiZJ0663kAqlZLq3HRHYsFaHsPr99NBk3R/yc/PR01NDdavX7/qHZlJr66uDqWlpWhtbZXaTUzQUVxc7Lk+09PTOHLkCIaGhjAxMYFnnnkGnZ2drnTQ5umXecStacdGa16KgE0YeilDeu1N4KSvsY3Dq5nAy2YV9lOiTTDFNTGzJPLU9vHHHxf3GROc6zlJJpOIRqMi6DlOJjbRwbKkb+2qRavczMwMxsbGcPLkSUlc4VeXSL8LgZ/mAWa2SC2ENf0SWPO0CYC4kdoyS5rzl5eXh4qKCuzevRt79uyRorVMUpNKpaSOlVb+CgoK0NDQIHPL+ibJZFKsmowJmJycxNmzZ/Hiiy8iFou5DAHZACc/C6RuXor9/wVw8uvTT0HM5n0zASf+ZormRx99FBUVFeJ6WlhYiDVr1lhdhQ8ePIienh5Zy/n5efziF79Ad3e365TN3O9e62UCJ/25ucf1dSbf52dcB/Mkyfad/kzzPS960YYC7TZoWwsaU2688Ubs3LlTYiQZd9XQ0ICvfOUrcs/Jkydx6NAhSag0MzODw4cP4+zZs551mvyAfTbfZdtsNGej0WsJnIDV8YAmeLKNy+aaat6vgUheXh7KysrwkY98BJ/4xCdQVFQkLpRmmn7dDh48iMnJSZe8BeByt6fxJx6P48CBAxgZGVl14qTlik7yoL1y+F4EXMwW6TiOi2/n5OSguLgYe/bsQU1NDfLz85FKpXD69GmcOHFCkk9xj9PVlXt1aWkJU1NTuHz5soDCqakpoUk95zQ0lpeXY+3atdi4cSNCoRDS6RWPgoKCAuF1ZWVl2Lx5M7Zt24ZwOAwAeOuttzA8PIx4PI6uri78/Oc/Fy8mHeul11Y3GzCyrbn+3gtAabow++Sev37i9EduBE60NgGrF9DLqqI3Dr83+nYpgLq2S15eHjZt2oQPfehD4iJWWFiIjRs3eiYcYDt79qy40DiOI9ZiZnth/RZmzuNmo9XatNjxN8Gj9vvlO4dCIWEIWqDyXah8a3AFXEnlTJcjx1kJ/oxEIqLAkrHQosIYivn5eYl5YsC7WeFe+/eazJoWfAbxNzY2orS0VFwkOQ9UaAlcHWclBouFhqnM0s3J1jo6OnDs2DGMjY3h8uXLePnll6UuD5mMCZg047FZWGxNK9lmy0YgmvRqJofwG4OmmathgpmUA1O5MYWntuZxnJFIBHv27MEDDzyAsrIyFzihsYLWu+XlZXR0dIhST6tlTk6OAAEtWOkmQQVLGw+Wl5fR29uLI0eO4MyZMxgbG3NlsLNZ4XivDZR5zS/nQc+nCbL0SSrHq0+P6+rqsGfPHhGaWhFIp9OIx+MYHx/H9PS0q5/i4mKsX79e4sb4ftoowYQEHR0deOmllzA8POyKqfJaey+5k+k+87N38xwqkLZG/uVncMim+e1fc595ARfy3TVr1uChhx7C5s2bJW4jPz8fJSUl2LZtm6v/aDSKJ598Unz+aXDav38/zp49K8Hc+hkaANnGZ/4NuE99zLGb62RztzOfny34zabpvWYDY6zp8573vAdr1qwRZZI1fxYWFlBYWIjPfe5z2LVrl7jica9PTEzgueeeE3dD2xxkq19da+Dk1TTdXyvgREOUHoffPvTaszYdi2uoPXbq6urwxS9+EevXrxfgU1NTIynjzXb48GFMTk66TusBiOzXNMx1n5ycxOuvv46hoSEJAeDYdLKogoIC6YO0xr510WYaseltU1paip07d6KyshL5+flYWFjAyMgIOjo6JKFUOp2Wemo6C/PU1BQ6OjowPT0thmIajdnI30tLS7FhwwY0NzejtrZWrufJVlVVlRQyr6qqcsVP9vT0SBKgrq4ufOc730E8HnfpLabxwmuNbc3PaKY/17zB5C0aONG4mU27DpyuUXMsJ05+c2MKnUzX8TeVeO0KFwqFcMstt+DOO+8UZT4cDuOmm26SOCGvNjg4iFgsBgCuTEQ8um1vb0d3d7cQ1OzsLM6dOyfKvI4XMgWXZlrawsI4JloreB8BlWbI+pg5Ly9PqmwDkHgmugNRUVlaWhJ3IWYU01n1TNChN5dN6eYJ0tq1a1FVVSWnYboVFxdj7dq12LBhg7x3bm6uxD5xrXQCBbOdO3cOb775Jvr6+vDqq6+ivb1dUgrrsWp3KlO5NsFTNoqX/t+cB/ZjNvOzhYUFV30VfZ2fEPRSsGzXZWq2frTw1CdP2nWCqbP37t2L3bt3yxrTOsjEHzk5OeJW1tXVJfuFp7akRyaG0Aoha9CQnpmBaWlpCaOjozhx4gROnz4t6bd5ImpTqLQiZ6MBr7nV13JOtOsTE1RUV1dj8+bNaG5uRmVlJcrKylyKYzKZlLpqy8vLmJiYcKXvZUFUZi8EVjLlMX6Kwjcej6OzsxNvvfUWhoaGXLXj3mnzmgfbdZlAFf+3CWXyEq+Uv1cLnPzGYwN6XsDJ6320m+qjjz6KW2+9VWqFMe5p586drnsZ3xSNRrG8vCynsGfOnMHBgwclK6IJ3MiP/cbH78yYPy/Q5KUY6f7MPZJpbmzzpBv3B7/TLuP5+flobm7Gvn37EIlEJL5xdnYWeXl5+NrXvobjx4+jp6cHZWVlWF5eKbjNdM5jY2N49tlnEY/HrTzc9rf5mddcmXve6/3Mvv5UwMlMYOAnE8yxmDLLS6ZRjtMYlp+fj5tvvhmf+MQn5JSQPHBpaQkFBQWrMhV3d3fj1KlT4rKqdRVtdKIxijzu9OnTOH36tNSsJM0HAgGJ0WbYAI1tubm5qKysREFBgZxmAZAEVKS/1tZWBINBxONxTE9PS7kJ8lL2SWMyXUPpkcOTLL2ezBDc0tKCe+65B0VFRZKCndem02kxuHDuH3jgAczPz+PZZ58FsFK+g2nHv/Od70hWVC2HMu1583OzmbTuxQMzyQUt27Jp14HTNWoETtqfFbArgyb6BezZ9P7Q76r/deY6ndXtzjvvxI033igZwyKRCG6++WboUzCz0QocCASkAru2aDuOg+eeew6nTp2SgPSFhQUMDw+7BIEtY5h+N2250wobcEVA0SKkj5QZGM+gRiqlLARLVxl9mpBOpyXAUVvwTYCkx2kKWoIcug22tLSgubl51Tox1urhhx+WOkGLi4vIy8tDOByW4nc60J/vTuVrYGAAJ0+exMDAALq7u3Ho0CEMDw+7grHNkyYvhTlbRcFsWiE3lUWzL5sySeBkc8fR95ljtNG3vtdm1fZ7B6/x8v30iYoGDVxnuqPdddddcoJLkF9YWCj7gvT39ttvi9BtaWmRExWejjJuiM9gkgcdtMt1ZZ9TU1MYHh5Gf38/Ll++LMVsbTEbmj7YtHsR31OfrnIPlpSUoLa2Viq6NzU1SfHd/Px8Aew8bVheXpbxcb2Xl5ddGfOYMppKuc4slU6vuHz19/fj4sWL6O3tFQOMPlF9ty1bEOlFazarpG2fmXVUdPMCTuazzPH6gScbXZv92vrT9M54nJ07d+KjH/2oxDg5zkqmrNtuu83lpgqsJIxob29HOp0WELC8vIxnnnkGly9fdgFenZxBn4rq8doUFpM/2+beVPJNgGEqysDqDHl+66DnTPMKfT9dtRnjp13zWFPxG9/4hpxO9/X1IRqNoqOjQwLvL168iLfeekvkpm0NzfXMVvmzNZsC6sUjs2lUtq8VcNIn83o8XuNky0axBq6c1GvPFnoEVFRU4P3vfz/WrFkjngiUu/X19bj33ntX9ff73/8e7e3tmJ+fF+OaNtDxf70n5ubm0N7ejpMnT2JoaEjm0CzhQR2INStDoZCEFACQ1Oncy4wPY2kN1kZKp69k/NUyma7dBFC6TASwos9UVVXh3nvvRXNzs3ghUe/ifBcVFWHdunViDHzggQcQDAZx7tw5vPjii0inVzxwLl++jF/96lcuA4EXyDF5tBfP8+KXXjqLjVeQLvRn14HTn6Bp4KQZuEkgmQQJ//cToLScaLciupLt3r0bt99+uyh5FRUVvmnKGZ9AYTk8PIxEIiF+spFIBDk5Oejt7cUvf/lLiedYXl7JeT84OIihoSGX+56u+8GmmYP5PwlYK7O8n4yICp8NQOg55PuY39s2lRa2NuBE8Emlkgok+yooKMCGDRuwe/duhEIhcSPMzc3Fhg0bxJVL9814EcdZcW87c+YMTp48iVgshjNnzuC1115zKSJ6rDY3PU1XV9P8lMtMwtgm1Obn563A6WrHZvbtpRz6CUub4qj/1oqRFqo6gURLSwve//73Y+PGjSKodAwb/fKnpqZw4sQJV1BpWVmZZIyj0CT9Ald81Lm3bAoDx8mU0GfOnJF6YrT0m/uARpWysjIpgFtSUoJQKCSJIaqqqlBfX4/W1pW4u6qqKld64XQ6LbFPdOHgqSerxtNyys+WlpaE/5g0xPd2HAfT09N44403JP2yV6bKbOklE5DOJJi96EVfaxPwvCcTcPIq7JlprF60bSoVXsql13uTvunus27dOjzxxBOoqKiQfZCfn4+NGzdizZo1rj6OHz+O3/zmNy6g5TgOBgcH8fTTT8uJoj7RtI3B691MZYqgy0YXXu/N72wGoGz5HZvpxkyltq6uDtu2bcPatWvlBHp8fFxcW//+7/9eXKdeeOEF9PX1YXJyUrK0nj59GpcuXZLYMRN82Nxu9Ttn+syrZZo7L12En+k10Nk2r0UjcLKNw28P6+fb7jOBtgY2Og41NzcXa9euxQc+8AGUlpa66vjdcMMNq05iAeD06dNSFkT3qYGQCb6ZzKS3t1dcNIErSUwcx3F55/B+fsZr9MkWgaDjXPG0oVsga5+xDz6L8bra4O04K4aTbdu24b3vfS8AiOcDM7MCcOmaTU1NqKmpwebNm1FVVYWFhQX86Ec/wtTUlMRcHTlyRBL82HQa3fQ76qYBWyb6ZPP73zSy8LNUKnUdOP2xm2O46nltbs3IbZvdxsBMYW6L2SDyj0QiuPvuu7F161axCOfl5eGmm25Ca2tr1u/T398vxWFLSkqEmZw4cQLHjh0TN710eiWgrre3V2Kh4vG4WJpNBqb/NsEU/9YbRX9u+6G7EIWQtsrrDUJAZdusmjER3ND3X8d16HcpLS3FBz7wAZSXlyOdTssxdF5eHnbt2rVKKeampJVpamoKb775prhDvvzyy6J82IS9ViJ0XBO/081PsfD7XN/r95mt/4WFBZd1S9Pyu+URfsLQ1ryAk/7MBuQ1kKK7wo4dO/DhD38YVVVVLppjoUJmgePpycLCgnxHd1pdeFAXk2XBW6006LHp90mn00gkEujo6MCLL76I/v5+ycynE8ds3LgRH/zgB9HQ0CD0kpeXJ39XVlaK8sO6T8yeRh96KkZ0EaGLHU/PqGxwv6fTaVRXV0tWPWajJGhKJpM4f/48ent7pT+bAcRLwfWjCXO9M9GDaSCx0Yv5txdw8qtlYwNO2Yw12+a1J/UzzL2iFTLSeHV1NR577DGsX79ejGcE3DfccAPKy8tdz/n5z3+O9vZ2LC4uori4WOrW/O53v5PYJ5typPdbNmO3xfDZYiL8QI+p8NsAB+fDNr96r1dWVmLHjh3idUAleGpqCrm5uXj00UfR3NwsiU/OnDmD/v5+TE5OYnZ2FvF4HIcOHXLV2zHH5Uf/fuvrd615z9XwZFOx5A/jgq4VLeuYX00jXuDHHI+pQwD2OF0NRvRpjF7nPXv2YNu2bZLVt7i4GHV1ddi1a5ckPGDr7Ox0ZaAkQGH8uTZs8304vsXFRXR2duLYsWPo7e2VuozclwRCGijpedDeO/TSYdIrAiedqIv7lDUutX4WDAZRWVkpJTqoR1EuMEaL14ZCIZSWlmLfvn1oaWnB0tIS4vE4Tp06hUuXLqG3txcvvfSSZBm07VsvQ4b5t6k/e8l8sx8verfxAV5/HTj9CZrjOCfy8vJ2aWHpp9DamL+fFcgGGMy4ISpq4XAYt9xyCzZt2iTAIjc3F9u3b/es3+HVjh8/jqGhIaRSKYnfSSQSePPNNzE4OChuQNFoFFNTUxgfH8fY2Bii0ajEaJi1hvhOpoJoe3fb+zOuiy6ItHrrFN2m0NTAif1wrnSCh0AggLq6OtTW1gpD4v2854knnkBjY6PET7H4W2VlJVpbWyUtOcdKJSsejyORSGBkZATnzp2TLGKHDh1yWSBtwpT/8z1086IbfnctlDeTyZh/6xgnr7G8k+fbAIQ5nmzvZx8mPfE609JHo0RZWRnuvfde7Ny5EyUlJS5Fi30wvqm3t1cEDINoU6mUFNLlO9Btj8DJBHPaCKCVcApTFmYeHx9HKBRCSUkJysrKUF1dLUBfxyyyRSIRoUdmtItGo5JVEoCr/sbExIRLeOfn56O0tBSBQACJRALT09OSvZJzwD0xNjaGvr4+KbbN8Wia1q5UXsI0k6Ks1/adNnOfZNozmYCTqTCZzetz81lXY8iwKZX6Gm2p5k8wGER5eTnuv/9+7Nq1y1VTJxAIYP369bjhhhtczztx4gSeeuopOI4jiVMcx8H58+fx7LPPuurD2IwYttMcr/1sKltmvzrez+zPi4fqZ9ncKbn/CwsL0dLSgp07d6K0tFRcTnnKRGPRl770JSmW3t/fjzfeeEMUMMYzHTx40JVaX6+Vl8u1H42YzcbnM11va160pefvWgMnAg39TJtO5PW5bdz6GpNWTCOZ7pdG6JqaGuzbtw91dXUoLCxEOp1GRUUFHnzwwVXPSSQS+OlPf4rR0VFxuWbNQDOzsAZsNJjF43H09/djZGQEIyMjmJycdBmgvfaKfh826j88VWZIB7CSYGJqakrcoqk7Njc34/3vfz9KSkpE9hAMJpNJOcXinmhsbMTtt9+Ouro6pNNpnD9/Ht3d3RgeHsbbb7+Nl19+WQppax6faX1sa2wCZ6+1tjUvXmIa5vkZjYPZtOvA6Ro1EzhposhGKHh9rjcJ/9cMX8ficLMw1mDt2rXYvXu3KPH5+flYt24d7rnnnqzfa2lpCf/xH/8hNWt4jJtKpTAxMYGenh6Je2BhUKa7HBsbQywWk2ByWjEYUO3HHE3AogUugRPjmUwLtgZJNiWNMWGbNm1CdXW1Kz0olVOCE73Jamtr8fnPfx7AisVodHQUfX19yMvLw7Zt2ySpgKYBzYCmpqZw6tQpDA0NIRqN4qWXXnIlGdDjtAl9/bmXALF958WMsmleAlkrJ+l0WixupvXWi8l5MU2vdzGvtX3vRU+2+819Zb4XT3G0u8SGDRvwyCOPoLa2FoC7Qns4HIbjOFJAmS4Ro6Oj4vbKIODl5WUUFBSgvLzclTBC73HSoAb7tIrq+hk6dknXQdMCnEoJAR0thLZ9STpjchVgxe89Eom4TsgYj5VIJMSVj/fOzMygp6dHXPLYv3niayq0frRg0r2t2WjbBvi9mhdIs92XTqc900cDV2qfeI3Xb1/4zUM2QMo2n8DqUx9tKMjLy0Nrays++tGPoqamRuiECuO+ffskwxewQvvf+MY3ZO2ZGW12dhZPP/00BgYGVvE1jjXTT6Z3448+LfLimV4g0vTa4OfMWLZ3715s3LhR+DffhSdIlLuf//znUVhYiOXlZbz99ts4c+aMuNIuLi6ivb0dx48fF8OYya9s47OBKL91zsRjrwaAmc0mO641cCJP03vVS3m2jc/2nRcQtXm5aDriulJf2rJlC+655x4BH7W1tZI5rrKy0vWMrq4uHDlyBO3t7dI376Nhm/GtTJBFPY70wvdlLcof/ehHiEajAtpt8kx/Tn1FyxTKB3oO5OTkoKysDDt37sTWrVtdtSfZH93+RkdHsbS0JAbEBx98EOFwGKlUCkVFRZiYmMChQ4dw7tw5nDp1SrIua+OuzaXSXFtbs72fba3N9baBLJM32MZC4JQNXV8HTteoEThxo/jNSzZMwWYd039r6yEVO+2yw4B2bvSysjIBV21tbdi7d29WReCWl5fxyiuv4OjRo1I0t6ysTE5cxsfH5SeZTEoxUV1fhpnGpqenJaEDLdCmcDUVWvOESr+/GQ/FvzVj1wyTsSXr1q1DfX39KuapGZgGd8XFxfjYxz6GiooKUZSfeeYZObZeu3YtduzYIf7EbDzinp2dxdmzZ3HhwgVRSA8fPiw1UbTVXbvh6Xcy3fMyWV38hJCXIpitJUf3z/6WlpaswCnTvfq3OV7bGL360v97KZ5ePvG2PvS+4jsx09Hu3bvxnve8x+W6QZcJx3Fc67e4uCjWQ532lRnOdOIJbZnU4+A9pFG6AgYCgVXpZHVtDI6JCrxWAAm4eD9rKdGdlPPIlLQsngpAUtqyWDT38dLSEqanp1fVfNNxh+b6+ymMVwOabf3Z1pd0no3Bwa9x7ryupTuj3g9ehgzzXfzAU6Y9mo3csQEnjre4uBgPPfQQtm7dKu8JrNB+Y2Pjqkytp0+fxo9//GMsLS2huLgYgUBATkOPHDkiqbZtbtucJ20Q0+9nKrn6Pg2cTPryAk3si653kUhEjHA1NTVYs2YNSktLJckPwfHExIQEt/OZt99+O+rr6yVp0SuvvCL7gS5TdMPSADsTTevvsqFRP/73bnUzm9HhTwmc9Jhs42TTYzVpx2vvaVozXbaLi4tx++23o7KyEoFAALFYDPn5+Xj88cdx4403Sv880aHHzYULFzAxMSFygDUcw+EwampqUFJSIgYHbQxgHBENFf/4j/+I7u5uF/8kzVNPIV2yD33izb1BGb1v3z5s3rwZoVDINcecByZJID0HAgHU19fj5ptvRjgcxtLSEi5fvoyzZ8/i0qVLaG9vx+DgoKQ3N/Uxmy7rJfvNz2xrnQk42WjCHIvui59TV70OnP6IzXGcE/n5+a4TJ5NgTHCQiSHoa03gpH+o4Ongdl1sjbWE1qxZI65pBQUF2LNnDzZv3uxrGV1aWsLFixdx8eJFTE9PixXFDOakIjE3N4fp6WlXFhZanLmp9XWDg4OiVGq/WyocvI/vqk+NdDAh59wEHrm5uVi3bh2amppWKaZmCk72R+tObW0tdu3ahdLSUgGjR48eFT/igoIC8XuvqKgQIcq5YIHDAwcOYGBgQE4gTp06JQHDpsDnb9OCarpz+ClQ5nc6rsPGPPwAfKbGe1OplNVVz298NqU5G8aY7VjNvrQVzATNum9TedM+8dxbrKB+4403SkFAAGLQ4H4kPdKQwLSx6XRass4xDrG0tFSEaX5+voApCnHSFQUjBTKTO+iTVy2EeeLEAHX2Mzs7i1gsJsJXgy59qhUIrKTNDQaDAq5Yt2phYQHT09MYHx/H8PCw0LWeT9M972qbn3D1ErZe9JQNcLL1b36uC1LaWibgZGvmXjS/uxqDglf/+m/StgZRwApI2rp1Kz784Q+7CnCm02kUFxfj/vvvd1nbR0dH8fXe/WTdAAAgAElEQVSvf11AE2mTtMhsobFYDLFYzKVc2UBcOp0W+aKTsnBfkZ54qqcTsOiMlfp0tqioSJKmcJ/R+s7nsE8Wg2e9QFrcHWelWCoTQ6RSKfT29orbHscxOjqKY8eOudyVvNbMlPG277NZz0y09U72ndfe+r8ETrb96qcUm2PMpEB77SNTnzKNtHS1Li0tlZ/y8nLU1dVh8+bNEgtVVFQkmUWDwSAmJycxNjaG7u5uOXmkUYuGbZ0ljxn1WOOJPPeb3/wmJiYmkJeXh9nZWclsSt7NPec4jtSbrK2tleLWjEVtbGyUorkAXAZueirQ0yE3N1dKbRQVFSEcDmNmZgYdHR04e/YsTp48ic7OTimca0ts4rUeml6z4eW2Nb8aQ5epe9sa4xavA6c/YvMCTl6WE372h3szMjwTLLGZMRlmUCL/DoVCqK6uRltbG+rr68VdrampCRs3bkRFRYUEaZp+3xQGo6OjSCaTmJmZkcB0bjhuXBZ/0+mTqdxpX1udkYqgicoIa2FoobawsCCCd2ZmxiVQyQTm5uaQTCZRXl6OjRs3ugrq2qzeVBRzcnLE9Y/AsKioCJWVlWJdZWHOvLw8STu7fv16bN++XdaJ41lcXEQikcD4+DiOHDmC/v5+zMzMoL+/HxcuXJC4F13TQa81lQ5NNzY3PR9a9PzfD9D73etFu3q82aSU9bMOZvt827XZKJteJ0425VY3HUuo9xtPYzZt2oQtW7ZIMULz/Sh80+kVC/bQ0JDsHSpcvI77t6ioCC0tLRKzZDNW6JMj0hMBO/vls+mex0BkPguAACS64dHViEojrwkEAuKCmEgkEI1GMTY2JolhdCAwx2kCpmsNnDLdY1PE9Nh0ywb0ZwucHMcR0Ov3Hl792/rLFjSa/ZmKBn9rQGL+BINBVFVV4YMf/CAaGxtdafaZkW/Hjh2orq7G7Oys8Lv/+q//kjT8umadliszMzPo7OzEyMiIy2BGd6aamhoJaucpLvdEJBKR+efcEthUVFSIjOH3fH/uBVqUuXbcK/pzx1mJY6Lho6ysDJs2bZJ9kpubi97eXkkrra30R48excDAgCv+zQsMm/RwNYqgl15xLYAT94bXeOgGfC2Bk06q5WU4s/F9m2zzk5N+Rgv+Nn+05wHBTXl5ObZv3y7FX5eWlhCJRFBfX49t27bhrrvuguM4iEajAp6AlTpML730EhKJBBzHEf0pmUyKTGHh8aKiIsl6yvho0vHi4iImJiYwPj4O4IprsHb/4/vwpBS4UqMpJydHSs/wHXXNTMpF1rVaWlrC8PAwjh49ip6eHtFpbC7Yej285L2ea60rm9/78UNbn7Y19tojNrq+Dpz+yM0xXPUAf2VT/28T7l6Layp6pm+uDj7UKTK5+fPy8rBv3z6UlpYiPz9fNsfWrVvR0tIigKq4uNg1HrrkjI2NYWxsDPF4XAqqceNRGaTrDi0i/JzKI5NG6PuYzlkLL46XR8oUdlTUHccR4cp7CaQ4ZjJ5bREhUAqHwwiHwwL6aLnXp2NaucjLy8Ndd92F6upq132sdcCj8OnpaZw4cQKdnZ2IxWIYHx9HR0cHRkdH5T21ZUfPswZJJpDKBjiZAjiTlcUGXGzKlg246P95SmGOxew70/Nt15kMlOPLVtHIBOC8+jKvN4N7tUtETk4O6urqsHv3brS0tIilXidGoSLG0xrGvmm3UgCinEYiERQXF4trB92ISI8U2DoxCk+1mJABuFKpnkHtBEOFhYXigqdjRZgowjzdBYBYLIauri50d3dLYggzLbcfrfCzbOnSto5e39vu9wJOfn2b19nuzwY4abDr9Xy/55rXeO0nrXz4jd+keS9XOG0cCIVCaG5uxt133y2njnxWQUEBGhsbsW3bNnErYnzcv//7v4sRiSeqOm7Q5G+kL8okDfpTqZQocwBkTilTeH1BQYFrbrSxjPtCu0wRrFHxS6VSKCsrE88MJh/ivorFYrh8+TKi0ahL0aNXxoULF1yuPl4GAxvoMdfSiwb0/16ATPehjSy252d6jtnI6681cDKNDByLDRjpcep31cDJfEfNW/X/bDYXcz5fx8Pp5zY2NmLTpk2SXVXLg4KCAnHhHxgYQFdXF1paWrB9+3YEg0GUlpYiHA5jeXkZ58+fR1dXFwYGBpBIJBAOh8VgS93G1CtpnKDuRGMY5RPnhR4K3E/kWyzwfscdd6CiogLpdFri0WdnZzExMYFoNIqlpSUMDg5iYGAAly9fFs8ZypBsvAm8+K8JnPyaTSfh823P8brGr10HTn+C5vzhxMksfsaWjXJnY5p+wEkzEa3ga9ciWnN0AoTCwkI0NDSIwKOVg8HfVVVV2Lx5M0pLS0X54/NisRjOnj0rqbMBoL6+HsXFxTh79izi8bjLn51MVjNaAhmCI+1qoUERswXyyJrKoS7Myawx2iJKBZ7MgkXjtPsRQZ1WOhl3RaWHgJPH3hs3bpTiwhTw6fRKOnYmyRgYGEBvb69kGezu7hYrv/ZJ1kKd666TWpjNT0hqWtDM3aRBfb2+JxNoMa+xjYOuen4tk5KYDTDUfWWrFGQCmrbmNdemEDWzMxFA3XrrrWhtbZW11W5wes0JUijUCL5paafxIBwOS1wT3foCgYAE8M7Ozsoe0ckayAcoREnvjuNIynQ9PgplXVuE++X06dPo6emR02bep2nWFITmOmQjJLNZq2z7sClQXjRuNpMe9TN1HKRXs50S+o09G7q33WMq4pnAGT+zASc200iQn5+PO+64A1u3bhV6In1VVFSgsbER1dXVqKiokBPOubk5HDt2DMeOHROeSroi7ySgottcMBgUS7bpcsp7gCuJWUivAMSrgXtpeXkZhYWFACAgSPPcqqoq3HLLLatcZmmQoIEjGo2it7cX09PTojRSLvb29uLMmTNS35DtnSiS5jVe/NAGvGzf2a71e3Ym44Ge+2sNnHTJDz7PZjAw4yQz0b7Jh/T1Xoq2+ZkJoIAr9enonVJTU4OKigo5KeUeYWY7x3FkD4XDYfT09ODhhx9Gbm4uFhcXhU7Z98LCAg4dOoRkMimp0KenpxGLxTAxMSHFa5eXl8UQzb1aUFAge5BrxXfgvkynV4pZt7S0oKysDIuLi1JSY2JiAolEAhMTE7hw4QIGBgYkKYqN53nx+2yaTSZcDR/MBvxnuw+vA6c/QXMc50QoFBLgxIXIFjyZAlA3k6i0dVjfq4NszbgMggB9EhUKhdDS0oK2tjapUp1Or8RetLa2YsuWLRIAzz5mZ2fl9GRhYQG1tbVoampCKBTC9PQ0XnjhBQkS1BZDghrtssHAeLq/0TLC92DtAAJRYEVhyc3NlfTXvJ7KHueD80OQQ3cnWh7j8bhLSdRuKCUlJWhtbUVtbS0ikYhY/+nKSIWBdWsmJyfxm9/8Rvz3o9GoWJni8bgoC1p51r81yMykWHoJUxM46X5tyqIffWVqNvq0nTjZmsmsbEpAJsWW92WzX7z68OvXHI++3vZjA0+hUAiVlZUSRK6VDj1+rSCydhLBPwUzre085aXBQmdD0uPVWfTovkFApb/TRgYzQYl2JTxz5gza29sF/GuXV63Ams2Ljr0UMnOuvegyW0HoBfq9aDxb2icINcsCmI0811TyzP78xp5NIy1pxdLreeY9ml+Y4yGv5md5eXmorq7G3r17xTtB8528vDzU19dj06ZNKC8vl4Qjy8srxURnZmbw2muvSUyQydsBiAcC5QcNZHq/83+txLF+WigUQnl5OcbGxpBOp7F9+3Y0NzfDcRwxepHn60RGzC5JhXFoaAjT09OSQY/u4rOzs5iZmUFvby8uX77sKm5tzqHXOtpo2QYY/NaO9/jtkUx7xg84+QGydDot63ctGuWzeRJpe77peaHH7OeVYcpBvz1m9qF/m663Wp8JBoMoKCiQjHslJSUuvUHHu/LvdevWYdeuXeLq3dfXJzJgbm5Osq+Gw2Gh0Vgs5jIWp1Ir9Zl4AsUYcrrBzszMSNyfzsKaTqfFAyY/Px/RaBQdHR24cOECent7JU5dz52N3vx0XBugMgHr/xVwykSfNuB0PR35H7k5xokTsDpFqq2RIP3iLMyNbGMwVNj4t2kx1H+b8UOhUEjqddDNDVhx5dmyZYsr6FHHVZBxaAtHV1cXXn31VQk6Z8CdTplM4FZQUICioiKXRZxCCIBYVGjd05ZtClTOn/b9BSBH1wQ5ZGw6GYTumxahtrY2bNmyRSz+ACR9KAU5LT+JREIC4gcGBjAzM4OhoSGcO3dOEkhoNyxTOTXBjWmx9GpeTN+kk0y05wccbPf5ARXOczbN7MdLebaNUd9nnrxmw4u8lNhswZfJ9DkO062Tv6nIrV+/3pWIRbtUsB8zNkkbOehCx1gizjcNA5xDWu61qxVpfWZmxjVuGk8IkCjQ5+bm0NPTg66uLgwODrpOg7kHbLTs1bzW2W9tbXPvdY3fWvrRVqbn2JpWHDO5gOhU8Nn0n+m9vJpNadf325RJE4TYlH1Nm/rvnJwcVFdX44477kBlZaXLpU17OeTn56OoqAitra2SkZT0Mzc3h8nJSckqNjk5idzcXIyNjSEnJwebN2+WeQ6FQrInWGsmkUjIHmKjQUEb6goLCyVZCQ0F8/PzmJ2dRTQaxdDQEKampiTulMCNhT8J4JaWlnD27Fl0dnZKDKA2XPopj5mAupbl5pzr/rg25n22z233my1b4GSOn/ziWul+rJ1kmw8vw4Jtvsz5MJsJnGzfm83cM1pXM+fdJgNKSkrQ1NQkZU+0iy91J7pRl5eXy+lVa+uVepDMWFxaWirJIah7UWak02kpDcHTcC1POCYmHQKuZAEcHBzEhQsX0NPTI3oTsNpjxY8HX+3/mXj21bR3Q4d671JXzfKZ14HTtWgETtq/lC0T48pkZfK6LpOQM+MxtJuR3txU0PLy8tDU1IRNmzZJppdgMIiioiK0tbVh/fr1rloefD6PoykQmRyho6NDAMXw8LAAHw1aaA2nRY8Ah9cx8Nc80aAANusVcO4TiYRYboArAahUJltaWkTo032vqKhI/qYSSvcNnor19PSgr68PsVhMCoem02m0t7ejr68PY2Njsvm0dV7TgC2GyQTC2YIem2Axacdvj2ZrnfFrfsDJT2nLBJy8rIZsprEh01zofm3PzDQHtn2qQZL+4dj0PcxS1NTUJK5NDHbXp8Ma0GvXAZ5I0RDBPa7dMylQtQJLa6c+ldUxBcvLy4jH4xgZGUF7ezs6OzvldInfm7Rpc0vKBOjNeeN3Nhq8Grr0uzYTQLZdn4ku02n/Gk5sBE6Z9urVgEWvfeSnePgp5fzbSwnX19jmOT8/H62trdi7d6/wT5MP0OWaBWXr6uokNkOnygeuZL7UxTgZG0igD1wxqulTL4IhGguAlSLO4+PjmJubk4LNAEReaPdp7kG6bSeTSYyMjODs2bMYHx/P2j0tGxrzusfkI/o7bVTU95n3ZgJOV7vPbKDlWgInJiTwM4Rl2iOahr2apu1sFX1zL/jtDZMP6/ERxNM1taCgACUlJRIOMT8/L58xMyTLQFAmMNsegFV1/uhmxn3B78nHCf6TySSGhobQ1dUl4RY0mHnNn8nXbcDWNofvtNlo3MavzGvebbt+4vQnaBo42ZofeLIJM49nWO/128jaqm1+BsCVMQaA+LPX1dVh06ZNKCkpQSgUkmQKDQ0NaGlpkYKfy8vLkjqTG1YzMX6WSCSQSCQwNjaG4eFhVwKJdDrtyuy1Zs0aGSdBWCgUkqJxTPdZWFiI6elp9Pb2YmxsTPzMmZmptbVVKroHAiv1F0ZHRxEOh1FbW+vKQLO0tCS+ycxiQ3dAAqeOjg6cOnVKvkulUkgmkxgfH8fx48fFfUdb4836JVpBuVorjY1m/BQq/Tx+7qVkvdN9rPvTbmC2Pm3A39af17XmuM2x2xR327tmq9zbmjkurzgRL4OGBjrp9IqLRG1trRgmSkpKXAH4vI4xd0xEQtdWKnoESuae53tRQNK/nZbL9vZ2XLp0CYODgxLnoRU0k25t82b7zk95zzTvNhrJhs79mu19vPqzASfzWdnU+9DAyWt+rgbsedEYr/FTDM37/BRwfY25t2xzRLlSVFSELVu2YO3atSguLhZ3Ig2ySfuMyWCMKgBEIhFx6SsoKBD3amYQW15eRklJicvtKRaLuQC+dkk3M5dyLByDNiZwb6ZSKfT39+Ott96SrH82vnw1tOe1Zrb7TQXcXB8b78/0LK+9m4lXesmJdPqKd8i1aIFAQNzZvMbj1/zkndmflwEg0/Ns62aCXHMc5j2a7+t7uA9MHYd7YGFhAclkUj4rKCiQOmQ0HNAtNpFISFy1TuIArHbH9gLiXuM3v89m3vyabR/56cDvdO286EH3yzm5Dpz+yM35Q4yTLXEDm/mZyQgtfVo/szEHL8sIGbG2gOu/CZz0Jub1wWAQFRUV2L59uyv3PwOCma67pqYGRUVFrqQOOpA3nU6LAOP/zGAXCoUwOzuLVCqFcDjsKgjH65mIQQtB9p1IJPD2228L0yCg2bBhg7hGEZyxCG8oFEJZWZkIVwpQnrzRj5j9DQwMoK+vT1w0aLkZHx/H4OAgotGoFEg03TNt1nobc7paRuBFGybdmELTi3a8hKvXM3RfvM922qrfJRNw8gJG5rgzCVgvhcG2P/yUCi+FyQRD5nj0tebJk+YP5rwEg0EUFhairKwMVVVV2LBhA9asWYOcnBwUFhaKkklXDGYI0xmV2D/3NN1qBgcHMTIygnPnziGRSCAejyOZTLre1QsE2eZYf24Tpl48zUa72YAuW9/vBDhl059tf+jPswVOdKXMBGT8xur3Dl7vn0k597tG95sNuLOthS5/wboxOnsjebu5J6hYatcic1y6JIBWQnmddoHV8STk2+n0yolsMpnE4OCgZA+bnJyULJEEZrZ5zjSvfs3Gc7xktu5bK3aZ1uVqxui1D23962t1DOS1aDTW2vhoNi0TP8m2ZQOcvPiG337Qcsu2/qauxiRR1MG0HqH71fQMuHm+pl9z3CYtecl0k/785kL/77dfsrnWq/+r4fe2Z7EPr/HxhC7LPq8Dp2vRNHAi8Rrfr1rAqxH2uvkJSZP58jMd/8TvTNc9LZD0NXl5eSgrK0NzczMaGxslWJ0WvpqaGmzZskV8cHlyw/s5ZnOzUoDS0s2jbFpRCJKYcYcgh4yF4GtyclLuO3nyJKanp1FZWYmdO3ciFAoJk2dwfU5OjsRWUQGdn5/H3Nwc5ubmMDs7i8HBQQwPDyMajYqfezq9kkFveHgYo6OjAqw4HpPp2FzyvECzydhs62sT4tkwHt2fLXg8E4Aw+zAb39N0pbS9T7bNTxhmy2zN97cJNa/xZdqfptDUNG0+MxPIAtwnV1Qu6SZaXl6OhoYGbNy4Ea2trRIoHI/HMTY2hvHxccTjccRiMTFC0MjAE1sq+pomSQu2hCK2eck0x16Kt9c8+yn+XkLZdm+2zbYv/ECCuT/0WJjq3a+Rd3r1nY1Cm40M8HqXTPdk2mM2eja/N/viOExwk5ubi+rqaqxduxbl5eXi3q3BPhsNcHTRM/cQFUTzZJaJg5gZL5lMSqztwsIChoeH0dvbi8nJSczMzKyKFTaVUy/Q5KdQ+q2pCT70vNl4iDmvfkDFj09fLXDyejc28pdrBZwcxxFa8Gte65ENP3+nADhbWWH+tvE2r/U17zcTCOl+bLzXtu/95G82STRs9+kx+dFZJt7sRVd+e83rmky6hRc/t433OnD6EzQTOHkpoln2BWD1ZvcTwObm5OdaGTOVPBMoaSuf7VqmLa+qqkJDQ4OkR3aclexfxcXFqK6uRlNTE8rKyqRgIfukhUQHTTNTUSqVkqNqWgzpl04XDjYNVAikKEzpDkjXEd63vLwswZP0l0+n05icnMTU1BRGR0cl7SYAcR/Rroajo6OYmpqS7DZmljw2U0HNBjiZzfadjTFlIwy8QJnZR7aKrdkoQLXgywb4ZANMzD5sAgWwA/Rs+n03oM7cc7bTJH2PTdm0/Zh9aEt8Op0WmmY9Gs67Kdj4Wys52hJpWxOb8mjOm412/Sz0Nh6VaX69hLc53qtt2dK03zOyBU6O4whw0u9ko0EvRTUbZcJrzm33ZLP3vJ5r68dLkTVpw5RFBC1Mtc+yGABQXFwsRjS6prIPygsawXQmVdKYjt3T85qJL2TLC/x4qO17m8Jm8g7zbxOc+ekTmWj6nfBZr+vS6bQAp2ul+3Gf6BACL3q1vasG3n68I5O89Rpbpmv0tbZ9kanvTDLJRpuZaCyTrug3n160li3/9mtePM5P39HXe43X71nZypvrrnp/guYYrnq6Xe0ceRG97Tut8OhrbYqlKbjM0yWbUse/zdgJAJIqs7q6Wk6byFALCgpQVlaGhoYG1NTUSABoUVER0um0xCnRSs7YJLp5OI6DiYkJ9Pb2IhwOo66uDgUFBeK+p2MHCIQCgYCkk+U1yWQSgUAACwsLGB8fl1grXeuGhUGHhoaQTCYl8x+Bmy5YakvFbAuU139nK8z8mLqprJpC1othm8/PhqZs4zGZlKkYOc7/a+/Mgy+5qjr+PTO/Jb8ZkkACMSqUCRSyxcIFKQiyuVAuiSImFmURExU1loCxpKSKAomlKGgQKBZBAS3FcoNCCggEDIGERQUlLFrsDA4yIWECYSazJL/h+kf3fXPm5Jx7b/fbfsPv+6l61e91363vufcs/bpvy10M31CD7jkTnhNv6wdOXGlyFkZwCKXAyZ6T5+DaeZjHdHYCbbn2dmDrONjztP+G2jbqtDVjUzO6JWrOkGc4h8yTFjynPkoXMTRwmuYWpGhuluajzu/tK82RUt4xaW1d3vi052j/rdLn6gVkJYaOoVJ/jh2LpXFt9bkn75q8ag5ny9yszeVlB04tZeTtUL1mj9dsT60N+rdnt0t5bF0ludj5UOqrfF7ZtnhYnVLT11G9pb4q6YJSWi99KXAaMn6WETjVX9yyjWh1PGpKO9pfmxhW2epIPju31sEsOaOZbMjyg7W5/Hw18KabbsJpp52G008/fXKlcG1tbbJwQ3aqV1ZWJlcX80ttDx48iGPHjuHUU0894Z1RKXUr4+Vly/fu3YsdO46/iT6nybcF5hXu9Ap9eilw/eLD3P4jR47gtttuwy233IKbb7558o4c/fJPuzKeNtbeM01Wbi1OSiRvW449ZhX7ECU0TXtmUW6Lw1NKaw3dkH5udUL0HCqljwKiUps8o2znpc2vx53Nl7f2wfI89jM2b9RWz2jV0kRoPVRKU9s3xEBHdZUco9b5NM04ixxjr31DyrXHWgOp1noih6UkW88BK81lPb492Yw5h4gh+sc65ZGzqnWRLqPkfJf6sOQYlrD93HKBozY/a3VMg9V1LXPAKyMKmkq/Nbbeoedo5W0vqLY6/bZMmy/SKyV7o585b6nXlmnH9jRE47HFPlg5j2mPPh+7f1EwcGqgdcB5CjlSwl6ZLcomBw/e7WU5vw6O9OSxzgWAyW1A+V+bvLrXrl27sGvXLpxyyimTbV7SO78oNi/IkNuRH6bWL8YVOf7+Jd0n+sFf/YLZ/M+VXnkp31aXl5nNq+vt379/0g7971F2NL1z95xcbxWyliBmlobSq8MaozHG1KvLc6Ajo9VST+k8akQOojc3ao5b7epfrf58vnpMexc0bPmlOvSzEJEDaedFtABFNL6i+m2elkCl1RDWjmtncoxTZ/HGaMv5eG2a5tmOaeovBWJDqdmkmk4YoqusA9aq36y+1eW11l1qTyt6/HnzTm+1ninV4+njUvBU0qNevpZzjPpR540uXszayYzG05DxHenGSOeXZDnt+ZXsjP0+xu54Y6eUxl4wm0ZvDG1rLf/QtC26pyUI0+UtMmgCGDidwNDgKDpWUh6REm+pL+fVKxrpyNt7TsFzfm079VXu/CBuXoRBv3x29+7d2L179+SFnbl9+j0a+VY9/T6lnD//k5UDvxxQHT58ePKG7EOHDk2OHzhwYPI8Ul5ZLz8wb/s7O0R2OfFIQXmBlMY73uq4TeMQRG2xBn0aao7BEOfZY0gbI6Ovt9MaptZ2eP1v5e/lscFNHot5vw3Mo3HkjUVv/ta+R30WUXM2Sn3gOSylwGcotfP1nMSSEzvUyNYChtp5R/VGaa2OKjncQwMInWds3tqxml5tDfhKjvAsnSTrfNsxFLUvSuOdd02GY9vr7fPGfqn+eTN23kc6JBofUX1DbUct8B3i25X0ZqkttTFoyxwb+IzVHbNiVkHuEH96VjBwMnjGqiXKjyarXfnHq2No+/RW5MSVvrSzWXPE8/dogYkcqOT0t99++2Ty6PPS9eXf+naNlNJkpT2dJ7c/L4+a03rPHeW22fzaOc3bUjBkt7Y8L12p74dQMrStTt6slEOLIh+jKFuMhZfHc1qGOL61AKt28cDLZ8+l1KaSQarJfEj+yJmLymw12J7cvHrt3I0Cqdq+ErUxV5t/Ncd8zD9OJQfHSzONM1A7r1J/emPUm1eRg1nru1rdLWV4eLrGBsWlvLZsuy9qux3P3gqV+bi3THRpjul2ROdUstFRO6ch0p+zotbHUZsivVHK6+nMFpulfZXIPgxlmiDEs7kt5xHZo1yOrcdrQ2v7W8qzx735WMqj50JL3nmO4xoMnBRRwFRynHR6O6hanIqct/W3VdTWEYgcJs9h8Jwgnb9lAnjOgnee9u3WVnHpMiLlrl+U6PWD115bl/fbtn2o4xoxxNDZOlqVzqyYlVEem8dz5GoGtaUdNUfeCzg8B671PPRvLwjR862UPyrTtmuIo2uDqtZ+Guuwls45OrfWcVgaK7V+G4PXX1F/RmN5TF3RWBzqoNYc+BKR/qvZxKgsuziK/j5kfuR0rc5haTzncnLwlNPl39l+ajvmta2lP0oy9NJG48qry3sGUqfXK9rOGq+vxxDJZ6gzXWpPfq9kre4hc7toiXgAABQLSURBVCP/bpWvpw+HyNrWH41D79w9PV3SoV4d9lzGBMcnKwycHLzBaIMnbyBEgYD+XhqY3mQppfGcE51G77PBRuSceyuE2fJzuqEOShQQ2fzRakv2fO1VkNJk9wKyqP2lNrYau9ZjkfIsKfCSsh5DZKg8hlw40OOw1mavXPsS5lL90Xm0Es2l1vLtfIkMYK2skl7xDKHX56Xz8C44tFAat7atttyaXmsx+LV2jr1I0Zo2kkur4z50fg4NiqM0th1e27zjLbqwpEt1uV47cr+VVpNtmZPRXPD0S20Ma3nqduoX8upnb71/oGzZQ2QY2bxo680j6wh7Zc2DFv0cUdIlNogdQ5ahZ090XdOgzz/yyWptLLWpRR/Y8ko+nL0gUFqpr1Z3S3vsvmlsoje3a77lrGHgVKE0aGqDqmRsW4xCTq/TDHHqrGG37dGTxb47wyqsyLDq3yVDkCdoZERtOaW+GRrw1AxKSxklWoykTdc68Wv9bvePdSBL49TbX8LLV1J83n4bFEcOWHQ+rUSBa2lsluoeMo4i3RGNgxbZWgMe9alXT2tbaseicmry01jDHwWmLbTOT49anrEOXaQr9XiPxrw3t1raacvxyvXqLJXdGtCUjpXOsVX/WX1Ral/JltrgKb/GIzveeZXWzc3NyaJF+VPDtk3PiSGvxJjGVs2LaQKbiNI4idJ7cyO/wzI/LqBX6K2Np5Y+9mRTs50lP6jVdkRpS2Ne/84+nr0Y0OInlS5KRP1Ral/LOXjHZj3mWmHg1IAnqCHOblRmzVGx37VRjfJ4DkbJUAL+spvelcAxzqtW/J7zpMssBX+6rJY6tXy88kuKvuT0jyUy1mMcD81Y4xn1uXYcvDxeIKPlGAUc+lxaAjKvbO9YRC04KI3d2jj3ym5tX6uDYc+/NVj1HEi9X7+8tOaAzzrQqDkO9rtHiwNVyzskf8tYq51zqyMU2ZKSPqo5Xd7Y0ft0n9SClFY9WNIBtSBK493Sl39H56T7O7JZ3qqV9tmmHCjlz8rKymTV2GPHjk0WK/Jsp92f69X/Tunb1m1bvHPe6kRjSB8H2sdQyeGO+iYKmtbW1iYLWuV/DTc3N6tza9a06La8rQXH2k4PCcLy2BORSTAJHH9+L7/r0vZ/pJsie15qr7d/DNYvXOScYeA0Q4YOgFbH3aaNlG2Ut1S+VfTRQI6MmHbI9ED2Ahev/XZilhSlVc5WuViFUwqcojptOS1YpVBzCr1AsNXhbG3LkPwtbdDttmmtEi8p26iOloBKOx82b0sf1dJEco+Uvg0eWx1fPT9q6LS6fm8+6nTeedrjpechSpSCTv295CS3MGtD6Dm0rflq5zwkbaTj7PyKZOh9j+rxgpE8dqzOsvrSG3elcZvT6VUkS0ROXqRLbT79275EOurv0r5cnzdG9Dltbm7izjvvnLwKI2913d7zxN737UZtftSC95ym1p8i3Uq+6+vrWF9fnwQIKaUT/iGMbPYQGQ1NXyvLltlS9hC9kMmrIKeUJv865fylf1H1/LTtLdm2ocFzjWXOIwZOIxkSoESOrHW8vHJLk6DVcJecO68+rwxvEnkGqla+bbudaJHht4rSOujRObYESyVZjpnkJaPsOSFDxpJX15CAx+7z+n0ahVRy2GtpvYDa4j1bZynNAVt/5LiW2mn3RXO2JViN5nd0fHV1dRL02HlQq1Onyc5mfrXBPIzQkIBf58lt9PZP05bs0A4pqzWtp3eGysXW6QVTuayWsWrnuP4HxStH909pfI4ZLy1zItL1eeu1t6WsUj49h3TQc+zYscnFwPyewZw+36Kn+2o7B0OZFsfYCwxsGV4gXcLzQ1ZWVrCxsYFdu3ZhZWXlBFubb7X0/K88Dlp8Ge+8ajqvZCu8CwKtQZN3HlFbRGQSNOkLDgAmt6XmW1Hz2LflWb9tjE6Y9ZxZ5Bxk4FRgjOGPaA2MSlfaSvtbaLkK0OK85vSRgWupz9s3NoCotaOlbE/xeGlKQZHNV1Ims3IMl22wI6WqjwH1ca3L8/AMkxeE23bp/N7cy0GIV0+N7Fjpd4cNLSeaf5HBW19fR0oJd9xxx1Qvcl1dXcXKygqOHj06aJWtyKmIzneWOtRiHdZSG7JDPE2f1Shd5IpodbSiAMrWUQry8/M6+rY062h5wdlQWxQFdnbstJZbChS9vCXd772IXT/vEuVdtp7d6tSCnJpj7Y0LTydGAbAez/ldkhsbG1hbWzvh36Ys642Njck7IiM9kv+FqQXGtaDJBhle/tKcifDsq/7uzXGgC45yQKnrz8dWVlbu8u7MlnPzzq90MST6HTEmOJsXDJwC5hG4AH6gVAumxtZdM6wlRzPa5+X1Jk4twIkmVMsVxVZntDSRW8qa1ukrXfFpqb+FFmVSOo9I6dcMoa2/xSFqbVctYLeOT0v7bLn6ynuUzytD78uGJwqaSnjOQc1B1Gl0MNAqq3x/f0oJq6urk8+BAweanYMWoj7P52DLrOmK/Fu3UW+jcTcLI6vrbdXdXnuGnGvUjjGOg3YC8zMNUZCk9+Xgyhvbnu639ZVsj81TshstF0mA4yux2osYLXaJzAZvnnhz0hvHpXnRqntEZPIcWv5nXtsIPZfzc2s6MLBtzGWW/BBt/0rnNXbcDZ3zno4CjgdEuX/W1tZOWBxCyy73Tf5H6siRI5M+8mQyC9l5eEHfVgmeGDgd55wWR7klyLHleFcFoqsF+tiQSNyr17a31UnV5bT2ydigp6RYrQMW5Y2M6yyI2qdpuZoWlVtra8s4aHFUbb8OpTZGawGot6/UbptvyLysBYnZwAJ3DXqGlj2tIvfO3xqJMQYkmje6vNXVVezYsQOHDx8uPu8UOQVR+2290YUVG/SUHNxlOsBR4FSidVyUgg593I6PlrbY8Z4/eu5lJzIHSfo5B0/uVm5eGi940q+58FY0i+rQZXhjxvblVnCqtiM6AGkdmzYw98aUHkueDfKCnBw854UOdu7cecI/izmvXU7e1m8XEfHGqE7fEjh556Av4Hl3P3j5vfkWjX0dDGUdYPtT96Xu+/wvtb6lO5JvNJ8jv9D6D7pNnt9iy7JlLBKhoukQkaMAdgL46LLbQvDAfvvJpbaCAJTFVoKy2BpQDlsHymLrQFlsDSiHmHMAfCOldO40hfAfp+N8AgBSSj+w7IZsd0TkPwHKYitAWWwdKIutAeWwdaAstg6UxdaAcpg/8U3+hBBCCCGEEEIAMHAihBBCCCGEkCoMnAghhBBCCCGkAgMnQgghhBBCCKnAwIkQQgghhBBCKnA5ckIIIYQQQgipwH+cCCGEEEIIIaQCAydCCCGEEEIIqcDAiRBCCCGEEEIqMHAihBBCCCGEkAoMnAghhBBCCCGkAgMnQgghhBBCCKnAwIkQQgghhBBCKjBwIoQQQgghhJAK2z5wEpF7i8jrROTLInJURPaIyEtE5B7LbtvJiohcJCIvE5EbROQbIpJE5PWVPOeLyNUicquIHBKRj4nIFSKys5DnAhF5j4jcJiIHReTfReTS2Z/RyYmInCkiTxWRN4nIZ0XkcN9X7xORXxERd/5TFvNBRF4oIteKyN5eFreKyEdE5HkicmaQh7JYACJySa+nkog8NUgzuF9F5FIR+Y8+/W19/gvmcxYnH729TcHnpiAP58QcEZFHi8gbRWRf7xPtE5F3ishPOmkpixkjIpcV5kT+HHPyURYLQlJKy27D0hCR+wH4AICzALwZwCcBPBzA4wF8CsCjUkr7l9fCkxMRuRHAQwEcBPAlAA8E8HcppacE6X8GwBsBHAHwjwBuBXAhgAcAeENK6WInz9MAvAzA/j7PHQAuAnBvAC9KKT1zxqd10iEilwP4cwD7AFwH4H8BfBuAJwE4HV2fX5yUEqAs5oeI3AHgvwD8D4CbAewG8AgADwPwZQCPSCntVekpiwUgIvcB8HEAOwHcDcCvppReY9IM7lcRuQrA76DTgW8AsAbgyQDOAPD0lNLL53VOJwsisgfA3QG8xDl8MKV0lUnPOTFHROQ5AP4AwFcBvBWd7bgngO8DcF1K6XdVWspiDojI9wJ4YnD40QB+GMDbUkoXqDyUxSJJKW3bD4BrACR0Rkzv/7N+/6uW3caT8YMu8Lw/AAHwuL4vXx+kPQ2dE3kUwMPU/lPQBbUJwJNNnnPQKYj9AM5R++8B4LN9nkcuux+W/UGnYC8EsMPsPxtdEJUA/BxlsTB5nBLsf37fT6+kLBYuEwHwrwA+B+BP+z566rT9CuD8fv9nAdzDlLW/L++ceZ3XyfIBsAfAnsa0nBPzlcXFfX+8C8CpzvFVymLpMvpg308/TVks77Ntb9UTkfsCeAI6xf0Kc/h5AG4HcImI7F5w0056UkrXpZQ+k/qZWOEiAPcC8A8ppQ+rMo4AeE7/8zdMnl8GsA7g5SmlPSrP1wD8Uf/z8pHN/5YhpfTulNJbUkrfNPtvAvCq/ufj1CHKYo70/ejxT/32/mofZbEYnoHuAsMvodP5HmP6Nf9+fp8u59mDzt6s93WSdjgn5oR0t22/EMAhAL+QUjpg06SU7lQ/KYsFIyLnobtD4f8AvE0doiwWzLYNnNAZSwB4p+NYHgDwfgC70A1UMj+yHN7hHLsenSI/X0TWG/O83aQhPtkIbqp9lMVyuLDffkztoyzmjIg8CMALALw0pXR9IemYfqUs2lkXkaeIyLNF5LdE5PHBcxmcE/PjfADnArgawNdE5KdE5Fm9PB7ppKcsFs+v99vXppT0M06UxYLZzoHTA/rtp4Pjn+m3372AtmxnQjmklDYBfAHACoD7NubZh+7K8b1FZNdsm/qtgYisAPjF/qdWnJTFAhCRZ4rIlSLyYhG5Ad0zBR9D58RnKIs50s+Bv0V3y+qzK8kH9Wt/l8J3ontGZ59THm3LiZyNThbPR/es07sBfEZEHmvScU7Mjx/st19B9xzmW9Hpo5cA+ICIvFdE7qXSUxYLREQ2ADwFwDcBvMYcpiwWzHYOnE7vt7cFx/P+uy+gLduZMXJozXN6cHy78wIA5wG4OqV0jdpPWSyGZ6K7HfgKAD+ELnh9QkrpFpWGspgvv4fugffLUkqHK2mH9ittSzt/BeBH0AVPuwF8D4BXo3sG4+0i8lCVlnNifpzVby8HsAHgRwGcis5OXAPgMQD+WaWnLBbLz6Pry7cntYBQD2WxYLZz4FRD+u32XXZwazBGDpRdgIg8A91KX58EcMnQ7P2WspiClNLZKSVB5yw+Cd2VwI+IyPcPKIayGImIPBzdv0wvSil9cBZF9tuh/bqt5QAAKaXf75/F/EpK6VBK6RMppcvRLdC0AeDKAcVxTown3xopAC5KKV2bUjqYUvpvAD+LbmXIxwa37XlQFrPl1/rtq0fkpSxmzHYOnGoR9WkmHZkPY+TQmucbU7TrWw4R+U0AL0W3HPbjU0q3miSUxQLpncU3oVuk5kwAf6MOUxZzQN2i92kAz23MNrRfa+lrV3vJ8cVrHqP2cU7Mj7yAyedTSh/VB/p/ZPOdCQ/vt5TFghCRB6N7Bu1L6J5Bs1AWC2Y7B06f6rfRfeZ5havoGSgyG0I59E7OuegWMPh8Y55vR3fLx5dSSodm29STFxG5AsDLAXwCXdDkvVySslgCKaUvogtmHyIi9+x3Uxbz4W7o+udBAI7ol0qiu30SAP6y35ffLTSoX1NKt6Nb+epu/XELbUudm/utXtWWc2J+5H76enA8B1YbJj1lMX+iRSEylMWC2c6B03X99gn9UpwTRORUAI8CcBjAvy26YduMd/fbH3eOPQbdyoYfSCkdbczzEybNtkdEngXgxQBuRBc03RwkpSyWx3f022wYKYv5cBTAa4PPR/o07+t/59v4xvQrZTEd+ZYw7exxTsyP69E51/cXkTXn+Hn9dk+/pSwWgIicgu6W+m+i00kelMWiWeZLpJb9AV+Au4g+fhzqL8C9BcNe3nYu+PK21v5/bt8fHwZwRiUtZTE/OTwQwNnO/h04/gLc91MWS5XRlfBfgDu4X8EX4Lb090M8nQTgu9CtPJgAPFvt55yYrzxe3/fHH5r9P4bOcf86gLtTFguVySV9v7ylkIayWLRclt2ApZ48cD90y28mAP8C4I/RRdkJ3V+ZZy67jSfjB8ATAfx1/3lH35+fU/uuctJvAjiIbqnNP0G3eEFCt5KPOHU8vT/+VXQvlHwxgL39vqsWcZ5b/QPg0r4/Nvv+udL5XEZZLEQWV6B7d9a1AP6i1zWv6+dFArAPwIMpi6XK6Eo4gdPYfgXwov743j79K/r8CcDTln2+y/70/X0E3XtjXonuBaxvQHenR0L3ks81k4dzYn7yOAvHA9brAVzV9+lmr7supiwWLpMb+r65sJKOslikXJbdgGV/ANwH3ZKo+wDcAeCL6B6gL16d56fYp9kBiT57nDyPQv/yvd5wfhzAbwPYWajnQgDvBXAA3XsHPgTg0mWf/1b5NMghAXgPZbEQWZzXG6cbe0O1ie4B3Q/1cnL1DWWxUBnl+XKXwGlsv6K7ePGhPv2BPv8Fyz7XrfAB8FgAf987eF9H55zfAuBd6N4zdxdnr8/HOTE/mZyB7o6bL6Dzh/YDeDOAR1AWC5fFg3D8wkvYn5TF4j/Sdx4hhBBCCCGEkIDtvDgEIYQQQgghhDTBwIkQQgghhBBCKjBwIoQQQgghhJAKDJwIIYQQQgghpAIDJ0IIIYQQQgipwMCJEEIIIYQQQiowcCKEEEIIIYSQCgycCCGEEEIIIaQCAydCCCGEEEIIqcDAiRBCCCGEEEIqMHAihBBCCCGEkAoMnAghhBBCCCGkAgMnQgghhBBCCKnAwIkQQgghhBBCKjBwIoQQQgghhJAKDJwIIYQQQgghpML/A2Cs+qf4iySUAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 260, | |
"width": 423 | |
}, | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"one_batch = next(iter(training_loader))\n", | |
"print('Batch shape:', one_batch['image'].shape)\n", | |
"batch_overlay(one_batch);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Architecture\n", | |
"\n", | |
"The architecture is a PyTorch implementation of a [residual neural network (He et al. 2015)](https://arxiv.org/abs/1512.03385) based on [HighRes3DNet (Li et al. 2017)](https://arxiv.org/abs/1707.01992). It uses residual connections and dilated convolutions." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"HighRes2DNet(\n", | |
" (block): Sequential(\n", | |
" (0): Sequential(\n", | |
" (0): ReplicationPad2d((1, 1, 1, 1))\n", | |
" (1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1))\n", | |
" (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (3): ReLU()\n", | |
" )\n", | |
" (1): DilationBlock(\n", | |
" (dilation_block): Sequential(\n", | |
" (0): ResidualBlock(\n", | |
" (residual_block): Sequential(\n", | |
" (0): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)\n", | |
" (3): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1))\n", | |
" )\n", | |
" )\n", | |
" (1): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)\n", | |
" (3): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1))\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (1): ResidualBlock(\n", | |
" (residual_block): Sequential(\n", | |
" (0): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)\n", | |
" (3): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1))\n", | |
" )\n", | |
" )\n", | |
" (1): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)\n", | |
" (3): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1))\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (2): DilationBlock(\n", | |
" (dilation_block): Sequential(\n", | |
" (0): ResidualBlock(\n", | |
" (residual_block): Sequential(\n", | |
" (0): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0)\n", | |
" (3): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), dilation=(2, 2))\n", | |
" )\n", | |
" )\n", | |
" (1): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0)\n", | |
" (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), dilation=(2, 2))\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (1): ResidualBlock(\n", | |
" (residual_block): Sequential(\n", | |
" (0): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0)\n", | |
" (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), dilation=(2, 2))\n", | |
" )\n", | |
" )\n", | |
" (1): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0)\n", | |
" (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), dilation=(2, 2))\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (3): DilationBlock(\n", | |
" (dilation_block): Sequential(\n", | |
" (0): ResidualBlock(\n", | |
" (residual_block): Sequential(\n", | |
" (0): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(4, 4, 4, 4), value=0.0)\n", | |
" (3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), dilation=(4, 4))\n", | |
" )\n", | |
" )\n", | |
" (1): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(4, 4, 4, 4), value=0.0)\n", | |
" (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), dilation=(4, 4))\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (1): ResidualBlock(\n", | |
" (residual_block): Sequential(\n", | |
" (0): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(4, 4, 4, 4), value=0.0)\n", | |
" (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), dilation=(4, 4))\n", | |
" )\n", | |
" )\n", | |
" (1): ConvolutionalBlock(\n", | |
" (convolutional_block): Sequential(\n", | |
" (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (1): ReLU()\n", | |
" (2): ZeroPad2d(padding=(4, 4, 4, 4), value=0.0)\n", | |
" (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), dilation=(4, 4))\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (4): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1))\n", | |
" (5): Softmax()\n", | |
" )\n", | |
")" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"from highresnet import HighRes2DNet\n", | |
"\n", | |
"model = HighRes2DNet(\n", | |
" in_channels=1,\n", | |
" out_channels=2,\n", | |
" residual_blocks_per_dilation=2,\n", | |
" batch_norm=USE_BATCH_NORM,\n", | |
" padding_mode='replicate',\n", | |
")\n", | |
"model.to(DEVICE)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Optimization\n", | |
"\n", | |
"The optimization method is adaptive moment estimation, aka [Adam](https://arxiv.org/abs/1412.6980)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"optimizer = OPTIMIZER(model.parameters(), lr=LEARNING_RATE)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Training" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Initialization" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Experiment directory: /home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares\n" | |
] | |
} | |
], | |
"source": [ | |
"LOAD_MODEL = False\n", | |
"\n", | |
"if LOAD_MODEL:\n", | |
" experiments_dir = Path('runs').resolve()\n", | |
" log_dir = sorted(list(experiments_dir.iterdir()))[-1]\n", | |
" model_dict_path = log_dir / 'best_model_dict.pth'\n", | |
" model.load_state_dict(torch.load(model_dict_path))\n", | |
" print('State dictionary loaded')\n", | |
"else:\n", | |
" best_validation_metric = -1\n", | |
" iteration = np.array(0) # convert to array so that it's modified by run_epoch()\n", | |
" writer = SummaryWriter() # tensorboardX\n", | |
" log_dir = Path(writer.log_dir).resolve()\n", | |
" model_dict_path = log_dir / 'best_model_dict.pth'\n", | |
" figures_dir = log_dir / 'figures'\n", | |
"print('Experiment directory:', log_dir)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Epoch iteration\n", | |
"\n", | |
"We'll use TensorFlow's [TensorBoard](https://www.tensorflow.org/guide/summaries_and_tensorboard) through [`tensorboardX`](https://github.com/lanpa/tensorboardX) to visualize the loss and the images during training and validation." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"TRAIN = TRAINING = 'Training'\n", | |
"VALIDATE = VALIDATION = 'Validation'\n", | |
"\n", | |
"def save_model(metric):\n", | |
" print('Saving model with best'\n", | |
" f' validation median so far: {metric}')\n", | |
" best_validation_metric = metric\n", | |
" torch.save(model.state_dict(), model_dict_path)\n", | |
" print(f'Model state dict saved to \"{model_dict_path}\"')\n", | |
"\n", | |
"def run_epoch(action, iteration, writer):\n", | |
" if action == TRAIN:\n", | |
" model.train()\n", | |
" loader = training_loader\n", | |
" elif action == VALIDATE:\n", | |
" model.eval()\n", | |
" loader = validation_loader\n", | |
"\n", | |
" start_time = time.time()\n", | |
" batch_losses = []\n", | |
" epoch_metrics = []\n", | |
"\n", | |
" for batch_index, batch in enumerate(tqdm(loader)):\n", | |
" inputs = batch['image'].to(DEVICE)\n", | |
" targets = batch['label'].to(DEVICE)\n", | |
"\n", | |
" # Zero the parameter gradients\n", | |
" optimizer.zero_grad()\n", | |
"\n", | |
" with torch.set_grad_enabled(action == TRAIN):\n", | |
" # Forward pass\n", | |
" predictions = model(inputs)\n", | |
"\n", | |
" # Keep foreground only\n", | |
" foreground = predictions[:, 1:2, ...] # keep dims\n", | |
"\n", | |
" # Loss\n", | |
" targets = targets.float()\n", | |
" batch_loss = LOSS_FUNCTION(foreground, targets)\n", | |
"\n", | |
" # Update weights if training\n", | |
" if action == TRAIN:\n", | |
" # Compute gradients (dJ/dw) through backpropagation\n", | |
" batch_loss.backward()\n", | |
"\n", | |
" # Update weights\n", | |
" optimizer.step()\n", | |
"\n", | |
" # Log iteration loss\n", | |
" batch_loss = batch_loss.item()\n", | |
" batch_losses.append(batch_loss)\n", | |
"\n", | |
" # Plot batch loss if training\n", | |
" if action == TRAIN:\n", | |
" writer.add_scalars(\n", | |
" 'loss',\n", | |
" {'batch/training': batch_loss},\n", | |
" iteration,\n", | |
" )\n", | |
"\n", | |
" # Plot images\n", | |
" if batch_index == 0:\n", | |
" image = batch_overlay(batch, predictions=predictions, show=False)\n", | |
" image = (image * 255).astype(np.uint8)\n", | |
" filename = f'iteration_{iteration:06d}.png'\n", | |
" image_dir = figures_dir / action\n", | |
" image_dir.mkdir(exist_ok=True, parents=True)\n", | |
" filepath = image_dir / filename\n", | |
" io.imsave(filepath, image)\n", | |
" writer.add_image(\n", | |
" f'epoch/{action.lower()}',\n", | |
" transpose(image),\n", | |
" iteration,\n", | |
" )\n", | |
"\n", | |
" # Metrics\n", | |
" batch_metrics = 1 - batch_loss\n", | |
" epoch_metrics.append(batch_metrics)\n", | |
"\n", | |
" if action == TRAIN:\n", | |
" iteration += 1\n", | |
"\n", | |
" # Log epoch loss\n", | |
" batch_losses = np.array(batch_losses)\n", | |
" epoch_loss = batch_losses.mean()\n", | |
" print(f'Epoch {action} loss: {epoch_loss}')\n", | |
" writer.add_scalars(\n", | |
" 'loss',\n", | |
" {f'epoch/{action.lower()}': epoch_loss},\n", | |
" iteration,\n", | |
" )\n", | |
"\n", | |
" # Log metrics\n", | |
" epoch_metrics = np.array(epoch_metrics)\n", | |
" epoch_min = epoch_metrics.min()\n", | |
" epoch_median = np.median(epoch_metrics)\n", | |
" epoch_mean = epoch_metrics.mean()\n", | |
" epoch_max = epoch_metrics.max()\n", | |
" epoch_std = epoch_metrics.std()\n", | |
" print(f'Epoch {action} Dice score:')\n", | |
" print(f'Min: {epoch_min}')\n", | |
" print(f'Mean: {epoch_mean}')\n", | |
" print(f'Median: {epoch_median}')\n", | |
" print(f'Max: {epoch_max}')\n", | |
" print(f'Std: {epoch_std}')\n", | |
"\n", | |
" if (action == VALIDATE\n", | |
" and epoch_median > best_validation_metric\n", | |
" and iteration > 0):\n", | |
" save_model(epoch_median)\n", | |
" pass\n", | |
"\n", | |
" elapsed_time = time.time() - start_time\n", | |
" print(f'{action} epoch duration: {timedelta(seconds=elapsed_time)}')\n", | |
" return iteration" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Training loop" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"################################################################################\n", | |
"Epoch 0/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.65s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.9263232946395874\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.06945675611495972\n", | |
"Mean: 0.0736767053604126\n", | |
"Median: 0.0736767053604126\n", | |
"Max: 0.07789665460586548\n", | |
"Std: 0.004219949245452881\n", | |
"Validation epoch duration: 0:00:04.979187\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:38<00:00, 2.03s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.44832478562990824\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.08105683326721191\n", | |
"Mean: 0.5516752143700917\n", | |
"Median: 0.6923977434635162\n", | |
"Max: 0.8342479765415192\n", | |
"Std: 0.2685862593225887\n", | |
"Training epoch duration: 0:00:38.942450\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 1/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.54s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.9680691361427307\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.030789554119110107\n", | |
"Mean: 0.03193086385726929\n", | |
"Median: 0.03193086385726929\n", | |
"Max: 0.03307217359542847\n", | |
"Std: 0.0011413097381591797\n", | |
"Saving model with best validation median so far: 0.03193086385726929\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.780105\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.03s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.20042830059925715\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.6551398038864136\n", | |
"Mean: 0.7995716994007428\n", | |
"Median: 0.8005381077528\n", | |
"Max: 0.9320937395095825\n", | |
"Std: 0.07441821247371642\n", | |
"Training epoch duration: 0:00:39.080057\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 2/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.57s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.3573324829339981\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.6059141159057617\n", | |
"Mean: 0.6426675170660019\n", | |
"Median: 0.6426675170660019\n", | |
"Max: 0.6794209182262421\n", | |
"Std: 0.03675340116024017\n", | |
"Saving model with best validation median so far: 0.6426675170660019\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.865103\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.04s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.17864790658156077\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.6744800209999084\n", | |
"Mean: 0.8213520934184392\n", | |
"Median: 0.8204898536205292\n", | |
"Max: 0.9437822699546814\n", | |
"Std: 0.06399366757382954\n", | |
"Training epoch duration: 0:00:39.211749\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 3/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.3352440893650055\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.6352711319923401\n", | |
"Mean: 0.6647559106349945\n", | |
"Median: 0.6647559106349945\n", | |
"Max: 0.6942406892776489\n", | |
"Std: 0.02948477864265442\n", | |
"Saving model with best validation median so far: 0.6647559106349945\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.893011\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.06s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1612119123339653\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7088828384876251\n", | |
"Mean: 0.8387880876660347\n", | |
"Median: 0.8525658547878265\n", | |
"Max: 0.9019666314125061\n", | |
"Std: 0.0551747463674835\n", | |
"Training epoch duration: 0:00:39.405578\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 4/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.57s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.3354124277830124\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.625677764415741\n", | |
"Mean: 0.6645875722169876\n", | |
"Median: 0.6645875722169876\n", | |
"Max: 0.7034973800182343\n", | |
"Std: 0.03890980780124664\n", | |
"Saving model with best validation median so far: 0.6645875722169876\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.855000\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.06s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.21268907884756724\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.003080606460571289\n", | |
"Mean: 0.7873109211524327\n", | |
"Median: 0.865744024515152\n", | |
"Max: 0.905445322394371\n", | |
"Std: 0.22180040859759956\n", | |
"Training epoch duration: 0:00:39.548533\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 5/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.27792058885097504\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7032226622104645\n", | |
"Mean: 0.722079411149025\n", | |
"Median: 0.722079411149025\n", | |
"Max: 0.7409361600875854\n", | |
"Std: 0.018856748938560486\n", | |
"Saving model with best validation median so far: 0.722079411149025\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.872824\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.06s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.15671389947334927\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7349105179309845\n", | |
"Mean: 0.8432861005266508\n", | |
"Median: 0.8605807572603226\n", | |
"Max: 0.9204127416014671\n", | |
"Std: 0.05378111922801025\n", | |
"Training epoch duration: 0:00:39.604784\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 6/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.60s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.2189771682024002\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7662500441074371\n", | |
"Mean: 0.7810228317975998\n", | |
"Median: 0.7810228317975998\n", | |
"Max: 0.7957956194877625\n", | |
"Std: 0.014772787690162659\n", | |
"Saving model with best validation median so far: 0.7810228317975998\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.938642\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.06s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.16126085470120113\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7040674686431885\n", | |
"Mean: 0.8387391452987989\n", | |
"Median: 0.8592515289783478\n", | |
"Max: 0.9267809391021729\n", | |
"Std: 0.06063866550609074\n", | |
"Training epoch duration: 0:00:39.625628\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 7/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.18697424978017807\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7919241189956665\n", | |
"Mean: 0.8130257502198219\n", | |
"Median: 0.8130257502198219\n", | |
"Max: 0.8341273814439774\n", | |
"Std: 0.021101631224155426\n", | |
"Saving model with best validation median so far: 0.8130257502198219\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.857921\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.16349933544794717\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.6964635252952576\n", | |
"Mean: 0.8365006645520529\n", | |
"Median: 0.8519419729709625\n", | |
"Max: 0.9384459257125854\n", | |
"Std: 0.06789128328884671\n", | |
"Training epoch duration: 0:00:39.669445\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 8/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.60s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.22740570455789566\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.767494261264801\n", | |
"Mean: 0.7725942954421043\n", | |
"Median: 0.7725942954421043\n", | |
"Max: 0.7776943296194077\n", | |
"Std: 0.005100034177303314\n", | |
"Saving model with best validation median so far: 0.7725942954421043\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.905874\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.06s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1413320725162824\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7825877964496613\n", | |
"Mean: 0.8586679274837176\n", | |
"Median: 0.8667770326137543\n", | |
"Max: 0.9122754782438278\n", | |
"Std: 0.04212023565881677\n", | |
"Training epoch duration: 0:00:39.698095\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 9/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.59s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.2516331896185875\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7257794439792633\n", | |
"Mean: 0.7483668103814125\n", | |
"Median: 0.7483668103814125\n", | |
"Max: 0.7709541767835617\n", | |
"Std: 0.0225873664021492\n", | |
"Saving model with best validation median so far: 0.7483668103814125\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.889796\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.06s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1954923858245214\n", | |
"Epoch Training Dice score:\n", | |
"Min: 7.748603820800781e-07\n", | |
"Mean: 0.8045076141754787\n", | |
"Median: 0.876169390976429\n", | |
"Max: 0.8970501571893692\n", | |
"Std: 0.21725415275294196\n", | |
"Training epoch duration: 0:00:39.724725\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 10/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.1961234286427498\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7904496788978577\n", | |
"Mean: 0.8038765713572502\n", | |
"Median: 0.8038765713572502\n", | |
"Max: 0.8173034638166428\n", | |
"Std: 0.013426892459392548\n", | |
"Saving model with best validation median so far: 0.8038765713572502\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.871396\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.14582320352395375\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.6461582183837891\n", | |
"Mean: 0.8541767964760463\n", | |
"Median: 0.880520410835743\n", | |
"Max: 0.9210736155509949\n", | |
"Std: 0.07223429503795499\n", | |
"Training epoch duration: 0:00:39.698807\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 11/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.60s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.1975712776184082\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7775973230600357\n", | |
"Mean: 0.8024287223815918\n", | |
"Median: 0.8024287223815918\n", | |
"Max: 0.8272601217031479\n", | |
"Std: 0.02483139932155609\n", | |
"Saving model with best validation median so far: 0.8024287223815918\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.943891\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.06s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1365121399362882\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.783895343542099\n", | |
"Mean: 0.8634878600637118\n", | |
"Median: 0.8735813647508621\n", | |
"Max: 0.9228514581918716\n", | |
"Std: 0.03827191104628107\n", | |
"Training epoch duration: 0:00:39.714645\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 12/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.61s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.17911118268966675\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8138282895088196\n", | |
"Mean: 0.8208888173103333\n", | |
"Median: 0.8208888173103333\n", | |
"Max: 0.8279493451118469\n", | |
"Std: 0.007060527801513672\n", | |
"Saving model with best validation median so far: 0.8208888173103333\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.947422\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.128288001815478\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7878894805908203\n", | |
"Mean: 0.8717119981845219\n", | |
"Median: 0.87934410572052\n", | |
"Max: 0.9217454195022583\n", | |
"Std: 0.034331732551778966\n", | |
"Training epoch duration: 0:00:39.688988\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 13/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.18725307285785675\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7905947864055634\n", | |
"Mean: 0.8127469271421432\n", | |
"Median: 0.8127469271421432\n", | |
"Max: 0.8348990678787231\n", | |
"Std: 0.022152140736579895\n", | |
"Saving model with best validation median so far: 0.8127469271421432\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.867062\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.14258189102013905\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7156079113483429\n", | |
"Mean: 0.8574181089798609\n", | |
"Median: 0.8696727752685547\n", | |
"Max: 0.9328517913818359\n", | |
"Std: 0.05460159769908873\n", | |
"Training epoch duration: 0:00:39.729698\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 14/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.60s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.18521437793970108\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7746206223964691\n", | |
"Mean: 0.8147856220602989\n", | |
"Median: 0.8147856220602989\n", | |
"Max: 0.8549506217241287\n", | |
"Std: 0.0401649996638298\n", | |
"Saving model with best validation median so far: 0.8147856220602989\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.946865\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.13138037472963332\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7498324811458588\n", | |
"Mean: 0.8686196252703666\n", | |
"Median: 0.8763743937015533\n", | |
"Max: 0.9326147437095642\n", | |
"Std: 0.04337891706704878\n", | |
"Training epoch duration: 0:00:39.753015\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 15/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.59s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.190102718770504\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.792762815952301\n", | |
"Mean: 0.809897281229496\n", | |
"Median: 0.809897281229496\n", | |
"Max: 0.827031746506691\n", | |
"Std: 0.017134465277194977\n", | |
"Saving model with best validation median so far: 0.809897281229496\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.878281\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.16086612790822982\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.6814032793045044\n", | |
"Mean: 0.8391338720917701\n", | |
"Median: 0.8789745345711708\n", | |
"Max: 0.915611743927002\n", | |
"Std: 0.07201368772617545\n", | |
"Training epoch duration: 0:00:39.744885\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 16/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.59s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.21013306826353073\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7820714712142944\n", | |
"Mean: 0.7898669317364693\n", | |
"Median: 0.7898669317364693\n", | |
"Max: 0.7976623922586441\n", | |
"Std: 0.007795460522174835\n", | |
"Saving model with best validation median so far: 0.7898669317364693\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.896925\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.19352993716796238\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.00014722347259521484\n", | |
"Mean: 0.8064700628320376\n", | |
"Median: 0.8896046653389931\n", | |
"Max: 0.9350220113992691\n", | |
"Std: 0.22500529181054596\n", | |
"Training epoch duration: 0:00:39.767420\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 17/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.61s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.1836543306708336\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8153274655342102\n", | |
"Mean: 0.8163456693291664\n", | |
"Median: 0.8163456693291664\n", | |
"Max: 0.8173638731241226\n", | |
"Std: 0.0010182037949562073\n", | |
"Saving model with best validation median so far: 0.8163456693291664\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.946553\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.13327796906232833\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7806003987789154\n", | |
"Mean: 0.8667220309376716\n", | |
"Median: 0.8792144134640694\n", | |
"Max: 0.9246470779180527\n", | |
"Std: 0.03837756046939097\n", | |
"Training epoch duration: 0:00:39.722199\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 18/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.20657672733068466\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7810765653848648\n", | |
"Mean: 0.7934232726693153\n", | |
"Median: 0.7934232726693153\n", | |
"Max: 0.8057699799537659\n", | |
"Std: 0.012346707284450531\n", | |
"Saving model with best validation median so far: 0.7934232726693153\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.868607\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1158445472518603\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7650412917137146\n", | |
"Mean: 0.8841554527481397\n", | |
"Median: 0.8881717845797539\n", | |
"Max: 0.9504653215408325\n", | |
"Std: 0.040009594159245876\n", | |
"Training epoch duration: 0:00:39.749135\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 19/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.61s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.17767900973558426\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.808214083313942\n", | |
"Mean: 0.8223209902644157\n", | |
"Median: 0.8223209902644157\n", | |
"Max: 0.8364278972148895\n", | |
"Std: 0.014106906950473785\n", | |
"Saving model with best validation median so far: 0.8223209902644157\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.948994\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.12153050154447556\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7945423722267151\n", | |
"Mean: 0.8784694984555245\n", | |
"Median: 0.8948862552642822\n", | |
"Max: 0.9287427887320518\n", | |
"Std: 0.0431205778494935\n", | |
"Training epoch duration: 0:00:39.737535\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 20/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.59s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.18710823357105255\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7799129337072372\n", | |
"Mean: 0.8128917664289474\n", | |
"Median: 0.8128917664289474\n", | |
"Max: 0.8458705991506577\n", | |
"Std: 0.032978832721710205\n", | |
"Saving model with best validation median so far: 0.8128917664289474\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.899089\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.19217352519432704\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.09462666511535645\n", | |
"Mean: 0.8078264748056729\n", | |
"Median: 0.850945770740509\n", | |
"Max: 0.892988421022892\n", | |
"Std: 0.1925709119589885\n", | |
"Training epoch duration: 0:00:39.776759\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 21/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.21232959628105164\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7437140345573425\n", | |
"Mean: 0.7876704037189484\n", | |
"Median: 0.7876704037189484\n", | |
"Max: 0.8316267728805542\n", | |
"Std: 0.043956369161605835\n", | |
"Saving model with best validation median so far: 0.7876704037189484\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.875203\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.16077840824921927\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.6702533960342407\n", | |
"Mean: 0.8392215917507807\n", | |
"Median: 0.8421045541763306\n", | |
"Max: 0.9071676209568977\n", | |
"Std: 0.0605328468986148\n", | |
"Training epoch duration: 0:00:39.744659\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 22/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.19413840770721436\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7921285033226013\n", | |
"Mean: 0.8058615922927856\n", | |
"Median: 0.8058615922927856\n", | |
"Max: 0.81959468126297\n", | |
"Std: 0.013733088970184326\n", | |
"Saving model with best validation median so far: 0.8058615922927856\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.871221\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1360541005929311\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.698861300945282\n", | |
"Mean: 0.8639458994070689\n", | |
"Median: 0.8793960064649582\n", | |
"Max: 0.9348750114440918\n", | |
"Std: 0.057730164437599873\n", | |
"Training epoch duration: 0:00:39.755126\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 23/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.61s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.20916511863470078\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7811146378517151\n", | |
"Mean: 0.7908348813652992\n", | |
"Median: 0.7908348813652992\n", | |
"Max: 0.8005551248788834\n", | |
"Std: 0.009720243513584137\n", | |
"Saving model with best validation median so far: 0.7908348813652992\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.949924\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.12673314015070597\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.8017362654209137\n", | |
"Mean: 0.873266859849294\n", | |
"Median: 0.8872507140040398\n", | |
"Max: 0.9217585921287537\n", | |
"Std: 0.038130827556220145\n", | |
"Training epoch duration: 0:00:39.739156\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 24/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.59s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.18191998451948166\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7818624675273895\n", | |
"Mean: 0.8180800154805183\n", | |
"Median: 0.8180800154805183\n", | |
"Max: 0.8542975634336472\n", | |
"Std: 0.036217547953128815\n", | |
"Saving model with best validation median so far: 0.8180800154805183\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.896783\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.12489439894755681\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7689605951309204\n", | |
"Mean: 0.8751056010524432\n", | |
"Median: 0.8752934336662292\n", | |
"Max: 0.9327563419938087\n", | |
"Std: 0.04166331667036519\n", | |
"Training epoch duration: 0:00:39.740550\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 25/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.1943323016166687\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7858812063932419\n", | |
"Mean: 0.8056676983833313\n", | |
"Median: 0.8056676983833313\n", | |
"Max: 0.8254541903734207\n", | |
"Std: 0.019786491990089417\n", | |
"Saving model with best validation median so far: 0.8056676983833313\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.883281\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.11907267570495605\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.804591178894043\n", | |
"Mean: 0.880927324295044\n", | |
"Median: 0.8852381482720375\n", | |
"Max: 0.9249101504683495\n", | |
"Std: 0.03325160658069557\n", | |
"Training epoch duration: 0:00:39.737596\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 26/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.1994122713804245\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.777234360575676\n", | |
"Mean: 0.8005877286195755\n", | |
"Median: 0.8005877286195755\n", | |
"Max: 0.823941096663475\n", | |
"Std: 0.023353368043899536\n", | |
"Saving model with best validation median so far: 0.8005877286195755\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.873149\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.12818970878918964\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7271400094032288\n", | |
"Mean: 0.8718102912108103\n", | |
"Median: 0.8871922120451927\n", | |
"Max: 0.9567575454711914\n", | |
"Std: 0.05881394070856885\n", | |
"Training epoch duration: 0:00:39.746529\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 27/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.61s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.2312241494655609\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7654400169849396\n", | |
"Mean: 0.7687758505344391\n", | |
"Median: 0.7687758505344391\n", | |
"Max: 0.7721116840839386\n", | |
"Std: 0.0033358335494995117\n", | |
"Saving model with best validation median so far: 0.7687758505344391\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.950684\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1281527802348137\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.8109612315893173\n", | |
"Mean: 0.8718472197651863\n", | |
"Median: 0.8792132213711739\n", | |
"Max: 0.9131127595901489\n", | |
"Std: 0.034328523948738365\n", | |
"Training epoch duration: 0:00:39.791220\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 28/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.61s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.1861320063471794\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8130532950162888\n", | |
"Mean: 0.8138679936528206\n", | |
"Median: 0.8138679936528206\n", | |
"Max: 0.8146826922893524\n", | |
"Std: 0.0008146986365318298\n", | |
"Saving model with best validation median so far: 0.8138679936528206\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.950267\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.11406232963005701\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7884964942932129\n", | |
"Mean: 0.885937670369943\n", | |
"Median: 0.8937579616904259\n", | |
"Max: 0.936208188533783\n", | |
"Std: 0.03584537526211528\n", | |
"Training epoch duration: 0:00:39.791420\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 29/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.59s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.17837075144052505\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8005418032407761\n", | |
"Mean: 0.821629248559475\n", | |
"Median: 0.821629248559475\n", | |
"Max: 0.8427166938781738\n", | |
"Std: 0.021087445318698883\n", | |
"Saving model with best validation median so far: 0.821629248559475\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.879812\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.109190400938193\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.818229466676712\n", | |
"Mean: 0.890809599061807\n", | |
"Median: 0.8869190216064453\n", | |
"Max: 0.9482561349868774\n", | |
"Std: 0.03330918532173605\n", | |
"Training epoch duration: 0:00:39.797423\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 30/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.59s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.17868436127901077\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8166122585535049\n", | |
"Mean: 0.8213156387209892\n", | |
"Median: 0.8213156387209892\n", | |
"Max: 0.8260190188884735\n", | |
"Std: 0.0047033801674842834\n", | |
"Saving model with best validation median so far: 0.8213156387209892\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.897387\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.11559560795625051\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.767991691827774\n", | |
"Mean: 0.8844043920437495\n", | |
"Median: 0.8949791789054871\n", | |
"Max: 0.925433486700058\n", | |
"Std: 0.039917015600885855\n", | |
"Training epoch duration: 0:00:39.759159\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 31/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.1768919825553894\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7978533804416656\n", | |
"Mean: 0.8231080174446106\n", | |
"Median: 0.8231080174446106\n", | |
"Max: 0.8483626544475555\n", | |
"Std: 0.025254637002944946\n", | |
"Saving model with best validation median so far: 0.8231080174446106\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.869422\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.10337088902791342\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.8457821607589722\n", | |
"Mean: 0.8966291109720866\n", | |
"Median: 0.9070544391870499\n", | |
"Max: 0.921367309987545\n", | |
"Std: 0.023214387447177527\n", | |
"Training epoch duration: 0:00:39.802713\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 32/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.159628726541996\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8073162734508514\n", | |
"Mean: 0.840371273458004\n", | |
"Median: 0.840371273458004\n", | |
"Max: 0.8734262734651566\n", | |
"Std: 0.03305500000715256\n", | |
"Saving model with best validation median so far: 0.840371273458004\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.873513\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.11639356513818105\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7435683310031891\n", | |
"Mean: 0.883606434861819\n", | |
"Median: 0.899441733956337\n", | |
"Max: 0.9295479580760002\n", | |
"Std: 0.04846374568590457\n", | |
"Training epoch duration: 0:00:39.775071\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 33/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.18257320672273636\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8071008622646332\n", | |
"Mean: 0.8174267932772636\n", | |
"Median: 0.8174267932772636\n", | |
"Max: 0.8277527242898941\n", | |
"Std: 0.010325931012630463\n", | |
"Saving model with best validation median so far: 0.8174267932772636\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.863958\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.11055507163206736\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7938947975635529\n", | |
"Mean: 0.8894449283679327\n", | |
"Median: 0.9003723934292793\n", | |
"Max: 0.9314928352832794\n", | |
"Std: 0.03641605959114968\n", | |
"Training epoch duration: 0:00:39.803771\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 34/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.61s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.18172606825828552\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8170268833637238\n", | |
"Mean: 0.8182739317417145\n", | |
"Median: 0.8182739317417145\n", | |
"Max: 0.8195209801197052\n", | |
"Std: 0.0012470483779907227\n", | |
"Saving model with best validation median so far: 0.8182739317417145\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.946958\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1253994638721148\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7688213586807251\n", | |
"Mean: 0.8746005361278851\n", | |
"Median: 0.9045413881540298\n", | |
"Max: 0.9354585707187653\n", | |
"Std: 0.055011449902107865\n", | |
"Training epoch duration: 0:00:39.781209\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 35/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.19914819300174713\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.777709573507309\n", | |
"Mean: 0.8008518069982529\n", | |
"Median: 0.8008518069982529\n", | |
"Max: 0.8239940404891968\n", | |
"Std: 0.02314223349094391\n", | |
"Saving model with best validation median so far: 0.8008518069982529\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.874343\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1566618596514066\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.5953045785427094\n", | |
"Mean: 0.8433381403485934\n", | |
"Median: 0.874870091676712\n", | |
"Max: 0.9110680669546127\n", | |
"Std: 0.07995794583977797\n", | |
"Training epoch duration: 0:00:39.748130\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 36/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.61s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.19270272552967072\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8053013980388641\n", | |
"Mean: 0.8072972744703293\n", | |
"Median: 0.8072972744703293\n", | |
"Max: 0.8092931509017944\n", | |
"Std: 0.001995876431465149\n", | |
"Saving model with best validation median so far: 0.8072972744703293\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.949770\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.12454314380884171\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7573976218700409\n", | |
"Mean: 0.8754568561911583\n", | |
"Median: 0.8881881162524223\n", | |
"Max: 0.9375118836760521\n", | |
"Std: 0.05114084475267378\n", | |
"Training epoch duration: 0:00:39.782347\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 37/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.60s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.18554698675870895\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7922350466251373\n", | |
"Mean: 0.814453013241291\n", | |
"Median: 0.814453013241291\n", | |
"Max: 0.8366709798574448\n", | |
"Std: 0.022217966616153717\n", | |
"Saving model with best validation median so far: 0.814453013241291\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.935313\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.12803330222765605\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.7111956477165222\n", | |
"Mean: 0.8719666977723439\n", | |
"Median: 0.882784403860569\n", | |
"Max: 0.9222317636013031\n", | |
"Std: 0.06131074440503738\n", | |
"Training epoch duration: 0:00:39.784784\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 38/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.59s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.25992684811353683\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7272135019302368\n", | |
"Mean: 0.7400731518864632\n", | |
"Median: 0.7400731518864632\n", | |
"Max: 0.7529328018426895\n", | |
"Std: 0.012859649956226349\n", | |
"Saving model with best validation median so far: 0.7400731518864632\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.892525\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1211758221189181\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.6930005848407745\n", | |
"Mean: 0.8788241778810819\n", | |
"Median: 0.905113197863102\n", | |
"Max: 0.9377136826515198\n", | |
"Std: 0.05926694052287437\n", | |
"Training epoch duration: 0:00:39.761833\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n", | |
"################################################################################\n", | |
"Epoch 39/40\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]\n", | |
" 0%| | 0/15 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.1784086897969246\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.8148448914289474\n", | |
"Mean: 0.8215913102030754\n", | |
"Median: 0.8215913102030754\n", | |
"Max: 0.8283377289772034\n", | |
"Std: 0.00674641877412796\n", | |
"Saving model with best validation median so far: 0.8215913102030754\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.871412\n", | |
"--------------------------------------------------------------------------------\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 15/15 [00:39<00:00, 2.07s/it]\n", | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Training loss: 0.1150159905354182\n", | |
"Epoch Training Dice score:\n", | |
"Min: 0.8174321353435516\n", | |
"Mean: 0.8849840094645818\n", | |
"Median: 0.8979901447892189\n", | |
"Max: 0.9397746473550797\n", | |
"Std: 0.037280470830835785\n", | |
"Training epoch duration: 0:00:39.785562\n", | |
"################################################################################\n", | |
"\n", | |
"\n", | |
"\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 2/2 [00:04<00:00, 2.58s/it]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch Validation loss: 0.19104230403900146\n", | |
"Epoch Validation Dice score:\n", | |
"Min: 0.7993073761463165\n", | |
"Mean: 0.8089576959609985\n", | |
"Median: 0.8089576959609985\n", | |
"Max: 0.8186080157756805\n", | |
"Std: 0.009650319814682007\n", | |
"Saving model with best validation median so far: 0.8089576959609985\n", | |
"Model state dict saved to \"/home/fernando/Desktop/demo/runs/Apr08_12-25-32_ares/best_model_dict.pth\"\n", | |
"Validation epoch duration: 0:00:04.868876\n", | |
"Training time: 0:29:48.086740\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"if not LOAD_MODEL:\n", | |
" start_training_time = time.time()\n", | |
" for epoch in range(NUM_EPOCHS):\n", | |
" print(80 * '#')\n", | |
" print(f'Epoch {epoch}/{NUM_EPOCHS}')\n", | |
" run_epoch(VALIDATE, iteration, writer)\n", | |
" print(80 * '-')\n", | |
" run_epoch(TRAIN, iteration, writer)\n", | |
" print(80 * '#')\n", | |
" print(2 * '\\n')\n", | |
" run_epoch(VALIDATE, iteration, writer)\n", | |
" elapsed_training_time = time.time() - start_training_time\n", | |
" print(f'Training time: {timedelta(seconds=elapsed_training_time)}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Evaluation\n", | |
"\n", | |
"Let's compute and plot some stats about how well our model does for both training and validation sets:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|██████████| 113/113 [00:17<00:00, 6.28it/s]\n", | |
"100%|██████████| 29/29 [00:04<00:00, 6.30it/s]\n" | |
] | |
} | |
], | |
"source": [ | |
"metrics_list = []\n", | |
"subsets = training_set, validation_set\n", | |
"\n", | |
"model.eval()\n", | |
"with torch.no_grad():\n", | |
" for subset in training_set, validation_set:\n", | |
" for sample in tqdm(subset):\n", | |
" name = sample['name']\n", | |
" inputs = sample['image'].to(DEVICE)\n", | |
" targets = sample['label'].to(DEVICE)\n", | |
" inputs = torch.unsqueeze(inputs, 0)\n", | |
" predictions = model(inputs)\n", | |
" foreground = predictions[:, 1:2, ...] # keep dims\n", | |
" foreground = foreground >= 0.5 # binarize\n", | |
" foreground = foreground.float()\n", | |
" targets = targets.float()\n", | |
" metric = METRIC_FUNCTION(foreground, targets) # only 1 since sample by sample\n", | |
" metric = metric.item()\n", | |
" metric_type = 'Training' if subset is training_set else 'Validation'\n", | |
" metric_dict = OrderedDict(\n", | |
" Name=name,\n", | |
" Subset=metric_type,\n", | |
" Dice=metric,\n", | |
" )\n", | |
" metrics_list.append(metric_dict)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Name</th>\n", | |
" <th>Subset</th>\n", | |
" <th>Dice</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>rm0605</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.948272</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>83</th>\n", | |
" <td>rm0977</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.914056</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>82</th>\n", | |
" <td>rm0779</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.895971</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>81</th>\n", | |
" <td>rm0815</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.890201</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>80</th>\n", | |
" <td>rm0451</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.885616</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>79</th>\n", | |
" <td>rm0552</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.934336</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>78</th>\n", | |
" <td>rm1068</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.933543</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>77</th>\n", | |
" <td>rm0494</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.872964</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>76</th>\n", | |
" <td>rm0829</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.943760</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75</th>\n", | |
" <td>rm0848</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.953016</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>74</th>\n", | |
" <td>rm0691</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.911834</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>73</th>\n", | |
" <td>rm0642</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.902256</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>84</th>\n", | |
" <td>rm0556</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.885171</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>72</th>\n", | |
" <td>rm0803</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.755420</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>69</th>\n", | |
" <td>rm0542</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.935415</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>68</th>\n", | |
" <td>rm0765</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.959897</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>67</th>\n", | |
" <td>rm0573</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.943977</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>66</th>\n", | |
" <td>rm1008</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.942776</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>65</th>\n", | |
" <td>rm0996</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.930307</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>64</th>\n", | |
" <td>rm0844</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.923022</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>63</th>\n", | |
" <td>rm0783</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.936615</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>62</th>\n", | |
" <td>rm1082</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.916120</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>61</th>\n", | |
" <td>rm0946</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.939827</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>60</th>\n", | |
" <td>rm0808</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.824259</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>59</th>\n", | |
" <td>rm0638</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.889834</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>71</th>\n", | |
" <td>rm0944</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.813312</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>85</th>\n", | |
" <td>rm0898</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.894945</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>86</th>\n", | |
" <td>rm1252</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.907711</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>87</th>\n", | |
" <td>rm0501</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.920957</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>112</th>\n", | |
" <td>rm0692</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.955593</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>37</th>\n", | |
" <td>rm1356</td>\n", | |
" <td>Training</td>\n", | |
" <td>0.638469</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>132</th>\n", | |
" <td>rm0966</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.941150</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>129</th>\n", | |
" <td>rm1358</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.568975</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>130</th>\n", | |
" <td>rm0524</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.887605</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>131</th>\n", | |
" <td>rm0548</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.916314</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>133</th>\n", | |
" <td>rm1035</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.939401</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>139</th>\n", | |
" <td>rm0705</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.834046</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>135</th>\n", | |
" <td>rm0985</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.928658</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>136</th>\n", | |
" <td>rm0850</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.939040</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>137</th>\n", | |
" <td>rm1308</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.556209</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>138</th>\n", | |
" <td>rm0301</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.899100</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>128</th>\n", | |
" <td>rm0846</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.030160</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>134</th>\n", | |
" <td>rm0508</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.917466</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>127</th>\n", | |
" <td>rm0877</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.857919</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>113</th>\n", | |
" <td>rm1120</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.904493</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>125</th>\n", | |
" <td>rm0757</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.841386</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>124</th>\n", | |
" <td>rm0511</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.856192</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>123</th>\n", | |
" <td>rm0772</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.959898</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>122</th>\n", | |
" <td>rm1372</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.842947</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>121</th>\n", | |
" <td>rm0176</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.900818</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>120</th>\n", | |
" <td>rm0743</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.943357</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>119</th>\n", | |
" <td>rm1083</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.934179</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>118</th>\n", | |
" <td>rm1343</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.147730</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>117</th>\n", | |
" <td>rm0550</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.916092</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>116</th>\n", | |
" <td>rm0564</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.905765</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>115</th>\n", | |
" <td>rm0507</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.962740</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>114</th>\n", | |
" <td>rm0392</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.853430</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>140</th>\n", | |
" <td>rm0538</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.392533</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>126</th>\n", | |
" <td>rm0045</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.927636</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>141</th>\n", | |
" <td>rm1131</td>\n", | |
" <td>Validation</td>\n", | |
" <td>0.932838</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>142 rows × 3 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Name Subset Dice\n", | |
"0 rm0605 Training 0.948272\n", | |
"83 rm0977 Training 0.914056\n", | |
"82 rm0779 Training 0.895971\n", | |
"81 rm0815 Training 0.890201\n", | |
"80 rm0451 Training 0.885616\n", | |
"79 rm0552 Training 0.934336\n", | |
"78 rm1068 Training 0.933543\n", | |
"77 rm0494 Training 0.872964\n", | |
"76 rm0829 Training 0.943760\n", | |
"75 rm0848 Training 0.953016\n", | |
"74 rm0691 Training 0.911834\n", | |
"73 rm0642 Training 0.902256\n", | |
"84 rm0556 Training 0.885171\n", | |
"72 rm0803 Training 0.755420\n", | |
"69 rm0542 Training 0.935415\n", | |
"68 rm0765 Training 0.959897\n", | |
"67 rm0573 Training 0.943977\n", | |
"66 rm1008 Training 0.942776\n", | |
"65 rm0996 Training 0.930307\n", | |
"64 rm0844 Training 0.923022\n", | |
"63 rm0783 Training 0.936615\n", | |
"62 rm1082 Training 0.916120\n", | |
"61 rm0946 Training 0.939827\n", | |
"60 rm0808 Training 0.824259\n", | |
"59 rm0638 Training 0.889834\n", | |
"71 rm0944 Training 0.813312\n", | |
"85 rm0898 Training 0.894945\n", | |
"86 rm1252 Training 0.907711\n", | |
"87 rm0501 Training 0.920957\n", | |
"112 rm0692 Training 0.955593\n", | |
".. ... ... ...\n", | |
"37 rm1356 Training 0.638469\n", | |
"132 rm0966 Validation 0.941150\n", | |
"129 rm1358 Validation 0.568975\n", | |
"130 rm0524 Validation 0.887605\n", | |
"131 rm0548 Validation 0.916314\n", | |
"133 rm1035 Validation 0.939401\n", | |
"139 rm0705 Validation 0.834046\n", | |
"135 rm0985 Validation 0.928658\n", | |
"136 rm0850 Validation 0.939040\n", | |
"137 rm1308 Validation 0.556209\n", | |
"138 rm0301 Validation 0.899100\n", | |
"128 rm0846 Validation 0.030160\n", | |
"134 rm0508 Validation 0.917466\n", | |
"127 rm0877 Validation 0.857919\n", | |
"113 rm1120 Validation 0.904493\n", | |
"125 rm0757 Validation 0.841386\n", | |
"124 rm0511 Validation 0.856192\n", | |
"123 rm0772 Validation 0.959898\n", | |
"122 rm1372 Validation 0.842947\n", | |
"121 rm0176 Validation 0.900818\n", | |
"120 rm0743 Validation 0.943357\n", | |
"119 rm1083 Validation 0.934179\n", | |
"118 rm1343 Validation 0.147730\n", | |
"117 rm0550 Validation 0.916092\n", | |
"116 rm0564 Validation 0.905765\n", | |
"115 rm0507 Validation 0.962740\n", | |
"114 rm0392 Validation 0.853430\n", | |
"140 rm0538 Validation 0.392533\n", | |
"126 rm0045 Validation 0.927636\n", | |
"141 rm1131 Validation 0.932838\n", | |
"\n", | |
"[142 rows x 3 columns]" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"metrics_df = pd.DataFrame(metrics_list)\n", | |
"metrics_df.sort_values(by='Subset')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAI1CAYAAABL8WyLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmQXFd5N/7vuWvv3bPPSCNZ8hpvIAxlggO4UBwk4jh2MBQ4wTavKZwKlQBJMBDML7GdtwJhSyi2+A2YJcbCoQA7jollpzDBIQYlwassGxlrH81o1t6773LO74/b3ep1ZqQZaXrG30+VCqvvdtplbt/nPuc8j1BKKRARERERES2BttIDICIiIiKi1Y+BBRERERERLRkDCyIiIiIiWjIGFkREREREtGQMLIiIiIiIaMkYWBARERER0ZIxsCAiIiIioiVjYEFEREREREvGwIKIiIiIiJaMgQURERERES0ZAwsiIiIiIloyBhZERERERLRkDCyIiIiIiGjJGFgQEdHL0tatW3Heeefh5z//+UoPhYhoTWBgQURE8/roRz+K8847D+eddx4uvPBCTE9Pz7v/v//7v9f2P++88/D9739/WcZx+PBhfOELX8A3vvGNZTkfEREtLwYWRES0aJ7n4YEHHph3n/vuu++UXPvIkSP44he/iG9961vLcr4NGzZg8+bNCIfDy3I+IqKXOwYWRES0KOvWrQMA3H///R33mZubw49//GNEIhGkUqnTNbST8s1vfhMPPfQQXvGKV6z0UIiI1gQGFkREtChbtmzBxo0b8dxzz2Hv3r1t93nwwQfhui62bdsG27ZP8wiJiGglGSs9ACIiWj2uvvpqfOELX8B9992HW265pWV7NZtx9dVX47/+67/mPdePfvQjfPe738XTTz+NdDqNeDyOV77ylfiDP/gDvOENb2jYd+vWrThy5AiAYErUeeed17D9E5/4BN761rc27Putb30LmzZtwle+8hU89thjmJiYwFlnnVUbY/1+r33ta1vG57ouvv/97+OHP/whXnjhBeRyOQwMDGDz5s3Ytm0brrrqKkQikdr+09PT+OpXv4rHHnsMhw8fhu/76O3txcjICF73utfhbW97G9avX7/Qv2IiolWLgQURES1aNbB44IEH8Od//ufQtOOJ73379uGpp57CyMhI2wf1Ktd18Rd/8RcNazVisRhmZmbw6KOP4tFHH8V73vMefPjDH65t7+npQS6XQzqdhqZp6O3tbThnKBRquc7+/fvxgQ98ALOzswiHwzBNc9Hfc2JiAn/4h3+IPXv2AAA0TUMsFsPRo0cxNjaGn/70p9i0aVPtex45cgTveMc7MDk5CQDQdR2xWAwTExMYHx/HE088gcHBQVx33XWLHgMR0WrDwIKIiBZtw4YNuOSSS/CLX/wCP/vZz3DZZZfVtlUXbV911VUNAUezT3/603jggQewfv16/Nmf/Rne9KY3IRqNIp/P41//9V/xqU99Cl/72tdwwQUX4Hd+53cAAN/73vfw85//HDfccANGRkbwox/9aMGxfvKTn8To6Ci+/OUv45JLLgEAHDhwYMHjHMfBH/3RH2HPnj3o6enBRz/6Ubz5zW9GJBJBqVTC3r178cADDzQEM1/84hcxOTmJM844A3/zN3+DSy65BJqmwXEc7N+/Hz/84Q8xMDCw4LWJiFYzBhZERHRCrrnmGvziF7/AfffdVwsslFK1DMQ111zT8dj9+/fjn/7pn5BIJPDNb34TGzZsqG2LRqN4xzvegXg8jj/90z/FP/zDP9QCi5NhGAa+/vWvo7+/v/bZGWecseBx3/3ud7F7925YloVvfOMb+LVf+7XatlAohIsvvhgXX3xxwzFPPfUUAOCDH/wgXvOa19Q+tywL5557Ls4999yT/h5ERKsFF28TEdEJectb3gLbtvHII4+gUCgAAHbt2oUjR47goosuwllnndXx2Pvuuw9SSlxxxRUNQUW9N7/5zbAsC3v37sWxY8dOepxXX311Q1CxWNU1GG9961sbgor5xGIxAFjSeImIVjtmLIiI6IQkEgm86U1vwkMPPYSHH34Y11xzTW0a1HzZCgB44oknAAAPPfQQfvKTn3Tcz/M8AMD4+DgGBwdPapyvetWrTvgY13Wxe/duAMDll1++6OPe+MY34qmnnsJnPvMZHDhwANu2bcOWLVvarv0gIlqrmLEgIqITVg0g7r//fpRKJTz88MMwTRNXXnnlvMdVFzcXCgVMTU11/COlBAAUi8WTHmPzAu/FSKfTtaCm2rdjMW6++WZs3boVruvinnvuwY033ohXv/rVeOc734mvfvWryGQyJzwWIqLVhhkLIiI6YW94wxvQ19eHn/3sZ7j77ruRy+WwdevWBR/mqwHDrbfeihtuuOGUjnG+BeSdKKVO6lqWZeErX/kKnnzySTzyyCP4n//5H+zevRtPPPEEnnjiCXzta1/D17/+9UVPrSIiWo2YsSAiohNmGAZ++7d/G1JK/P3f/z2AYE3DQqprHl588cVTOr6TlUqlYBjBO7dq34wTsWXLFtxyyy249957sWvXLnzuc5/DunXrMDMzg1tvvXW5h0tE1FUYWBAR0UmpTodyXRfJZBJbt25d8JgtW7YAAB599FG4rntC16tmIE42q7AYpmniwgsvBAD8x3/8x5LOFYlEcOWVV+KOO+4AAOzevbu22J2IaC1iYEFERCfloosuwp/8yZ/gpptuwsc+9jFYlrXgMb/3e78HTdNw7Ngx3HnnnfPum06nG/5erbyUzWZPftCLUM28/OAHP8Dzzz+/qGMcx+m4rbqAWyl1wsEUEdFqwsCCiIhO2h//8R/jIx/5yILVoKrOOuss3HjjjQCAL3zhC7j99ttx6NCh2vZ8Po+f/vSnuOWWW/CBD3yg4dgzzjgDpmkim81i586dy/clmrz97W/H+eefD8dx8O53vxv33XdfbRF5qVTC008/jY9//OO13hVA0BTwc5/7HJ5++ulakKGUwtNPP42//uu/BgBcfPHFSCaTp2zcREQrjYu3iYjotLrllltQKpWwY8cO3HPPPbjnnnsQjUah6zqy2WxtqtOll17acFx1atF9992H97///YjH40gkEgCAD3/4w9i+ffuyjK+6EPvmm2/GL3/5S3zkIx/Bxz72McRiMWQymdr4rrrqqtox09PTuPPOO3HnnXdC13XE43Hk8/lahqKnpwf/9//+32UZHxFRt2JgQUREp5Wu67jttttw1VVX4Tvf+Q7+93//F5OTk3BdF+vWrcMFF1yAK664Ar/5m7/Zcuztt9+OoaEhPPzwwxgbG6stsF7utQsjIyP43ve+h3vvvRf/9m//hr1796JYLGLdunXYvHkztm/fjle84hW1/b/85S/jP//zP/Hf//3fOHr0KKampmCaJs4880xcfvnlePe7342+vr5lHSMRUbcR6lSugiMiIiIiopcFrrEgIiIiIqIlY2BBRERERERLxsCCiIiIiIiWjIEFEREREREtGQMLIiIiIiJaMgYWRERERES0ZAwsiIiIiIhoyRhYEBERERHRkjGwICIiIiKiJWNgQURERERES8bAgoiIiIiIloyBBRERERERLZmx0gOg9qRU8Dx/pYdBRERERGuQYejQNLG851zWs62Ql156CY899hieeeYZPPvss9i/fz+UUvj85z+P7du3n/R5H3jgAezYsQMvvPACpJTYvHkzrr32Wlx33XXQtFOb7PE8H+l08ZReg4iIiIhenpLJMCxreUOBNRFY7NixA9/61reW9Zy333477rnnHti2jde97nUwDAOPP/447rjjDjz++OP4/Oc/D13Xl/WaRERERESr1ZoILM4991y85z3vwUUXXYSLLroIt956K3bt2nXS59u5cyfuueceDAwM4O6778amTZsAAFNTU7jhhhvwyCOP4O6778aNN964TN+AiIiIiGh1WxOBxdvf/vZlPd+dd94JAPjQhz5UCyoAoL+/H7fddhuuv/56/OM//iOuv/76Uz4lioiIiIhoNeBTcZPx8XHs3r0bpmm2XZ9x6aWXYmhoCJOTk3jyySdXYIRERERERN2HgUWT5557DgBwzjnnIBQKtd3n4osvBgDs2bPntI2LiIiIiKibrYmpUMvp8OHDAIB169Z13GdkZKRh31PBsgwMDMRP2fmJiIiIiJYTMxZNCoUCACAcDnfcJxqNAgDy+fxpGRMRERERUbdjxqKJUgoAIMTyNgw5UY7jsY8FEREREZ0Sp6KPBTMWTarZiGrmop1qpqK6LxERERHRyx0Diybr168HAIyNjXXcZ3x8vGFfIiIiIqKXOwYWTS644AIAwN69e1Eqldru88wzzwAAzj///NM2LiIiIiKibsbAosnIyAguvPBCuK6Lhx56qGX7rl27MD4+joGBAbzqVa9agRESEREREXWfl21g8dnPfhbbt2/HZz/72ZZtN998MwDgM5/5DA4cOFD7fHp6GrfffjsA4L3vfS+7bhMRERERVayJqlC7d++uPfADwIsvvggA+Lu/+zvcddddtc//+Z//ufbPk5OT2LdvHyYnJ1vOt337dlx33XXYsWMHrrrqKlx22WUwDAOPP/44crkcrrjiCrzrXe86hd+IiIiIiGh1WROBRS6Xw1NPPdXy+f79+0/6nLfddhte/epX49vf/jZ27doFKSXOPPNMXHvttbjuuuuYrSAiIiIiqiNUtXEDdRX2sSAiIiKiU+VU9LFYExkLopezfD6H6elp+L4H2w4hFosjHo+veJNHIqJu5zgOpJSwLBOapq/0cIhWPQYWRKtUOj2HF1/8JY4ePYpqDGFZNnp6epFMJrFx4ybYtr3o87mui9nZGeRyOQAK4XAEvb19J3QOIqLVIJNJY2pqEsViMDNA0zQkk0kMDAzBNM0VHh3R6sWpUF2KU6GoE89z8atfvYjnn38OU1NB8QHbDiEajcKyLAACg4ODSCZTOOusc+D7HrLZLJRSsG0bsVhrNiObzeDQoYNodzsYHh5BX1//6fhqAI5nYHK5LAAgFAqjt7cXyWSKWRgiWrLp6SmMjx9t+MzzXGQyGZRKJQwODiEcDiOV6kFvbx8Mg+9gaW06FVOhGFh0KQYW1I7jOHjppb3Yt+8lTE1NwXHKDdtTqR6EQiHouoF164LO8LremN43TRPr148iGo1VzlnGiy/ubRtUVJ1xxibEYvFl/jaNpPQxPn4U4+PjlQAJcF0HAGAYJlKpHoyObmBwQUQnzXVd7N37QsP9rlwuY2JiHFL6AIBIJIrBwSEAgGVZ2LTpTGYxaE3iGgui0+yhhx7E/fd/D+Vy+y7sp5vv+5BSQkoJpVTbYEAIUXv4FkK0rWBW/VwIUTvffIQQLQEKgNoY6v9Ur1//p9Nx1X+u/q/v+y371Z9H07S241gJth3C1Vdfi+3br1zpoRDRIs3OTjfcN5VSmJycqAUVAFAoFOD7HnTdgOM4OHLkMDZt2rwSwyVadRhYEM1j584HuyaoaA4kmh/M6z/v9FDffIyu6/NmKpqvXX8+pVRDgFM/vvpAoBrALOa45u8phGgZc/P5Vkq5XMLOnQ8ysCBqo9teylT5vt9yv2n3YqX5BYau611x31kL+FJmbWMzBqJ5bNt2JWw7tNLDANA+gJjvT/Xhvbpv9e/V//V9vyVDcCJjaT5/u+BgvnE0f6/qeNptq1pMduV0se0Qtm3jDyNRO930UqZep5ctC+Gs8eVTfSlDaxPXWHQprrGgZplMGocOHUSxWMTu3U/j4MEDcBwHjuPA81wIocG2bYRCNjxPIh6PY/PmzRgYGEY+n4OUPgqFAvL5XC2gGBwcQiqVQjQag64bHd/KmaaJT37yjtrfP/e5L+HIkcMAgImJo7XKKvWEEBgd3Qhd1zE0NIz+/gEcPLgf2Wy2ts8LL+zB3NwslFJIp+eQyWRgmiYikRhisRg0TcCyLPT29tWOOfPMs3H++Rcu279XIlp+3ZqxaH450fyiA2g/hbSafaWlY8aie3CNBdHLWCQShVIK09NT8DwPlmWhXA6CCgBQSqJUKiESCSMcNiupfIEXX3wB8XgCpVIRjuM0nLNQyGNiYhy6rqOvrx+WZSORSCAej6NQKCCXC4KQwcEhSClrU5zy+TyA4Ec5ny+gWCyiXC5CSgXDMBCJhGEYFmZmpmHbIUjpI5XqqZSyDWSzGczOztT+rusGpPThuoDnOcjlMkgkkvA8r7aPaZq1BwP+yBN1r+3br+zKB0cpJV54YQ9KpRJ0XUO57ODYsfGGfVKpHqRSPQ2fnXPOubCskyu9fdNNv1/757vuuuekzkG0WjCwIFolDMOAEAKe5yIcDsOyLFiWCcfRaxmI4E2bgaGhYeRyeRw8uA/ZbA62HYLnuQiFQohEgrK0juMgl8vV1jHkclkkkzqmp6dw8OABxGIxCCFg2yHout4QWIyNHcb09DQcx8HBgwdgWWZtTrLnubXgZ3h4HaLRCDKZMDRNQz6fr1WjSqfnGr5fKBQCEIzFdV3k83mUyw4sy4ZtB+Pu7e3ruCCciGg+pVIJk5PHalWgqk1F619UxGJxJJOphuNisdhJBxUroVwuw/Nc6LpRua8SnT4MLIhWEdM0EQqFkM3qSCSStc9934cQQCrVi3g8DsuyMDNzAEoBvu/BdYOsRqlUQj6fh2GYsCwTvh+CZdmIxxMwjGAq1MxMEDCYpomhoWEkk6naj279+oxqAFEsFlAsVn98LczMzCCbzQBQ0HUd+XwUlmXC8zxMTk6gv38AyWQKrutWsi5lCCFgGAbi8ThmZmZqUxUcp4xoNIJisQBAQdPWte3DQURUT0qJTCaNcrkMTdNgmgbGx8fh+36t5HYul0OhkINhGNA0A/39/S0P4rZtY/360RX6Fu15nlvL/oZCIYRCYQBBD6CJiYnK/RK17YODQ4jHEysyVnr5YWBBtIpIKTE0NALTtHDgwD6EQmEopSpv9W1omlbroB0OhyGlQj6fg1JBQFAqBQ/xoVAYhhFHsVhEsViEYRhIJlO17EA8nkAoFEFPT2/t2vXVUyzLhuu6kNKHbdsol0vI5XIwDB2ZTBpAEASVSiW4roNoNIbx8TH4vsT+/ftgmhZyuQxCoTAKhTw0TUcoFAQ5kUgESsnKFCiBWCyOeDyBcDiM6ekpnHfer63Ev3oiWiXS6TkcPTrWUJxibOwwdN3AwMAANE2HpmlIJBJIJIIHbqUU+vr6kc1m4HkeTNNET08venp6u6bEtZQ+jh49inR6rmFdSCQSQSKRxMTEeMt6kVKphEOHDmL9+tGWTAzRqcDAgmgVMQwDvu+jr68fhUKQefB9D5omAARv8fP5fKXLdgiRSBhCiEr37Qwsy4Ku6/A8p/bj6TgOjh07hlKphEKhgFKpCNM0EYt5tSkCzVWfyuUSIpEopqYmoZREsViE73twHAeapsM0Ddi2jUIhX8swzM3NQgigWCxBKYVyuQzLKiAeT8B1ndqi8r6+/sp3kIjFYnBdF8eOTcAwDGzcuAn5fL5l/jMRERCs3Tpy5HDD/apUKlXWlzk4dmwCw8PrWo4TQiAcDmNkpHXbqRasVQvuf4ZhIhqNtq1edfDggdr6tnr5fB4vvrgXAwODbRv5KaVw9OgY4vEE16bRKcfAgmgVSSZTGB8/iunpSTiOg3K5DCkVisU8gAKi0Qik9CsLqCPQNA19fX1Ip9MNlZs8L2i0Vy6X4TgODMPH9PQUHMdBJhOsfbCsIIMwPDwCy7JaysA6jlPrbREKhZFOz1aChSDrUF3IHQ6Hkctla1OogmZ7BlzXq1S1KiMeT0AIgUKhAMMwMTw8jImJCZRKJfh+0KwKEMhk0hgbO4KtW38Lw8PDtSkAREQAMDl5rOWtfX3RilKphGKxgHA40nJsqbT8Fayk9BsqTx08eAA9PT21Fy7T01OYnDzWkF2xLAtDQyO1bAoQBEztgopg3EU4Thnp9Bz6+wfa7uP7PjKZNF/K0CnHwIJoFenp6cXzz+9GNpuD4zgIh4P5wHNzEsViAfl8AYlEslI2VkMsFkMkEkE+n4cQQPX3NnhrFQQHUgaLpTVNQy6Xg+sGVZiUKuLo0SPQNNHyAO95HgqFHHRdRzQaQzQarK/I53OVcwuEwyG4rg7XdVAsFuF5PhwnCDwGBwcQi0WRTqdhWSai0RiSySSmpiYri7xzME0TlmUhl8vWpiIopTA3N4tnn30KxWIBZ5yxCZFI9HT96yeiLlYul9uWvg4yusflcrm2gcWJrN2qBgy6bnQ8znHK2L9/X0N522w2g2w2U1kLZ2N6eqrNcQ4OHz6I0dENtbV09RX0mlXX0OXzOfT29nXMSjhOedHfj+hkMbCgFvWl8ai7VCsm1Xeurt9W/YFr7rzdbv/mY5oJIbBnz3Mt84uFEPh//+9LLV2z23Xnrn7efL3nn0fH6k715+jUZud//ufn0DQNuq53zfxnYilNWllBZrNVOBxGMFU0uJ90arK5mAXOuVwO09OTtcXTuh4U0rAsC6VSMM0zHA4jmUzh4MEDtYf+ZnNzs0inM+jt7W27XSmF8fGjtWxup/MAaLhfSul3DCw0jfdKOvUYWBCtItXO1NUSsVXNQUW7Ltj126o/PJ06Z9c/8LcLWKo/zPXXahdQNH9Wf57qPpqmNQQZC3UDr79mp2CGiF5+DKP9I42uG4jFYsjlspW/tz5gRyIRRCKtWYx6c3OzGBs70nCvLBaL2L9/HzRNYHh4HXQ9KGCxb99LkNJHLBZve65cLodsNoNUKtUxEKiW3Y7FYvO+QIlEIpieDu6B862hYGUoOh0YWBCtEvVVmZoDheZAoFN2Yr5jmgOT+gCm+mPVLstQXdxd3V7td9FJfVDRHGA0X79TxqLT2IlWErO9K6/68qWdaua2+jKjqtppe777SPX+23zu+s/qO3ZX79XND/p/+7d/3XC+ha5b7fjd3DG83fjq76PNgrVtzFh0q7WU7WVgQfOKn//OlR4CVUi3hFL6EKRXgvQdSDdIu0u3CEBBSQ9KehCaAaEZUL4blJmVHoRuAdIDhA6hm9B0HRA6fKcASA9C+YCo/iAJ1P/MmeEeWNF+aGYEdmoU0imgnDkCJYNpB0IzoZkhCKFD+g68YhpKuvC9EgQ0+F4RkB40IwShGfDLWSjlQ0BA6BZ0OwbNsKAZYehWFBAmnOxhuMU5KL++U3jdg4Cmw+7ZBDOcghFKBsfRisju+c5KD4GopvoQ3i64aPcQ3zxttJNOL2vmm15aHzycrOZs8XwvW+ab1spqUHS6MLAgWiWU8qEZNqRXOr4KW/kAFJTyaw/6qP7uaAaE9CH0YG6xCKUgIKF8F9J3AUhIJwdAQEFAaJW3YVIGz/BCg9AMAMG8XXgFSCcPI5SEAuCXMwDq1nF4ZfhOAUI3AAHoSgbnMCwIKCjpB4GCpkFIAWg6IIIyuUK3UA2OrOQwnOwR6GYYvvQhpQcoD4AWnE+IYOxuEb5uwIoNnvp/+US0KlQfopuDi/oAoj4ruljt9p0vqFjoGovJsrbLqrQLmuozLvXZ3sUGTUTLiYEF0SohhB5kI3QbqL7Jr/7A1C9arC3Qk4AmAKmCTIWSlW0elAKEcgDNDB72VbBPcEofQgHQdWhCDwIWJQFhoZw5Cq+UhtAtKN8JMiMK8MtZuMU0AAUhNOhWDCIUhlKN4/IKc9A1E4ACfBdC6DDsWCXAAKRXQnnuAJT04Dv5IKCRbiVW8gHlBxkSIwzIYMqD9MrQLd7KqLvc9oahlR7Cy17B9eH6CgKArgkUXB/poofpogcBhYilI2QE972woWEwZsLU27/ZH886yJQ95B0feUfCVwrpkgtD0xAyNOiVylP9ERO2oUEqhYmcA6mA4ZgJvU3GoOj6CJudpyf1RQz0hFv7UhRcHwVHQkHBNjTELB0ag4dV57bHJlZ6CKcEf42JVgvdBJSCZgYLDKVXBqpvqIKcA6Cb0HULUrq1YEH6HgAfSlYWRVfrzmpBSdog2FAANEBKCBFkEoTQAN2Ckj6kdCH84IfRd/IwQkGA45XSUH4Z0nNQDSqEYQECkNJBNaOhfA/K94Jx+S6g6dDMCKxoPyAEpFuofU3pBLXkNd2Gkh5krZpLZUyaAaGZgBYEML6T51QoImoRMXXABLJlD+NZB55UmMy78CsvZIqeh6gpkQqbKHoSYxkHo0m7FiTUs3SBybwLTx7PFmgAiq5E2ZNIhHRYugZLryyiFgLJkIFMyWv70G9oAuf2hzFb9JFzGgtWCACpcPugovq9IvMEJEQriYEFUZeTvgvfyUG6JUi/DN/JQ+gWjHAPfKcApSQkJAAdum4GgYJ0Ac0IMhvKDzITyg8ezJWC8l0IWICmAUqH0DRomgHfK0MT1alROoSmQxNacFyFkl4lUaIqmQwNmm4BRqgyVam6pwZUghLfK0G5ZShUplv5ElJJuAUNQteD42vnD7IxmhmCUhJCD1WCIR9C04LMjW5At4MyjMHaEh+CpRSJqInrSxzLB1nPnOPXgoqqvCth6j6ilg5XKmTKXscsQfOsJtvUUfZ9SAVkyz42JBt7WkRMHT0ho5ItqSzmFkDM0tETNmDqGobjOhxfIlv2IZWCoQnEbQNGm+CGaDVgYEHUxaTvwCvMQKnKj5IRNMSTTvCG36i8qVfSgyYMQLegCQCGDSX9YAG1ZgaZDanq1z9DVufganoQYAgtyHpoVrC4G1rles2VSASEAHy3jGomQUkPmhlq3EsAEhJSAcovB1kVIYIjKlkH38kHmQfDrnwWXFdoehAsiOBa1SxN7dwK0E123Sai+aVLxwOCgtu+lHXeCQILIAgQmgMLx5coeQq9EQPTBRfVpIWla7B1ibKvoGsCZlMwYGoCIwkbhibgSwWpgv2aMxiWrqEvwsXVtDYwsKB5seLLypqvdGJD/wgpa2/iqj+d1fKEzeVjmzX3haidE4BfWRToNy0idOsWEXbqY1F/vvoStPVlbOuPba540u7vVZqmQWZfqn1eXqBkIxG9PBW94I6olIJsvpWq4GHfVcGDv14JAJqVKtkGS9cwGLVQcH0UXQkFYCBqwgfg+xKV3SAARC0d/RGzlnnQNQEdi7tHFVwfeSfIhJi6QMIyYOi8v9HqwMCCqEstVLWk+iCt63rw8N/UPK/IsD2WAAAgAElEQVRat7zdg3/zZ522tet50Vy2cKHa7/Xnqv5zcz32dt+zvgnffNdi1RMi6qR6axFC1GpZ+FKi4Eg4vgoyqAKwTQ2pkAFrgbULemWqUtxuvo5C2NTQGzZh6dpJBQKeVBjPOih5jffH2YKH3g4LuYm6DQMLoi612FKInue1fbiuDwzaNViqDxqaGzzVZzDqA4n6f27XdbtdGcT5uoLXH1P/HepLJTZft/7vDCqIqJOi66Po+siWJQxdIGRoyJQ8ZMp+Q/ZCACi7ElO+i7P6Wh+LwubC05SEEOgJm4hYJ7fWS6n2QQUQTDidLnjQhUAixMc26m78L5TmxQZ5K8d38vBK6Y7bg74ReWhmuLbeQCkAyq+sfEDDgmalAN/JQPlucLys9LEQIqgYJT0I3YTQLWi6GZSohQCUhDBDwTqI+kXWSsIrzgFQMEJJQGiQTgHSDypEKYVgEbmo9quojE3JShM9D1J6UG4xuJ5uQ9N1CN0O1mRICc2MQLfCMMI9UJ4DJd1g4XqoB4YdhWZGGFisME6XpG7jSYWJrIOiF6zxyrs+4Ab3vOmC11L1KWxqlUp4ojbtqZ6pa4haGvJO587Xpi4QWUQA0o4vFcZzDg7OlSBVUDEqbGqImI1TPGdLHgML6nr8L5SoS2mG3XGbUgrSyQNQ0PSg4pN0irWHelSqOulWrBZcCAHoVgLSzUN65WCqlB1DtYyrZkagGVZDBajgQB2abgaN+eo/FlpwvJSVRnqAZkUhpA2lfOhmGMIIwy/OwS1MBk35lIL0ivCdSrdwpSB0M6iMCwnpSwgFaEYYAg503YKmWxAKMCI9EJXu3BorQBFRG0opHM2WUfaClISpa0jaOtJlH5WPIJWqLaA2dYGwEZSJ7Qmb8FX7/hIDUQuuX4bjt2aSdQ0Yjlkn9ZLD8YMyt5N5B24ljeL7CmVfouAK9EXM2lhdX6HkSYQMLvSm7sXAgqhLCc2AZoRaHuiBuipLmglAwC+moVD/gxd0sZZuPnirX3nwD4KLaPBwboSD7tlCm7dUq6YbMMI9kG4hKG8rg4yHZtgwI70QwoBXzsIrzgZjFaJSTUqHEAYAGVSkUkH37aBsbjUAqrbUMKA8B0JoQUM+3YIRScGIDEBAQbdiMMIpZido1Virza+6nVIKvt+++pPv+7XpoFpdwYfmKZWaprVMv6yeu3nt21K6WyulakUw2nXUrp6/fiy6rvM+SF2NgQVRFzPCKXiFmcqDeEBJP2iOB0C3Y/BL2aag4jih20HgoNuA8gAIaIYN3YxC6AaEpgUlX+dRnW5UDUha1lVICSVdaGaoseSs8uAVjkFKH2akD145DTc3CSl9aLoO5cugr4UISt0GFwu6i0P5QX+Myg+qZtr8MSWiBTUXhqjXvF7sRO8pp2JNV/39dL4KgLz/0WrBwIKoiwmhwYj0QXoleKU0fCcXvNGvvN3yCrNQ0oPQ5/m/svQB5R3vqK0ZQd8KALoVg/TKwTnb0IxQrXfG8TE1/sD5TrbSNE/W1m9Ue1JUzy2MCHTdhqdb0Kp9MVQZgA7UXVtJP1iTARH031MSmmZAM9izgoiWZrEP56fiIb5d6exO5bSbj+uUWSHqRgwsiLpctYmdAKBXGsUp34UqZyC9MqRXhoZwsAC68UhI34Xyy9CkV1vgLb0yhJODEe6FppuVbEIG0i2hOj2puuZCt+MNP2TSc4IO3lrQLVspGSwyL+eg6qY3AQjWTkgXvluuZEVE0Dlb6kEQAlHLTBz/8VQQqKzV0DRIrwwz3sMfU1p1bnvD0EoP4WXpWM5Bptx+KhQATOUdlH2F4ZjVsogbAKKWhpHmWrJLkC55SJe82toMQxNI2DpS4aDZXrrkN+ybc1rH3hMyELN1rE/YsLm+Ys1Yq9MlGVgQrQJeMV3rvg0ED+1CMwARTJGSXinIEjQ8gCsov9z2fEr68IozMKODEJoOM9wDZfuV9RMiOH/dIm7fLcIvZxsyG0IzoOlheKV024yH9Mpw8zNBJSdNg4AGqWSldFWlYZ4wgiDGCAXBElCpchUCoEHTzFr1q+p+wZoR/rgSUauEbcwbWPRETOTLftugImQEDfCWS7sgx5MKM0UPRU8iZjXex5IhA7oAco6P+jXiCVvHMIMKWiUYWBB1OVkps9pMt+NAZTG08l34pUywCLu6eFrotSqvrdmM6lqNYi0LIjS97SJu3y1Uyso2H+/BKU3Ar5aLrd+mJKRbgPIdSN+DZloQWtAhXEFB+XXzoIWAMEIQRhiAhBnth26EIb0SpHQgKovXFQDpOxBOHkakt+13IqKXt5CpIW7ryHYILkxN4PzBCFxfIVv24aug43bC1hG19FoFpqXKO/68AU7RlYgYGnQNqL8dxmwDUUuH4wedvWOWjk09nApKqwcDC6Iu12n9gxAa9HAPPCcH6ZWghIKmG7UHbulkKyVk7VpVqGbSLdUCi7bXVgp+KTPP2Nwg09CULVGeA+m5kNKF8ktQQkDqQaUqCB1CN6B8D4Cs9LkANM2EboVhhpK16lO6FW0zprpsC6dIEVGTwagJQxNIl7yGRnghQ0N/1ETI0BA2cUp7QqRL7e/b9TKOj6GYhaNZB/XrtoUQsA0dhiawPrF8GRSi04GBBVG36/DsrKQfTENSCkrJYDfpQ0q/0ijPA0QZRqSv7bEAGqZXtSO94vz7SBkECZXmesE5FXwnH2QXlILSDKCaCVGAUi6EZgY9M3QLQtNhWHEITYNux4Pv45WC/hUdyuA2Z1uIiKqECPo/9IQNFF0JqRRMXTut/R/a9bto5voKIUPDaMLGXGV9hVKALoC4bSAVMmDofHlCqwsDC6Iup+mhoDu27wEqKM8q/TJ8pwi/lA6yFVIGvSB8J+icrWmQPoJsgPRqD/bBYu9SLQui+y483YJux473kAAq06hELQDpSGjQdAtB9FPpS+G7kL4TVDypNNfTrSggXShND75HpbmephlQyoemm9CsSLAg3HcB3YRmxea9tPTKDCyIqCNNCEStlWmmeSLhgG1oGIpZGFAq6OsjTk1lKqLTgYEFUZdTyofyHHjlYEpSdc2FgF55gJfQdB3CCFLmQcftKOAUofwypFuCZtjw3QKkW2w4tzBMeOUcvNIchG4FgQuChdnBQ/v8P26aYcF3PehW0ITPd/Lw3bmgQpTQKgGNAqCC7ARQu+toVgSmnYAeSgTBiZKodgEX5c7Tr4iIul3E0hoqPrXdx9Qa1nRoQpxYRELUhRhYEHUx6TvwCjOAZkLoVpBx8MuAUpB+pdSsYQYN8CqU9CsLpm1Ix4P0y5Uu3I1BhWZGAOhBbwy/DM0I1dY0KOnBK2cqnb07E0YIwi9D6BaU9KFkkH1QRqg2PUtoFqRXgmaEGipN6UYYZqQXRijZcE4lfaCcBTo0/auNf4GxERGtlGQoqE7VoecdACB1Ctd4EK0U1i4j6mJ+KRM8oAvAsOPQzSg0ETSfE3plwbRmNzywB70lClCeA1ENSOrKzgrNgG7FoJthKN+plaSVXrml82tQjarzbUIIASs6DKGZ8J0can0wdAMC1WpPVlClSskgGyEENM2EnRhuCSqC8emNHbzbX7gSGBERdR9L1zAUtdBpRlN/xERkhaZpEZ1KDJdpXtk931npIbxsKaXg+62p9PrPZKUDd6dOrsFDvNaxY2v1+Krqvs00TYOUrYu4q/srpWrnav7Tbn9N01DI/WrebrPNY2v+Xg57WRBRF4vZOmzDRqbso+gGpbZDhoaEbbAnBa1ZDCyIulS7h+pmDSVe59nf9/3aA3mnIGO+a1QDgvrgof6a1f9tPm816KinaVrHAKb5ms0BSv1YiIi6nalr6IswiKCXDwYWRF2q08Nz/cN6p8Ci/sG8mmmoDwKq25vPu9gH9voMSfVP9bPmMdX/fTFBRfN4mr8XERERdScGFtTirrvuWekhEIIswy9/+XzLFKRSqYSJiXEoFWQPLMvG7Ow0MpkslJKIxWJIJlOYmZlFPB6FaVrwfR9TU5NIJFIIh4P1C5YVgmkayOdzAIC+vn7E44mWccTjCaxfP4qbbvr92kP+Rz7y/zXsUywWkc/n0d/fX/vMcRxksxkUCgUopWDbNl75ylehr68fRETdSioF11fQRJBxmE/Zk0iXPBTd4D5tGxqSIR1hk+sn6OWJgQVRl9J1HT09vZienmr4PBQKYWhoGDMzMxACGBlZByEAKRVCoRDi8Th03YCUspaVCM7VA1nXhtZxSojF+pHP55FIJNoGFQDQ19eHubnZeadahcNhzM3NNlzTsiz09fWjr9KfL5lMMqggoq7l+QozRRdZ53g1p5ChIRUyELNbA4V0ycNU3m2oX+c6PnKOj96wgd5I58p1UqmGUrNEawUDC6IuNjQ0DM9zkU6nGz4PhUI488wzMTQ0Aikl4vE4RkYyEELA8zxMT0/D83yY5vHpTZZlo69vAL7voVAoAFCIxWLYtGkzZmdnWgIHIQSGh0cQjcYwMzOz4Fj7+wcaAot64XAEIyPrWz4vl8vwPBeGYcK2bfi+j2w2A8/zYBgGEokEtA7dt4mIlovnKxzOlOHJxvtgyZMYzznolyZSYaPh8+agot5M0YNtaA0N+jxfYa7kIet48GXQYTtm60iFjAUzI0SrBQMLoi4mhMDo6Eb09uYxNzcLx3Gh6zqSyRTi8XgtaIhEwpidncX09BSKxSJyuSxyuSx0XUc0GkMkEoGuG4jFYhBCIJXqARAELv39A+jr68PMzDTy+XzlfFH09vbBtu2OY2tmmiY2bNgI1w0CId/3IIQGTQsWfe/b9xJs20ZPTy8AhWPHJlAsHu+tUSqVIIRouObRoxoGBgbR3z+wDP82iYjamyq4LUFFvemCi6il1QKATMlboNNOkNGoBhaOLzGWcRqu4SsgXfKRK/sYSdgIsVIUrQEMLIhWgUgkikgk2nG770sUCnkUiwUAwTSk4HMfmUwavu9j8+azWhY/RyKRyv42hofXdTx/NNr52lWapiEWi0HTdPT19aNYLODAgf0N5XHL5RLGx8dQKBTQ19dfG8/c3Czm5mYBCAwMDNauJ6XExMQ4ADC4IKJTwpMKeWf+LtkKQKbs1yo8FdzW8tvNCu7xcuDHcp0DF18BEzkHZ6QW6N9DtAowPCZaAyYmjiKRSKKnpxeapsGyLBhG8N5A0zQYhtGSfQiFQvMGK/WSydSCFZlSqZ7atCUpfRw8eKClD4dSCtPTU8jlsshk0rV9j0/1UpiZmW6ZljU5eQxSzv/DT0R0MlxfLph9AIKsQ5Va1BFBQFLyJEre/IGI6ysUFghuiFYDZiyIVjnHcZDLBZWdgilSCRSLBSQSSUxPT8Ewgg7duVy2Mg0JMAwDo6MbF30NXddrTfLaLeKORCIYGhqq/X1ubg6e57XsVygUasFGJpNBIpFEPp+HUsd/dKtrQOqzJFJKZDKZ2hQuIqLlIrDIMtt1+4UMDXln/mDBNgQ0IVByFxcwlDy56G7csnIfnm8BuCcVMmUP5UpQEzF1xG2di8bplGJgQbTKOY7T0j07Go0hGo0hkUgik0kjl8vCdYP1GalUD/r6+mGanSuWtFPfG8MwgqpTlmWhp6e3kq04ngDN5bJtz+G6Tu2ffd+D45Tbdhf3PLfNZ62BChHRUtmGgKGJeddYAEDEOn6PS9gG8o4zz95A0g4esZbzOT5b9pAu+bUMiG0IJG0DcVtvyCpnyx6O5V3UvwfKOxIzRRfDMYvlcOmUYWBBtMq1q8JUZRgGenv70Nvbh0QiiQ0bFp+laKfatO68886fd79OpWmbx+r7Eo5TRrFYhGmatelbQrR+p+o2IqLlJIRAMqRjutD55YWhCcTqsglRS0cypCNdap+NiFlBdgDAohdlh83595vMOy3XK3sKxzwXRU9iKBasrSu6Po7l2les8iUwnnWwIRmCoTNzQcuPv9REq1w4HIZpmnDd1rf89ZLJ5GkaERAKhWvTs+pFIhHMzMxAKYlsNshqSCmRTs8BCBadJxKp2qLyKk3TkEi077NBRLRUPWETrq+QKbcGCoYmMBK3WqYQDUQthIzGDIKlCyRDBhJ1GQTb0BAxtXkXfNuGqGURlApWcNRfL+/4HYMYAMiWfYRNDwnbwNwCFat8BaTLHvrm6bNBdLIYWBCtckII9PcP4OjRsY772LbdsQHeqVBt7NecuTAME9FoFIcPH6xlL6rVpHK5HBzHQaGQbzmuv3+A/SxoVbntsYmVHgKdBKVU7Q9wPEu7UPGK+v07be+0Rq06zRQIXrRU96+/dqdj251nsfvqOu+ptPxYFYpoDejt7evY1dq2bWzcuGnBH8blZFkWhoaG224LemroiMXitc9isThisRhsO4RYLF4pPRsEHYODQxgYGDwt4yail7fqw7mu67WiFYu5dy4UfFTPWz1f9U/1s/rAoxoUVD9bTKBQ3b/+eKKVwIwF0RoxPDyCnp5ezM5Ow3GcyvShJOLxxGkNKqqCBeIWpqcnK52+g+pSpmniwgtfAdcNqln5vgddNzA8vA6WZSGXy0EpiaGhYfT09PKtGhGtCZ2Cj4UCguq2he7j9QU2GFzQSmFgQbSG2Pb8je5Ot0QigUQiAc9zIWVQTWr//pdQLBah62GEQuG2xwBBFoNBBa0md911z0oPgbrQTTf9fu2f2/03cuzYOCYnJ+c9x8zMFHp6etsWtqiKRmPYtGkzjh2bwOTksXnPNzq6AclkaoGRE504BhZEq5TjlDE9PY10eq5W+jWV6kFvb2/H9QhKKWSzGZTLZei6jng8seiys0t5A2YYx6+x2LUSDCqIVq+HHnoQ99//PZTLpZUeSlepDzKqfN9f9FSn+bIWuh4sGJ9vPQdwPLOxEplsALDtEK6++lps337lilyfTi0GFkSrUD6fw8GDB2oL/QCgXC5jYmIc6fQczjhjc0t51kwmjaNHxxr6QYyPH0UymcLIyLqOZWtLpSKOHZto+KHat+9XGBgYbFgnsVjJZBL5fGvFqHqRSKQl4CmVisjlcpBSIhQKIx6Pr9gPIxHNb+fOBxlULLPqNKdO26r3w+YpUe0Woq/kvbNcLmHnzgcZWKxRDCyIVhkpJQ4dOtgQVNQrlUoYHz+K0dENtc9yuSwOHz7U8qOklMLc3Cx838fGjWe0nKtQKODAgX0tb78KhQIOHjyA9etH502nS+kjnU6jXC7XSsYmk0lMTU3C6dBcSgjRsFjb81wcPny4JRgxTRPr148iGo11vD4RrYxt265kxmKRqlmGhfapvvxZTNWq6mfN5+2GlzG2HcK2bQwq1ioGFkSrTCaTbtutunkfzxuuTUGamBif94crm82gUCi09I8YGzvSMYBRSuHo0THE4/G205vm5mYxPn60YayTk8cQi8UwOroRR44cbnno0DQNIyPrapkQKSUOHNiPUqn14cR1XRw4sB9nnnlW27UaRLRytm+/km+kF8nzXPzyly/Me48eGBjE4ODQaRwV0clhYEG0yuTz+QX3UUqhUCgikTCRy2UxOXkMUkoYhoFwONJ22tPc3GxDYFEo5Bd82+j7QUaip6e34fNsNoOxsSNtfyiD6UxjOPvsc5DLZZHJZAAo2HYIqVRPw9qKTCbdNqio/56Tk5NL7ihORLRSDMPEhg0bcejQwbb3zHg8wZLbtGowsCBao5RSmJgYx6FDBzE9PVX7XNM0pFK9LZ2s69deAJj3gb5eu+BjcvLYvG/fCoUCcrlspX9F53Uac3NzC14/m83A930u9iaiVSseT+Css87BzMw0stkMpJSwbRs9Pb1IJlNdMYWJaDEYWBCtMtFotNZArhMhBLLZNNLpNHS9MTshpcTMzBSEQEM37ubF3p0Wczdr3q9cLqNYLC543Nzc3IKLv5uDnXaUUpVeGAwsiGj1sm0bIyPrMDLSPSXDiU4UAwuiVSaRSLasXWgWiUQqU4wAy7JhWVbLYum5uVnEYscrK6VSjYuwq9sWWlQYjydQKBQwOzuDcrkM1y0jm80gGo3NG5wsJmgwDAPl8vz7CCGg67yVERERrbQ19Wv8wAMPYMeOHXjhhRcgpcTmzZtx7bXX4rrrrlv029eqdDqNr33ta3j00Udx6NAheJ6HgYEBvOY1r8FNN92E888//xR9C6L5aZqGjRvPwIED+9surA6FQgiHIw1rMXp6ejExMQHgeJDg+z6KxQIikSji8TgikWjDeQzDQCrVg9nZmY5jiUQimJ2dwezs8QyK67qYnp5COj2HoaFhmKbV9ljLWrh/RiqVWrA0bSKRYLaCiIioC5zY03YXu/322/GhD30Izz77LF7zmtfgsssuw/79+3HHHXfg/e9//4JVdOqNjY3hmmuuwZ133onJyUm89rWvxdatW2EYBv7lX/4Fb3vb27Bz585T+G2I5heJRHHWWWejt7ev1hTJtm0MDQ1j8+YzWwKOcDiCgYHBlgdwKSWSyRRGR9svfh4eHkE83n66UjgcRjgcbggqgKAMbCgUgud5mJiY6JjxSKV6FvyeiUQS4XDnik+apqG/n4saiYiIusGayFjs3LkT99xzDwYGBnD33Xdj06ZNAICpqSnccMMNeOSRR3D33XfjxhtvXNT5PvvZz2JsbAyXX345Pv/5z9cebKSU+NKXvoQvfvGL+Mu//Ets3bp10V2LiZabZXWej9u8XgII1mZEIhEUCgW4rgNN03DOOeeht7ev4zWC7Mgm5HK5huZMGzZsRDQaw4sv/rLtcalUL8bHj8LzXBQK+ZZeE/F4oiVD0un6Z5yxGUeOHEY2m2nYZts21q0bRSgUWvA8REREdOoJtZg+8l3urW99K3bv3o2//du/xTXXXNOwbdeuXbj++usxMDCAn/zkJ4uaEvX6178ek5OTuPfee7Fly5aGbb7v45JLLkGpVMKDDz6Is88+e1m/S5XjeEinF14AS6fWQw89uCqbPCmlWpraNas2XDrZaiPBoun5M4HVzEn1/3dL6fzarinUSrLtEK6++lrW6iciolUpmQzDspY3x7Dqp0KNj49j9+7dME0T27dvb9l+6aWXYmhoCJOTk3jyyScXdU7Laj8nvFlPz8JTOWh127nzwVUXVACLe/A+HQ/nmqZB13Vomtbw52SuWw2ElhIMLadyuYSdOx9c6WEQERF1jVUfWDz33HMAgHPOOafjlIiLL74YALBnz55FnfP1r389AOArX/lKQ9lMpRS+9KUvoVQqYevWrejr6zyFhNaGbduuhG2vzqk2nTIS9Q/oy3GNxY6jWwKC5WLbIWzbxmwFERFR1apfY3H48GEAwLp1nes+j4yMNOy7kA9+8IPYs2cPfvzjH+NNb3oTtmzZAsuy8Pzzz2NsbAy/+7u/i7/6q79a+uDnYVkGBgbmr/FPp971178T11//zpUexpK4rou5uTn4vg/LspBMJpetitK+ffuQTqfn3eeCCy5YdBaQiIiIVq9VH1gUCgUAmLdyTDQaLBKtL785n97eXnzzm9/EHXfcgR/84Ad49NFHa9s2b96MSy+9FLFYbJ4zEHUP0zQxMDBwSs69fv165PP5jj0p1q1bx6CCiIjoZWLVBxb1izmXy69+9Su8733vQz6fx6c+9SlcdtllCIVCePbZZ/HpT38aH//4x/GLX/wCn/jEJ5btms24eJtWi56eERw7NoFMJl37/2MoFMLAwCCECGNyMrvCIyQiIqJmp2Lx9qoPLKrZiGrmop1qpqK673w8z8P73/9+HDhwADt27MCrXvWq2rbXve51uOuuu3DllVfi+9//Pq6++mr8+q//+hK/AdHqZlkWRkc3wPfX1crYWpa90sMiIiKi02zVL95ev349gKCpXSfj4+MN+87nqaeewosvvojR0dGGoKIqlUrhjW98IwDg8ccfP5khE61Juq4jFAozqCAiInqZWvWBxQUXXAAA2Lt3L0ql9mVBn3nmGQDA+eefv+D5jh49CgAduw3Xb5ubmzuhsRIRERERrVWrPrAYGRnBhRdeCNd18dBDD7Vs37VrF8bHxzEwMNA2A9FscHAQAPDSSy8hk8m03eepp54CAIyOji5h5EREREREa8eqDywA4OabbwYAfOYzn8GBAwdqn09PT+P2228HALz3ve9tqNt/9913Y/v27fjwhz/ccK4tW7ZgcHAQpVIJt956K3K5XG2blBJf/vKX8eSTT8IwDGzbtu1Ufi0iIiIiolVj1S/eBoDt27fjuuuuw44dO3DVVVfhsssug2EYePzxx5HL5XDFFVfgXe96V8Mxs7Oz2LdvX0sZTsuy8MlPfhLve9/78PDDD2PXrl24+OKLEQqFsGfPHhw+fBiapuFjH/sYNm7ceDq/JtGK8TwP//ZvDwAA3vKWq2AYa+LWQURERMtozTwd3HbbbXj1q1+Nb3/729i1axeklDjzzDNx7bXX4rrrrjuhLsO/8Ru/gfvvvx9f//rX8bOf/ax2vv7+flx55ZW44YYbsGXLllP4bYi6y49+9Ah+8IPvAghKyf7Wb71lhUdERERE3UaoauF56irsY0FLoZSC4zgAgizcUvq8ZLMZfPSjf4piMfjvMRwO45Of/DvE44llGSsRERGdfuxjQUTzUkphamoSs7MzcF0XAGAYBnp6etHfP3BCmbuq++77Xi2oAIBisYj77/8e3vWu/7Ns4yYiIqLVb00s3iaiIKg4dOgAjh2bqAUVQLA+YnLyGA4dOoATTVAePnwIjz76SMvnjz767zhy5PCSx0xERERrBwMLojUinZ5DNpvtuD2Xy2F2dmbR51NK4d577+647Tvf+acTClSUUshmMzh8+CD279+HsbHDKBTyiz6eiIiIuhunQhF1ueCBPFt7CI9Go4jF4i3rJmZmFg4aZmdn0Nvbt6jrPvXUE9i9+5mO23fvfgZPP/0kXvnKhfvDeJ6HgwcPoFgs1D7L54PqbIlEEqOjG5a0DoSIiIhWHgMLoi5WLBZw6NDBhqlN09NTsCwLGzZsRCgUrn1eKi282L9cLi/quqKsF9EAACAASURBVJ7n4TvfaZ+tqLdjxz/hwgsvXrD87OHDhxqCinqZTBrj4wZGRtYtamxERETUnTgViqhLOY6DAwf2NwQV9dv279/XsG0xC7NPJCvgOAsHIYvZp1gsIJ/PzbvP7OwMPM9b9NiIiIio+zCwIOpSMzNT8H2/43bf9zE9PVX7eywWX/Cc8fjC+1S1C2hOZp9sNrPgPkop5HKd14cQERFR92NgQdSl5ubmFtwnk0nX/rmvr2/ejIQQAr29/Yu6tud5i5paVSoVF8w0SCkXdU221CEiIlrdGFgQdanFPJDXP9SHwxGsXz/aNrgQQmDduvWIRCKLurZhGItqgBePJxZcX2FZ9qKuaduL24+IiIi6EwMLoi610AM7AJim2fD3ZDKFs88+F/39A4hEIgiHI+jvH8DZZ5+LVKrnhK59/fU3LbjfDTe8Z8FxplKpBdd/2HYIkUh00eMjIiKi7sOqUERdKpXqweTksXn36enpbfnMsiwMDQ0v+fpbtlyCs846B7/61d62288665xFlZrVNB0jI+s6NtQLsimsCEVERLTaMWNB1KV6e/tgWVbH7bZttw0slosQAu9+93s7bn/3u9+76CpTqVQPNm48A+FwuOHzaDSGzZvPZLaCiIhoDWDGgqhLGYaBTZvOxNjYYeRyjeVa4/E41q1bD13XT+kY1q8fxW/8xuX46U//o+Hz17/+cqxfP3pC54rHE4jHEyiXy/j/2bvz+CjLe///75lMJslkI5AIIYABhBQjOyKIIiDR4ClrVEgFrUfBtqfVtu7angJdtWiL3+o5FKtWAgQV2Y4CgoJWGwkoSxoporIlEAgkZGGyTeb+/cEvo3Gyz0ySGV7Px8PHw7mva677My2Meee6r+uqrXXIYgluMjgBAAD/QrAAOrHg4GBdfnlfVVVV1Tt5u6ULor3h9tvTlZ39T9fWssHBwbrttvQ2j3dxkTYLtQEACDQ8CgX4gbrHnmJiurZrqJAuzjTMmHGb6/WsWbe3aMcoAABwaWHGAkCzUlJS5XBcnLG48cabO7gaAADQGZkMTqXqlKqrHSopaf6AMgAAAKC1oqPDZLV6d46BR6EAAAAAeIxgAQAAAMBjBAsAAAAAHiNYAAAAAPAYwQIAAACAxwgWAAAAADxGsAAAAADgMQ7IA9Ash8OhzZs3SZKmTJkqi4WvDgAAUB8/HQBo1nvvbdO6da9LkkJDQ5WSMqWDKwIAAJ0Nj0IBaFJZWak2blzrer1hw1qVlZV2YEUAAKAzIlgAaNL69Wtlt9tdr+12uzZsWNvEO9rOMAyVlpbqxInjOnr0K+XlndCFC+U+uRcAAPAuHoUC0Ki8vBPauXO72/WdO9/VxIkpSkjo5bV7ORwOHT9+TBUV9nrXS0rOKzIyUr169ZHZzO9CAADorPivNIAGGYahNWsyZBiGW5vT6VRm5ooG29oqL++EW6ioU1ZWpoKCU167FwAA8D6CBYAG7d+/V7m5OY225+bm6MCBfV65V2VlRbOPPJ0/XyyHw+GV+wEAAO8jWABw43A4tGbNymb7ZWZmeOWH/dLS5heDG4ah8vIyj+8FAAB8g2ABoMM5nU6v9gMAAO2PYAHAjcVi0ezZdzTbb86cuV45LC80NLRF/UJCQjy+FwAA8A2CBYAGDR06XMnJgxttT04erCFDhnnlXlFR0QoKCmqyT0hIiMLDI7xyPwAA4H0ECwANMplMmjNnnkwmk1ub2WxutK0tzGaz4uN7NjqeyWRSz54JXrkXAADwDYIFgEYlJPTShAmT3a5PmHCjV8+wkKTo6C7q0+dyhYXZ6l0PD49QYmI/2WzhXr0fAADwLg7IA9CkGTPStGvXR67Tt202m6ZPT/PJvSIiIhUREanq6io5HLUKDg5WcHCwT+4FAAC8ixkLAE2KjIzStGlfB4np09MUGRnl03tarSGy2WyECgAA/AgzFgCaNWlSiqqqKiVJEyemdHA1AACgMzIZhmF0dBFwV13tUElJRUeXAQAAgAAUHR0mq9W7cww8CgUAAADAYwQLAAAAAB4jWAAAAADwGMECAAAAgMcIFgAAAAA8RrAAAAAA4DGCBQAAAACPESwAAAAAeIyTtwE0q7KyUv/v/z0jSfrJTx5UaGhoB1cEAAA6G2YsADRr+fIXdPBgrg4ezNWLL77Q0eUAAIBOiGAB+AnDMGS3X1B5eblqamrqXa+pqZHD4fDJfU+dOqm9e/e4Xn/66R6dOnXSJ/cCAAD+y2QYhtHRRcBddbVDJSUVHV0GOgHDMHTu3FmdO3fWFR5MJpPCw22yWKwqLy9zXQ8LC1O3brGKju7itfv/8pePKD8/r961hITe+vWvn/LaPQAAQPuKjg6T1erdVRHMWACd3KlT+Tp9uqDejERtba0+//ywcnL2q7Ly6wBaUVGhvLwTOnOmwCv3/uST3W6hQpLy80/o00/3NPAOAABwqSJYAJ2Y3X5BxcXFbtdLSs6rurpStbUOnT9/3q29sLBQFRV2j+7tdDr1yivLG21/+eW/yul0enQPAAAQOAgWQCfWUKgwDEPl5WWu1xculMvprG3gvUUe3XvDhrW6cKG80fYLF8q1ceObHt0DAAAEDoIF0IlVVVW5XXM4HKqt/TpIGIbR4MLtioq2r9GprKzU229vbLbfW29tUGVlZZvvAwAAAgfBAujEzGb3v6Imk6mBay3rBwAA4CsEC6ATi4qKcrtmsVgUHGx1vbZaQxQcHOzWLyIios33DQ0N1S23TGu233/8x3QOywMAAJIIFkCn1qVLlwZDQ3R09Df+3X1rWbPZrJiYbh7de/r0NIWHNx5OwsMjNG3aLI/uAQAAAgfBAujEzOYgXX55X7dwERERqaioaMXEdFV4ePi33mNW7959Ggwkrbu3WXffvaDR9rvvXtDgo1oAAODS5N1TMQB4XUhIiK64YqDKykpVVlYqp9NQaGioBg78jmpqqlVUdE6VlZUymUyKjIxUly5dZbVamx+4BUaMGKWEhF4NHpA3YsQor9wDAAAEBk7e7qQ4eRudxalTJ/Xkkw/Vu/bb3y5RfHzPDqoIAAB4ipO3AbS7+PieGjp0hOv1sGEjCBUAAMANwQJAs664YoDr3wcMSOrASgAAQGcVUGssNm3apNWrV+vQoUNyOp3q27ev0tLSlJ6e3qZFprW1tXr99de1adMmffHFF7Lb7eratasGDRqk22+/XZMmTfLBpwBaxul0ymQy+fy8irKyUm3evMn1+q23Nui6625QZKT7VrgAAODSFTDBYtGiRVq1apVCQkI0duxYWSwWZWVlafHixcrKytLSpUsVFBTU4vHOnz+v+fPn68CBA4qMjNSIESMUHh6uU6dOKSsrS926dSNYoEOcP1+soqJzrpO1bTabunWLVVRUdDPvbJv169fKbre7Xtvtdm3YsFZz597tk/sBAAD/FBDBYuvWrVq1apXi4uKUkZGhxMRESdLZs2d15513atu2bcrIyNBdd93VovGcTqd+8IMf6MCBA7rtttv0xBNPyGazudovXLig/Px8X3wUoEl5eSdUUnK+3jW73S67/bi6dYtVjx7xXr/fzp3b3a7v3PmuJk5MUUJCL6/eDwAA+K+AWGOxbNkySdJDDz3kChWSFBsbq4ULF0qSli9fLqfT2aLxXnvtNe3du1ejR4/Wr3/963qhQpLCw8M1cOBAr9QOtNT588VuoeKbzp07q/Lycq/dzzAMrVmToYY2jnM6ncrMXNFgGwAAuDT5fbAoKChQbm6ugoODlZqa6tY+evRode/eXYWFhdq3b1+Lxly5cqUk6d577/X58+tASxUVnfNKn5bav3+vcnNzGm3Pzc3RgQMt+zsFAAACn98/CvXZZ59JkgYMGKDQ0NAG+wwePFinT5/WwYMHNWLEiAb71CksLNTnn3+u4OBgjRkzRocOHdI777yjwsJCdenSRddcc43GjRvn9c8BNMUwDNeaiqbY7Re8cj+Hw6E1a1Y22y8zM0PJyYNlsfj9VwkAAPCQ3/80kJd38UTgnj0b31c/Pj6+Xt+mHDp0SJKUkJCgF154QcuWLav3uMeyZct09dVX67nnnlPXrl09KR3wOmbYAABAR/H7YFG3W01YWFijfcLDwyVdXHTdnJKSEkkXQ8j//u//asaMGVqwYIG6d++uf/3rX1q8eLF2796tn/70p3r11Ve98AkaZrVaFBcX6bPx4X9KSy9rdg1FTEyM1/7cLFhwr37961832ee+++YrPj7GK/cDAAD+ze/XWNTNJnjrN7V1C7wdDofGjh2rp556Sv3791dERITGjBmjl156SaGhodq1a5eys7O9ck+gJWJjY73Sp6WuvvpqDRs2rNH24cOHa9SoUV67HwAA8G9+P2NRNxvxzX32v61upqKub0vGk6Tbb7/drb1Hjx664YYbtHXrVmVlZWn06NGtLblFqqsdKilp/pl6XEqCZLGE6+zZwgZbe/SIl93ulN1e5rU7pqV9T/v373fb/clsNmvWrHSdPeu9XagAAED7iY4Ok9Xq3Sjg9zMWCQkJkqSTJ0822qegoKBe35aMJ0m9ejW8R3/d9bNnz7a4TsAbunfvocsv76vIyCgFBQXJYrEoOrqL+vbtr27dvDdbUSchoZcmTJjsdn3ChBs5wwIAANTj9zMWV155pSTp8OHDqqysbHBnqJyci1tmDho0qNnx+vXrJ5vNJrvdrvPnGz4zoLi4WJLczrcA2kNERIQiIiLa7X4zZqRp166PXLOCNptN06entdv9AQCAf/D7GYv4+HglJyerpqZGW7ZscWvPzs5WQUGB4uLiNHz48GbHCw4O1oQJEyRJWVlZbu01NTXas2ePJOmqq67yrHjAD0RGRmnatK+DxPTpaYqMjOrAigDAPzgcDm3atE6bNq2Tw+Ho6HIAn/P7YCFJCxYskCQtWbJEx44dc10/d+6cFi1aJEmaP3++zOavP25GRoZSU1P1yCOPuI133333yWw2a9WqVfXCRW1trZYsWaLjx4+re/fuSklJ8dVHAjqVSZNSNHPmbZo58zZNnMifewBoiffe26Z1617XunWva8eObR1dDuBzfv8olCSlpqYqPT1dq1ev1tSpU3XttdfKYrEoKytL5eXlmjx5subOnVvvPcXFxTpy5Iji4uLcxvvOd76jJ554Qr/97W/1n//5nxo8eLB69Oihzz77TCdOnFBkZKSWLl3a6IF8QKCxWCyaOnVmR5cBAH6jrKxUGzeudb3esGGtxowZx4wvAlpABAtJWrhwoUaOHKmVK1cqOztbTqdT/fr1U1pamtLT0+vNVrTEvHnzNHDgQL300kvat2+fPvvsM8XFxWn27NlasGBBowu7AQAA1q9fW2/HSrvdrg0b1mru3Lvr9XM6a1VSUqLKykqZzWZFRkbKZmt+F0ugMzIZ395HEp0C280CAOCf8vJO6Fe/eqzBrboXLfqDa1e9kpLzOnXqpGpra+v1CwuzqU+fPrJYgtutZlx62G4WAACgEzMMQ2vWZLiFCuniIbyZmStkGIbKy8uVn5/nFiokqaLCrqNHjzY4BtCZESwAAAC8ZP/+vcrNzWm0PTc3RwcO7FNh4ekmg0NVVaVKS0t8USLgMwQLAAAAL3A4HFqzZmWz/VatelVlZWXN9ispafg8LaCzCpjF2wAAAIHE4XB/TEqSqqqqVF1dJbPZLJstXCaTqZ0rAxrGjAUAAIAXWCwWzZ59R7P9Zs++QxZL87/btVrrL9622+06cuRLffHF5zp+/JiOHj2iw4cPqajoXJtrBryJYAEAAOAlQ4cOV//+Axpt799/gIYPH6mIiMhmx+rSpavr3+12u44dO1JvC1tJqqmp0alTJ3XmzOm2Fw14CcECAACgndQ9tnTZZd0VFBTUaL/IyEhFRES4XhcUnJLT6Wy0/9mzhaqurvZeoUAbECwAAAC8ZP/+vfryy8ONtn/xxec6cGCfQkNDdfnliQoLC6vXbjKZFBPTVb169XFdq6ysVEWF/dtD1WMYhs6fL/aseMBDLN4GAADwgpbuCpWZmaHk5MEKC7OpX78rVFFhd528HR4e4bb+oqUzEcxYoKMRLAAAADpQWJhNYWG2RtvN5pY9YNLSfoCv8CcQAADAC1q6K9ScOXNbtCtUnfDw8Bb1j46ObvGYgC8QLAAAALxk6NDhSk4e3Gh7cvJgDRkyrFVjmkwmxcbGNdnHZrMpPDyiyT6Ar/k0WJSXl+vll1/Wvffeq+9+97uaPHmyW/v69eu1fv16X5YBAADQLkwmk+bMmdfgoXVms7nRtuZ06xar2Ni4Bt8bFmZT796Xt6lewJt8tsZi7969+slPfqJz587JMAxJcvvLEBERoVdffVUHDx5Ur169NGrUKF+VAwAA0C4SEnppwoTJ2rFjW73rEybcqISEXm0et3v3HoqJidH588Wqrq6W2WxWVFSXetvSAh3JJzMWBQUF+sEPfqCzZ89q/Pjxevrppxt97m/OnDkyDEPvvPOOL0oBAABodzNmpMlm+3pBts1m0/TpaR6Pa7WG6LLLeqhXrz7q2bMXoQKdik+CxYsvvqiSkhLNmDFDy5Yt07Rp0xQcHNxg3/Hjx0uSsrOzfVEKAABAu4uMjNK0aV8HienT0xQZGdWBFQG+55NHof7xj3/IZDLp/vvvb7Zvjx49FBoaqry8PF+UAgAA0CEmTUpRVVWlJGnixJQOrgbwPZ8Ei1OnTiksLEw9e/ZsUf+QkBBduHDBF6UAAAB0CIvFoqlTZ3Z0GUC78cmjUFarVdXV1XI6nc32tdvtKisrU1QU04MAAACAv/JJsEhMTFRtba0+//zzZvu+8847cjqdGjhwoC9KAQAAANAOfBIsJk+eLMMw9MILLzTZ76uvvtLTTz8tk8mk1NRUX5QCAAAAoB34JFjceeed6tmzp7Zt26af/OQn2rNnj+uxKLvdrgMHDmjJkiW69dZbVVRUpP79+ystzfMt2AAAAAB0DJNRd3qdl3355ZeaP3++Tp482egJk4ZhqHfv3nrppZfUu3dvX5Tht6qrHSopqejoMgAAABCAoqPDZLV6dx8nnwULSSovL9fy5cu1YcMGFRQU1GuLjY3VzJkztWDBAkVGRvqqBL9FsAAAAICv+F2w+KaCggKdOXNGhmGoW7du6tWr7UfaXwoIFgAAAPAVvw4WaB2CBQAAAHzFF8HCJ4u3AQAAAFxafBIsdu3apRtvvFFPPvlks30feugh3XjjjdqzZ48vSgEAAADQDnwSLDZu3KiTJ09q0qRJzfadOHGi8vPztXHjRl+UAgAAAKAd+CRY7Nu3T5I0YsSIZvtee+21kqRPP/3UF6UAAAAAaAc+CRanTp2SzWZTTExMs31jYmJks9l0+vRpX5QCAAAAoB14dyn4N9TW1ra4r9PpFJtTAQAAAP7LJzMWCQkJqqqqUm5ubrN9//Wvf6myslI9evTwRSkAAAAA2oFPgsW4ceNkGIaWLFnS5MxFbW2tlixZIpPJpHHjxvmiFAAAAADtwCfB4vvf/75CQ0P18ccf6+6771ZOTo5bnwMHDuj73/++Pv74Y1mtVt19992+KAUAAABAO/DZydtbt27Vgw8+6JqxiI6OVs+ePSVJJ0+eVElJiQzDkMVi0dNPP61bbrnFF2X4LU7eBgAAgK/44uRtnwULSdq7d69+97vfNThjIUlDhgzRY4891qJtaS81BAsAAAD4it8FizpfffWV9u/fr7Nnz8owDMXFxWno0KHq16+fr2/ttwgWAAAA8BW/DRZoPYIFAAAAfMUXwcIni7cBAAAAXFoIFgAAAAA85vH8x4033ihJuvzyy/XSSy/Vu9YaJpNJ27dv97QcAAAAAB3A42CRn58vSQoJCXG71homk8nTUgAAAAB0EI+DxauvvipJCg0NdbsGAAAA4NLArlCdFLtCAQAAwFd8sSuUd0drQG1trUpKSiRdPH07KCjI17cEAAAA0M58Eix27typTZs26ZNPPtHp06frtfXo0UMjR47U1KlTdcMNN/ji9gAAAADamVcfhTpz5ozuv/9+7d+/X5LU2NB1C7WHDx+upUuXKi4uzlslBAwehQIAAICvdOqTt4uKijRr1iydPn1ahmEoNjZW11xzjZKSkhQVFSVJKi0t1aFDh/Txxx/r3LlzMplMio+P15tvvqkuXbp4o4yAQbAAAACAr3TqYPHAAw9o69atCgkJ0SOPPKLbb79dwcHBDfatqanRa6+9pj/+8Y+qqqrSLbfcomeeecYbZQQMggUAAAB8pdMGi7y8PKWkpMhsNmvZsmW67rrrWvS+f/zjH7rvvvskSdu2bVNCQoKnpQQMggUAAAB8xRfBwuyNQd566y0ZhqHU1NQWhwpJuv7665WamirDMPTWW295oxQAAAAAHcArweLAgQMymUyaOXNmq987a9YsGYbhWvANAAAAwP94JVgcPnxYkjRs2LBWv7fuPXVjAAAAAPA/XgkWJSUlCgkJUURERKvfGxERobCwMNchegAAAAD8j1eCxYULF9oUKuqEh4frwoUL3igFAAAAQAfwSrBwOBwej1FbW+uFSgAAAAB0BK8ECwAAAACXNq9tXltSUqI777yzTe89f/68t8oAAAAA0AG8FixqamqUnZ3d5vebTCZvlQIAAACgnXklWLTl/AoAAAAAgcNkGIbR0UXAXXW1QyUlFR1dBgAAAAJQdHSYrFavPbwkicXbAAAAALyAYAEAAADAYwQLAAAAAB4jWAAAAADwWEAFi02bNul73/ueRo4cqeHDh2vWrFlauXKlnE6nx2OvWbNGSUlJSkpK0uLFi71QLQAAABA4vLsUvAMtWrRIq1atUkhIiMaOHSuLxaKsrCwtXrxYWVlZWrp0qYKCgto0dn5+vp566imZTCaxiRYAAADgLiBmLLZu3apVq1YpLi5OGzdu1LJly/T888/rnXfeUf/+/bVt2zZlZGS0aWzDMPTkk0/KMAzNmDHDy5UDAIBA5XA4tGnTOm3atE4Oh6OjywF8LiCCxbJlyyRJDz30kBITE13XY2NjtXDhQknS8uXL2/RI1OrVq5WVlaWf//znSkhI8Ea5AADgEvDee9u0bt3rWrfude3Ysa2jywF8zu+DRUFBgXJzcxUcHKzU1FS39tGjR6t79+4qLCzUvn37WjX2iRMn9Mc//lEjRozQ3LlzvVUyAAAIcGVlpdq4ca3r9YYNa1VWVtqBFQG+5/fB4rPPPpMkDRgwQKGhoQ32GTx4sCTp4MGDLR7XMAw98cQTqq2t1W9/+1uZTCbPiwUAAJ2Kw+HQ2bOFOn78qI4fP6qzZwu98tjS+vVrZbfbXa/tdrs2bFjbxDsA/+f3i7fz8vIkST179my0T3x8fL2+LZGRkaHs7Gw9+OCD6tevn2dFtoHValFcXGS73xcAgEtFSUmJTp06IafTqbr9XaqqSnXmTJkSExMVHR3dpnGPHTumnTu3u13fufNdzZo1XZdffrknZQOdlt/PWNT9NiAsLKzRPuHh4ZKkCxcutGjM48eP69lnn1VycrLuuecez4sEAACdSmVlpY4ePdrg+kvDMHT06FFVVFS0elzDMPTiiy82uIuk0+nU3/72N3aYRMDy+xmLur+c3npUqe4RqJqaGv3ud79r8xa1nqqudqikpPVfaAAAoHknT+aruLjpXzgeOnRUCQm9WjXuvn2fNrmmc+/evXr33X9o6NDhrRoX8Lbo6DBZrd6NAn4/Y1E3G/HN5xi/rW6moq5vU1599VXt3r1bCxYs0He+8x3vFAkAADqV0tISr/T5JofDoTVrVjbbLzMzg+1nEZD8fsaibgvYkydPNtqnoKCgXt+mbN9+8ZnIf/7zn9q9e3e9tvz8fEnStm3bdPjwYdlsNtdWtwAAwH+0ZAv6tmxTD1zK/D5YXHnllZKkw4cPq7KyssGdoXJyciRJgwYNavG4e/fubbTtzJkzOnPmjCIjWVwNAIA/CgkJUWVlZbN9WsNisWj27Dv03HNLmuw3Z85cWSx+/yMY4MbvH4WKj49XcnKyampqtGXLFrf27OxsFRQUKC4uTsOHN/8844oVK3To0KEG//nxj38sSbrjjjt06NAh7dmzx+ufBwAA+F5MTFev9Pm2oUOHKzl5cKPtycmDNWTIsFaPC/gDvw8WkrRgwQJJ0pIlS3Ts2DHX9XPnzmnRokWSpPnz58ts/vrjZmRkKDU1VY888kj7FgsAADpcly4xTa69DAuztSlYmEwmzZkzr8FNZcxmc6NtQCAIiHm41NRUpaena/Xq1Zo6daquvfZaWSwWZWVlqby8XJMnT3Y7Obu4uFhHjhxRXFxcB1UNAAA6itlsVp8+iTpz5rTOny9WbW2tJCkoKEhdunTRZZd1r/cLydZISOilCRMma8eObfWuT5hwY6t3mQL8SUAEC0lauHChRo4cqZUrVyo7O1tOp1P9+vVTWlqa0tPT2/zlAAAAApPZbFaPHvG67LLLXOstQkNDZTZ7vtX8jBlp2rXrI9eulTabTdOnp3k8LtCZmQxOaemUOMcCAAD/9s47m5WZuUKSlJ4+TykpUzq4IuBrvjjHImBmLAAAADqTSZNSVFV1cSZk4sSUDq4G8D1mLDopZiwAAADgK5y8DQAAAKBT4lEoAM1yOBzavHmTJGnKlKkc7AQAANzw0wGAZr333jatW/e6pIs7prAAEQAAfBuPQgFoUllZqTZuXOt6vWHDWpWVlXZgRQAAoDMiWABo0vr1a137sEuS3W7Xhg1rm3hH6zmdtSoqOqf8/DydPJmnkpLzYl8JAAD8C49CAWhUXt4J7dy53e36zp3vauLEFK+cIFtWVqr8/DzXqbeSVFxcrODgAvXpc7lCQ8M8vgcAAPA9ZiwANMgwDK1Zk9HgzIHT6VRm5gqPZxUqKuw6ceJ4vVBRp6amRkePHpHDUePRPQAAQPsgWABo0P79e5Wbm9Noe25ujg4c2OfRPc6dO9tkOKmtrVVRUZFH9wAAAO2DYAHAjcPh0OrVTkfUAwAAIABJREFUK+R0Ol3/NBQAMjMz5HA42nQPwzBUWtr8IvDS0pI2jQ8AANoXaywA1GMYhvLz81RVVSmn01mvzWQyyWw2y2QyeXyfxsLKtzX0mBQAAOh8mLEAUE9BwSmVl5dpwoTJbm2GYdQLA7Nn39Hmw/LMZrOCgoKa7We1Wts0PgAAaF8ECwAuDodDxcUX1zQ0Ninx7XDRViaTSTExXZvt15I+AACg4xEsALiUlZXKMAzV1tZqxw73bWal+sFizZqVbV5jIUndusU2OSNhs9kUFRXd5vEBAED7IVgAcGnv9QwWi0WJif0UGRlVb93GxdmMGF1+eaLMZr6mAADwByzeBuBitYZIkoKCgjRx4mStXbumyf5z5sxt8xqLOsHBwerT53JVV1ersrJCkkk2m83jcQEAQPviV4EAXCIjIxUcHCxJ6t9/gPr27efWx2QyyWQyKTl5sIYMGea1e1utVkVFRSsqKopQAQCAHyJYAHAxmUzq0SPeFR4mTbrJbWtZk8mkoKAgzZkzzyvbzgIAgMBAsABQT1RUtHr37qOQkFDFxsZp2LCRkr4+w8JsNmvChBuVkNCrgysFAACdCc8bAHATGRmlyMgoVVTYNXv2HTp8+N+qrKyUdHGnpunT0zq4QgAA0NkwYwGgUWFhNvXsmaAZM25zXZs+PU2RkVEdWBUAAOiMmLEA0KxJk1JUVXVxxmLixJQOrgYAAHRGJsMbR+jC66qrHSopqejoMgAAABCAoqPDZLV6d46BR6EAAAAAeIxgAQAAAMBjBAsAAAAAHiNYAAAAAPAYwQIAAACAxwgWAAAAADxGsAAAAADgMYIFAAAAAI8RLAAAAAB4jGABAAAAwGMECwAAAAAeI1gAAAAA8BjBAgAAAIDHCBYAAAAAPEawAAAAAOAxggUAAAAAjxEsAAAAAHiMYAEAAADAYwQLAAAAAB4jWAAAAADwGMECAAAAgMcIFgAAAAA8RrAAAAAA4DGCBQAAAACPESwAAAAAeIxgAQAAAMBjBAsAAAAAHrN0dAEAOj+Hw6HNmzdJkqZMmSqLha8OAABQHz8dAGjWe+9t07p1r0uSQkNDlZIypYMrAgAAnQ2PQgEByDAM2e12lZeXqbq62qOxyspKtXHjWtfrDRvWqqys1NMSAQBAgGHGAggwRUXndPZsoWpqalzXwsMj1KNHvEJDQ1s93vr1a2W3212v7Xa7NmxYq7lz7/ZKvQAAIDAwYwEEkDNnCnTq1Ml6oUKSLlwo19GjX6mysrJV4+XlndDOndvdru/c+a7y8/M8qhUAAAQWggUQIKqrq1RYWNhoe21trQoKTrV4PMMwtGZNhgzDcGtzOp3KzFzRYBsAALg0ESyAAFFcXNxsnwsXylVdXdWi8fbv36vc3JxG23Nzc3TgwL4W1wcAAAIbwQIIEFVVLQsMLVnM7XA4tGbNymb7ZWZmyOFwtOi+AAAgsBEsgAARFBTUon5mM3/tAQCA9/ETBhAgoqKimu0THByssDBbs/0sFotmz76j2X5z5szlsDwAACCJYAEEjIiIyGa3k+3WLVYmk6lF4w0dOlzJyYMbbU9OHqwhQ4a1qkYAABC4CBZAgDCZTOrTJ7HRcBEbG6du3WJbNd6cOfMaDCJms7nRNgAAcGniGQYggAQHB6tfvytUVlam0tISOZ1OWa1Wde3aVVZrSKvHS0jopQkTJmvHjm31rk+YcKMSEnp5q2wAABAACBZAgDGZTIqKimrRmouWmDEjTbt2feQ6fdtms2n69DSvjA0AAAJHQAWLTZs2afXq1Tp06JCcTqf69u2rtLQ0paent3gnHKfTqX379un999/X7t27lZeXp6KiIkVFRSk5OVmzZ8/W5MmTffxJgM4jMjJK06alKTNzhSRp+vQ0RUZ6J7QAAIDAYTIC5OjcRYsWadWqVQoJCdHYsWNlsViUlZWlCxcuKCUlRUuXLm3RdpzHjh3TTTfdJEnq0qWLrrrqKkVFRenEiRPKybl4WNisWbP0u9/9zqfPl1dXO1RSUuGz8YHWcDgc2rx5kyRpypSp7AQFAICfi44Ok9Xq3f+eB8RPB1u3btWqVasUFxenjIwMJSYmSpLOnj2rO++8U9u2bVNGRobuuuuuZscymUwaM2aM7rnnHo0bN65eGMnOztZ9992nN998U6NGjVJaGo+D4NJgsVg0derMji4DAAB0YgGxK9SyZcskSQ899JArVEhSbGysFi5cKElavny5nE5ns2P16dNHf//73zV+/Hi3GY7Ro0dr/vz5kqSNGzd6p3gAAAAgAPh9sCgoKFBubq6Cg4OVmprq1j569Gh1795dhYWF2rdvn8f3u/LKK133BQAAAHCR3weLzz77TJI0YMCARvfvHzz44iFfBw8e9Ph+R48elSRddtllHo8FAAAABAq/DxZ5eXmSpJ49ezbaJz4+vl7ftqqoqNCKFRd3xqlb4A0AAAAgABZv1+2tHxYW1mif8PBwSdKFCxc8uteiRYuUl5enK664QrNnz/ZorOZYrRbFxUX69B4AAACAt/j9jEXdbrm+3PpVkp5//nmtW7dOkZGR+vOf/yyr1erT+wEAAAD+xO9nLOpmI+pmLhpSN1NR17e1Xn75ZT333HOy2Wxavny5BgwY0KZxWoNzLAAAAOArvjjHwu9nLBISEiRJJ0+ebLRP3Q5OdX1bY8WKFfrDH/6g0NBQLVu2TMOHD29boQAAAEAA8/tgUbf96+HDh1VZWdlgn7oTswcNGtSqsVeuXKnf/OY3CgkJ0f/8z/9o9OjRnhULAAAABCi/Dxbx8fFKTk5WTU2NtmzZ4taenZ2tgoICxcXFtWq2YfXq1Vq8eLGsVquef/55XXvttd4sGwAAAAgofh8sJGnBggWSpCVLlujYsWOu6+fOndOiRYskSfPnz5fZ/PXHzcjIUGpqqh555BG38V577TUtWrRIVqtVf/nLX3T99df7+BMAAAAA/s3vF29LUmpqqtLT07V69WpNnTpV1157rSwWi7KyslReXq7Jkydr7ty59d5TXFysI0eOKC4urt71gwcP6r//+79lGIZ69eqlzZs3a/PmzW73jImJ0aOPPurTzwUAAAD4i4AIFpK0cOFCjRw5UitXrlR2dracTqf69euntLQ0paen15utaEppaalrC9uvvvpKX331VYP9EhISCBYAAADA/89k1P0UjU6F7WYBAADgK2w3CwAAAKBTIlgAAAAA8BjBAgAAAIDHCBYAAAAAPBYwu0IBAAB0Jg6HQ5s3b5IkTZkyVRYLP3YhsPEnHAAAwAfee2+b1q17XZIUGhqqlJQpHVwR4Fs8CgUAAOBlZWWl2rhxrev1hg1rVVZW2oEVAb5HsAAAAGghp9Op8+eLlZ+fp/z8PBUXF8npdLr1W79+rex2u+u13W7Xhg1r3foBgYRgAQAA0AJ2u12HDx9Sfn6ezp8v1vnzxTp5Ml+ff/5vlZeXu/rl5Z3Qzp3b3d6/c+e7ys/Pa8+SgXZFsAAAAGhGdXW1jh8/KofD4dZWW1urEyeOqbKyUoZhaM2aDBmG4dbP6XQqM3NFg21AICBYAAAANKOo6Jxqa2sbbXc6nSoqOqv9+/cqNzen0X65uTk6cGCfL0oEOhzBAgAAoBmlpSXN9ikqKtKaNSub7ZeZmdHgzAfg7wgWAAAAzWhqtqKO0+nkMSdc0ggWAAAAzbBarc32CQ0N1Zw5c5vtN2fOXA7LQ0AiWAAAADQjJqZri/oMHTpcycmDG+2TnDxYQ4YM82ZpQKdBsAAAAGhGly5dFBYW1mh7SEiounbtJpPJpDlz5slkMrn1MZvNjbYBgYBgAQAA0AyzOUiXX95XXbrE1AsGJpNJ0dHRSkzsq6CgIElSQkIvTZgw2W2MCRNuVEJCr3arGWhvPOAHAADQAkFBQUpI6KXu3Xu4TtW22cJksQS79Z0xI027dn30jX42TZ+e1q71Au2NGQsAAIBWsFgsioqKUlRUVIOhQpIiI6M0bdrXQWL69DRFRka1V4lAh2DGAgAAwAcmTUpRVVWlJGnixJQOrgbwPZPBhsudUnW1QyUlFR1dBgAAAAJQdHSYrFbvzjHwKBQAAAAAjxEsAAAAAHiMYAEAAADAYwQLAAAAAB4jWAAAAADwGMECAAAAgMcIFgAAAAA8RrAAAAAA4DGCBQAAAACPESwAAAAAeIxgAQAAAMBjBAsAAAAAHiNYAAAAAPAYwQIAAACAxwgWAAAAADxGsAAAAADgMYIFAAAAAI8RLAAAAAB4jGABAAAAwGMECwAAAAAeI1gAAAAA8BjBAgAAAIDHCBYAAAAAPEawAAAAAOAxggUAAAAAjxEsAAAAAHiMYAEAAADAYwQLAAAAAB4jWAAAAADwGMECAAAAgMcIFgAAAAA8RrAAAAAA4DFLRxcAAAAQiBwOhzZv3iRJmjJlqiwWfuxCYONPOAAAgA+89942rVv3uiQpNDRUKSlTOrgiwLd4FAoAAMADhmHI4XDI6ax1XSsrK9XGjWtdrzdsWKuystKOKA9oN8xYAAAAtEFtba3OnStUcXGxHA6HJCk8PEKxsbFav36t7Ha7q6/dbteGDWs1d+7dHVUu4HPMWAAAALRSbW2tjh79SoWFha5QIUkXLpRrz55svffeO27v2bnzXeXn57VnmUC7IlgAAAC00unTBaqsrHS7bhiGduzYJqfTKcMw6rU5nU5lZq5wuw4ECoIFAABAKzidtSopOd9g25dfHtaRI1/JMIwGA0Rubo4OHNjn6xKBDkGwAAAAaIXKyio5nU6367W1tdqxY7vrdWMzE5mZGfUenwICBcECAACgFUymjq4A6JwIFgAAAK0QGhrW4GF3QUFBmjhxsuu1qZEEMmfOXA7LQ0AiWAAAALSCyWRS167dGmzr33+A+vbtJ5PJ1GCwSE4erCFDhvm6RKBDECwAAABaKTY2TtHR0W7XTSaTJk9OVVBQkFuwMJvNmjNnXqMzGYC/Yx4OAACglUwmk3r16qPo6FIVFxepsrJSZnOQoqIiNXDgd3T06BHt2LGt3nsmTLhRCQm9OqhiwPcCKlhs2rRJq1ev1qFDh+R0OtW3b1+lpaUpPT1dZnPrJ2c++OADvfLKK/rXv/6lqqoq9e7dW//xH/+he+65R1ar1QefAAAA+JPIyChFRka5XZ8xI027dn3kOn3bZrNp+vS09i4PaFcmI0BOaVm0aJFWrVqlkJAQjR07VhaLRVlZWbpw4YJSUlK0dOlSBQUFtXi85cuXa8mSJQoKCtLo0aMVFRWl3bt3q6ioSMOGDdMrr7yisLAwn32e6mqHSkoqfDY+AADwrXfe2azMzBWSpPT0eUpJmdLBFQFfi44Ok9Xq3TmGgJix2Lp1q1atWqW4uDhlZGQoMTFRknT27Fndeeed2rZtmzIyMnTXXXe1aLycnBw988wzCgsL09///ncNHTpUknThwgXdd9992r17t/70pz/piSee8NVHAgAAfm7SpBRVVV08nXvixJQOrgbwvYBYvL1s2TJJ0kMPPeQKFZIUGxurhQsXSro4A9HQYTYNWb58uQzD0L333usKFZIUHh6u3//+9zKbzVq1apVKS0u99hkAAEBgsVgsmjp1pqZOncn2srgk+H2wKCgoUG5uroKDg5WamurWPnr0aHXv3l2FhYXat29fs+NVV1frgw8+kCRNmzbNrb13794aNmyYampq9P7773v+AQAAAIAA4PfB4rPPPpMkDRgwQKGhoQ32GTx4sCTp4MGDzY535MgRVVRUqEuXLurTp0+T49XdGwAAALjU+f28XF5eniSpZ8+ejfaJj4+v17cl49W9pyF198rPz29xna1ltVoUFxfps/EBAAAAb/L7GYu6bdya2qEpPDxc0sXF194Yz2aztXg8AAAA4FLg9zMWdbvleusUS2+P11ZsNwsAAABf8cV2s34/Y1E3G1E309CQupmFur6ejlfX1pLxAAAAgEuB3weLhIQESdLJkycb7VNQUFCvb0vGO3XqVKN96tpaMh4AAABwKfD7YHHllVdKkg4fPqzKysoG++Tk5EiSBg0a1Ox4/fr1U2hoqM6fP6/jx4832OfAgQMtHg8AAAC4FPh9sIiPj1dycrJqamq0ZcsWt/bs7GwVFBQoLi5Ow4cPb3Y8q9Wq8ePHS5I2btzo1n7ixAnt27dPwcHBmjBhgsf1AwAAAIHA74OFJC1YsECStGTJEh07dsx1/dy5c1q0aJEkaf78+TKbv/64GRkZSk1N1SOPPOI23vz582UymfTiiy+6Zieki2s1nnjiCTmdTn3ve99TVFSUrz4SAAAA4Ff8flcoSUpNTVV6erpWr16tqVOn6tprr5XFYlFWVpbKy8s1efJkzZ07t957iouLdeTIEcXFxbmNN2TIED344INasmSJ5syZozFjxigyMlK7d+/WuXPnNHToUP3sZz9rr48HAAAAdHoBESwkaeHChRo5cqRWrlyp7OxsOZ1O9evXT2lpaUpPT683W9ES8+fPV1JSkl5++WXl5OSoqqpKvXv31rx583TPPffIarX66JMAAAAA/sdk1B3cgE6FcywAAADgK5xjAQAAAKBTIlgAAAAA8BiPQnVSTqchh6O2o8sAAABAALJYgmQ2m7w6JsECAAAAgMd4FAoAAACAxwgWAAAAADxGsAAAAADgMYIFAAAAAI8RLAAAAAB4jGABAAAAwGMECwAAAAAeI1gAAAAA8BjBAgAAAIDHCBYAAAAAPEawAAAAAOAxggUAAAAAjxEsAAAAAHiMYAEAAADAYwQLAAAAAB4jWAAAAADwGMECAAAAgMcIFgAAAAA8RrAAOkhSUlKr/3nsscd8Xtf999+vpKQkbdmyxSvjZWRkKCkpSYsXL/bKeAAC00MPPaSkpCQ9/vjjLeq/aNEiJSUl6cc//nGb7/n6668rKSlJTz75ZL3rx44dU1JSklJSUlo1nsPhUFJSkq688so219Ra6enpSkpK0p49e9rtnkBjLB1dAHCpmjlzptu1wsJCffjhh7LZbLr55pvd2keOHNkepQFAu0tLS9OmTZu0ZcsW/eIXv1B4eHijfaurq/X222+73heoXn/9df3iF7/Qrbfeqt/+9rcdXQ7QLIIF0EH+8Ic/uF3btWuXPvzwQ8XExDTY3h6efPJJPfDAA+revbtXxps2bZrGjh2r6Ohor4wHIDCNGTNGvXr1Ul5enrZs2dJkYNi+fbvOnz+vuLg4jR8/3uu19OzZU2+//basVqvXx/a2Z555RhUVFUpISOjoUgAehQJQX/fu3dW/f39FRER4ZbyoqCj1799fsbGxXhkPQGAymUyumdx169Y12ffNN9+UJM2YMUNBQUFeryU4OFj9+/dX7969vT62t/Xs2VP9+/dXaGhoR5cCECwAf/TNdQtnz57Vr371K02cOFFXXXWVHnroIUmSYRh6++239eijj2rKlCkaOXKkhgwZoptvvlm/+c1vdObMmQbHbmyNxVNPPaWkpCT97W9/0+nTp/X444/ruuuu01VXXaWUlBQtXbpU1dXVTdb6TTt27FBSUpLuu+8+VVVV6bnnntNNN92kq666SuPGjdNjjz3WaI2StHHjRt12220aNmyYRo8erQULFmj//v31xgXgX9LS0mQ2m7Vnzx4dP368wT6nT5/WP//5T0nSrFmzXNf37dunp556SrNmzdLYsWN11VVX6brrrtP999+vAwcOtKqO5tZY/Pvf/9aPfvQjjR49WsOGDdOsWbP0xhtvNDlma+sbP368fvGLX0iS3njjjXrr7b65JqSpNRbV1dV69dVXdeutt2rEiBEaOnSobrnlFj377LMqKSlp8nMbhqGMjAxNmzZNQ4YM0dVXX60f/ehH+uKLL5r8nLi08SgU4MfOnDmjmTNnqqamRqNGjZLZbFbXrl0lXfwPys9+9jOFh4friiuu0MCBA1VRUaHPPvtMK1as0JYtW/Taa6+pZ8+erbrnsWPHNGPGDIWEhGjkyJEqLS3VJ598ohdeeEHHjh3Ts88+26rxqqqqdNddd+nw4cO6+uqrdcUVV2jv3r1at26dPv30U61bt87tWetnn31Wy5Ytk9ls1siRI3XZZZfp0KFDuuOOO5Sent6q+wPoPOLj4zV27Fh99NFHWrdunR544AG3PuvXr1dtba1GjBihfv36ua4/88wz+uSTTzRgwAANHTpUVqtVX331lbZu3ap3331Xf/rTn3TTTTd5XGNWVpbrFyL9+vXToEGDdPr0af3yl7/U4cOHG31fa+ubMmWK9u/fr7179yoxMVHDhw93tY0YMaLZOisrK3Xvvfdq9+7dstlsuuaaaxQSEqI9e/Zo2bJleuutt/T3v/9dvXr1cnuvYRh6+OGHtXXrVl199dVKTExUTk6O3n33Xe3evVvr16/n0Ss0iGAB+LFt27Zp8uTJWrJkicLCwuq1BQUFaenSpZo4caJCQkJc16urq/XMM8/olVde0R/+8Ac999xzrbrnmjVrNG/ePD322GOyWC5+hRw8eFC333673nrrLS1YsEDf+c53WjxeVlaWRowYoXfffVddunSRJBUXF2vu3Ln64osv9MYbb+iuu+5y9a/7j2JoaKiWL1+u0aNHu9qWLVvW6mADoHNJS0vTRx99pPXr1+v++++XyWSq1173mNS312Dce++9+vOf/6xu3brVu759+3Y98MAD+tWvfqUbbrih3vdha9ntdj388MOqqqrSD3/4Qz3wwAOu+j7++GMtWLCg0fe2tr7HH39cr7/+uvbu3atRo0a1evH2n/70J+3evVtXXHGFXnrpJde6uYqKCj344IN699139cgjj2jVqlVu7z1x4oRMJpPefvtt1+NgVVVV+tGPfqQPP/xQf/3rX7Vo0aJW1YNLA49CAX4sNDRUCxcudAsVkmSxWJSamur2H1Gr1apHH31UUVFR2rFjR4OPLzUlMTFRjz76qCtUSNKgQYM0ZcoUSReDQmtYLBb9/ve/d4UKSYqJidHdd9/d4HgrVqyQJN1+++31QoUkLViwQAMHDmzV/QF0LikpKYqOjtbJkyf18ccf12v79NNPdeTIEdlsNtd3Tp0bbrjB7Yd2SZo8ebJSUlJUVFSk7Oxsj2rbvHmzCgsLlZiY6BZ6xowZo9tvv73R97ZHfXXsdrvWrFkjSfrlL39ZbzOOsLAwLV68WGFhYfrkk0+0f//+Bsf45S9/WW+NSUhIiP7rv/5Lktz+fwHqMGMB+LHhw4crLi6uyT5ffPGFPvzwQ504cUJ2u12GYUiSzGazqqurdfLkSSUmJrb4nuPGjVNwcLDb9bpHEppaF9GQvn37Nnj/xsbbvXu3JGnq1Klu7zGZTLrlllv0+eeft6oGAJ2H1WrVd7/7Xa1cuVJr167V2LFjXW11i7ZTU1Mb3I62qKhIO3bs0BdffKHS0lLV1tZKkr788ktJ0tGjR3X99de3uba675/vfve7Mpvdfzc7ffp01y8/GuLr+urk5OSooqJCPXv21JgxY9zaY2NjNX78eG3dulW7du3S0KFD67UHBwdr3Lhxbu9r6/c8Lh0EC8CPNbU+orq6Wk8++aQ2btzY5Bjl5eWtumd8fHyD1+t2kaqqqvLqeN+cUXE4HDp37pykxj97a9eMAOh8br31Vq1cuVLbtm1TeXm5IiIiVFFRoc2bN0tq+OyKlStX6umnn1ZlZWWj47b2++7bCgoKJKnBdQmSmlx30B711Tl9+rSkxuuUpD59+khqOCR07969wd222vo9j0sHj0IBfqyp7QX/+te/auPGjUpISNBzzz2n999/Xzk5OTp06JAOHTrkemSobgajpRr6LZ0n2jret5+79nQ8AJ3HlVdeqUGDBqmystJ1EN7WrVtVXl6uxMREjRo1ql7/ffv2afHixaqtrdVjjz2mzZs3a9++ffr3v/+tQ4cO6Z577pHU+u87b2nv+loyTlN9+B5FW/EnBwhQddvF/v73v9fNN9+sHj16uA57MgxDJ06c6Mjy2sRisbh2vcrPz2+wT2PXAfiXuq1k6x5/amzRtnQxdEjS97//fd19993q16+fwsLCXL+AaGzr2taqW6vQ2u+f9qqvTo8ePSRJeXl5jfapa7vsssu8em9c2ggWQIA6f/68pIYfNdq+fbsqKirauySvuPrqqyVJb731lltb3dkdAPzftGnTZLVatXfvXn344YfatWuXgoKCNH36dLe+TX3fnT17ttWbSjSm7vvn//7v/+R0Ot3aN23a1OD72lpf3Xq2urUYLTV48GCFhYXp5MmTDS4ILyoq0gcffCBJuuaaa1o1NtAUggUQoOoW2a1atarelPeXX36p3/zmNx1Vlsfmzp0r6eK2t98+EOrFF1/UoUOHOqIsAF7WpUsXTZo0SZL08MMPyzAMXX/99fV2OKpT9323bt062e121/Xy8nI9/vjjXlu7MGXKFMXGxurIkSN6/vnn6323Zmdnu3Zi8lZ9dZ+1bnF3S9lsNtcOVb/+9a9VWFjoaqusrNSvfvUr2e12jRw50m3hNuAJFm8DAeqHP/yh9uzZo5dffln/+Mc/NHDgQBUXF2vPnj0aO3asYmJidPDgwY4us9VGjx6te++9Vy+++KLmzZunUaNGuQ7IO3LkiObNm6cVK1Y0uHMVAP+SlpamLVu2qKioyPW6IbfeeqtWrFihnJwcTZ48WSNGjJBhGNq9e7dCQkI0a9Ys1yNVnggPD9fTTz+tH/zgB/rLX/6izZs3a9CgQTpz5oz27NmjO++8U6+88orX6hsxYoS6deumAwcOKC0tTQMGDFBQUJBGjRqlmTNnNlnrz3/+c+Xm5mrPnj266aabNGbMGFmtVn3yyScqLCxUQkKCnn76aY//NwG+iRkLIECNHTtWmZmZuu6661xbHJ47d07333+/XnjhBb9enPfwww/rqaee0pVXXqkDBw7ogw8+UPfu3bVixQr1799f0sWzMAD4t+uuu871+FBMTIwmTpzYYL+YmBitXbtWt912m0JDQ/X++++RgBL/AAALDElEQVQrNzdXqampevPNN726jmDcuHFas2aNJk6cqMLCQm3fvl1lZWVauHChHn74Ya/WFxISohdffFHjx49XXl6eNmzYoDfeeMNttrYhoaGhevnll/XEE0+oX79++vjjj7Vjxw5FRkZqwYIFevPNN5vcNQpoC5PRUVskAIAP/PSnP9XmzZu1aNEizZkzp6PLAQDgkuG/v7IEcMn68ssv3Z5JdjqdWrlypTZv3iybzaabb765g6oDAODSxBoLAH4nMzNTmZmZSk5OVvfu3VVRUaEvvvhC+fn5CgoK0qJFi3gUCgCAdkawAOB3brzxRp05c8Z14N//1979x1RV/3Ecf10ul8AuqECwSehGIbJFIZKFWzaTpUMY/YJojdQZlZHNrSCNfyjK1ihYi6K1VVDL5h/Csl+uqzZNkq409HYZK6WiukMCLr9RutL9/uE43+5EvO2qlD4f2924n/P5nPO59x/ua5/z/hyPx6OoqCitWbNG69at04033jjTUwQA4IpDjQUAAACAgFFjAQAAACBgBAsAAAAAASNYAAAAAAgYwQIAAABAwAgWAAAAAAJGsAAAAAAQMIIFAAAAgIARLAAA/2oNDQ1KSkpSYWHhTE8FADANnrwNAPhHTp8+rV27dumzzz7TDz/8oIGBAYWFhSk6Olrx8fFKT0/XrbfeekU+Ab2hoUEul0uZmZlKTk6e6ekAwCVFsAAA+M3tdquoqEhOp9Nou+qqq+T1evXzzz/rp59+0v79+xUeHq6WlpYZnOnMaGxslN1uV1xcHMECwBWHYAEA8FtJSYmcTqeuvvpqPf7448rNzdU111wjSRoZGZHD4ZDNZtP+/ftneKYAgEuNYAEA8EtHR4cOHjwoSdq2bZtWr17tc9xqtWrZsmVatmyZTp06NRNTBADMIIq3AQB++fHHH42/V6xYMW3f0NBQn/dbtmxRUlKSXn/99XOOKSwsVFJSkhoaGqY9d2Njo/Lz85WWlqYlS5Zo7dq1OnDgwDn79/X16eWXX1Z2drZSU1OVkpKi22+/XQUFBXrttdfkcrmmHOd2u/Xqq68qJydHixcvVmpqqrKzs1VdXa2BgQGfvpMF5na7XZK0detWJSUlGa877rhj2s8EAJcDViwAAP9Yd3e35s+ff8mvu23bNtXX1ysoKEhWq1XDw8Nqbm5Wc3OzSktLtWHDBp/+LpdL999/v3p6eiRJZrNZVqtV3d3dOnHihFpbWxUTE6MHHnjAZ1xLS4uKi4uNAGGxWGQ2m3Xs2DEdO3ZMH3/8sd59910lJCRIOhOkoqOjNTg4KI/HI6vV6hOu5s6dezG/FgD4V2DFAgDglxtuuMH4+7nnnpPb7b6k129vb1d9fb2Kiopkt9t1+PBhHThwQDk5OZKkysrKswrGa2pq1NPTowULFujDDz+U0+mU3W6Xw+HQJ598oo0bNxo1IpNcLpc2btyogYEB5eXl6YsvvpDD4dCRI0f06aef6rbbblNXV5c2bdqkiYkJSVJWVpaampq0ePFiSVJZWZmampqM186dOy/BNwQAM4tgAQDwS3x8vO666y5J0sGDB7V8+XKtW7dO1dXV2rNnz0UPGsPDw8rLy9PTTz+t8PBwSVJMTIwqKyt1yy23yOv1qqamxmfM0aNHJUmbN29Wenq6goLO/NsLCQnRwoULtXnzZmVmZvqMqa6u1tDQkAoLC/XCCy8oISFBQUFBMplMSkxM1JtvvqlFixbp+PHjstlsF/UzA8B/CcECAOC3iooKrV+/XhaLRR6PR4cOHdJbb72l4uJiZWRk6L777tOuXbvk9XovyvUfffTRs9pMJpPR3tzc7FP/YLVaJUl//PGHX+c/deqUdu/eLUlav379lH1CQkK0atUqSdI333zj/+QB4DJHjQUAwG8hISHasmWLioqKZLPZdPjwYTmdTnV2dsrr9er7779XSUmJ9u7dq+rqamOF4EKYN2+e4uPjpzy2ZMkSmc1mTUxMqL29XRkZGZKk5cuX6+jRo3rllVfU2dmpVatWKTU19azi8klOp1Mej0eSlJ+ff865TO561dXVFchHAoDLCsECAPCPRUVFqaCgQAUFBZKk3t5effXVV3rjjTfU1dWl3bt3Ky0tTWvXrr1g14yNjT3nsdDQUEVERKi/v1/9/f1G+yOPPKK2tjbt27dP27dv1/bt2xUcHKyUlBRlZmYqPz9fERERRv+/r2z09vaed05sqwsA/0ewAAAELDo6Wnl5eVq5cqVycnLU29urnTt3XtBgcT5T3X4VEhKi2tpaHTlyRDabTS0tLWpra1Nra6taW1v1zjvv6L333tOiRYt8zjF79mxj61gAgH+osQAAXDCRkZFauXKlJOmXX34x2s1msyRpfHz8nGOHh4enPfd0dRLj4+PG+Km2dk1NTVVJSYl27Nghu92uqqoqzZs3T263W2VlZUa/qKgoSdLg4KCxRS0AwD8ECwDABRUWFibpzLMfJk3ebnTixIkpx4yNjamjo2Pa87pcLv3+++9THvvuu+80MTEhk8mk5OTkac8za9YsrVmzRs8//7wkqa2tTWNjY5LObKkbHHxmMf/LL7+c9jxTMZlMkqZePQGAyx3BAgDgl99++02//vrrtH1OnjypPXv2SJLPD/yFCxdKkpqamqZctairq9Off/553jm8/fbbZ7V5vV6jPSMjQ3PmzDGOTXfOyQJur9drFGxbrVbdeeedkqTa2tpp6yxOnz6t0dFRn7bJXajOt/oCAJcjggUAwC/Hjx/X6tWr9cQTT+jzzz/3uTVpbGxM+/bt04MPPmisKjz00EPG8RUrVig0NFRut1ulpaXq6+uTdOYHeG1trWpqaoxnU5yL1WrVjh07VFVVZfxw7+np0TPPPKNDhw7JZDKpuLjYZ0xOTo6qqqrkcDiMkOH1euVwOFRRUSFJSklJ0ezZs40xTz31lObMmaOenh4VFBTIZrP5BJTOzk7V1dUpKytLTqfT53qJiYmSzqx2EC4AXGlMXtZrAQB++Prrr/Xwww/7tIWGhspisfj8iDabzXryySf12GOP+fR9//339eKLLxrvIyIiNDIyor/++kubNm3St99+K7vdrpdeekn33HOP0a+hoUFbt27V0qVLlZycrPr6epnNZlmtVg0NDRm3HZWWlmrDhg0+10xPTzfmZjabFR4ertHRUWOFYu7cuaqrqzOKtyc5HA4VFxcb4Sk4OFhWq1VjY2M+IeODDz7Q0qVLjfcdHR3Kzc2Vx+NRcHCwIiMjZbFYFBsbq48++sjPbxoA/pvM5eXl5TM9CQDAv9+CBQuUnZ2tuLg4hYWFaWJiQqOjoxofH1d4eLiuv/56ZWVlqaKiwniA3N/ddNNNuu6669Td3a3BwUGZTCalpKSorKxMBQUFamxslMvlUmZmps9tVO3t7dq7d6/i4uJUXV2ta6+9Vt3d3err65PFYlFaWprKy8t19913n3XN1NRUxcTEyOv1yuv1anBwUBaLRQkJCbr33ntVWVmp+fPnnzUuNjbW2Ir25MmTGh0d1cjIiGbNmqXExETl5ubq2WefVVpams+4yMhI3Xzzzerp6dHAwID6+/s1NDSkoKCgS7pDFgDMBFYsAAAAAASMGgsAAAAAASNYAAAAAAgYwQIAAABAwAgWAAAAAAJGsAAAAAAQMIIFAAAAgIARLAAAAAAEjGABAAAAIGAECwAAAAABI1gAAAAACBjBAgAAAEDACBYAAAAAAkawAAAAABAwggUAAACAgBEsAAAAAASMYAEAAAAgYAQLAAAAAAEjWAAAAAAI2P8AtPIDW5ax5G8AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 282, | |
"width": 395 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"sns.set()\n", | |
"\n", | |
"fig, ax = plt.subplots()\n", | |
"sns.boxplot(x='Subset', y='Dice', data=metrics_df, ax=ax)\n", | |
"sns.stripplot(x='Subset', y='Dice', data=metrics_df, color='0.25', alpha='0.25', ax=ax)\n", | |
"ax.set_title('Metrics');" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.vegalite.v2+json": { | |
"$schema": "https://vega.github.io/schema/vega-lite/v2.6.0.json", | |
"config": { | |
"mark": { | |
"opacity": 0.5 | |
}, | |
"view": { | |
"height": 300, | |
"width": 400 | |
} | |
}, | |
"data": { | |
"name": "data-fc0119ccea230fd5bb041c94981ef54b" | |
}, | |
"datasets": { | |
"data-fc0119ccea230fd5bb041c94981ef54b": [ | |
{ | |
"Dice": 0.948271632194519, | |
"Name": "rm0605", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.6380921602249146, | |
"Name": "rm1319", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9351518154144287, | |
"Name": "rm0677", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8206718564033508, | |
"Name": "rm0503", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9539939165115356, | |
"Name": "rm0868", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9181979894638062, | |
"Name": "rm0866", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8971601128578186, | |
"Name": "rm0831", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9345199465751648, | |
"Name": "rm0395", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8505154848098755, | |
"Name": "rm0560", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.3487323522567749, | |
"Name": "rm1179", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8891310691833496, | |
"Name": "rm0708", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8820016980171204, | |
"Name": "rm0817", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8183485865592957, | |
"Name": "rm1012", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9382008910179138, | |
"Name": "rm0931", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8629202842712402, | |
"Name": "rm0519", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9491130113601685, | |
"Name": "rm0983", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8844653367996216, | |
"Name": "rm0056", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8515426516532898, | |
"Name": "rm1152", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.888203501701355, | |
"Name": "rm0640", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9262157082557678, | |
"Name": "rm0800", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.929571270942688, | |
"Name": "rm1063", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.23404043912887573, | |
"Name": "rm1210", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9630370140075684, | |
"Name": "rm0916", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8067939877510071, | |
"Name": "rm0758", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9411764740943909, | |
"Name": "rm0688", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9555554986000061, | |
"Name": "rm0499", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9131197929382324, | |
"Name": "rm0551", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9136040806770325, | |
"Name": "rm0577", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9448734521865845, | |
"Name": "rm1059", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8515424132347107, | |
"Name": "rm0568", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8520683646202087, | |
"Name": "rm0586", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8372243642807007, | |
"Name": "rm0710", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9056803584098816, | |
"Name": "rm0611", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9211899042129517, | |
"Name": "rm0565", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.6039938926696777, | |
"Name": "rm1306", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.3390938937664032, | |
"Name": "rm1249", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9082415699958801, | |
"Name": "rm0798", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.6384686231613159, | |
"Name": "rm1356", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9014084339141846, | |
"Name": "rm0720", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9420521259307861, | |
"Name": "rm0737", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8223655819892883, | |
"Name": "rm0005", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9250273108482361, | |
"Name": "rm0865", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9456740617752075, | |
"Name": "rm1065", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.873058021068573, | |
"Name": "rm0796", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9426660537719727, | |
"Name": "rm0601", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9336493015289307, | |
"Name": "rm0968", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9295949935913086, | |
"Name": "rm1022", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9164785146713257, | |
"Name": "rm0689", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9513719081878662, | |
"Name": "rm1005", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9256322979927063, | |
"Name": "rm0477", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8630403280258179, | |
"Name": "rm0952", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9210675954818726, | |
"Name": "rm0731", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.923841118812561, | |
"Name": "rm0887", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9240633845329285, | |
"Name": "rm0159", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9586387276649475, | |
"Name": "rm0589", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9618450999259949, | |
"Name": "rm0521", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9234104156494141, | |
"Name": "rm0669", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9402205348014832, | |
"Name": "rm0319", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9178294539451599, | |
"Name": "rm0634", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8898338079452515, | |
"Name": "rm0638", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8242591023445129, | |
"Name": "rm0808", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9398266673088074, | |
"Name": "rm0946", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9161198735237122, | |
"Name": "rm1082", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9366154074668884, | |
"Name": "rm0783", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9230220913887024, | |
"Name": "rm0844", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9303069114685059, | |
"Name": "rm0996", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9427761435508728, | |
"Name": "rm1008", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.943976879119873, | |
"Name": "rm0573", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9598965048789978, | |
"Name": "rm0765", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9354152083396912, | |
"Name": "rm0542", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.895405113697052, | |
"Name": "rm0909", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8133122324943542, | |
"Name": "rm0944", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.7554202675819397, | |
"Name": "rm0803", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.902255654335022, | |
"Name": "rm0642", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9118343591690063, | |
"Name": "rm0691", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9530160427093506, | |
"Name": "rm0848", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9437597990036011, | |
"Name": "rm0829", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8729642033576965, | |
"Name": "rm0494", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.93354332447052, | |
"Name": "rm1068", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9343355894088745, | |
"Name": "rm0552", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8856164216995239, | |
"Name": "rm0451", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.890200674533844, | |
"Name": "rm0815", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.89597088098526, | |
"Name": "rm0779", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9140561819076538, | |
"Name": "rm0977", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.885171115398407, | |
"Name": "rm0556", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8949448466300964, | |
"Name": "rm0898", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9077110886573792, | |
"Name": "rm1252", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9209566116333008, | |
"Name": "rm0501", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9163680076599121, | |
"Name": "rm0741", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8667917847633362, | |
"Name": "rm0549", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8230293989181519, | |
"Name": "rm0694", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9204152226448059, | |
"Name": "rm1151", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8975542783737183, | |
"Name": "rm1118", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.880081295967102, | |
"Name": "rm0826", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9273777008056641, | |
"Name": "rm0431", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.6977400779724121, | |
"Name": "rm1001", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.7641695737838745, | |
"Name": "rm0432", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9489361643791199, | |
"Name": "rm0387", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8767123222351074, | |
"Name": "rm0631", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9638298153877258, | |
"Name": "rm0418", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9542801976203918, | |
"Name": "rm1052", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9504830837249756, | |
"Name": "rm0046", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9601236581802368, | |
"Name": "rm0483", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8754804134368896, | |
"Name": "rm0534", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9372053146362305, | |
"Name": "rm0816", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8778990507125854, | |
"Name": "rm0510", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9204035997390747, | |
"Name": "rm0906", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9549738764762878, | |
"Name": "rm0528", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.7582541108131409, | |
"Name": "rm0750", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.944961428642273, | |
"Name": "rm0873", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9331881999969482, | |
"Name": "rm0897", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.8732712268829346, | |
"Name": "rm0713", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9555930495262146, | |
"Name": "rm0692", | |
"Subset": "Training" | |
}, | |
{ | |
"Dice": 0.9044926762580872, | |
"Name": "rm1120", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.8534296154975891, | |
"Name": "rm0392", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9627397060394287, | |
"Name": "rm0507", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9057649970054626, | |
"Name": "rm0564", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9160924553871155, | |
"Name": "rm0550", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.14772962033748627, | |
"Name": "rm1343", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9341787695884705, | |
"Name": "rm1083", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9433568716049194, | |
"Name": "rm0743", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9008176326751709, | |
"Name": "rm0176", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.8429469466209412, | |
"Name": "rm1372", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9598984122276306, | |
"Name": "rm0772", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.8561916947364807, | |
"Name": "rm0511", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.8413857817649841, | |
"Name": "rm0757", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9276361465454102, | |
"Name": "rm0045", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.8579190373420715, | |
"Name": "rm0877", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.030160224065184593, | |
"Name": "rm0846", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.5689747333526611, | |
"Name": "rm1358", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.8876047730445862, | |
"Name": "rm0524", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9163139462471008, | |
"Name": "rm0548", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.941149890422821, | |
"Name": "rm0966", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9394013285636902, | |
"Name": "rm1035", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.917466402053833, | |
"Name": "rm0508", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9286578297615051, | |
"Name": "rm0985", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.9390401840209961, | |
"Name": "rm0850", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.5562087893486023, | |
"Name": "rm1308", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.8991002440452576, | |
"Name": "rm0301", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.8340460062026978, | |
"Name": "rm0705", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.3925333321094513, | |
"Name": "rm0538", | |
"Subset": "Validation" | |
}, | |
{ | |
"Dice": 0.932837963104248, | |
"Name": "rm1131", | |
"Subset": "Validation" | |
} | |
] | |
}, | |
"encoding": { | |
"color": { | |
"field": "Subset", | |
"type": "nominal" | |
}, | |
"tooltip": [ | |
{ | |
"field": "Name", | |
"type": "nominal" | |
}, | |
{ | |
"field": "Dice", | |
"type": "quantitative" | |
} | |
], | |
"x": { | |
"field": "Dice", | |
"type": "quantitative" | |
}, | |
"y": { | |
"field": "Subset", | |
"type": "nominal" | |
} | |
}, | |
"mark": "tick", | |
"selection": { | |
"selector001": { | |
"bind": "scales", | |
"encodings": [ | |
"x", | |
"y" | |
], | |
"mark": { | |
"fill": "#333", | |
"fillOpacity": 0.125, | |
"stroke": "white" | |
}, | |
"on": "[mousedown, window:mouseup] > window:mousemove!", | |
"resolve": "global", | |
"translate": "[mousedown, window:mouseup] > window:mousemove!", | |
"type": "interval", | |
"zoom": "wheel!" | |
} | |
} | |
}, | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAABXCAYAAAAj+M7/AAAgAElEQVR4Xu2dCZgcVdWGv+6eSQIkQiAE5Fd2XKMgKrL8gMoeUHFDAorKIggCgpIEQmDYE1DZXBAURZAg6i/IvoiAiIIgiorsyCJCQAiBbJOZrv958ZR0Oj3TVXWrK90z5z4PD5muu5z67r1VX51z7jkleXEEHAFHwBFwBBwBR6BDECh1iJwupiPgCDgCjoAj4Ag4AnLi4ovAEXAEHAFHwBFwBDoGAScuHTNVLqgj4Ag4Ao6AI+AIOHHxNeAIOAKOgCPgCDgCHYOAE5eEU3X55Ze/MGHChLEJq3s1R8ARcAQcAUfgVQRKpdJj66677ro5wrG8pDGSFkp6Kcd+O6IrJy4Jp2nGjBnR1KlT2xavRx55JFpvvfVcvoTzWV/N8csInDVz/By/MATCWg+j9cczfl9J59Yg9k1JUyTNHwTFDSQ9KGkjSX8OQ1tdkraV9ISk+wL7ytS8bV90me6mhY2cuISBO4weLGFADdDa8QuD1fFz/MIQCGud4/qLCcilki6StJ2kgyUdLun0gohLt6T7bTxIU+ElDXGh7nmSvifp9ybp6yT9TtL/SnqxcOkLHNCJSxjYWTbujl+9eLPSouf/eM3ZhywKG7156yzyxb1OPHLW+15c+K97f3f64QvQCu8yddbWV86YdHPzUZPXCJEv+SjZa3aCfIece+cWjy1Xueu+nt16k97pNoeet1rXyNHbX3fqpAuTtklTb7vJs9borpRGn73vex/IW2O605GXrtrb27v2qO5S9aoZe969y+Qfb9Jb7f/b9V/ba14aGakbz+8OR1yycXlh38P9I6v95aj8tmqpel93ubLJ4t7qGuVKZcURlQUX/vLUfV6O+99x8oVvjno197ozPvOv+Ldtjrxgla6+ruMWvTz3azef88V/8Pt2R/xsA0ULJ5RLXY/T/8LuRet0l0fsWqp2Pa1y39PlSqm6qG/xuK6ou7tUrqxdrfbfUurrXVCpdE/qLZd+tN92G9z5rRvuefuY0nIbRFF3aXH/ojnlrhE7d0UaN7+3ev+IkeWtKpVoUd/i6LFyufLkvN6XZy8/Yvl9omr50Sjqe7BcKb25pMobqv3RZeVKeYMo6nuqJE2Iql33l8vVeX3VUrm7q9J/zQr3f1c9PdWs+KVt16D+JyT9VNJESddIKkuabu/f70o6237/haS1Jf1A0oGS+kzj8m1JG0pazgjP7ZJ4jx8n6cuSZpv25keSuM/drE/qM853JM20uszzJElX5XBfqbpISlxisBp1zo2+xYlLKtxzr9wJL460D+aJU2cd1hvNPf/Gmfu33IYbgt/EybMO6V8876LrTt/3BYjLxMmzjrn61Ek8CHIrIfLlJsQgHXWCfIece+cR816unHPzt3d7JSkmO0z5/oYVLT/56pmT9kzaJk29iZNnvUdR/+pnH7DZFWn3R7Nxdphy8dtL1fIWlYp01Yzdz504ZdZBUbly6TWn7PZcs7b11+P5nTj14n2javXa3kXlxaNGlT9WLZd/Vqr271+qRutEUbTq4nL5gBtOnfR03H7nybM+3Bf1PXXdaZ/5Y/zbxCMveZOq1WsWLlq4301n7H0Tv28/5aKdRkTdO1bL/X+h/6i3b0uN6P5ypVp+qq9cfahSLVWrpej1ZZVGqqQN+qTLStXFL5XL3QdXyzpts/XHnXf735/9aHelsnVJUbk/0rOS9lSptFJv/+KHR5a7N4xK6u+Xnq1UoycW91cf7+6u7BFF1eeqUfRYuVRZrxRpbDXqv6lSLr8lUvmfKkXrR5EeKZe0IIqiqFQul+Yv98CuN/f0QAJSlRz3B2TkMRv8BklXSLpF0r2SRkm6WxLk5FuSYu3Me80PBlMR7+tjJB0vabykNSXtYxob3vO8y880k9Jaki6X9CVrD3n/qiTm9wxJ99jff00FRg6VkxKXbSTtL+mTklhoj9jYK0h6QNLJxuhyEKk9u3CNS9i8ZNm4TlxewzwLfmEzlq51J8jnxMWJyxAgLmzMN0iCZHxK0qa2UzHZTJZ0Vw1xWU/Sw5JqictmZjHZXNJv7Rp94SPzc7vGO/1a067EpAbtChaX35h56k7TxGCBKbwkJS6xYBCXPxjjQkWFR3NIwclnK0mRJNS32M6QiX8D6mCFtu+RdIe1r6/b7HoquZ24pIJrqcpZXmxOXJy4hK26JfFz4uLEZQgQl40l8R/+Lbx/R5r7xvamJbnRfE8gFLxb0cbUEpfYOfcdpqXhGooI3u3vlvQF2zU7GTnCVASpgbjwzkdbebVpdvCp6QjiMs5UUNzMAZL+R9Jtkq7P+IAB9M8Z8TjBGB/qJ0D6yQCEJB4qbgsLbGRzbHY9lchOXFLB5cTFTUVhCybn1hBnJy5OXIYAccG3BZ8S/FxOlUSIjnMk/VPSLma+QWOCOQiTEcSklrjQ7htmGoKscET7NHuX7y4JjcwsSfuZIoE+dpBeNb1hHoIIUR+NC3KcsizcRNJoXKjLTX/cnimfl4QqCoaWh48LYOH08yfrH5bHmKi0IDfY7AAWsDBb/dvGjlVkEJUekxHZ+ptcx0HtIEm0P0t69YgXqraGjmtOXMLeJK5xKR6/sBHTtc4yv+lGCKvtxMV9XIaIjwsbgePQfLDHBSvIHmYW2kvSBXbhh/buRJOCMgAfl9ryGdPcbGEKiPgaTr/0x2EDiMlhdoFDObtKwpcP59+dJR0t6aSw3Zm+dRrigj8LDkCQghUl4biDs84cY2nxSaP0UvynBRqWr5kpir8hMhVz/tnRgu3AFL9oHtGwTMBDpYXaDMYJgEwoLBET0mDX6RvSAjFiMvDTGZCAOXHJOq3/aZflxeamotcwz4Jf2Iyla90J8rnGxTUuQ0DjEm/MEZJWMt9SiERtITgd7hYDORFznXd/7Uc678PR1kn9YQgC3eHGUT8OygLGQElQaElDXGKP5fPNtsbNQ2TQwrxd0pOBkjciLpxN5xgdR7HeJemN5gGNpzNskrE/ZMF40JaghUEjBAFBrTXY9QmmaeE4N5OCZzSOTg2PdTtxCZvdLC82Jy5OXMJW3ZL4OXFx4jKEiEteW6Mj+0lDXLjBehUVv+Fl/MEcThXVEpc4ZswRRiQwAUEq0KRw5nxVIysxMeH8OsQFRsixxdXN7jfY9Q+YmgvT1BLEZebMmcdGUcSYSxSPnJt9jTtxyY5dVo1V2IjpWmeZ33QjhNV2U5GbioaQqShsMwyB1mmJC7dMsDmcddCCcGacI1SJAzoNglkj4gIZQQOCze1QO3qNzY1z5Gh+QojLYlONYSIi+iDmJjcVtWhRZ3mxucbFNS55LUcnLk5cnLjktZuWfT9pics65o18oiROAeF5HDv4hN4Nx6rQnOBoFGtcYi0KYxDJjwJhwXuaI2H4vOBEVKtxIZLfymZKou5A14koSLtPW7+PSsJ8hEPSUsVNRWHT68SlePzCRkzXOsv8phshrLYTFycuTlzC9lA7tU5DXKjLGfE3GWnhpU/BWzkPH5dmuGAiQrPD2XX8awZLKNWsL65vYpEGb5W0hiSiEHK2vWE4ZycuSSAduE6WF5trXFzjErbqlsTPfVzcx8V9XPLaUcu2nzTEJT5VRJQ9Tvng7/I+Sb+yf6Mp6aSyvqSH7OTRRyVtWXckbIl7ceISNrVOXIrHL2zEdK2zzG+6EcJqu8bFNS6ucQnbQ+3UOg1xiU8VcQwZ0kJoYY4Tk4OCADf83WmFI2CrSZprEQEHlN+JS9jUZnmxucbFNS5hq841Lp6raMjlKsprS3R0P2mICzfKSZtj7Y7xJYkDzwzoG9LR6NQI78QlbCazEBfPDu3EJWzVLUVcPDu0Z4fu9OzQ2mXqJaTIaVqunLF7o/c7VhKsJ7hd0A/xYAi+SkTcZodssFLgovHfJJp1QtA3p3QXNRUusEJa4sJw5AfihgnNj9MsviED3UigeO3T3IlL2FxkIS5hI6Zr7fKlw6u+tuPn+IUhENZ6OK2/QOJCsFWyQuPyQQA7ArZCXoiL1jBqfM3MEPaEuGp/H2C2SMh4qfm9hk1ok9ZpiQtOsZCVj1jCJTJFf98Cv7VU0GXduROXsBkYTg+WMKQat3b8wlB1/By/MATCWue5/gKJS3wjBGp9vbl78BsR6EnAGPuukmaHnESzJX3Mkh5vazmLyE69tQV/5dDM+y1R44EWTZ+QKY2uEzvtEgtvguaGU8Fkr05d0hIXcvocXDfKoMeIU0vUpg2cuIRNTJ4bN0wSJwaOXysQCOvT94fjlxSBnIhLHKj16zYuCRfxWeXgDTHOCPaKhoWwI2hliFyP0oIDLSRXnmGpfj4saU1zIbnY8v9t0+D6dywOG3mTVpFExPrMvrFpiAt2MTJC3iyJiLYwJuKpXGFM7c9Jge/Eek5cwmbNH8yOXxgCYa19/Tl+YQiEtc5z/bWIuKBhIQM0wV4p77TM0WhPCIGCiSkmLhtI+of5xRDb7UqrH8dTIw1P/fXjJeEjE/vFkosQjUum08hpiAt1MQ3h00K0WQpxT4jtQhyX58Omtr1bO3EJm588N26YJK5xcfxagUBYn74/HL+kCLSIuHzWNCIkS8Yk9GNJUyQ9IekQywFIsFY0LhAX/n+7/ftnppE511LvQFzqr5M7EOUHWh1Ky4kLHsdH2WDc3LqSzjYHHOxhFJgUgeiGbHHiEja1/mB2/MIQCGvt68/xC0MgrHWe66+FxCUmG2hfOIBzgZGYY8yPpVbjkpa47G3R7zeUhI/MY602FcXxW942wNThvDNgjp+w6W6f1mmIy/yeld9QHlkZNerI5zI5HmW567w2xryecWv0S6Nf1/P8g1nkGKhNXvLlKVNtX+0m34ITV1prUTSyvNL0Z9ngajf56uehFfJFUumV48dtNeaY5zmq+d8y/8Txmz/aN/uuCT1Nj2/+t00r5MtzLQ5F+eYeP36zf1dn37NOjxbO6xm7S9Svx0ef8OJfwC3q0agXyiu/qzsqjS+Vuh8ec8wzf0uC5wvHjl2z3NXdvdL02Y/E9RecPG7r2e8/5+aVrtl/06irb/RKx75EUFTG6JpbWnlaNapeMLZnDqYLPT1t1FpjRo7erFQt3Rx1act5c8pXLz+m+omuxQvmLR41+okVj34Gd4glypwTxq/X3b9obP+I7rmvOyrbczHP+c2JuODTgm9K7ONSq3HBn4X4bBRyEeLIiz8KlpUHJL25RjuD9gVNC34ttRoX6qG9qb3+xRqNC33TT6b3TFJTEcelBqvb8nPbSRZ1K+ukIi4nrrZpNaquNHr6c9e2UqZWvHhfOn6V93ZVusevMO2Zq/KUPc+Nm6dccV/tJt/Lx4/bWpWu8phpz/x6uBKXSz+pys4bjT9qhWmzyYv23/LKieO/Or8vOmd8z3OvJF0L7Ta/9XIPRfleOWm1w3orveevPPXFl145cdXTVY3+MPqY53Hg1JypK44dMbr7s/2qrCdVbx1z9HMkzG1a5p88fotqpOVHT5uNy8KrZd4Jq02b+66DThz9p28epKi6ypjpz7+6Xp48TMutvMqqt5b7oiOW63ke30zNPX7sluVy996q6oyorAPVV5peqVTPjErRXJW67l1h2jPfqhfilZPGb1fti9aslMvPrjD9Wfw5Upc85zcn4tLsHjhBjLWF4KzdpoHpa9ZokOucYNrKEiOXJf1G0kRLopy626TEJe6Y406wpNp8PiPNrpX4IZJayjZo4MQlbBLy3LhhkjRu3W7yOXGRnLi0YqVn6zPL/nDi8hrWWfAbaKYKIi7ZFsrArfBvwSeGguPvlyQtRRKTDpqWuJDBmSAztaWZqQj/F856x6on2q4uaT27kfoogNSH5XEk642S7q0bj+h82NdeaHKTsEWC5d1hbDEpJg3rOXEJgm9YmjpCEHPi4sQlZP3k3TbLi9eJS2uIS95zW3B/BL9Dc9Ps/T2oWGmJS63JqF/SDpKI7YKPC0SjUeHk0dV2pGqBVeBIFO1x+qkvXzD72ePGzH5ZVwFVHaeaYvZW354jWZwZJ7ofTkacQW+Y8TnNhDlxSYPW0nWzPPjCRkzXut3kc+LixCXdCm5t7Sz7w4mLE5dWrcq0xAUtRlxgTQSnudtICVqQRgV71q2SvmyJGGNnXwLXQHggIpxIOtTCDu9lGhXSCKAx4agVEfc4il3rKIRzFkFydpeEP8b+kt5qx7UJire5pE+ZMxABc+Kz5hzxwiEJbQ7/Rhu0h5Gw6wcC2olL2BLM8uALGzFd63aTz4mLE5d0K7i1tbPsDycuTlxatSrTEpcspiJkJ0ofdi2IAh7LF0na1ML9cjwK7QumJOpAaCBBL1mAO5y58DjfQhL+NASswcMZ0jTGgtjgrbyckRQcYk+XhGf5L6yP2yyyH46OkBzSFNAPHs2Mif2No194TTd0QHLiErYEszz4wkZM17rd5HPi4sQl3Qpube0s+8OJixOXVq3KtMTlcCMNccwWCAeBZNCoDFbwKOaYGTFgppspiAA3/I2vC+YkSA0amJi4vGj/xseFHAqn2ABx4Jq/GglCc4LfzeXm7BNfv888mA+zxE8QJkxGjEG44iMlcSSMiH54TdMfZIpxlypOXMKWYJYHX9iI6Vq3m3xOXJy4pFvBra2dZX84cWkNcZl30uqJskOvMO2ZgbJDkyiRwHJxwVJBXd6Z9QUFAYoD3rP1maGxwGDZ4NhzaGbpVAs4DXHheBQveDQhEBFuiGi5EJJmQDIOoYTPlHSipJ3tqNWTkqaavwrEhIh79cSFMMSjG0Tcow+IBuYizD2rmqalEXE5x/IuICdaFcxK+MEw1kxJmK9IWfAqcZk5c+axURT11CM5derURHjN9+PQSy3CLA++VCs5sHK7yefExYlL4JLOtXmW/eHEpS2Jy+ctqBxWEAquHBAP0vgsES/JyAwWCgLPYRmpzwwNH3jKXDQaOduubT6wJGXG3WOwzNKp1muiF7EkTvJwc18xMwsmFryDKWgsjk0wKmGEOXuPmWY/03zgpEvmSXxQMBU10rigSeG/CWYOIjkTwXIgQPjFEOgG0oNPDOGEyZ3ENQIdERuA9N33WIAcQKbuP82U1JC4NLoX17gkmOFBqmR58IWNmK51u8nnxMWJS7oV3NraWfaHE5e2JC584GNdiIPGcor3OiMmB9RlhOYADIdbJpuiAiUCbQmLwrv2hxaLhb44KYw/KoFqsWjwbsdtAxcP3te8n2nPe5mI+/TL+3h7O0iDAgNXEBQGvLchWPMGWtVJiAus6i7zBdnStBuwMIQh8h43hRYD7clgBa0IBALSgqPtWEn4nnCj/M2Noz0hHgxkBM0OGhhSa6MVgRHGBdMRvik/sh/ON18WAEQTg/MtGiGSOOF4S8bLOHDQb63OGtb/qaZxwcmYhFJuKvIAdK19CyTo3YmLE5cEy6SwKk5c2icAXaCpiHf+JUY6sIJAVsjWjHKgUUbo+vxDK0oi7xBcANLBu5b3LpaO48x3FCIEEcGSgV8sig+0LviuYrkhfssm5iJCO5I48g5HoQDhgdQgC7ygYUlCXGKGNsk64vgz5AC7GCYjQilnTU9dMTMQJIUC4xooCi9EB9+aWudZyBC2tYUGCDa4gfrBAZf+M50fd41L2DMyy4MvbMR0rdtNPicuTlzSreDW1s6yP1zj0pYaF4TC+oFGg6SJxDnDFISyoFFG6HrigjKBECVYPmp9Q/F3QYGBzyq5DTnRO8cIyftrMksfXJcV+idmtcF/FiXIvy3FAGQoziS91OJOQlww46DS2cyOPv/JhEbdQxTd+wOIS2t3W469O3EJAzPLgy9sxHSt200+Jy5OXNKt4NbWzrI/nLi0LXHhI55DL/h6ov2AcEAuGmWEJi4ahCLO+AwpOVoSPCD2DcUcdJn1+X9m4cBsBAmJM0fHCRohLlhQaA//wCxE//TL/1Es4H+DBSbOo5SJuMCqMK+gHcFkRIA4/EbwQMb8guOsJ1msgdadc5d+iGZ58LX2Ubxk7+0mnxMXJy5Frv9mY2XZH05c2pa4IBi+JPim4kqBuWagjND1Gpd17H3P6WCsLuSAwi2Dk8W4fXDSGN+Yg8ztA7MU19HuYCpay9oRfJYs0bhokIgRt45ciQs3WZstEv+Wj9oN45wDE8uUeKrZZmmn66k0Lp4deqmpy/LgK3L+200+zw796lFFzw5d5CYYZKws+8OzQ7c1ccFPFLKBf8kzde/42kCv+MDEGhfMSTjXEg8N9xAK1hgIC76i1CUFEL4pWGrgBpCYWt/V+vYczkFbEzsBo3HBLWXlwXIZJTEVxejX+6PgX4I2BnXQkC9piMuyACPLg6VIOV2+MLQdP8cvDIGw1r7+2ge/QOfcwW4kTUZoiEW9v2itH2rsrwpvoKCJqS20x591wJNDgwmahriEzVyHt3biEjaB/uBz/MIQCGvt68/xC0MgrHWe66+FxCXsJgts7cQlIdhOXBICNUC1PDdumCSNW7t8Yag6fo5fGAJhrX39heHXaa2duCScsbPOOmvx/Pnza5NMJmzp1RwBR8ARcASGMwLjxo1buO+++5JPz0sOCDhxSQhiu2tcXL6EEzlANcfP8QtDIKy1rz/HLwyB4dXaiUvC+fYHS0KgnBiEAeX4OX4tQSCsU3/+DW38wu6u+NZOXBJi7hs3IVD+4g0DyvFz/FqCQFin/vwb2viF3V3xrZ24JMTcN25CoPzFGwaU4+f4tQSBsE79+Te08Qu7u+JbO3FJiPnMmTOPnTJlCkmk2rK4fGHT4vg5fmEIhLX29ef4hSEwvFo7cRle8+136wg4Ao6AI+AIdDQCTlw6evpceEfAEXAEHAFHYHgh4MQl/XyvKol0B49L6mvQfIykNSQ9Lenl9N0natFMBjoh5gxy1odlTjRAYKVm8iEb6c8XGo6Bw6Vu3kw+4i2Qa4P5ezZ17+ENmskXj/B6Sx2/IHzIVD00k491Fz9bIklzU/UeXrmZfIxAjpZeSf8IHy51D4PJR9h1UqnUFsKiN3rWpB44YYNm+LF/17V5Jc9N0aWZfCMkvdGS/LVy/yIHKW+qDQAAIxIKvrKMniFFz0mh4zlxSQf3REk/kHSxpA9Lere9OOJeyJz5qCWcIjHVhpbqO90og9duJgOtV5T0SUmrSTopz8ET9NVMPvJZkFH0NiMHbHwyjtfnskgwVKYqzeRjDn8v6UJJO9n/Z2QaKVujZvLFvZL2/V+SNjN5s42WvlUz+Uh1/zfL+gppecxS1jd6uKcfvXmLZvLxzLvAuiGzPS8Yksa2y/o7TNIONURlZ0uA96fmt55LjWb48bJm//5K0jZtuD/IOHyLpKslcS9HSfpJLsi81klMjBiD/Vf/cQj5vF7SnyW9X9IJksiS7CUnBJy4JAcyfiCzUMmAeYh9GX29pgvSg59jG4eM2mTP5v95PbSTyEByq7Ml7SfpS4Nl2Ex+64lrJpEPufgaIq15WdI9RrIeTDxK9opJ5INE8RX5S0mQLAjWOwt6sSWRj7sHN14cPBTJ0npXdkhStUwiHy8OXhaktYe4FFmSyAehf4etP55/kASy5M4vQNAk8tWKsYd9fJxegGwMkUQ+ZILc80HE/mDtvdW0V60WM4l8PFcgeexf6j9k+/fFHIXb1sgIWqe3SKrvG4z4HVlWsI/ZDZaB5jHHW26vrpy4JJ8PHsjX1bzEtpC0vaRjrQvUu7+VxBfSc7ap+TJBK5OXmreZDLV383FJa0uqJVbJ7zZbzSTyYUbgxTtHEpv5blOp5vlgGUj6JPKRzZSv7/+VxAMIVS/asyJKEvmQgwfiH2o0Qvy7iJJEPua0loTuIumqIoSTlES+T0g6XxImXcoHJf26jeSLReFe2Bvs4aJMgUnwQ+PCh9uRhh3PuJPbCL9DTcsHceFZg/aPD4+8ny887/8qadMGfZ8i6QpJt5vJ9EZJnzYNaUFQDe1hnLgkn1++Kr5rX7loUPj7i6Z5oReY9f01m4S/+ZJjYS9OPsygNZvJUNt4T0mYE4okLknlY93tI+k8STsaIcwJotzww3zwMfu65AsLf5xWlyT4bS2JuUUzhIbvG0ZiWi0b/SeRD0L/Hknfsa/OG4ygFuHnkkQ+NC683D4iabykO8zfio+NVpck8sUynCnpdwWbGJLIhwYZU8yBprl6uyTIYLvsD+T7o6TDJe0radwAWpHQuUabgymoEXG5UhKhM/ig4FmHmQiihxuBlxwQcOKSHESICF9mm5sGZZI54cbEACyxpfJQxPdgfUk/z9lU1EyGZU1cksiHKQszB87LED98XIoqSeRDY4b5CvnQDOHvArkqwsm5mXysMb7kkJGvXl68FLR6PKxbXZrJx/jY/3F6pSDvTUZSi3hoJ5Hvc5LwbfmmyVgk+UsiH2Lho4bWqmjzQhL5+Hi7TNI1tj9iLXM77I94/YPbRpKelPTTFmlcBiMumMPx7ULTMli9Vu/XIdu/E5fkU8sCRHWLpoCvNL6I0KjgoMVGgX2zqXngQGZ2NecwvozzKklkiMdaFhqXJPJhwvqspN1NUFSuL+UFUJN+ksjHvKJePlcSp3awlzeyY7dC5CTy4VcAZpizLpV0hiS+8IrwJ0ki33T7+j7NTDfsmaJewEnk207S3qa6j08Hcvojb1NCo/WRRD7aobVCo4F5oYh5jWVNIh9mSkzfmIdYi/e2iBhkxa+WmLYSx0aEhMMYf5f0IfuA/YCdvrpW0oQCTX6teDa1VZ9OXNJNx8ZGXmj1fVPXc6yXLxDsqCubx/3bTC1Yf+oo3WiNazeTIT4dgfqWB3KRpiIkbibfEZKwAccFzUFRxCCJfDge8hUZazNQNzPXRZVm+NWefoEoY5Ip6sRJEvwge5gScFykYG77RVHgJVh/mHm/LekAk2kvOxlTlIhJ5vfzkvC1+l5RQtWM00y+2mcczYo+ANBMvtr1x7MFMtGKI9sQFz5gcZCH9PI3ITIwt/E3flSQKEorTpcug6XRPkM6cUk/Fxx1Q9XMpmhUeOCwuVm8eTnl1o/TTIb0d5Vvi/UZg18AAANJSURBVE6XjzlEXb9IEjE0ii6djh948TWOU2kRvg9Z9gfaFkigz+/SqzvJ+mN/gB/O60WXZvKxf1exUzzLYv3FePDxw2m1ZYFR0XNS6HhOXAqF2wdzBBwBR8ARcAQcgRAEnLiEoOdtHQFHwBFwBBwBR6BQBJy4FAq3D+YIOAKOgCPgCDgCIQg4cQlBz9s6Ao6AI+AIOAKOQKEIOHEpFG4fzBFwBBwBR8ARcARCEHDiEoKet3UEHAFHwBFwBByBQhFw4lIo3D6YI+AIOAKOgCPgCIQg4MQlBD1v6wgMbQQIrvhw3S2Sd4XouPxOdGZyJRUZQHBoI+535wg4Ak0RcOLSFCKv4AgMWwTiTM/kQbreMhWTqiGOdkyEaJIVHu9BtobtGvEbdwQKR8CJS+GQ+4COQMcgEBMXksbF4efJrkyOJHJOkSAT4kL+GqKDftAyfhPuf6ZpYyA5u0k6W9Jypq0hwWFt6oKOAcQFdQQcgWWPgBOXZT8HLoEj0K4IxMSlNh/N2pb5lt+elfQtMxXxO5oZMqKTRR1ycp4lgLzcctqQTPNCSYdLOr1db9rlcgQcgfZGwIlLe8+PS+cILEsE0hCXnYyMkAX3OUt2iOxkOSajOmTlZSMzv5FE5lzXuizL2fWxHYEORcCJS4dOnIvtCBSAQCNTEQ65F0na1hIpxhoXzEH4utBmriSy9JYlHWemoilGXPgNsxIZo6MC7sGHcAQcgSGGgBOXITahfjuOQI4IxMTlOkk/lITvykmSnpK0kWlNYuKysaQbJX1F0h2SbpN0sf3/25J2MNPSGZJukdSTo5zelSPgCAwjBJy4DKPJ9lt1BFIisL6kh+ra4Jh7iJGQT9T4uMwxjcvRVv/3knYx7copkg6r+X1Xa59SHK/uCDgCjoDkxMVXgSPgCOSJwFgzEXHiqLaMkdQt6YU8B/O+HAFHYPgh4MRl+M2537Ej4Ag4Ao6AI9CxCDhx6dipc8EdAUfAEXAEHIHhh4ATl+E3537HjoAj4Ag4Ao5AxyLgxKVjp84FdwQcAUfAEXAEhh8CTlyG35z7HTsCjoAj4Ag4Ah2LgBOXjp06F9wRcAQcAUfAERh+CDhxGX5z7nfsCDgCjoAj4Ah0LAL/D5dtnvwpp4ooAAAAAElFTkSuQmCC", | |
"text/plain": [ | |
"<VegaLite 2 object>\n", | |
"\n", | |
"If you see this message, it means the renderer has not been properly enabled\n", | |
"for the frontend that you are using. For more information, see\n", | |
"https://altair-viz.github.io/user_guide/troubleshooting.html\n" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"source = metrics_df\n", | |
"alt.Chart(source).mark_tick().encode(\n", | |
" x='Dice',\n", | |
" y='Subset',\n", | |
" color='Subset',\n", | |
" tooltip=['Name', 'Dice']\n", | |
").configure_mark(\n", | |
" opacity=0.5,\n", | |
").interactive()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Looks like we're doing quite well with most of the samples, but very bad with some of them. Let's try to figure out what's going on." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dataset = ResectionDataset('dataset')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [], | |
"source": [ | |
"N = 8 # samples to show\n", | |
"training_metrics = metrics_df[metrics_df.Subset == TRAINING]\n", | |
"sorted_training_metrics = training_metrics.sort_values(by='Dice')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"rm1210\n", | |
"rm1249\n", | |
"rm1179\n", | |
"rm1306\n", | |
"rm1319\n", | |
"rm1356\n", | |
"rm1001\n", | |
"rm0803\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAIZCAYAAABkouTKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsfXl0HMW1/jebZl8kzWizZEteJHnDm8BgbIiDiQmQGAMB+wRjhxMSCPDgEAKE934kvJCVEHb75RGysZiw8wIBvODw2LxhO943WZIly1pnNPuMZunfH3q3qGl1jxYvkuz6ztGR1F1dXd1ddet+9966pZEkSYKAgICAgICAgICAgMBZBu1QN0BAQEBAQEBAQEBAQGAoIMiQgICAgICAgICAgMBZCUGGBAQEBAQEBAQEBATOSggyJCAgICAgICAgICBwVkKQIQEBAQEBAQEBAQGBsxKCDAkICAgICAgICAgInJUQZEhAQEBAQEBAQEBA4KyEIEMCAgICAgICAgICAmclBBkSEBAQEBAQEBAQEDgrIciQgICAgICAgICAgMBZCUGGBAQEBAQEBAQEBATOSggyJCAgICAgICAgICBwVkKQIQEBAQEBAQEBAQGBsxKCDAkICAgIDGvcc889qKqqwsqVK09qvRdddBGqqqqwdevWk1rvqcJnn32GqqoqXHrppUPdFAEBAYEzBoIMCQgInLHo7OxEVVUVqqqqsH79etVyP/nJT1i5NWvWqJb72c9+hqqqKlx55ZWnorknFX/605/w1FNPobm5edB1vPbaa3jqqaewf//+k9gyAQEBAQGB4QNBhgQEBM5Y5OfnY+zYsQCALVu2qJbjPQPZytG5c8899yS18NThT3/6E55++ukTIkOvv/46nn76aRw4cOAktmzgKCgoQEVFBXJzc09qvWPGjEFFRQXMZvNJrfdUwWw2o6KiAqNHjx7qpggICAicMdAPdQMEBAQETiXOPfdcHDlyRJXk+Hw+1NbWwu12o6OjQzVkKhAI4NChQ6xOgdOHe++9F/fee+9Jr/f5558/6XWeSsyYMQPvv//+UDdDQEBA4IyC8AwJCAic0SDism/fPoTD4V7nv/jiC0iShIsuuggVFRXYv38/QqFQr3Jbt25FOp3OqFNAQEBAQEBgZEOQIQEBgTMa5513HgAglUph27Ztvc6TJ6impgazZs1COp3GF198oVquvLwcHo+n1/l4PI7nnnsO1157LWbNmoVzzjkHl112GX71q1+ho6NDsW2vvvoqqqqqsGLFCgDAW2+9hW9/+9uYPXs2qqqqsGHDBlZ248aNuOOOOzBv3jxMmTIFNTU1+NrXvobbbrsNr7zyCiRJAgA89thjqKqqQmtrKwDg29/+NlsPxd8rG6hd9L7uvffejDr4Bfz9fYZUKoXPP/8cP/vZz7B48WLMmTMHU6ZMwdy5c3H77bdj06ZNqu1RS6DQ0NCAqqoqTJo0CQCwf/9+3HnnnZgzZw6mTp2Kr3/961i1ahW6u7sV61VLoCB/pnXr1mHZsmWoqanBjBkzcP311+Mf//hH1nfY3NyMH//4x5g7dy6mTp2KBQsW4Fe/+hUCgUCv+vuLbAkUli5diqqqKrz99tsIBoP49a9/jUsuuQTnnHMOFixYgKeeeirjPXz66af4zne+g9mzZ2P69OlYtmyZYr8HTuzbEV5//XVce+21mD59Os477zwsX74cH330EYC+E1mEQiGsXLkSV199NRtbCxcuxMMPP8z6uRzpdBqvv/46li1bhtmzZ2Py5Mk4//zzccUVV+CBBx7AJ5980mebBQQEzg6IMDkBAYEzGoWFhSgrK0NjYyO2bt2KefPmZZyn8LmamhpotVq89tpr2Lp1Ky6++OKMcqSoEbni0dnZiZtuuoklGsjJyYHBYEBdXR3q6urw5ptv4tlnn8U555yj2s6f/vSnWL16NbRaLex2OzQaDTv30ksv4aGHHmL/m81mpFIpNDQ0oKGhAevWrcPVV18NvV4Pq9UKt9sNr9eLdDoNl8sFvf5LUe90Ovt8ZyaTCW63G36/H4lEAna7HUajkZ3Py8sb8DMcPHgwQ/mnd9Te3o61a9di7dq1uOeee3DzzTf32T4lfPTRR7jjjjsQj8dht9uRTCZx5MgRPP7449i3bx+efPLJQdX75JNP4plnnoFWq4XVakUkEsGOHTuwY8cOeL1e3HDDDb2u2bdvH2688UYEAgEAgMViQVtbG/70pz9hw4YNuO666wbVlv7A7/fj2muvRX19PSwWC9LpNBobG/H0009j//79eOaZZ/D888/j5z//OTQaDSwWC6LRKDZv3owVK1bg+eefx/Tp0zPqPJFvJ0kSHnjgAbzxxhsAAK1WC4PBgE2bNmHjxo34f//v/2V9nkOHDuHmm2/G8ePHAQB6vR45OTmor69HfX09/v73v+P3v/99rzbffffdeO+999j/drsdoVAIPp8Phw8fRl1dHebOnTugdysgIHCGQhIQEBA4w3H//fdLlZWV0tKlSzOOh0IhadKkSdKFF14oSZIkNTQ0SJWVldL111+fUS4SiUiTJ0+WKisrpbfeeqtX/StWrJAqKyul8847T3r//felZDIpSZIk/etf/5KuuOIKqbKyUpo7d67k8/kyrnvllVekyspKafr06VJ1dbW0cuVKKRAISJIkSYFAQOrs7JRCoZA0bdo0qbKyUvqP//gP6fjx4+x6n88n/fOf/5Tuuusudk/CvHnzpMrKSmnLli2DfGuStGTJEtVnHsgzSJIkHT58WLrrrrukDRs2SB0dHVI6nZYkSZLa29ulp556Spo4caJUXV0t7dq1q9c9fvjDH0qVlZXSM888k3G8vr5eqqyslKqqqqRZs2ZJd999t9TU1CRJUs+3XblypVRZWSlVVlZKH3/8ca961d4RPVNNTY00ceJEadWqVeyZ2trapNtuu02qrKyUpk2bJvn9/oxrY7GYtGDBAqmyslJauHChtG3bNkmSJCmVSkkbNmyQ5syZI9XU1EiVlZXS8uXLVd+rEj799FOpsrJSWrBgQa9z9K1mzZolff3rX5e++OILSZIkKR6PS6tXr5YmTpzI3uHkyZOlxx9/nLW9sbFR+ta3vqXY9yXpxL7d3/72N/YNHnvsMfYe29vbpfvvv1+aPHmydM455yh+h66uLuniiy+WKisrpTvuuEPat28f6+dHjx6V7r77bqmyslK68MILpWAwyK777LPPpMrKSmnixInSX//6V3YunU5LLS0t0muvvSb95je/GdC7FxAQOHMhwuQEBATOeNAan127diEej7Pj27dvRzKZxKxZswAAo0ePhsfjwe7duxGLxTLKJRIJAL09Qxs3bsRnn30GoCdEbeHChdDpdACAc845B3/84x9ht9vR1taGF154QbF9kUgEt9xyC2699VbY7XYAPZbsvLw8HDhwANFoFDabDQ899BCKiorYdS6XCxdffDEee+wxds+hQrZnAIBx48bhsccew1e+8hXk5+czr5Hb7cbtt9+OW265Bel0Gi+//PKA7y1JEmbMmIFHH30Uo0aNAgBYrVbceuutzBP4wQcfDLjeQCCAu+66C7fccgt7Jo/Hg0ceeQQulwvRaJSFehHefvttHD16FCaTCX/4wx8wY8YMAD0eka985St48sknEQwGB9yW/iIWi+H3v/89Zs6cCaDHi7NkyRJ84xvfAAA88cQTWLx4Me688044HA4AQGlpKR599FEAPX1dHno22G+XTqdZaOPSpUtx1113sffodrvxi1/8ArNnz84YazyeffZZHD9+HAsXLsQTTzyB6upq1s/Lysrw29/+FnPnzkV7eztee+01dt2//vUvAD3hd8uWLYPNZgMAaDQaFBYW4pprrsGPfvSjwbxeAQGBMxCCDAkICJzxIDLU3d3NFCXgy9A3PiHCrFmzkEgkFMuVlpaiuLg4o25SsqdPn445c+b0undBQQELi1LLBKbX67F8+XLFc6TIJRIJdHV1ZXnKoUW2Z+gP5s+fDwCK67r6g+9973uKxxcsWAAALBPgQGA2m3HjjTcqHr/wwgsV66V9qi6//HKUlpb2unbWrFmMfJ8KXH755SgrK+t1/IILLmB/K72rsrIy1t6Bviu1b7dr1y4W3vbd736313UajUbxOOGtt94CACxfvjwj5JK//oorrgAAZpAAvhwzHR0dLOmJgICAgBrEmiEBAYEzHmVlZSgqKkJLSwu2bNnCvDt88gTCrFmz8P7772PLli2YPXs2gOz7C+3duxcAWFklnH/++XjuuedQW1uLeDyesf4GACoqKuByuRSvraioYGuerr/+etxwww2YN28e2z9puCDbMxCi0ShefvllrF+/HrW1tQgEAkgmkxll2traBnX/KVOmKB4vLCwE0LOWZqCYMGECTCbTgOrdt28fADDPjBJqampUkwWcKCorKxWP5+fnA+hZv6REloAeb01TUxNb68RjMN+OxkZRUZEiMQR63pNOp0Mqlco43tjYiPb2dgDAHXfcoUiGADCPLZEuAJgzZw4MBgN27dqF5cuX41vf+hbOP/98FBQUKNYhICBwdkOQIQEBgbMCNTU1eOedd5gS2t3djZ07d8Jut2cokESM5OUAZTLk9XoBfKkcK4FC29LpNLq6unqVzbaZqMFgwKOPPorbbrsNR48exS9+8QsAPSFy559/Pq666ipmmR9K9LUhamtrK5YtW4aGhgZ2zGKxwOFwQKvVIpVKwefzIRqNDvjeOp1OdeNUIp5yxb0/sFqtqudycnIU6yXvXTbF+1Qq5UqZDgGw8DK32616rVbbEyxCBIMw2G/n8/mytgno+T4Oh4OVJRARAnoSlPQFPtRu7NixePDBB/Hwww9j8+bN2Lx5M4Aez+68efNw/fXXY+LEiX3WKSAgcHZAkCEBAYGzAueddx7eeecd7NixA8lkEjt37kQ8Hsf555/PlEAAqKqqgs1mw44dO5BIJLBr1y6maCllkiOopW/uD/pa7zNt2jSsXbsWa9aswaeffoovvvgCTU1NeP/99/H+++9j/vz5WLlyZcZznG709QwPP/wwGhoaMHr0aNx3330477zz2JoVADhy5Ai+/vWvsxThAsMHg/12J/It+fC2HTt2qJJdNVx33XWYP38+3n33XWzatAnbtm1DU1MTVq9ejZdffhl33323amilgIDA2QWxZkhAQOCsAHl8IpEI9uzZw/ZU4UPkgB6lfvr06YhGo9i7dy8rRym65aAEAceOHVO9d0tLC4Aey3tfoWRqMJvNWLRoEX7zm99g/fr1WLduHW6++WZoNBps2LABr7zyyqDqPR2Ix+Nsv6Hf/e53WLBgQYYyDfTP+j8SQN83W7jfYEMBhwIn8u1obPBeHqX6lcLyeA/W4cOHB9xuoMcjtWLFCqxatQobN27EK6+8gq9+9auQJAmPP/74oOsVEBA4syDIkICAwFmBcePGMQVry5YtGfsLyUEL3PlySiFyANiGnxSKo4SNGzeyNsjXCw0WZWVluOeee/C1r32NtZXHyfASUR0n6q3p7OxkoVdq4Un8AviRDHq+bIkg1DY3HY44kW9HY6OlpUXVWLB9+/Ze64UAYMyYMSz0cu3atQNutxwajQbTpk3DU089BY/Hg1QqNaK+g4CAwKmDIEMCAgJnDYjkbN68Gdu3b4fRaFRceC8vB6iHyC1cuBAAcODAAWZB59HW1sa8NpdddtmA29xX+B0t8JeXo4xaSlb3/oLqONFU0FQPoJyprKWlBS+99NIJ3WO44NJLLwUAvPfee2hubu51fseOHacsecKpwIl8u6lTp7L1cn/84x8Vyzz33HOKxzUaDRYvXgwAeP7553HkyBHVNkqSlNFHs40ZvV7PNiE+kdBWAQGBMweCDAkICJw1IELz8ccfIxQKYdq0aWwhPI9p06bBYDDg448/ZkqWkgcJ6MkURym177//fqxZs4ZZunfu3ImbbroJwWAQHo8HN9xww4Db/OGHH2LJkiV49dVXM5TraDSK1atX4x//+AcAYO7cuRnXjR8/HgDwzjvvZOytNBBQHWvWrDkhQuRwODB16lQAPe9o//79AHrWhXz66adYtmzZoOsebli0aBFKS0sRjUbx3e9+l6VoT6fT+Oijj3D77bezvXZGAk7k22m1Wtx6660AgBdeeAFPPfUUQqEQgB6P07//+7/j888/V83Y9/3vfx+jRo1CJBLBDTfcgLfeegvhcJidb25uxt/+9jdcddVV+PDDD9nxRx55BHfeeSfWrVuXkY6+vb0dDz30EI4fPw6tVquYCl9AQODsg0igICAgcNaACA0tzlbb78VkMmHy5MnYsWMHgJ60xOPGjVOt95FHHsFNN92EAwcO4I477oDRaIRer2eKm8vlwsqVKwe9Xmj79u3MQ2UymWA0GhEIBFj42vz583HttddmXHPttdfivffew7vvvos1a9YgPz8fOp0OM2fOxG9/+9t+3feqq67CX/7yF2zevBnnn38+8vPzodfrMWrUKDz//PMDeoYHHngAK1aswP79+7Fo0SJYLBakUinE43G4XC78/Oc/x2233TagOocjTCYTnnjiCaxYsQK1tbW47rrrYLFYkE6nEYvFMHbsWKxYsQKPPPKIIhEfjjiRb3f99ddj27ZtePvtt/H0009j1apVsNlszGP5k5/8BCtXrkQsFuv1PlwuF/74xz/illtuQV1dHe677z78+Mc/hsPhQCwWy8ggx6feTqVSLLkI0OPdkiQpg0jdfffdWce0gIDA2QPhGRIQEDhrUFVVlUFI1Lw9QCZRylYO6Fns/eqrr+JHP/oRJk+eDJ1Oh2QyifLycnznO9/Bu+++i3POOWdQbb7wwgvx61//GldddRUqKythMpkQDoeRm5uLuXPn4pFHHsGqVat6ZXObO3cunnzySZx77rkwmUxobW3FsWPH0NHR0e97T5gwAc899xzmzp0Lm82G9vZ2HDt2jCWEGAhmzpyJl19+GZdccgmcTieSySTcbjeWLFmCt99+GxMmTBhwncMVU6ZMwVtvvYXFixfD7XYjkUjA4/HgpptuwquvvsoU95HiITqRb6fRaPDrX/8aDz/8MKZMmQKDwQCgx6P67LPPYunSpcxbJE/MAADl5eV4++238eCDD7IsdqFQCDqdDtXV1Vi2bBlefPFFXHnlleyam266Cf/+7/+Or371qygvL4ckSeju7kZJSQmuuOIKvPTSS7j55ptP8lsSEBAYqdBIIo+pgICAgIDAacPdd9+Nd999F3feeSd+8IMfDHVzhhSUlttoNGLbtm1sPY+AgIDA6YLwDAkICAgICJwmNDQ0YN26dQB6vH5nO/7whz8A6FnPJ4iQgIDAUECQIQEBAQEBgZOINWvW4LHHHsPhw4dZWup4PI61a9di+fLliMfjmDVrFqZNmzbELT09uO+++7BmzRr4fD52rLGxEQ8++CBef/11AD2hbQICAgJDAREmJyAgICAgcBKxevVq/PSnPwXQk1GN1rkkk0kAQGlpKf785z8rbuJ7JuLCCy9ka9UsFguAns2PCbfffjvuuOOOIWmbgICAgO6nJLEFBAQEBAQEThgulwsWiwXJZBLJZBLBYBAmkwkTJkzA0qVL8ctf/hIej2eom3na4PF4oNfrkUwmEY1G0d3dDY/Hg7lz5+InP/kJrr766qFuooCAwFmMEe0Z+vvf/47Vq1fjwIEDSKfTqKiowDXXXIOlS5eelN3XBQQEBAQEBAQEBATOXIxYMvTQQw/hpZdegtFoxAUXXAC9Xo/PP/8c4XAYl156KZ544oleqWYFBAQEBAQEBAQEBAQIIzJ1ywcffICXXnoJHo8HL7zwAsrLywEAHR0duPHGG7F27Vq88MILWL58+dA2VEBAQEBAQEBAQEBg2GJExpL9/ve/BwDcc889jAgBPRsf0hKoZ599lu0yLyAgICAgICAgICAgIMeII0MtLS3Ys2cPDAYDLrvssl7nzzvvPBQWFqK9vR07duwYghYKCAgICAgICAgICIwEjDgytHfvXgDAhAkTYDKZFMtMnToVALBv377T1i4BAQEBAQEBAQEBgZGFEUeGmpqaAAAlJSWqZYqLizPKCggICAgICAgICAgIyDHiEijQRm1ms1m1jNVqBQCEw+GTfn+NRnPS6xxKqD0Pf1ySJMiTDsrPy+tR+p+OUXmNRpO1XqXrUqkUu0ar1WbUIa9Pqf5syFb2RJIunmjCxuGc8FFCP9rW15CRV6FWXurjfD/boYOuVz9TesdKY4Mvp9Tv5eVOt7zgx4v8/tn6EZWjdZbysimken+nEwVfn0bluNL5LOU0g+4cpwb9+f59yc5s5Xk5KpeLAGAwGKDX62EwGJCTkwOj0Qij0Qiz2Qy73Q6r1QqbzQa3283+t9vtsFgsMJvNsNlsMBqNAHr6Bt0vnU6jq6sLoVAIwWCQ7R0Uj8eRTCaRTqeRTqdZu+iH2qbVamEymeBwOKDX66HT6VjdGo0GRqOR7Uvk9/sRDAYBAPF4HG1tbYhEIohEImhpaUFXVxcSiQS7ZzqdRjKZzJgr+Pcj7+v8+1MqQ8fpbx7y+Ub+fdTG3HCW6UOJgc7Z/HWEbHJZXr6veynV05/vLC/D9y0lfWog95eDr5euOVv618l8zhFHhoZKyRBQx4lO5modOpsg6g/kimtf1/MCjARWf5VJOi8nfNnuozSR9uc+wwkaaPomRBIGTmCUrulHHVoFZ/dgZEW2b9ffvnS6v6OcCAH967P9gQ46QNO7fBonIUmN0neWN2swfWiIMdg5ipcd2fqhEunVaDRsSwmNRgOr1coIkN1uh9PphNlshsPhgNPpRCqVgtFoRH5+PvLy8lBWVobRo0cjJycHFosFLpcLJpMJer0eGo0Ger0eqVQKiUQCOTk50Gg08Hq96OzsRGdnJxoaGuD3+6HX6xkpAcDuk5eXh4KCAowdO5bdo729HT6fD0ajEdFoFNFoFKNGjYJWq0UwGEQwGEQ6nYZWq4XX60V9fT0aGxvh9XqRk5PDwuUTiQS6u7uRSCQQDocRiUQYMaP3wct1tflFiRQBPSRTToj4cU71jiT5PZwgn39PtJ4TvaY/huK+ysqJilr5vs6rQU2HEP1w4BhxZIi8PuQhUgJ5hKisgDKUJlMly5fSoJIr+wMlLoMZuGRRzDYhKdXVX6u/0nn+t1J2wr6IXF/W+P4QruEu2Ppjjc9WpheZkr78faJGj2yTVF+Tndo3HEh/PVnI1p/UFLvBeEXVJmW18aVEPgdyv55/FMawAsHm+9CJeICHAoPpM/Lvyr8fJbKk1WqRk5MDs9kMnU4Hi8WCadOmMS8LtcFoNMLj8aCwsBB2ux06nQ6jR4/G2LFj4fF4oNPpkEwmIUkS8yzx99TpdMjJyWH3LSgoQEFBAQBg7ty5fT5jOp2G1+tFOp2GzWaDw+HoVYbuT9EAyWQSyWQS8Xgc48ePR319PVpaWhAMBhGLxVgb29vb0dLSgmPHjuH48ePw+XyIx+NIp9NIpVLst5JHTf4N5O9bblyTG8yUDGhKGO59dajQn3d3Iuivl4c/N1iS0p92qBldB1qX6E8nByOODI0aNQoA0NzcrFqmpaUlo6zAl+jLi6M2QajV05cFU+k+Wm2PAsXfg98glyYf/kev7+mqyWQSiUQCqVRKMUxODrm1jg/VkLdBqc3ZCJ/8WnoutXvLj6u1+UyAqreoLwu/gldgsAr3YNHX5DSUk0+2ya8/fXqg9zqZ91H0ItEt+hsqqdQeafiNITWvTTbDTF9ESEnmarVa6HQ6GI1G5ObmYtSoUXC73bBarTCbzbBYLOy8Xq+Hz+dDdXU1vvnNb8LlcsFoNGbIY57w8CFi8vadCNatW4eNGzdCkiT827/9G3Jzc3uVIXlPSCQSSCaTsFqtyM3NRXl5Obq7u6HX65GTk4NAIICDBw9i9+7d7J243W5Eo1H4/X5Eo1GEw2GEw2G0tbVlzB0UTif/Tkrfi39X8p9sXiWBvtEf42x/rlPzlvTn+r7KDeSbZov8UKurv/qX0jVKx+XtEFDHiCNDkyZNAgAcOnQIsVhMMaPcrl27AAATJ048rW0bjshGFvozsJUsI9kIgtJE0pfXiCyNFDZhtVphMBhY/LdWq2UeoUAggEAggGQyydaNRSIRJBIJxfuRR0dN0ZATJf56JYsfXw/Vm024ySfM/kJNqA83waZGengrfsZ70fQmG1QHO8aFY2mgGVgolub/QroGCP47snadYkulUhvovnL0RYDk5eRW7IEqBfLr1cqnpFSf9RIySK1CaBy7T388glx5vg8OhzVDA7E28wYf/phc6eb7Bp2n8Lbi4mK43W62vken08FgMMBgMMBisSA3NxcXXHABxo4di6KiIlYP3x5+nY1Wq+1lfCKCkZOTg2QyiX379rGsrf2F1+tFbW0trFYrvv3tb2PcuHGK5ciDo9PpmNxXWitKa42I+OTl5WHUqFHYs2cPfD4ftFotLBYLIpEIjh49isbGRjQ3N2Pjxo1MdqfTacTjcTZ/qM1vcpIjP857sdS+vbxOwnCT6acDarJmMNfL/8+mbwz2XfNjkgcvb7OROSV9SEnf6I8RWo34ZJPTZ2MfGyhGHBkqLi7G5MmTsWfPHrz//vu46qqrMs5v3rwZLS0t8Hg8mDFjxhC1cnhgsN4HNeuE2sQtv06JTMgJCE24Go0GdrsdJSUlKCgoyJjQ+bLk0TGZTDAYDAiFQjh27Bj8fj/a2trg9/uRSqUQCoUUlQ2yciq1kY7Rffp6n/LnVRKSVJZXanhLa1/WHPn7G46QIJ0U5bMvsjwgz5AEpDXprIRIbTyojRclwnwq0d/Jqz9EiD/XHwVNiRSqIYXUKfPaDYSIUh8kUnSy+uVAoGRs6Q+B5ZUsuczgy/Ay1GQywe12o7y8HB6Ph3l/JKknrE2n0yE3Nxc1NTW48sorAQDd3d292hGPxxn5oXVApMzn5ORAq9WyNTeSJCEYDKKtrQ1vvPEGvF4vLrnkEjidThQWFsLlciEUCsHv96OkpARjx47NuFd3dzdSqRSKioqg1WphMBgAALFYDIcPH4YkSSgoKIDf70dHRwdcLhfsdjtsNhuAHoJE3iqS05Q0IScnB1arFVqtFmPGjMGYMWPYfSVJkdkpAAAgAElEQVRJwqFDh+ByuaDX6xnJi0Qi6O7uRjAYRHt7O4LBIJLJZA/B/78wOqXvxq8/4uWzPFnEQHA2Kat9yfps5/prEMp2jdK7ziZrsulQap4fNRKvNp/3JeeyzUf9xdnUxwYLjTQC39D777+PO++8Ex6PBy+++CITfp2dnbjxxhtx+PBhPPDAA1i+fPlJv/fptBSfKE60rWqeEiVS1J86qLzBYIDJZEJhYSEqKyvhcrkA9Ex4/IQFfOk1slgsyMnJYeeTySRCoRDC4TDS6TS6u7tx7NgxbN++nWU14kkHL5SUnkEuqNQW3fb1juTIZkUcyMTZH0v96UZfSufJHiv9VZDTmp5vR4RIbbLsi4zK7612zcnAQK3FfU3efdUhN1TI0d/+lpJ6CNFgJlulsTOQb9Krnf/XH083GZLLRXn71JQmKs+TISULNH2jnJwcuN1uVFdXw+l0suxw5E0fO3Yspk6divHjx8PpdCKZTGZ4eEjZ12q1iMfjiMViiMfjLNsc0ENOuru7mWeGEiF4vV68/vrrLOQslUrBYrHAbrfD7XbDaDSirq4O7e3tKCkpwZQpU5CXl4fJkyejrKwM0WgUoVAIqVQKhw8fxosvvoht27YxsmWz2VBQUIAxY8bA7XajpKQEBoMBqVQKdrsdU6dOhcPhYCQtlUohFosxAmgymWA2m9lzKCEWi6G5uRlNTU2or6/Hnj17cPz4cbS1teH48eMsI144HGaeIt4TR2RIHj4IgM0v5NXK1o/VxslwkeunEgNV/PsiQErePDovH3dqMk0+R8vrUdN75J5K+pvW0/Eex76eSc0ArdR+ucweiG5wpvWxk/k8I5IMAcBPf/pTrF69GkajEXPmzIFer8fnn3+OUCiEBQsW4Mknn8xYh3KyMFLI0Mlsp5K3oi9CxA9c8uhQ9iG73Y7Ro0dj3LhxsFgsjOB4PB44HA64XC44nU6k02lYrVY2udBEFQ6HmVUzGAwiFAqxcI6DBw9i//79LN0qhX7wC3L5yU2p3WTp459XyeOl9LxyyO/D18/fR+19y99lX/c7neiP0nm6xwvvFeoPYRgI+iJEA+kX/W3HQD2V8uPZ2txvkpGNDCHF3vfJIEPZ2tEnaRuGZAhAL1nCX5eNDNH/er0eTqcT48ePh8fjYUq/VqvFuHHjcO2116K8vFzxvrFYDMFgEBpNT7pqCgujTGvkaSLPCnlLyKAUiUQQjUbxj3/8gxmYyPgE9Kzl8Xq98Pv9LNQuFovB7/cjHo/DaDTCYDDAarVCo9HA5/NlZHkjOUjEKzc3FzNnzsTFF18MnU6HeDwOrVaL6upqNl/odDqkUinE43EAYNnuSNZqNBokk0nodDrYbDZFPSAcDmPXrl3YtGkTC7mPxWJoa2tDY2MjAoEAYrEY+3YUqg0gg/TQ/3xabzVCpKRwZ1PSzzQMlAjx6I/Rsa+6+yMD+zKY0ljkjbMWiwUOhwM2mw1arRaxWAw+nw/Hjh1DIBBgWQ7Vti1QurdSG7P1jYEY686kPibI0P/h73//O1588UUcPHgQ6XQaY8eOxTXXXIOlS5cqhi6dDIwEMnSibeQFRzaFi3/HaoqKRqOBwWCA3W5nYXDjx4+H2+1mk9XEiRNhNptZJiSHwwFJkjK8OwDYRBuLxVgMeyqVgtfrZalUDx48iKamJhw7dgxtbW0Ih8MZWYSorRRWQsf4NtOkpvQu1AiRkjDihan8fdG9qW38uiY1AjXcSNFAlM7TNW40Gg1T0E9k4iTw/U/+/tWUHR7ZJuD+elP6Q74G0i/V2prt3vLrU+gZN/JwxJPdH/tqdy+rK60/G0ZkSO0ZlJQtubywWq0oLi7G+PHjGWExGo1wu9347ne/mxESJkcoFMKOHTug1+vhcDhQUFAAvV6PRCKBSCTCPDJms5n1RT7RQGdnJ9rb27F9+3aWdIBC58LhMBoaGnDs2DFEIhHmGSFCxMtMktVA5r49vFGIyup0OjidTtx2220sMUIymUReXh7Ky8sxfvx42O121lYKCTQYDIwEEamhkGlJkmC32zF9+vReiRkAYO/evfj888/R2NiItrY2HDt2DB0dHQiHw2hvb8+Yh3hZwLedl+M8KVKbR+XWfXk/GcFqmSL6I28GWqYvQ0l/76NGSPm+S2Td4XCgoqICbrebGSXIi0r6CBl34/E4urq60NjYiKamJvj9/gxPkZIhNFs75ZC3ebB9ZiT3NUGGhhDDkQydDPIzkHqUvEJKdWg0GthsNlRWVmLSpEmwWq1wOp2MFFGseTqdRktLC3bs2IHzzjsPZWVlSKfTbH8JmujIUplOp9ni2VQqxRIoRCIRNDQ0oK2tDfv27UNraytLwU7Xk+CiNK20DwaV4cmQfMLKplzLCYv8nZAiIRfmNGnyC3h5Cyc/+con4IFYg04F1MiQkpI/0MlqMM/EEyG1e5/IpCkHb+mT9/++PDpKZDcb+pr4+yJD2a5Vq5vvX0rtU3rXSvc8USgpjtnudTo9Q2rGov6WUzKw0JoDq9WKadOmoaioiClYubm5+Na3voVZs2Yp3uf48eN44YUXmDfearWy/YPy8/NhNBqZl13usU8kEmzdT0dHB44dOwafz4e6ujq0tbUhnU7DaDQiEomgvr4eR48eZR56QNmrLpd7ckMA70khaLVajB07lnmCHA4HPB4PnE4n8vLy4Ha7WZsdDgcKCwthMpnYXOD1enHo0CEW0hcIBAAAeXl5WLJkCUsiIcf69etx6NAhlpK7s7MTTU1NaGxszFhTJM+Gyj83yWcydMmNbdlkY1/jbSRjILpFf88NhgzJ51Sl6/njlIjEZDKhtLQUY8eOhdPpRHd3N9u8OC8vD06nE62trejq6mJ9sbu7m0WmaDQatLW1YePGjSy0X06G+mqXHIMlQ2oyfiRCkKEhxHAiQ4NpS3+syUrl1Twecq8JP1lYLBbMmjUL8+fPZ3tfUEy31Wplu55Ho1GsXr0aGo0GxcXFmD9/PsLhMEKhEJtcfD4fwuEws8DEYjGkUinYbDbYbDbo9Xp0d3ejvr6e7YoeDAbZguJIJIJAIMDiwbu6uhAMBtkiXLlQ4MkQPRM/2cnfCf0vPyd/3zzR4a8josa/S6VQPrU2DMUwVlI61cjAyR43cqWC6h8sGRoMWcv2rfu6nk/tm61P8ejrPkrjWX5Nf8mQ0vMNBSHq65mHGxlSK6NmLJJHMNAaSavVitmzZyMvL48ZgyZOnIjbb7+9V/1+vx9PPPEEmpqakJubi1gsBofDwbxBTqcTLpeLhevEYjEkEgmm5NFmp+3t7ejs7GQhbxqNBsFgEF6vFx0dHWzNTzweh9/vZ+VIThIJkKSe0Gi73Q6TycSSJ/DfiicNvFJI/2u1WpjNZpYufMyYMbBYLAB6QvOcTifGjh0Lt9vNwqsTiQRL8tDU1ISOjg5Wl06ng8lkglarRUlJCUaPHo1LLrlE8Xul02n89a9/xZ49exAKhRCLxbBnzx7U1dUxQqRGYPjwZ7WQOTXZRVAyrJ0JyGbE6Y8M7WusZTMIyfUU/ly2tuXl5aG0tJRtFkwJQ8aMGYN4PA6bzYbi4mImz3U6HT777DNs3LiR9VOn08n0nM7OTnzwwQcsfE7e7r7mAbWy/fUqyuXPcNAjTgSCDA0hRiIZyma9VBIO/RFINJHTQOStmrSvxbx587BgwQK2EJYmRNojiu7d0tLCFvK6XC4YDAa2OFiSJOb14cMvaMKhRcKjR4+GTqfDsWPH2OQLICO212g0IicnB+l0Gm1tbfD5fOjo6EBzczMCgQAjJBSKwsemk5WHzsXjcUSj0YzwNn5SV1OWlUijJEnMgsQPRzXipJS5aLiQITWcSjLE98mklMxQzpX6ulJ/789EJK9TqXy2yZ2yaNFib6PRiGQyydYnUD9QIpLyCU/Nkil/xsFYT+m6bKSfcLaTIaD/hEhu3OBlKADmDXK73aipqWFbDOTk5OD73/8+KisrM+o8cOAA/vKXv8Dr9SIej8NkMuGSSy5BeXk54vE4C082GAyIx+Pw+XxsDVEkEoHRaERBQQFcLhdSqRQaGxtRW1vL5HEikUBzczO8Xi+8Xi8CgQC6u7vZM9CaHWq7RvNl1k6DwYDCwkLk5OQgFosxIxSfnU4ejkx1JJNJ5rnKycmBy+XC+PHjUVFRAb1ez7w0RUVFKCwshMVigcViQWNjI1pbWyFJEltDZDQaUVpaiqlTp8Jms6G9vR0NDQ0AejLcUYTCFVdc0eubffbZZ9i1axcCgQA6OzuxYcMG1NXVobu7O2POU5L7PDniCZHaXCwfr2pJGEY6+mOY6u95KtOfcn3pNUr1GgwGTJ06FUVFRSguLsaoUaPg8XhQUlICm83GyA8Apjfo9XpIkoT29nasWrWK9d9JkyYhEAggFAohHo9j3bp1aGhoyGiXksxWmguUyvdlUMumAypdN1L6niBDQ4jhQIYGY2FRI0BKViq5opnN+8Pf02AwwOl0YsyYMRg9ejRKS0tZGBzFoXu9XoRCIRiNRkZ2yNpGBIgEDC2MjUajiMViADIJQiqVYjHuREpoYbHJZGJWT1qLRFnootEo4vE4NBoNmzRpx3YqTzuvU7amZDKJxsZGJBIJxONxtLa2sueqr69HfX09y86kZAFVUoSULIDZ3Of8+1YSXKdrKA9G2TxV44bqVVonpPS3nJCq1ZnNWit/97xBQE5+TCYTioqKMH/+fBQVFcFsNjNLoclkgiRJbM1FIpHAoUOH8M9//hPNzc0sCYhc2ZI/Gx1XItlK/UTJgsor5GrPq9TPhoIMyYmrXIYNpzA5uaGIX4NARIjSRns8Hlx00UVwOp0wmUzweDy4++67M+p75JFHYDQaYTKZ8L3vfS/jXDqdxpEjRxAMBhGLxaDR9CSrofWRfr+fKfJ6vZ5tRUAKXENDA5qbmxEKhXDkyBHs2bMHgUCAGWko9TYpgXLjjRx6vR5Wq5UlQuATElB7+X5HWe10Oh2i0WjGudzcXFRWVsLhcMDv90Or1aKsrAxFRUXIzc1Ffn4+8/xTOCG/VYN8byIinWQsA4A33ngDmzZtgkajwZw5c/DNb36TtXX79u3YunUrfD4f9u7di/feew/hcDjj+6rJCPn6IXlfUZJDSvWcCehLL+nvdfJzSgYj/pxaXXx/JNlpNBpht9tRXFyMqqoq6PV6FBUVoby8HG63G/F4HP/zP//DwlCDwWDG/lwOhwPpdBomkwnV1dVM7+jq6kJXVxesVivKysrwox/9CF6vVzVZk9q8riRj5MhmPFN6f/J6RgpBOpltGnH7DJ3t6GvypWPZhIxcCNPAUyJU2QYeP8mTFbKkpARmsxmxWAydnZ2IRqNIJBIZPzk5OWwyTSQSjJxQKBtZT4CesAmj0Qir1comsNzc3IzMSGRVB8B2JSdlo7u7m20USPXRpK7T6RiBopStfDgceZ7o76KiIkawdDodmpubUVdXh8LCQsycORNbt27FoUOHGCGSW6PkBJN//3ILqZplXu17KymFZxLUPCGAukLOX6umcCiRfXk2L36iVUutKx9vOp0OeXl5mDdvHqZPnw6Px8P6LnlKKR7daDQiHA4jGAyipKQENTU1aGtrw/r16/HJJ58gHA4zj1FfBE5p3PNtlZfLZjyRP7ccKU0KOunkZ+yUt2Mg/59OqCmzcqVGqayclDscDsyaNQsWiwVmsxljx47FzJkzWZ3r16/Hnj17kJOTgyVLlrBEADt27MCGDRvYon+TyYRp06Zh3rx5bG8dyqap1WoRjUZZmm1aI1RbW4va2locO3aMycZQKMQyxinJJHq+bP/zmeL6k2GNyhA5oz6XTqfh8/mwf/9+OBwO6PV65OTkMENCbm4uotFoxvoOl8sFi8XCwrJ5WUqGMFJgCYsWLcKCBQvw7rvvYs+ePdi4cSN+8YtfAABmzJgBj8eDdevWMYPZa6+9xuYp+o5KhgsAbF45U+XzYNAfHUXJyKSEbMZb+XH5NXSeD11OJBKM7NL6H9JVPvvsMwQCAQSDQfj9fhaiT2H3NpsN+fn5SKVS6OzsxPz585lRNZFIYNSoUcjPz8fChQvxt7/9rU+yk+0ZlMrTMSWjajZCLp8TyIjLz5NnIkEnCM/QADEcJl+1/4HewiObgtTXsyh5f4gwkBWErH/5+fksHTaFrplMJtjtdpbhh/e4SJLEMhJ1dXWx0DZ5SAHVQ9Y9SZJgNBrh8Xhgs9lYClgiZGR1NZlMbJM+isOnTV55bw0JQPqbylI4HXmOyGJUXFwMp9PJMsnQRL9v3z54vV50dXXhzTffhM/n65XOW/59+G8jDwEkZUBNWZV/F/66U42BWt7VCHU2xZ4vl62snAjJ+7raRKKm/PN9Qq7A0vvlQz7lz0M/U6ZMwc033wyr1YpkMgmDwYCCggJYLBZIkoSOjg4AYIu/4/E4Ojo6WEhoNBqF3+9HKBTC66+/jqNHj2ZY1rNNoGoTG4H3Usr7p9K34vuivI+drqxy8rZlU2xOh2dITb6qPTf1LV6ekDHGZrOhqqoKZWVlcLlcWLJkCcaNG4f8/HwAwKpVq9h+O1qtFo2Njairq4PL5WL9i7JszpkzBxdffDHsdjsAsBBfUuT8fj8zODU1NeHDDz9EbW0totEo9Ho97HY7rFYrJElioXG8YYpPOMPvxaP2zPS8PLlR6kf8O5RnngPAxo/VamUkxm63w263w+l0orS0lHn2HQ4HiouLUVhYyPYmIvlPyXPIe2Q2m9l9ybgWjUYBAE899RQkScLChQtxwQUXsHIvvvgiW/vx6aefZqz9UJLdfN+QG1KyKfpnkvKpprDzf8uJTH+uVdJj5HXIjVr8tUrJPijM//vf/z7a2trQ1dXFPLdarRYtLS2IRqOsn0SjURY+SXtgabVaFBUVYcyYMbjuuuuYEVav18PtdjOD2Lvvvos///nPrA9RW+R9ROn55O9ObZzJ36Va3XI5plROXv9Q42S2QZChAWI4kaFsx3hBwFs8CNkUUrnCztdLYWg5OTlwOp0oKSlhKVvj8TibPCVJYh4XCs2g7CupVAqtra3o6OhgG93xm9bx7aYQNyIxNBmTBZCsgWazmYXC8SEoctJDpIOsi1arlXmqSFnxeDzIy8tjcfPpdJrFylMZIk3l5eVsl/RoNIqmpia0trbi9ddfR2NjI9tfQEkZ5wU0PT+V6cv7IP+O/N+nekj3V9mUTz7s+j7IkFpdBFLAAagSIfq/PwYEOq5EhOTX8WSIfxa+DqPRiNWrV7OF6qFQCK2trQB6EocEAgFmKNBqtSzZB4UGEbF3Op3Msr9hwwZs2rSJhWRkmyyVnp0vyxs5lDw+StcpkSIeSt45JWvtiWC4kSE1RVbtu9CaMb6P6XQ6TJw4EcXFxXC73Vi4cCEWL17MrvnDH/6A7u5ujB8/Hjk5OTh8+DB2796NcDiMgoICVFdXY8KECawvkXGKlK1QKASfz4c9e/bgwIED2L9/P+rq6lhf40m9yWRinimNpif7Zjgchs/nY3KQTwzAJz+Qzzf8j7zfyNcKyYk7vRdefpO3zGg0skQOZrM5Ixyaogs0mp5EPJdccgkmTpzIwg7JEEfGMqvV2ivVNkUCGAwGSJKEdevW4eWXX4bZbMYzzzzDyr3xxhtoamrCX/7yF9TW1iKRSLB+rjZG6BmVnj/bmOOPjVRkIzdKhphsCjxvwKT/aY4lgyfpHLw85euh+qkvUxky2M6aNQvz5s3Dv/71L4RCIXY9lc3JyUFDQwM6OzvR2dnJvj/pGOSJdbvduPzyyzF+/HjWxoMHD8JkMuHcc8+Fz+dj4ZnUZkCdyMhB5I3eidxQpyaf5Ofl84CS3tEX0R8KCDI0hBgKMpTtnmoKIFkd+WN9WfHk9fGWEoPBAIvFwjwubrcbo0ePhtFoZHXH43F0dnayTG80SMnqQZNRU1MTW4zLh6HxkwR5eMiiB4AlGeDPkwCjtN3UHrLy0eZ7JDipTpPJhPz8fNTU1KC0tJQJu3Q6nbFOI53u2biQNnY1m81IJBIIBAJsnZFWq2V1mEwmBINBrF27FocOHcL27dvR1dXVS0DJlQC55Z0XPNm+uRIZkv99snGim60qEaS+QOXVQuL6axTgz8knBTUiJG+7GlElJevBBx9kC2a3bdvGEm3w3lTqfwDQ3t6OcDjMLPg0oRkMBlRVVcFkMiEcDmP37t1Yv349S3Os1j5qvzxTmfw9yPujUn+TK2PyfknH1chQNgIzUMiVZqV2AkNPhrKVJ08JwWAw4Nxzz8WoUaNwwQUXZKwDeuONN5BIJFBWVoaSkhLm+eA98JIkZYTskBWbQoT37NmDLVu2oLOzk2XoDIVCTHmj/kjGJN6IRNsPtLe3sy0NlIgQ/3y894s8PNSnWV/5v2v5d8iPRzJWEbRaLWw2G2bMmAGn04mcnBwcOXKEXUchSPR8AOB0OpGfn4+SkhIUFxcjPz8fpaWlbH2R1WplxK8v+Hw+3HvvvUin03juuefY8f/6r/9CS0sL3nzzTdTX17N3A/Q2ZsmfT+ndyfv3mUKGlHQL+p//9nLFn5dTfDQHEVoqT/3NarXC4XDAYrEgFovB6/VCkiSW6pr6IR9yTD85OTmwWCywWq0oLy9nXtrdu3cjkUiw+9F15FklQwFv6Oju7kYkEmFEbMqUKaipqYHRaGTtAoDKykq2afGOHTuwd+9eFvIv/970PkjnIaMbZVysrq5GV1cXdu3axQxmfGSKHPzzywmO0r3567Jlsz3d/VSQoSHEUJOhbJZt+q1GhuQMX349P+BooOXn56OoqIglOyCPCiU34IV8IpGA3+9nsbN0nA99i0QiaGtr66X0ExEh64hc6BFporbScfIe2Ww25Obmwmq1Avgy5IHC5OgnPz8fY8aMQWFhIdxuN1wuF1svRG0lpZSO0+RPSixZDc1mM7q7u9HY2MgmwerqaphMJvj9fuzevRsHDx7EunXrWDy+mhLFWwz5yVJN8VazJMqPnWwMxCs0GCgpvHIilC00jj/G/xCxz3gW2Tvi1wrxv+WWMP778GMmPz8fK1euRGFhIT7++OMMizGvINJERpsL034oZBwg0k+E6Nxzz4UkSQgGg9i1axfefPNN1bA1XvmSywB+HCiRHzIEUD3ZlDGl+2dbu3Wqp5nTSYaykU2lNsn7If9N9Ho9FixYgNmzZ+O+++5j127evBmdnZ2w2+2YMmUKXC5XRt2RSISta9m8eTM6OjpY6Fdubi5bsH306FFoNBomr/V6PUpLS1FcXAyTyYSDBw+ioaGBKU7UH6id3d3dzHjFe+/lY4InQryXXZIk1q95IiC/D//OaD6gfkrr72bMmAGXy8X2pzt+/Djq6+uRSqVgMpkQi8UQjUYxbtw4TJkyhc1JZJAjw9j48eMxZswYuFwu2O12Ngf0hVtvvRVmsxm/+93vAABffPEFtmzZgn379uGVV15hGU95Oa7UJ+TjRm60UTNAjEQoESG5gUpN5hOZpnN8kiTSPYjIkEfU4XAgLy8PDoeDvUtKtBQMBgEgw8tDczkZQLVaLesPtMaZSA31y3g8jvr6eni9XpZQhIyyVC/1BY2mJwx20qRJMBgMGVlpKe02JQypra3FkSNHmN5C9+U9YGT4tdvtjNhT2H48Hsf27dvR0dGBVCrFNpyXj1f53KiUtIneuVIfpWNyXWUoCNHJvJdIoDCMIRcgalZWNcVaPvHKLXA8oSChYDKZkJeXh5kzZ7J9HXhBRMKFLIekuNHfAFiYBU0MRDD4UCClZ+KfhQapfEBSe/jFr8lkEpFIBGazmcXKk8WQQizII+TxeNj/tDYjHA5nWGRICTAYDCgpKWFEkKxOZJ2kCX/s2LFIpVL46KOPcPDgQeTl5cFms2HChAno7u7GokWL8M477+Do0aNMeKop8PR8vBVKbcDL+4PS9UOBEyVCfSFbsgQgM+Mg/fCZqqgMkRO50s8Ldz6JBh0DvpxQNZqexe9XXHEFrrzySjidTkQiEdTV1bEJVq/Xs+spoQh5HGmypX1frFZrBlGJRqPYuHEjpk+fDp1Oh0mTJmHDhg2IRCIZKeTl75DGND03hRLRJpv0w49pCunr6urKIGdK40/pnnrokZIy1xCNVCWuLyj11WzPqqRMAIDRaMSkSZOwYMECBAIBRCIRNDc3s4XZlMaXEI1G8bvf/Q6ffPIJDh48CK/Xy+SQ0+lkxiBaF0OpfWfOnAm32w2Hw5Eh/0KhEKLRaC/ZTl4okps8KCxJ/mzUZ4lwA19mx5STZ/m7UJoHaIzm5OTA4XAAAFvT4/F4MGbMGBgMBnR0dLAogJycHPh8PthsNtjtdja22tvbGVnau3cv6urqUFZWxgxjZEiTh83xWLVqFR588EE8/vjjuOuuuzBr1iyEQiFIkoTKykrs3r27VwSA3FDR13iQn1era7hDiQQpHef7Al9G7qVXei+8LkMGWo1Gg2g0yoyWRFSMRiPba0tOEEgXooQhlBU2Go2ysUX3TKfT6OrqYhls5cSA9BZ+TWAqlUJ9fT1L6EG6g9frRXd3N5xOJzQaDUaNGsX2QCR9ymazQafTsX20Ro8ejdzcXLb2jd4XhfSTfCfDFp/+np8r+qODZPu2vKFQSR6MpL5KEGRomEIuNJQ6b7YOJ590qA4+3pYGpcvlwqhRo1BUVMQsESRYgC/jSWlSIyWOX0xLShOfbIC3yIXDYRZqIRcufN1qz6jT6TLC5eg43S+dTiMQCCAvL4+5kilkjjbbs9vtyM/PZ1m9KKaestmRkKR9LpLJJFpbW1l4IGXLIyWS4vJpn4vFixfjnXfegc/ng9frRXl5OS688ELs2rULV199NV566SW2DwY9M70zOenrLyHi+4iSYjGShFK2Z+0rYxzQe6yQldpoNGLy5MmYOHEibDYbe9e08Jz3yBDBICLS0dHBNsjjv5fZbIbNZoPL5cJFF12EwsJC+P1+pFIpbNy4kY0v6lPRaBSHD2ZjdIkAACAASURBVB9Ge3s7ADASBoBthknhSm63G3l5eWwMJhIJ7Ny5E6WlpQCAb3zjG/j8889x/PjxjD1PaFxT+KbH40F+fn5Gsg+5d4jeF5EhUgwA4Pjx49i7dy8CgUDGWM/WN+kb9ed7jUQoKW5qCiydVyP5Wq0WhYWFmDNnDqqrq5FIJPDJJ58AAMtIRd4cAOjq6sKyZcvw8ccfM8WGZDUZrkKhEOsHer0el1xyCQoKCti3IgNSNBpFW1sbOjs72f5uJpOJbTLKJz7gtzvgCQ2vjPFzBVnEiVzJvULya3j5Re+OJ+qSJLGNtSlNdyQSgcViQW5uLltb19XVhcbGRmg0GjQ1NaGsrIyFJtE6INqwm7xmO3bsQElJCcaNG4fy8nJmcSdSKcd//ud/4s0338QHH3yAhQsX4uKLLwYAfOUrX0FLSwuOHz+u1nUU+4fS/zxGomKppLtkO88fVzLeZjtP5JtPkU6Eh/QbfrN3vh8q1Ueynzw7dB19h0gkgq6uLibf+TFA8wPvLdJoNIxo8eOPxk8kEmFbeGg0Gng8HhQVFbFlCGazGcXFxSy7nUajYVl3ySDGE3ibzcaWKtBcRXOhfJsG/n1kM67z5fh3wYMnRENtjB0sBBka4chGmniBQpZii8XCMprMnDkTDoeDpafm9+0hVy6/6JQICdVJ2dpIgNDfVJ73CtFeKrwVkbfGK5E3/hmoTlLWaKDT3kRUJ1nCzWYzE5AlJSWorKxEUVERLBYLy0Dn9Xrh8/nYPkakDJNySkSOPAMlJSVoa2tDY2MjioqKkJeXB4vFgoKCApSUlMBqtWLp0qVobW3FmjVrcOTIEUyePBkzZ85EOp3GZZddhtdee42RQnnsvPy51ZROJdKjZNHpj5VnuEHefrmnQQ6lvs4nt1ixYgWzonV3dzPiA4CFSZBVjQ+NpMnN7XZnhBDRBKfV9ux9YrPZoNVq2cRE3j+LxcK8QF6vF9u2bUMwGGTt4zMRUpKNRCLBNsVsaWlBRUUFXC4XtFotC82gDVtpA06aII1GI2w2G6xWK9vQlcrSZEnjl9+EmDZ+jcfjGQvQ9Xo98vLyMGHCBHR1deHTTz9l+x7xC5blfZP+pnBGLTJDD0dSX1SDkpImH5v8ObVr9Ho98vPzcfnllwMA/vd//5clNwB60jnX1NQA6Fm3cvXVV2P79u0s9JJIOZFm+hYGgwFFRUWYMWMGRo0aBY1GwzLJJRIJmM1mdHZ2YufOnTCZTCgsLERhYSFTtEhWh0IhBAIBpnDKlR0CyWL6m1/XyT+7muJF1/IEj2Q89TPaL4hChOiZ0uk068eU8rq9vR3t7e3McBcIBFjYN+3tRc/a2dmJ1tZW7Nu3D2VlZSyLH2Urraio6PX9Fy9ejLVr1+Lzzz/HBRdcgIsvvhh1dXUYP348C1GSh58qzW1yr5EaaR6JUDMCqBEj+THey0jH+DBmubcR+FKPIF2F1pKRsTc3N5etq+nq6sq4P4WmkRyWZ3clUt/V1cX2POTX/1FZ8gzySQ3oGSjahIyzADLuyWdJrK6uxvjx45Gfn8+MrpFIBH6/Hz6fj9Wl0+mQSCQQDAbR1dUFn8/H5j8alzSGaL8j+ZIDOdRkGf9t1K7pT9nhCkGGhiH6EopKE678B/hyUiHFx2azsXhp2gwvne7ZOJTC1/iJjcgQKVVut5tZzKLRKCKRCPMSUWpXPq48lUohHo+zfYN4NzIfpyqfJHkrJm/tpnPkDSKXMymVvJeIFAoSAkSmCO3t7di0aRNqa2uh0+lgs9lYmBApp7ReiJRnp9OJRCIBn8+HTz/9FIFAAIWFhSgpKcHcuXNxxRVXQKvVori4GNdffz1eeeUVHDp0CBMnTsSMGTPQ1taGmpoabNmyhS2wlFtclPqBPCMTQYlIDQcBdDIndp1Gl5E9TglyEjRlyhQsWbKE9X36lgBYFkQixV1dXaxv+P1+dHZ2ZiT2oGxu9Fw0ARLh1mg0iMVizDrJZ3pLJBI4evQodu7cySz2PHHnF1zzIa3JZBJ+vx/79u1DVVUVcnNzAWTu22Kz2TBx4kRmtOAzIpJXgDcIUAipw+GAy+WCw+FgyVDoJ5FIoK6uDkePHoXf72fPZTKZcNVVV6G1tRUfffRRxh40at+DCFEaaUaI+HMjEWrjU0nJVyovP0feZkIgEIDNZkMwGMSECROwcOFCaDQadHZ24tJLL8WRI0cyPBwmk4ntu0Pyj9+4FQBT7Orr65lXOicnB+FwGFqtlin+1B9J1plMJthsNqRSKXi9XhgMhoywZ3l4plyxp7FDxjMAveQ9vQf+R06sqAwZ8goLC+F0OhEKhVi7yMhBRg+ab6ifEkGh8UDZTx0OBzweD+LxOI4fP46jR49i48aNcLvdcLvdiEQiSCQS+NnPfga3253xvJdeeil27tyJ+vp6lJeXo6amBp999hlbRyqHUv+Qhxcp9ZFsXtjhiL76vPy3GkGkZ+XD4dX0HD7JEu8ptVqtbK0cyT8y8CSTSWzcuJHtTxUIBNDY2MgiRGjeIFJO66Epk6H8GeTEjGQwfx7oWetH8psMbzxZtlqtWLx4MYqKijL226LxHolEmBGE1kXHYjHs3r0bwWAQ6XSaZcQzGo3o7u7O2LAeAAspla8V4tsh18X4Z5X35TPFsynI0DCFkpDoDwniOy6RIIvFwkJvKDtVIpFg6X6BHoFit9tZXCtvkeGztvFCh8LhaAIyGo3Q6/WIRCJsnx2ySJIAkSQpI5U2bznhlQpa00Bl+B8K+6GJk6zrvCucLJvBYJCF6M2aNQtWqxXvvPMOGhsb0dXVxUgJnyyBlGE+/ptC/ugeNPHSZoVk0b3uuuuYEvDNb34Ta9asweHDhzFq1CjMnj0bDocDJSUlePvtt9mkqSR41PqEvKxcqejLAjnS0J9kCUDPGh63243bbruNhUvQc1ssFpSUlKC0tBQmkwkAWDIMSZIQi8UQiUQQDofR1dWFzs5OtillR0cHfD5fRggET7z5Pkv9ndbHtba2YteuXQgEAozE0DPQJMeDxgK1KRqN4tChQ6iurmapk2liJcWOrqMf8pRaLBbk5+ezmHPgS88QbxQgCypNnlVVVaiqqkIikUBDQwNqa2vh9/uRTqeRm5uLadOmYf369di0aROLR89qFdQAaSnd6xuO5D7JY7BESKfr2bfE4/EAAI4cOcL2yzEYDKioqGD9+JprrsHhw4dZHyIDVX5+PlwuF0t0U1BQgMLCQqYoUfKDw4cPM0WJ74O0p1B3dzd8Ph+zOGs0PeE6xcXFGDt2LI4ePQqDwcA82rxMpL/5EGf+nZAxi5fjau+Hnwd4yzwZOfLy8pina+fOnYhEImwtHG+A8Pv9iMfj8Pv9zJpPe7yk02l0dHSwUCTamqGiogIHDhxAIpFAZ2cnW4e0Z88e/PnPf8Yvf/lL3HXXXaytqVSK7XMHAFOmTMGFF16IrVu3Mi8xPUt/5bFclp8pUDLYyc+r6TYEpcQjFLWSl5fH+jzJx1gsliEf/X4/7HY7m7/1ej1mzJiBhoYGBINBJJNJlpGQ6qe+yydgIJnNbwECZGZZ42W7XNZLUk8iHBrH5JW3WCxwOBxwOp0Z7SSPPdBjgG5tbWWELRaLYefOnejo6EAwGMxIJkV7hYVCIXR2djJjN8ke8kbx/VS+rk8NfZ2Xlx0pEGRomGEgQpAXDnxmIxrMVquVhYaNGTMGFRUVTNHy+/0AeiyAtPCWTy9NqaTJCs5bDShcgaziRErsdjsLR6C4cZqQ5IvS+UmVnzCoXDKZzIhV570k/NohElaSJDGCBIAN+HQ6Db/fjwMHDrA44MbGRjZhUYgUCTreUk9tA8Csr7wFh+LrvV4v2tra8Oijj+Lw4cNYtGgRysrKYDAYUF1djf379yMej8NgMKC0tBQOhwM6nQ4vvfQS82ApvYusSqZCWZ4Q8eVPlfKZrZ0nC6REq40L6o8zZszA9ddfnxGm4HQ6MX36dLamgLe08UoavxEmJTEg8k5KJx8SQd5Ur9fL+nk6nUZzczMbN52dndi3bx9Lq84bAvjJlq7lCRZNWLQBa21tLaqrq5Gbm8uegc/cRZsQ2+12FqJDC+ctFgtTjOkcGQcAsHLkYeAXrU+aNAkTJ05EV1cXNm/ejFgsBqPRiKuvvhqLFi3C/fffz9YZqfUFHXSARpnU8sqf0rXDCUpKfDalQK4E8wSCjEgFBQWoqqoCADQ0NKCpqQlVVVWorKxkitzixYuxdetW9k1pXx3acNRsNjPZDYAZc5qbm9HU1MQWe5PnhIxX1LdoiwOfz8dkOUUCUKptMvzwMpt/H0rJFPjwHHkYnNzSzP+vpBSTYaygoIBlYCwoKEBjY2NG+m4+3IjCYim0iLZ60Ov1TGan02k2j6XTaYwZMwbhcBiBQIAtoidl8d5770VHRwcefvhhAGDKbFdXF/bv34/q6mosX74cr776Ko4dO9bLmCZ/brkHRA1K8ny4jpNsRFetvBJJoj6jRKJJ9pnNZjgcDuTn56OiooLpNMFgEKFQiG1gbbFYUF1djTFjxrAxRbI3kUgw72dnZyf7XnzEBXlfaGN4ap+8HL+/D3+O5DW1mwi71+vNSDRCepjL5UIwGGTZ4aLRKFvXTM+WSCTQ0tKCXbt2we/3IxwOA+iJXKHwfaPRyLyher0eXq+XkT56p5Sim4x8SvKKl3F96SZyDNd+qgZBhkYAlDogP5HwVhMALGSnoKAA559/PoqLi9lkFo1G2X45NIlSmBn9UBYS8sJQggDKxU+WOFL6fD4fUxyJfPDhOzTYqP383yQ45OSDhIfc+g6AheNRqlR6DzabjQ1yg8HAnpV/Lq1Wy9pG74zC+ags1cG/X5rcacEipXul9SKpVApdXV148cUXkZeXhwsuuIDFnyeTSRw/fhwlJSUoKSmBwWDAzJkzcfToUXz44Ye9Qk74b9wfhVGueMmF2nBXNtUm+BRS0GuURRQ9k9FoxA9+8AMW2099f/LkyfB4PLBYLGxS40k5ADYxtba2oqWlJaMtRJ7ISkdeHyI/drsdNpuNKU60cWooFEIkEsG+ffuYh4nv06Sk0RoHnqxSP+TXxJElsba2FtOmTWOTKxkkLBYLioqK2Nolin232+0oLCxkC2cpZIiUZX5DYZ/Px9YZlZSUsPA/6ufFxcW49NJLsXfvXpYAwmKx4L//+7/xwx/+kCmW8m/J/32mJVPoayypKYT0XWnty6JFixAMBnHkyBG2uSN5hO677z6sXbuWESGr1coyVfIbjpKC39bWxtL9kjWYvIRApiGJrMItLS0shJlCjKZPn45Ro0axEGhSrJRkEU925HMRyXaj0QgAzBBAZeUyS25VJ1Bf5ZMozJkzBxqNBuFwGEePHkVdXR3zCNG6CHpGPvEJvylnd3c327OLX39FIbMUQktt+81vfoNAIIAnn3wSAJiXmQxawP9n791j27yv8/GHpEiRIilRpESJukuWJVm+3+KkSZw0t6VO0zZpkzZF2wXFMGRd1i0rtm4oMLQrsKH7dm2BDW2KZWh6WZAla7Gtw5qlTXNvLnacJnZiW7YkS7LuEkVSpKgbyd8f2nN03o9eys7Fl/3gTyBYociX7+V8zuU5zzkHwq5gNsG8Z3wOJuW5mPyca9B0MZf5HE1bXuy9ZzsWQSLtC1AvMfPN+VsM2DOZjHStZdAxOjqKUCiEDRs24Prrr4fb7ZbGOQRTCbxqXQ1Agmm2qSYVmTaB+l37DhqY1n6L1vPLy8uYnJyUYDyZTIo+TyQSAkQw08/gfHR0FG+++Sb6+/tlP1GWdI0rfTrd6IoAm67p09ei6eAm6GreF/N5Xaqy+U7W5WDoElp2iqKYk2u+RzvuXq8X1dXVuPnmm4WGwQ3jdrsRjUaxuLiIeDxuMR5U0nQaiXgQcTNnpoTDYeTzeUxOTspnyGFlVobUOha7cmNxs9llNjSiYhoNOrDc5FQYNFoulws1NTXwer3SbYsbXRd/6zonzaHl+XHeCpFR3a5Snw8nmVOpzs/P46GHHkJbWxuqq6tRUVGBaDSK0dFRCYJef/11TE9PY//+/Th06JAgl/p52hlR/f92aE0x2bjUFZXd+eWxQq0qNi+G6Po3vvENoX06HA4ZrhgKhSSjSeOjZSmXy2FsbEwocqRZMugndYxoMo3x8vIyZmZmpJ6ARanJZBKpVArxeFxoCyZSyGfFc2IrVI2+672oDWsymcTJkyfR2dkp5xYIBGTGBI/BeihmelgXNTU1hWw2i3g8LkGazkKRXsGOjOFwWO6h07ky9HLHjh2YmZnB8ePHpSbkH//xH3H//fcLldB8plr+1ssO/f9pmTrbRLbp3HFYIgNnYCVTt7CwgIMHD+LBBx+Ew+GQdv6s82LmxmyPPj8/L1k/PeOEMk3nj4v6GljRY21tbdi9e7fQR9lMgXWilBVda6CDefP6+T7KGX/ohNGJ5OI+0XUivC4G3Ox0RwfY6/WitrZWGiXoZiikE+naWTq87OTFJip6jh7veSgUgt/vl26K+Xwe3//+9+H1evF3f/d3qK6uliG22WwWPp8PmzZtQl9fn9Ct1pMROyTeTn7Mv1+qy7wmu6X1gpYd7Rfo95mOOan/bJ2tGwvE43HxaXRt2/LyMiYmJpDJZBAIBLB161aRgUJhlXpKX0CDn/F4HJlMRvwBYDWIoO63q4E297sJAuRyOanbq6qqEj+Kvgub7VRWVsrMpGPHjuH111/H4OCg0Pv196TTaRw/fhxnzpxBIBCw+HL8oW+lg0y3221pOc7zZOB2Ls+zmDy8m89drHU5GLpE1rkEPXbv10GQy+VCMBhEc3Mz9uzZg1AohEKhIGjzxo0bUV5eLrQxOpDkrWqnbWlpSZynmZkZFAoFhEIhVFZWSnc2j8dj6T6UzWYtVDIGXz6fz+Lwa2NoBkjaYGqDywyQptiZgRIDFdKiqETomGpHlAW2RHzMxdcYDBJVJ+LC+5rNZqWwd2FhAQMDA1hcXERPT4/MI2pqakJ/fz+OHz+OK6+8Ert27cL4+Dji8TiuuOIKPPXUU5ZzKIa+2MmGRm2KvaeY0X2v670caz0jn0deGieU2Kgoh2OFOvP1r39dqGEej0dqKKjck8nkmmYYNGyUP2aSOHtFz+Wxyw46nSut6F0uFzKZDKampgSRZ3cqXWNkyqneGzQ+PD5rGujMMUjhuU5OTsLr9WLDhg2WAb5sAev1ehGNRoUKRRpUIpHAxMQEZmZmMDU1hXg8Lqg1myvwh8aSBpNUIjohNTU18Pv96OnpEWTye9/7Hu6//35MT0/bBkTnIgf/l1ex69Q6Wr/G/9+xYwccDgdOnTolHc8cDgdSqRT+5E/+RGi/5eXlqKqqssw2M50tglCkxLE+yOFwWCh0OvNCGXS73VIrxvdS1uko2jnrZpDHf019o2vL7LJH+jNmITrPkXU/LAYnc4E63efzIRQKIZPJoFAoSDdQXcvEvcUZTHSaAVgaRPAcQ6EQqqurJRCjQ/zd734Xt99+O6699lq0trair68Pk5OTaGpqwp49e/DGG2/g9OnTFgp3MWS9mDytB4JdSiACz0sH2efyGbvAycyi6GwQnXbO0QEg8wE5l4egpp1vkM/nZVBxOByWjBIBqdLSUgwPDwuYTBkiVVLvHd0pjplWncXSwYcGP3SDG9YgUw/z78zQ6++nnzUwMIDx8XHxt/T952K96vz8vDwTE4zQ917Tdk1fjKtYQGQni+cql+fLJ3kv63IwdImtdxsIlZSUyKTjffv2CWVmfn4ePp8PnZ2dMtxLBz5sNEDOOHmxTDmzG0kul8PMzIxw0DOZDCKRiNAsAAjaTW46z43KhYs8WR3smNfO81tPaer6IqL2RIsAyPyMSCQiQ/eopEzlyeOa38HNTkNoKgleO50IXjepgyzcbGhowNDQEI4dO4ZNmzbhmmuuweLioqD65ipmEIlYmedr95lLRcmc6+K5sy2zXWaItWl//dd/LR2zWERLIzI1NYVkMolCoYDKykoJJjhckso/l8thdnYWc3NzQiciTcbO+aNzRapZIpFAIpEQGXA6ndKWnk6cXaBqoqJazmkU+T3MwAAr8jY5OYmWlhaZjaVrE1iv53Q6MTs7i8nJSWQyGUxOTqKvrw+Dg4NCn9KOH41wJBKBw7FCISL9Kh6PY35+HuXl5eKM+/1+bNy4EWNjY3Kfv/Od7+ALX/gCUqmU5Xot+14912LP/50Y00tVvu32LheDE7fbjU2bNmFubg7/+q//Cp/Ph927d2NmZgbf+c53MD4+Lk4MA3UG9XaNBqjPzEG81HXU7TpLqgEr7hMGGRo9DoVCErib9UEmGMPr08AVg2aCGMzYMqC3A3TsbAPfw88y2CMdjoMp2QWR90p/TtNUdX2hbpmvHfH6+noMDw/L+2hrHnjgARw6dAgAUFNTg+HhYQDATTfdhEcffRR+v19qsEzaH5+dvj7zHhSToUtJ7u3sNnB2cEC/T+s9ExC1C4aogyjrDBi0Ded+MGWItuHEiRNoaWmRrnOkUnMcQzAYxMjICIaHhy0Bs86uUG9yX5oZUxPopaxSHvkcSVVlvTUACxDFhjyJRAKpVAqpVGoNcGrafG17xKb+737gdfB72PRKAyz8G79fB3TA2uDo3cik/sx6wOiFXJeDoUtgrYcC2Tll/F3/cLDkBz/4QTidTqGHhcNhbNiwQQKShYUFjI+PI5VKSRH46Ogo0um0BU1xOBwye0dzSdPpNMrKyjA6OoqRkRHhpzIIINWorKzMwkXXQQ0VhxnU0YDaXaNGE7VCMpGYkpISzM7OyvmylXA4HMbbb7+9RnHye4qhd3ZGia8x8CLqpAewUVGzUL2xsRHHjh3DE088gdbWVgkSma1jLYb5rO0MznrGR19TMUfjUlp2Bl87zPr+OxwrdWkHDhwQahwDXtZu9fT04OTJk3C5XGhpaZG5OaRWkBu+sLCAo0ePIpvNSkaVtJhAIAAAgiCTipTJZISG88ILL2B6elqMJQ0jqTlE54HV4B9YReK0o6YH8mk0j0ZdF9oSKQRWkFHuO13wDqzMpTlx4gROnTqFo0ePihHV+0U/A9KMWFBcKBSwbds2S8v5yspK6TbJVv3MRgDA3//93+P++++3TD23Qw/f60BWOwf5Qq31Ah2uYvuTr7ORSnV1tchUoVBAZ2cnstksnn76aQlKWKfJ4FgPWARgeY5aV5vUS9ZQaASbDlJFRYXFcdP0It0y3s4JMq+X2VXuVV10zhbHlG3qdA4O5vsIbJn3kTQ3XpvDsTosmHqYNEI9EJN/47PTLAPaRFJh+a9uRFJRUWGhTwEroxn++7//GwcOHIDf70cmk8HRo0exZcsWbN++Hb29vZiYmJBrejd62A5IMW3W/4XFZ2ouPkfqQQb7Wj6o97TjDkBkhs9fy5POyuhzAFYArTNnzqzxKVwuF2677Tapdw4Gg8Io4eI5UhZI5berFdK+CbAqgzog4rEJOC8vL0vzHv6ddLhMJoPR0VELXc/u+vT58B7z76YP4XK5pE4pGAwinU4jmUwKLbpQKGBiYsLSDdXhcNj6UOZ1r3eOfN1878WW6cvB0EVedgHO2d5vGqFCoYBwOIwbbrhBpt77fD5s3rwZwWBQikknJyfR29uL0dFRSTFPTU1ZOqXoTarrY2h46Azy/ZpWoB24QmGVfz0/P2/ZnDrNzMWMh3Y29HtZv0EFQ4SO38PMDGs66ADTKNKwUVGa7cPtNjfvNR1i7ZBQ+brdbqTTaUxOTgpKxWnonOXEQYft7e04ePAgnnvuOezduxebN2/G0aNHce+99+Jb3/rWGgXO81kvMDrbuhgIzHrnd7ZzZ9MEB9YqypKSEmzatAnXXXedIFds2jE6OorXXnsNY2NjyOfzEmAmEglUVlaipaVF5Gd2dhYnTpzA6dOn1xjOXC6H8vJydHd3C82xpqYGbrcbk5OTUnuhO/tojrlGn2lA9NBivX81Sg+s0hn0M+ffWSdEJN/hcEh2iINWmc3N5/N46aWX8NJLL2Fqakoyonqfcu8AVjT15MmTsrd9Ph9aWlqkQH98fByxWAzBYFAGtJLCQbrVH/7hH+If/uEfLDV3OgvBIOjdBkSmQf2/tPhcvV4vrrvuOgwMDODJJ5/E5s2bccMNNwAATpw4IcG30+mUzpPM6ugsu5nxMJFgAOJk6b+boJM5i4SywGDC5/MBsOoSHZBovaLpzbpeiOezuLgowTwzMjx/Ljs7aNac6kCHwJTW7SYYxGsnLVTfP16rSW3lObDIndfB83388cdx4MABcch5D2+77TY89dRTluzaejJhB8rZOZnm5y7kKqa37V4v9pquA2MQHolE4PV6ZZQA/87f9YxATa3X8mvWxOggxLR5hUIBiUQCvb296O7uFgCLNmN2dlbeywwjfR8tG7oBjQ6izes3wS36V9rPcjgcMp6EYJSuvV5aWkJPTw+mpqaKPgetC/j/DBz1frcDlwkelJeXy0Djuro6eDweHDlyRBqp6L1s0vTsfJezrUtNf18Ohi7isnNy7Tav3Xv1Ki0txe23325xlrq6uhAKhQCsoiGPPPIIcrkcKisrLQaPP9z0dNLssgw0nGVlZeJUcaCZptkBq7N5WCio+bbM4minjJ/RCBy/27xHLOymgdOOBhVrOp1GIpEQJIhF50Q6qSzWQ+0Y8BAp0SgQFQO5v+Sjk8JB6gmVZjAYxOjoKH7yk5+gq6tLqEmsy6BTuZ6SsHMUzqZULiTi8k4CNXOJg1yw3xvRaBT33nuvBAJ0gMbGxvDyyy9jdHRU7mU+n0cikZAZW3Nzc0Kt6Ovrw7Fjx9Df3y9GVGdrXC4X3nzzTUQiEXR1daGmpgZlZWWSOWHwzWfNPUC+N9u085ich2Hn6OgABVi77+loaaNLh4wZpa6uLoTDYWSzWWQyGQwMDOA3v/nNmvkSprHWgRf/zWaz6O3tRSaTQSgUQiAQkD01NzeHkZERFF1xoAAAIABJREFUaa5AsIR6wel0oru7Gy0tLejr61tTjPt+LBMcuBQMqt15mHqLrxF1dblcGBkZQTQaxaZNm6TZhcPhwNatW/Hqq6+KfDHTCKzWJph6E8AavVkoFARZ5t/NEQGFQgGpVApTU1Myh4vnQnYBs9h2gbsJagGrdFK+j8CTphwxOCJllbZHA2LawctkMkin0xYASzt5fr/fMi5Ct67nPWHjBQJb+v7RBnKf6mdWVlYmxfIayEgkEnjjjTdknhebYHR1daGiogIVFRWYnJwsGsCvh4prOb/Y652Cb3bBgP4b7XRbWxs2btwIr9crjV1Y00kgUQ/VZSCigxJ9n3QgoGXI/P+lpSW8/PLL2LZtGzwej9htNuSgHSYAZ4INOigzX9PXq3/ncewCIgIEpHkWCgXJGC8uLiKdTuPEiROWjIz5XEzZsQsYeX664RT3NxvusDHJtm3bEI1G0dzcjMceewzj4+Nr9q4dKGPu3fXkxO68L+a6HAxd5GUX5LwToWAr1KqqKjFMLS0tKC0ttUwf/9a3voW5uTmUl5dLIMOAgEaFm8g0SlwMkojSkf/d3t6O0tJSDA4OolAoSOHp0tKSdHTTqCSw2uuf166ROK0wtEKzCwR0kTmpUR6PB2+++aallTYHppaXl4tDOz09LXNh9PPQCo7GmvUpvD/8nUGl7saSz+dRX19vGeTK+8Uhal/72tfw7W9/G7fffjseffRRfPKTn8RPf/pTaTRhBqKmU/VenMLz5US+L4FQkeN6PB7ceuutyOfzUpfCDNzBgwcxODiI+fl5y8wVvqdQKIijNDExgZdeegnxeNxSy6BRRdKNxsbGsLS0JF27qqqqZCaLRsq0g8ogiYaUqJvD4RAZ0bKlDZSm/ACwGE3d7j4QCEi3IZ/Ph3A4LM5qNpvFwYMHMTY2ZqEoAdY6DLuAiItzLI4dOyZBHhHKXC4n3bUaGxstVDme2wMPPIAvf/nLkqWyC96L1Q9dKgGOXusBUet9xnw/ZYK6GgBaW1vFKUmlUohGo7jnnnswNTUlwTrvO50VXexMQMbhcMjrlB9mKIFV+ppG2Xl+7LY1Pj6OiooKuFwuzM3NIZ1Oy3FJe9YBrj4HLWMMmjSQpBsW6Flb/AFgcXhNe0jHkBQl0l11/UNFRYVccyAQsOxDZozYDpvXrxvrcGwCz4d71O/3SzMe6gaPxyMNSWiDtN6pr69HMBhEPB5f4zS+H+tC7ZNiMm/aI/5rF/yb51lSUoKamhps2LAB9fX1Fj1HSihB3YWFBaEj6+NouqeuhdH/bxcU8PVUKoXx8XE0NTWJr+RwOBAOh6Xu0+v1il7jcTXgoGlvmrWibbem+VHOzEDc5XKho6MD0WhUMmLMBGcyGUxMTEj92bk8GzM40VQ/7n++xiZQ3KP8e2VlJSoqKrBhwwZ89KMfxc9+9jNMTk5agJX1skHn6s9eSvr+3FuAXF7v67JzEPivuan4fvMzbrcb3d3duPbaa8Vosv3q/Pw8Tp8+jX//93/HN7/5TaTTaQAQpW/XsUorGDNi1/+vu8IxKxQIBGQIIFsTc+CXeT0cmOb3+8WI6JoHjeboAM08D15zobBaBBsOh6VlLfnbVVVV4iiQ2tPQ0CBT3ulMaLRTo/qhUEiybPq8NF9Zn6PL5cLo6KigTQCEPrdlyxbJZP385z9HaWkpPvvZzyISieDAgQNrGirYPXfAmkErJkvm7+d7nSsaxPfq50nn2Hw/n0csFsP27dstDszc3BxeeeUV9PX1YWZmBsvLy5bW2KwRyuVysh+efPJJaQVPxFpT2PSzXFhYkKyT07nSXaqqqkqQTQ4rJbLN6yICz4JfHfjrv/HH5/MhEAhIFka3/zWRUDYzYLc7n88n1zc7O4tTp07hlVdeESdYywjvJa/XpO/ptbS0JINAaZgpl7w3R44cwenTp8UBZfe6fD6P3/md31lDo7KTg/e6LhR6vt73mLJsJ+fAyrMoKytDXV2d/A5AKDGkaFZWVuLqq6+2INl0rPx+v8yoomwBq53iKFPaWaGuYjaezj0zlqwtGhsbk+9kYxGd7Tb1L2WJwRIDNU33JAjEInXKCm0QADkGAxyti7Xc6sHBHEDLPezxeBAOh1FTU2OxR/qHqDefkQlK6Loo7g9eI2vltDzX19cLM4D3lTWid911l6Ujpf5OU6b0da4nZ+fynvdznQsIoN9jp2v0+3gvq6ur0d3djbq6OoRCIbHB7AgYjUZRX1+PSCQiHd/43PmM+P8mKGBHSTZ/eI6kxPH9tPelpaVIpVLw+Xyy/xj4MGDQ9tdsPqDBWx3wayBCA7gc7K3BUg3OEYTQ16d9FX3+5jXq8wFWgxiWOrCduC4boJ9E0KG5uRmf/OQnhZKu9Uox3XcuMvNO5OxCrMuZoUtoFUOQ9EbWSFx1dTWuuuoqQZU9Hg/q6uqQz6/0rH/kkUfQ398vfyNKTQRMG0c9m8JEUuzOg8EHDbrL5UJ9fT1GR0fhcKx2+GFAoAWeXbsKhYI4baQ8cWglz43Gnr9rRUOlmE6n1wyKDAaDMjvF5/Ph5MmTmJmZEQXg8/mwZcsWTE9PY3BwUBSOVmK8vtbWVpSWlmJqasqy8TVfXT831pdks1mZKk0Fd9VVV2FhYQEjIyN4+eWX8eEPfxjhcBgOhwPl5eXo6urC22+/bRnYx/tmJxv6udgFQVpe+Lv+972u9+s4ZpZAn7fH48GnPvUpeL1eyZzl83kMDAxgcHAQ8Xgcy8vLMoi0oqJCHCtSfpLJJF588UVB3rShNp08vgasGIZ4PI5f/epXuOeee6RzXUVFBWKxGDKZDF566SUBG5gNAiB1PlwM/BmgARBHKhgMSqZLt0fmPeb5ut1u1NbWIhaLIZlMykDlpaUlJBIJ/PKXv5SsUTG9ca5rYWEBQ0NDiMVikt3iHuRQ4/HxcTgcK0Noud/Lyspwww034JlnnsH09LStvDkcDrgKLuQcK+3Tzb9dKmjh2da5IKO878xesA6ooqJC5tNQ9zKYaG5uXkNLY7dEYLVOQmd/+Pl8Pm8ZBAqsBrAEoEpKSix1XbqDFd/P79HOpw4Wqqurhc7Ev7FV8ezsrKXmVAdIBAy4PxmokPLKwnWdOWVgwc/rzmK8VodjJTMZCoWkvbDO+psUQv6NwSAAafKgqUAul0to19lsVu7X/v37pcsiAa6enh7s2LEDO3bsQGVlJUpLSy17WctGMT1s/t38Xb/v/d4n6zmq68k6n6fWpfp3DfxcddVVFjCUmWYd0NA51wOjafN1cKTP15QxXUdkFxABq51o+X4OamWAQ8ocj2MGGfxXBwh2upfv1eUHOlDWzU94HzSQwX3AZecb6Nd5rub/A1Y6IQALoML7zHopDiKuqanBPffcgx/84AeyV8zjaDtjt0z/41Jbl4Ohi7jsBKJYIGQup9OJzZs3S/eRkpISdHZ2wul0IplM4rHHHkN/f784iZxQT4Wij68RL1O56PPU7+FgR7/fLxzfQCCAqqoqceiy2azUF5loB7CKCPJ3Xj+VEjewmWUiUkPUku0n2X2FtB5SNSKRiBjHhYUFTExMSL3O3r17xeFlAMLzCgaDqK2txcaNG8XxI1VQd23S6AjvZzKZxMGDB3HvvffC6VwZrHbkyBG43W7ceeedePXVV3HixAn80z/9E7785S/jwx/+MB599FFs2LABw8PDa1rk2smJ+Vy0/KxnJE2F9H4FRWdbxZTgehQ5p9OJTZs2ob29HQ6HQxTx/Pw8hoaGkEqlpF4lGAwiFovJ8wcgFIhDhw5JkG0aKC2TdueYy+UwPj6OdDotwa3P54Pf74fX65WGAqREEinn8Whw3W63NDvg+bGbHeucNOXS7rnwfhDwCIVCMldoenoavb29FgdQf47now07X9PPSF835ydpPUFHms7C+Pi4UPXS6bSADXv37sUvf/nLonQKh8OBEpRgGctrAuFLZa1n2M3f7XSodr5IkWOHy7KyMgs1jAgv6yzZOEG39Z+bm7PMDdIBjc5waEefskRdyVpGwNqlKxKJiLPGxjMMkjQSz+NWV1cLLVRTTunQMijneWoQLRgMWvYPazJdLhf6+vqk6Y4OIkgTJeVZ0w01jUgPUeW564yQrsOjTDOYmZubEzCD58vgTs/RC4VCaG1tFaeV+4NdQdnddXBw0PI5O9ky9c/Z5Ex/5nwCB2cDT/TzNhkKZmBAO75lyxZEo1F4PB6EQiGLTWdQryllMzMzMkIAgNh8k45mnmuxYIGLtE12vtRsgJKSlRmFZHfoY1KWKFeFwspQYDYFoRwA1mYk3B/6fHXTp4mJCVRXVwuzBlgtS9DvPduztvPV9B7Svgpf9/l8kpmmPhkaGkJHR4fspXw+j/b2duzatQsvvfSS7X0udj527zHtbLFndyHX5WDoIqxzMbD6fXqj06hWV1fj+uuvF1Ssra0NCwsL6Ovrw7PPPoszZ84gGAwiGo2iUFgZ2JjL5SSo0ClRAJZCQholk4ZFo9HZ2Yn6+npB4oPBIMLhMJzOlf7/p06dEkQnlUpZEJB8Pi+GXqeb9fF5LnQQSL9ghqmkpEQK4ok+kio0NDQkzRwAIJlMorW1FW1tbaisrMTJkyfR39+PmZkZbN++HXV1dbjjjjuQSCQQj8elSDcQCKC8vFy63QBAT0/PmiYJzGYR/fP5fGhtbUUoFMIzzzyD+vp6oQzt2LFDgqobbrgB11xzDR5++GF85Stfwd13343rr78er776KgKBAJ555pk1cw5MtEm/znOxo1fq3+0Mlp3svZN1rijPO0GDaEA7OzvxwAMPiPPPQub+/n5LIBSNRrFz504Eg0GRB6b1Dx8+LF3mKHc0EutlhTQKPzs7i5/97Ge49957EY1GBfVdXl7Gjh078Itf/ALJZFICDXaa09TJcDiMaDQqBfRutxuf+MQn4PF48PDDD+P48eNS22Siejpw3bFjBwBgdnZWKFGpVArPPPOMBUQw9y4/r2uS9LE1UMLXM5kMTp8+jY6ODtl7hcIKdePVV18VatWZM2dw9913o7y8XOokPve5zyEWi+HHP/6xpbGKvreAdf7QpRQIFVtnC4TsnEin04mmpiZs3bpVZLmxsRHLy8tIJpNwuVyIxWIAgJMnT2JwcBC7d+/G8ePHMT4+LuBIW1ubZMGp+4PBoGRDGZCePn1asjP8IdUslUrB6/VKUO7z+dDR0SHfv7y8jMrKSgnyObxYB1iktVGeGMgzoxMIBFBaWmoBxbxeLwKBgNBYme2nzuc+XlxclE6P3J9E7NlwZnBwEMlkEnV1ddKcIZFIoFAoCFB38uRJJJNJqfvgnnK5XIhEIuju7kZNTY0EWKlUCjMzM8KS4F5ma2Gfzwe3241oNIorr7xSnMSZmRmMjIygqakJLpcLr732Gnbv3o3f//3fx/LyMp588kmZVWTKD5e273Z62c6pPF8BUbHAopisUwa0zuLvtE3V1dX4yEc+IiMMGhoasLy8LM1m6IzzvjPw9Xq9Yuf1381zLWZb7Pakx+NBMBiUofJer1cyW6wRpezrmVm666DOkuqgmrJPf4QyzM8XCqtddhcWFiTrePDgQbS1tWH37t2W50mZ8/l8qKiokAHAvDa9eL9NuqI+ntb9BGmdTifGxsbEJjkcDgwPD+OHP/whrrvuOql/83q9+MxnPoOenh7J5mnA1gRYtXzytWLybPopF8MOXK4ZusDLFGDTGbF7v/5xOldaUra1tQm1AIAU4JKuQySGqBsRLB18cDH61zzUYga9vLwcdXV1Yoy5oRk8vf3220gkEpidncXs7KwECToYonHm+ejNAqwiQ1SkGmWyK2DUCDcNGSmDVVVVkiFii9SFhQXE43EcOXJEgpqKigpEo1HEYjHEYjFUV1eLQSfdrra2VgoN6TjSSaBSIIWKweaLL75ouYc+n0+46x6PB7fccgtCoRAGBwclSCwvL8ctt9winXbslIldrZDdMztbhsju93ey3q3SEnlAHs6Cc83feH133XUX/H6/zI4iv5yd0ohsh0IhCQx4XgzI6Yhoh8hUxHY/plGZnZ2VJiG6MQL3IVuQUiZ0YMq9Q2qI5rTn83lEIhFLDQWdRDqt2tFgpokOJDNOmlJlPiO76zX/XozKQ2BB11ctLi4ik8lgbm4OyWQSL730ErLZrNwTOggHDhxAY2PjmnMyFwOidyuHF2oVQ+qB9fefw+FAZ2enZESY6czlcjIMmOgvgxifz4eqqir4/X55/olEQhxDr9eLWCyGtrY2NDU1obW1FU1NTWhvb0dnZyf8fv8avcmibD5Tyml1dbUMfvR4PPD7/aisrITP50M8Hpfr4XGIjtPBYy2qbrJA54r3gdeoa3FI19ZIO+uL9P2ks0ynkPaHVJ5AIIBsNovJyUnJJuiMgtbXXq8X7e3tqK2ttXQUZYMKZnV1fRPrnujIl5SU4NSpU3C5XAiFQlhcXBRHlUFqd3c3amtrsWPHjjXOqZ0MFXNkz2W9H/vGTifYBXBmdkFnDrW8a3/i6quvlntNSi2DT8o0m8SwIcv8/LzoDS0f+nyLXbd5/voavF4vKioq4HQ6RWeb18gMEe04AyG75kakbFIfc3/a1fJQPjKZjOW+8RyYFeK9pG/Cxle6PtV8ZubvWp70s+BeZGMoBmrU/wR4BwcH8eMf/xhvvfWWgCmlpaX44Ac/KH6Zvtfm7+s9IzsA8mIDYZeDoUt02SEaFOBYLIYNGzZIaj8SiQBY6UDidrsRiURQKBQsdSdMt9oph5KSEkHsTDSBPzQUO3bskGF6fX19OHnypHwPUXpuFNIDAOvgSe20adSFioHZLzqMJvdXFxLyOngM8sRJb6DCowMZDodRVlYmgdPAwICg1jR4bObAVsn8LmbEdFaAnfUcDodkhbRDODw8jNOnT1uebTQalc5HNPDMJLCw2efz4ZprrpGAyM5AmkHkOzWg+hgXY+Udebgca4v3uZxOJ3bt2iUGxuFwSIA6MTEh1AM2SmCNDotEs9msUB20TGu6j3nPaNzNujnK96lTp8TRp2PX09MjnQm1weW5MHBhltHhWC0kf+ONN3DmzBnkcjmhDdGw0miHw2GLkaTDqY2cLlKX+2uTKQRgMdLmNWpwgfeHe4U1cjx/OtcMmI4ePQqv14va2lr5TD6fx5VXXmnZ/zzue1kXQ27XC4Ts3qv3ZSAQQH19PQKBACorK1FVVWUBpyKRCByOFRoc2/Q7HCt1hDU1NUInnpyclMG7sVgMLS0tUm9GefT5fKitrUVLS4vlWRMg4HeQgrewsCAgDwG0yspKqb8ZGRlZE1SxxlO/Tn1m1j6YNaN8naCApjyzVtR07PL5vFAEKZ+8R6zFIn0zHo8jlUpJVl3XV3HsRH19vTQr4TECgYCAWWQicD/yHjIgKhQKGB0dlcYNTqcT09PT0qmVQdjmzZuxadMmy6wiU2+vF1Tbvf9CL7vv1b6BDozsdI3b7RZqJusl4/E4xsfHcebMGYyPj8vzZ4DNIIXAk7mf7IBbu/tm6omSkpUh3dTFGqzidTHjWSgULOeibYO+Tt2IhEE3AxndQIfnojNcWkc3NzdbGujw+srKyhCLxSRbSzChGIhnPid9n3hvSIvVdXjAavOEkydPYmBgAP39/XjooYfw4osvit2588470dzcfFY5OZdzK7Yuhn6/HAxdxGX3wIsJkN4YtbW12LNnj3R6IrrGxgE1NTUyFDEejyMej1uaA5iGhi2nq6urBX1gsTdR52g0itbWVjQ3N8PpdGJoaAjZbFYKSlmvU1dXJ4ibLhbUy2ypStqZ7lpFlEWjTzyWpmkAEPTORI9IfYjH44K8NDc344orrkB9fT3y+ZUi/KmpKQnCNGJpZhqqqqpQX1+PWCwmBpHdg0pLS9He3i4daLQyffzxxy3XPzk5if7+fjz88MM4dOgQnM6VOi+fz4cNGzagq6tLHOJ9+/ahra3NEqhy2SEw2kE2jVUx2Xuvime973mn36HlngFAIpEQ2WewSmSaKBwDV8osG2ukUilbJ8SkGtihiOa1LC8vY25uTqhiAOS5UGZo+HTHL2auGOjSMVtcXMSrr76Kp59+GvF4XLoWskMdgzwij3QKaZTMAK+ystJimAErosr9z+s2UUO7HzrIehZZoVCQSe3cH06nExMTE/B6vdJ5i5m7u+66C01NTWtkYD1DuZ582P1+PlaxvfZOnFIG69u3b0d1dTWi0ail/o1yQtnIZDKYmZmxBESVlZWIxWIyc8Xv96OlpQWNjY3w+/2iR4HVuT4VFRVoaWmxDHDluTOLw5kudNwZnLEFNYunJyYmLIAC5UI7klrf6PtGYEvLqXbOCoXVrpx2IBnvodPpxMjIiARL/BxrhdxuNzZt2gSnc6WhwvT0tByT94dIOFvCM0tPmWW3yLq6OtTX1yMcDgudClgBOBobG6UpC9kPwWAQe/fuFb2ztLSE119/HQBwxx13IBAI4LrrrhN7ZcrWO1ln07Pv9zqX7ym2fylLum2zx+ORdtEjIyPSNlv7JwyOCWJWVlaKHOtja3q9/tc8Lx2AB4NBRCIRS30MgxjKlMOx0mIbgGQXdbMAk16tfQ4dpGk/Sn9Wf56+TSAQQCwWE79D3z/aAr/fj3A4LHveDHBMlk2xLA31Axu58G/MCL311lui3wuFlZlH//mf/4njx48jk8nA6/XiT//0Ty2slfXkwS6w57qUAqLLwdAFXOcqCCbfn5+lMmlra0NNTY0YAqIX3IBE/jKZDE6dOoXBwUEsLi4WRemITG7evBnt7e2oqalBLBZDbW0t6urq0NXVha6uLuzYsQNut9tSq1FZWSm8axZOV1RUSJCgr5GBhtlyVBeN6wJdXhsRI11IzEniunU3DTbfQ666pum53W40NTVhz549cLvdmJmZwalTp6RgVzu1ZitVTTsEVuqRSDepqKiQYbZ6YOHy8jKGh4dx6tQpLC8vo6+vD1/96lfxN3/zN+jt7cXg4KCg7qlUCiUlJYjFYvjzP/9zuWdXXHEFGhoaLJ3JziXNbKdM7JRjMWNyrutcHFSN6gFY00bbPJ/S0lJceeWVEszmcjmEQiFLloz3l7JtOq8aubbLhmjnzQwm6cRpxK9QKEi9ELDKv96yZYtkTzUdCYAADayx43mTYsqAfX5+3tIaXgc/pFzw2My60kiTYtLY2LimmJnXqLuBFcsYmc4D9QlpWjweuf5mIxav1ytIOoO+VCoFp9OJ++67b80zMpdde/VicnSxlt332+0h3j8+046ODjQ3N2Pbtm0ysJYADGnMLpcLyWQSExMT0lWTBd7MRgMr4A8pbDpDqWmV1MN6JpE+L2B1OGqhUJBOm9qxy+fzQnk2KcnmfjHvh3lvTJnTOpuNbczsk96fLpcLU1NTMkSWbeh17UZZWRk2b96MbDYrABcXz7H1fzuD8pher1cydbQlTqcTtbW12L9/v9R50m6w89/8/DySySQGBgbgcDhkuDPPmc8NALZu3YrOzk40NDSsyZC+l/V+7oWz2QrzvXa2w/ydoOUVV1whQX8ul8PMzAyGhoYwNjYmgb+2l1pXFQoFCQIIkNrZKzufRr/GAIDNG1KpFI4dO4bh4WELFY+yuLi4iOrq6jWgmQ76uUwKHX+4p3lss2Mc7zEDdp3B1NklAFLTU15ejnA4LA1rzAxZsYCIz8Pn8yEajaK2tlbARn0dQ0NDSKfTAkhzr2QyGTzzzDPCogmHw9i6dasFSCuWpSsmM+eyLmRAdDkYukDrbE6ifp+dIJH+wGJXOkJ0zEjdCQQC0uGHCoX8aXMj8ne2621ubsbevXuxd+9ebN68GVu3bsWWLVvQ0dEhaFo+v9IAgenmq6++2tJ6lBtOt6wEVusg2GmLzh6DHI0MaoPJjJGmUXDjeb1eQdHpaGmqBlPe2nmlAxKJRBAOhzE/P48zZ85IS3A9H4bHpFLjPeYcAvJ+C4UCgsGghUevf7LZLH7xi19gZmYGvb29Yqj9fj/8fr+0vCUSQxTob//2b+V8rrvuOjQ1Na3p/MefYkGOnZNmJ5fvR0C03mf131gsbzdwk/c7Go1i3759GB4exvLyMnw+HyorK+H1ejE1NSWcb147nSnKPJ+TaSS1Q0c5seOi65oeBkZerxddXV2WWVCkFfA1XYPAbBYn1LM+JJlMWlrZ60CD+xFY6TTHLojcu0QuZ2dnZagpz3nXrl0WA2cacJPicTaUmUiqphMxqzA3N2dpgRwIBFBTUyNNIrgneY2bNm0qiiTyXICVgCgP+9b+du+/2MtuP2m54Tyquro6NDY2StMCZmXYGQ2AdASMx+PSeEAPXI1GowCAN954Q5oCaMqwbjcNrGQta2pq1tBuTMry8vKyDCHWc9MArBmazWukfGsaULFnommpOtDhd7NORAeQeu9yn8/OzuL48ePI5/NC4TP3WyQSEXCBnyVLwe12o6GhAYXCCq2TTjhtVnl5uXx/fX29DOhm1igYDFqyFplMBn19fbKHmDWi7Th27BgA4NZbb0VlZSV2794t32Gu9TKP2rldb71fjuO5ZPiLObcayCWYQuCRgfnExIRkho4fP44TJ07IiATdhlwHuszaaV1kd246mNZ6m3qpubkZ7e3tsgd0k4SFhQWMj4/j2LFj6O/vlz1mHl9ngXitWrfqLLppE+zuWaGwwjDp6enBwMCAgL68/qmpKSwsLMDn86GtrU1kMhKJCEBo1ibxfLnf2b2vsbFRZhrpJlqseSUFlz8E+IAVXZBMJjE9PY1cLofPf/7zCIVCRQOiYvJjd/2XwrrcTe4CLNPR1M7Iek4oX6NTwmwNi61pbOlAkSbT3t5uScMySNBGjegtC3HZ1pEUJA4kY1trbgiiJqWlpYIu5HI5oc2xEYOmmWmEQ7dyZbDDQIiOnFY2Jv1N0+doxILBoARfLLwkB5wpek3HoMHr7u7GwMAAstksenp60N7eLkqbxlgjqrx38/PzmJ6eFsXNlrngJC+VAAAgAElEQVQcdmtmHNxuN6amptDT04MXXnhBFKfX68UXvvAFxONxTExMYGxsDJlMBq2trfLcP/GJT+CJJ55ALpfDjTfeiCeeeALDw8MWGdHGSzsQOjtSTMbsXn8nyumdGuBCoWDpHqaPo+/X1VdfLQXgfr9f6iY4J6qpqUnaPjudTuk+BKzy1OmQaw4/z0HvPTMYMmk/PGYwGJSOUby3S0tLUhtH55TZINLc6AAtLCwgk8lIEKNpdTwW90F5eTnS6bRkTe2cblJj+YzZ2j6VSomM2Rkm/ZqZMdB7j2g376N2krmf2Zlr+/btlv1QUVFhAQb8fj927NiB119/XdB9/Tz0cjlcyBfycJ4jVreeI/5u13p7Rd8z0znk79SBfr8fZWVlaG9vF2eajSfy+TympqawZcsW0aunT58WehCdIcoJB1AuLi7isccew7333isjE3SwoylHnZ2dwgwArI1XdNZwZmYGDQ0NFnQ7l8vhxIkTa+rrWNOoHSptb0x9oz9vdhbVjqMOhgKBAObn56UukLZidHQU+Xxe6jq0niNFzk5OySRgnQizAHQ8y8rK4Pf7xUayg+jPf/5zQeQBaxbA5XJhZGQEU1NTiEajkqnTjSG4br31VkxPT6OjowNHjhwpugfOJsfnqsvPp4N5rjo/l8vhtttus3R3nZubQyKRwNTUFE6fPi0UxNnZWaTTadTW1krto5YnNhIoKSkRRgZ1ul0QwGfAUQbseNvR0SHgxJkzZ6QbIbCaxR8dHbVk47Wt4DIDG/P/tX7WtGWHw2HxR7RfQlnXAZTT6URNTQ3S6TSam5tFTjlY2+fzIRwOS1mEbtxDcEQPReZ58R7xvAkoavaE3tPA6ky8iYkJOJ1OVFdX49Of/jR+8IMfyL4zA2l9b8z7Z/f/71dA/27W5WDoAi0TYSiG/pjL6VzpghaLxVBXV4fOzk7k8yvF4SwCZFOFQCAgHX3KysoEuTXTsHTsSktLJSuhAx4GGQ6HQ2o0SA2YmZmRGo2qqipbCpt2CgErMqg3G4090R+TK67RaBb+smkEj8PvIS1ncXFRujNRCejNz+/xeDyora2F3+/HzMyMXBfvC4MhPXk9l8thdnYWJ0+etNQhscAxEolgcnISiURCFJ0Ort566y1xBpaWljAxMYGFhQXs2rULBw8eRCgUwvDwMIaHh9Hd3Q0AqKqqwubNm/H222/D7/fj5ptvxuOPPy7d1bTyMZ18KlZNE+SyU1AXaq03V4hZoe7ubkEWNd0nmUzC4VgdUNvX1ydUM2bwNGpdUVEBt9tteY68dpMrrp0X06mjHJJLTqcok8lYHHy+l7UIdBrZyYoDVQuFgjQ8ASBZAKJ4lZWVSCaTMmSWRpWtk7mntZENh8M4cOAAvvvd71oGcepl98ztDLnb7UZ1dTXC4bA4eJSlRCKB6elp6Tq2e/duhMNh5PN59PT0oKWlRRx3Xm8wGMQ999yDpaUlHD161OIM2snmegGRXZbi/Vzr7Qu777JDOQk4RSIRoUmVlJRgenoamUwGU1NTmJychNvtRigUAgDp4MQMse7WBsACDMXjcTz99NO46aabBNQCYNGnhUJBaDW6iYxdMERbQTknbXdsbEz2EwAJDJiRJxKuHVfTGQJW6x/0d9NuaHoz0fby8nLJvPO6nE6nUPY0PY/7lg1O9MwhHpez9nSwz8X7TMocs8xLS0uYmZmR/aC7f/Ez4+PjePPNN3HTTTdJjUihUBB7OzAwgObmZmzatAlbtmxBOp3G+Pi4AFqm7i62TDm/UPr7nXyPeQ1erxe7du0SoGp+fh5jY2PSBp1UX8pcOp3G5OQk6urqxJ7rRYDT5/OJztfzC0nL0/RRvlZfX4+uri4BpkpKStDa2moBvUpKSlBZWYkNGzaIHjx69Kjt9ekgQQMRGpCjnOql9Zbepw0NDdi+fbtQPwleO51O+Hw+bN++XewbB4u/8MILklnWIw/IjNAAA/U3v5P2RJ8rAAEbzRENBN5ZWpBKpXDdddfhnnvuwdGjR3Ho0CFhMBTTAea9sqNq28nb+dDxdusyTe48r3ejsLTDVlpaioaGBuzbtw/79++XPvTHjx+XLEk4HJZiuMXFRbz++uuWmRGar8pUKJ3FsrIyRKNR2ZzMnHDODodMkmrGGRVbtmxBVVWVnC8pBcws6WswEXYGR7qrir5X+rNERYnQZDIZC7+c7+Hm1628eXxSTTSKSKWyefNm+RxpfnQyqUjpcCaTSbz99tvSQY/H4RDOSCQiTRSA1TbiPI/Z2VmUlJQgHA5LEe7/+3//DwBQXV2NmpoabNy4EQsLCxgbG0N/fz+mpqbQ1tYmARSH+en7ajr5xWTK/N109s9FVh1woIDz53y6XC7s2rULO3fulM5ORHM54HN5eVm64bS2tlqooTwGgwq2DNYFp5reoNFoUgN0kMR7yuJp7bRRHlnTpA0BOxoyK6W56HSoNJDAv+kWq+S381wYDDFg1hSfsrIyBAIBXH/99eju7rZ05KLMm/uOe0M7sXQqKisrpUBfF/C63W6MjIzIoOU9e/ZYGjeMjo5KkwldPL28vIyWlhZcf/310jXprPJ28UDCsy7t1Oh/9d/D4TCqqqpw4MCBNeMCEomENL+pqqqCz+fDxMSE6BXSa5kdIcWSMra0tIRTp05hZGREXidgRP1Ip4/1atqx0SAAg3rdMSuXWxk0rIMh7qlgMCj1mnSwdK2H1iv8PoJWel/pzBB/5+KsIE3By+VWmvQQNNDHy+VySCaTMmjcdJ4IrNBBZX0bZZs6g+DEwsICent7MTc3J7VauuMZryGbzUoARpYF7zsbj3BlMhn4fD584AMfQDAYLFpjYeplU+aKyeK7XWf7/NkAAP2a1o8333wzHI6VGWTz8/OYmJgQYCeZTFqukzqTTSl0gKMBVNp7v9+P+vp6NDc3o6WlBW1tbdi4cSNaWlpQXV0tmXlmMVtaWqSjH5dZzwNAwInq6mqEQiFL4wbTydeOPf+fQYzeD/QTgFUAWH+WQZg53oR72pQRAoa33nqrUG8JuAYCAaE2MyCkbSMtn7pcd8p1Op3ShVEziFjz2NDQILXqHKfArPctt9yC5uZmKRUodr/Wk5dLYV0Ohi7QskOA1hMEKuxIJIJrr70W11xzjaCLr7zyiiAi3EhEBv7lX/4F4+PjYrh4LO2UpdNppNNpcVYqKyslSGFRKQWdvFE6OrlcDlVVVaIoqKzC4bAYXQZlDExMlEAbQY1kmvdHb0gibvPz80Ix4bXRSXS5XEKRo4LQyhlYRfxJU9u1a5ecSyKRWOMY6pT18PAwenp6ZA4IM1QVFRXSVY9zmPg8lpeXkU6nkUwmMTU1haWlJXR2dqK5uVlaRH/7299Gc3MzAoGAzDdip0Cfz4e9e/fik5/8pCi2HTt2yCwMu4BmvYDIDIT0czlfSx+7WFaI9zocDuOuu+5CTU2NUA/peM3NzWFyclKUNbMXsVgMZWVl8gwo+2x4QTqnGQRpJ04H1ybn3OfzobGxEZ2dnejv75fMKGexdHV1WSaok3/NLK3+15R1jTbTUDIgYpcrTUXK5/Po7e3FW2+9ZXHKuK98Ph/uu+8+RCIRMXbm0nUPeo/S6Q0Gg+js7EQoFBJaBo+zuLiIoaEhOBwOtLW1oby8XAw00Vw6MgyQ+HpZWRkaGxtx3XXXobW19azdiM61fuj9XO8kK7Sec8o5Z3RW6PDrWkm/3y9dyNxuN/r6+iSw0cG1pjvqoCqRSOCXv/wl4vG4LQ2UsssuVTqbot/LulJmHBl4HTt2TOgvJmhA1N3hcEhQXUy/aGRa3yMGddw7uquYBqK0c8WsggmSsRaF9QwabNBAnG7RT7CP9CGdvUokEnjkkUdk9pvWF3q/5PN5xONxjIyMYHJyEpFIRABBHmtqakqo1U7nyqDLq666Sva2zijYyVIxna7BL7tg/FxWsePa+SlnO6bWAxUVFfjoRz+KsrIypFIpsdnhcBg+n88SsNOPoDxwRIHOfPP41Ce6aQjp/dof0fLGbAfBJgKUXJoyqcEv7SvYZTEoM1qW2X2O30N54d7TYJk+3smTJyWg5nG5N3UQrv0lUme1juczoP9YXl6OqqoqKbGorKyE3++XYJF2I51OC6jHYwQCAamxam1tRSwWg8PhwB133IG5uTk88sgjKCkpwZ133omuri40NTWtGe9gypMpW+e6LkTQdDkYOk/LToHZpQ7tHjIFMRaLYePGjZKFcblc+M1vfiPdbTweDzZt2oRAIACHw4Genh5MTEwIPzcYDFqCGW0g2KKVXGddgMt2vrrwj/x2h8OBjRs3WqgzdBppnNgpS6PgGgkEVqlzmkJnKheeq4mUZDIZi5Jhhos1O7pVrHZu8/mVYnc9FJOtwwuFAtLptCgbM2NFamI8HpfvcDgcsvnj8bi0owyHw5bjaGeYdVU7d+6E3+9HNpvFU089BYfDgWAwKPQvZux27twJANi0aZMEWB6PBx/60IfWNFMwub6mwimmhM4lkHq361wMKP/1eDy48cYbEYvFZHgwg6FCoYChoSFBsLVBYEHozMyMvMbP+f1+1NXVSYc23R2OS6PhdDx1IMTuipRNomsEDbxerwVZdDqdmJmZwfT0tBhZ/vBatUwysNMBBwM+Dmml07m4uIje3l688cYbGBwcFONLWfd4PNi4cSOuv/56C0Ko96qdQ8zzqqysxPbt21FfXy90jGAwCGCF73/mzBkAK7Qj6iTKDYvaGSyWl5dbavwcDodksXfu3In29nYxyMXkxOVYGxCdT8NYzEjb6e5ifyc4FAgEsHfvXmlgwyD08OHDgpDX1dVJhvGNN96Qz9PhoxwyU8JOUsw+j4+P45lnnsHIyIjoI3a8ZMawpqbGMrhXo9NcS0tLmJycFDkeHR1Fb2+vpV6N8qWzrNTpugEOX+fxzQyIdv5JbZ6fn7c4rNTt2tHjuY+Pj0vApB1eZktpU3hcDXYsLCwIyMC9USgU5HN05H/6058KpVEHHSaAksutFLhPTU1hfHxcngE/U1JSIjrgjjvukP0Ui8XQ3NxsoacX08Hr6ed36lSaxz3X95zNPtCBLi0tRVdXF770pS8hl8vh+PHjku0JBAK45ZZbBEDRMqQBHwKe5p5jXTSdeu2naP9Dr3x+pUbvt7/9LcbGxmwHY5t+CDOQGhy1u16TakldzPuk24Pr7Cqvkz/MwtJ/4OepL3gcvT8WFhYwMTEh56gBCWb2W1tbsXHjRjQ2NqKqqkra95eVlaGpqQk1NTUAVrKgHCZOpkEkEkFjY6Ola93S0hIOHjyIaDQqNMXl5WVUVFTgmmuuQVVVFdrb220DIvOa7WRMv6+YjJ3PdTkYugSWVjLkiDY0NCAWi1mcjuHhYeGIhkIh7Nu3DxUVFZIBevTRRy1d4/RsE3NzUrGwKFEbYKIvurh7bm4OFRUV2LZtmxhprdAYwGgqg26XqZFvjappI8rrZ5bK7B5H9IgZLn6OqXB2u2O6V9dn5PMr81mGhoYwMTFh6VJXXl6OQqEghecAJPDieS8vL2NsbEzoLfpZLS8vI5VK4fjx40in03JcjUjRWOTzeaHL3XbbbQgEApiamgIAyW5x1lMqlbLIyde+9jW59+z+p++/XushMGaqXzvDpjF5P9d6WSGXy4X6+nrceOONKBQKSCQS4ixyphMzazrI1NlMyh0RXrd7ZV5KTU0Ndu7cibq6Ogn8Ke+aJsDPEWkMBAKora1FdXW1OEBXXXWVUFIJMExOTko2qqKiAlVVVbJndOBOY6ORdcp1IBCQDnmkLTEgpANK2T916hRmZ2fxxBNPCPChHc1gMIi/+qu/wuc+9znU1tbKTAlm2Hj9RFYJgFRUVGD37t3YvHkzmpqaJOtWXV0t80FOnToFp3OleJZGUuuOQqEg84VaWlrQ2dkpmSXy9Dk8sLOzE42NjZb5K6ZcrPxiL0/vBmF8r8vOOTT1NzvIeTweNDQ0wOl0or+/H/F4HD/96U8xOzsLj8eDjo4OCaR7enoQj8fFadJBK2s8Q6EQotEo6uvrpbMcM3W//e1vMTU1BY/Hg0AgIJl9BlLsdKbRZZ3hWF5extTUlNSu9ff3S5bFDGTMDBCdMwYAWr+b2QWdnQVgceQYNPJYwCq4oL9reHjYgrYTKOD949LXyvMm1Zi06HQ6jYWFBZSUlAjNZ3BwEEePHhVdUygUUFdXJzVHJvLPWX5kapCORRorg6329nY88MADOHDggMyq050XtVxxnQ28Kvaec5Xj9f5+toyQ/jt1Z0NDA2699Va4XC5MTk5iYGBAbOBtt90mdF4OP9eDsjX1eHx83OLL0IlnDW4oFEI4HEYsFsOuXbuwdetW0V0cfaGzKel0GkNDQ+L/aMCTgCrPY3FxEaOjoxgbG1tzndoX0cG4ru+jXgVgyUSZ/hKfHeVydHRUbATlhj4Og7pEIiEdGNnpkf5QLpdDbW2ttPGPRqNCv2dNM4OdmpoadHV1IRKJSLc6l8uF6upqtLS0oL6+XtgnBM/n5ubkHu7btw+5XA7f+MY34PP58Ad/8AcyVHrLli1Sc/5OwNCLvS43ULiEFpEwBjFU0HSu3nrrLRQKBUEdGYEvLy/jwQcflM2oDUlVVZWFi76wsCCZJSqiYptcG7yFhQU0NDRIwMHz1YbP4XAIxYLOm97QTqdTUDMdoGgaiP5OfV5UWFRk6XRa0H+i0x6PR5o8eDweMXysdWDzg+npaVRVVUnA4/F4hH5hnovm6B85ckRoI9qRplLljBB+ngoylUrJOTDD4ff7sXHjRtx555340Y9+hPvvvx/f+ta3RJnW1dVZgkSuyspKzMzMwO1244YbbsDQ0JA4DyaSph0RuywR/6b//0IuE3Heu3cvqqqqLIMUY7EYZmdnRYbt0u1U8AsLC5idnRW0lfuJ9IlAIICjR49ieHjYQkngORDZJO+abUuJJsbjcTG0+tikpQIQ3vfw8LBQj0hXY+aVz4PIMY9DcCCVSslAY422cy/wmOPj4zh16hR27dolRpky73Q68fnPfx6pVApvvPGGUEFmZ2claCTFxOFYqU1sbGzE1q1bJchOJBIit8FgULrbud0rrfgZDLGOxOPxYG5uTrIUnZ2dcDgcqKmpwZEjR1AorHS8u/XWW/HII49gfn4e3d3dWFxclDokOzkkXe5cu8u9HzL5bt5D9DoYDMLhcODGG29EbW0tFhcX8dxzz4lTGAgE0NHRgdraWnkuzz//vEUv6kJnUhUBSEaopKQEY2Nj4qgMDw/jueeeE+eH8sjMyq5du9Df3y/6Vtdk6Kx5PB4HsJIZMilyOpupGwnoGXH8Xr5X05Hs7qFmDRBZp8PIDC/3KgMnBmkaOJuZmRGaH2ANlJlppWPKpiR0sMPhMKqrq+FyrYyI+MEPfiDfz5qij3zkI3A6nfi7v/s7i5Pu9XrFkW1sbJQhrD6fD5lMRvYH96/b7cauXbtQXV2N1157Tc5penraQnW0s4Xm6+92nauDaveaXdbK6VxtdHPVVVfJzKaBgQEkk0nk83ncfPPNmJqawuHDhzE0NITm5mYkk0lx5tlpkzRRdt1ktsfn8yEUCknwwjpFj8cjzVscDgcqKirg8/lw5MgRTE9Pi3zlcisNQagfzWtwuVwiY7Ozs+jt7bVktPV124Eg3FM6m0l9ro+jmxWYvsbo6Cg2bdok91R3y8vlcpJh83q9co90jZLP50N9fT28Xq/4YLpUgIE8O8u53W5cc801eO6554RhwZIJfkazJQiMLywsoLOzEy+++CJyuRx+/OMf4+6778Yf//Ef4y/+4i/g8Xiwc+dOHD58WLoF6nt3MXyNc1mXg6ELvOw2FX9nS9rq6mrpinLXXXehUCjg17/+tRQmLy+vTC7nbIaenh6hsFF4AQgyHg6HMTY2JpuL3YxoUOjUU+hLSkqkAwwNFYMYOv52wQ6VTjKZRCAQELocsNrBrby8XJSE3mhmMSwdVY0a6cJ2OhaassF7yRkQHK7G+zQ6OopEIoFEIoHt27fD4VgdzEplaD4jbZD0JHYirmYnlpGREcu9JF2DhjqfX6knefXVV9HR0YE9e/YgkUjgsccew4kTJ2Q6PZ0ec91xxx14+OGHsbS0BK/Xi/b2dhw7dsyC8mr50oZUX49eOjA6XwiNXStt/utyudDU1IQDBw6gpqZGimsZRGQyGamRodOvnShmJjgngsg4szCFQkGQvw996EP47W9/i/7+fkunKJ1JIsWL9FMayFQqhXQ6LY4pM7TRaFQoRZraQJSR51hsJot2SlkIyzkobGcKrAZg2mHmQFTSPYmwszUwu8HxPcFgUO4jv4tUwo6ODmzYsEEMLIvHieAePnwYTqcTDQ0NluJ2jX4TPFhcXMS+ffvkXm3atAn9/f1ybz/72c/in//5n+FwOLBt2zYsLi4KTWs9Y3k+EcR34yTqxYA7HA4jFAph165dqKyshNPpxEc/+lH86le/Qnl5OWKxmASQi4uLeOWVVyQYpEPF+8rGHZxPRD3MzD51usPhwOnTp/Gzn/0MO3fuRE1NjYXi6Pf7UVVVJQ6nGeBQzlmTx05uWr9pCrOWQRN00ZRPE9DRwBmPycXr57mRpsrhxPwsawcpg4VCQc5bPyddb6KbmACQekM2vwFW7OJXv/pVnDlzRnQ8wUg6oBs2bLDUd1APDw0NYfv27Th16hQ2b94se46MClMXNzY2Yv/+/XjyySdRV1eHubk5C8XbDqQ6myP5Xh1N01aYAZCd/FNGa2trEYvF0NXVhY6ODpSUlODpp59GOp1GSUkJEomEdGFlF01SavlDQHJmZgb5/EoNGAv/3W43IpGIZI5Mir6mLjIwYBdP+hTZbBYzMzNr6jCpvxjk0o4Eg8E1oKGWZ53p0fvWzIxS3+qMKEFs/dzYvIB+wuzsrKU2mEA2g5+5uTmh/TudTqlVpu4gRZlgAAFFzrzL5/P4j//4DwmaWHvO7zNlg6899dRT2LBhAzZu3IgTJ07gueeeg8vlwo4dO/BHf/RH+P73vw+Hw4ENGzagp6dH9lwxf+SdyO35DKYu0+Qu0jKVjsu1Mq+jrq5OWnRu374doVDIkhKlo9XY2Ijx8XGMjo7imWeesSgVXa9SKKzMTOCUcyqL0dFRQaN0UaIujAVWjRWDE43Ik3anC1/5Pra31AZXZ6L0ewFYvlNzbLUSMekVuhOWRlhYV0TK3tjYGE6fPo2JiQlRUlNTU+jr60Nvby8WFxdlKJlZaA9AFLAONEtKSiz3lPc8mUwikUhYusDo89Wp+//5n/+B2+3Gxz/+cZSWluInP/mJKELWl5irtbUVra2tohD27dtnQX+KyVkxg1YsY3Qu6904pnYom9frxS233IIPfOADQp9gYw+Px4PnnntOuPv6ufB8uX9cLhcymYw4M3T2SQXz+Xxobm7G7/7u7+LTn/409u7di/b2dtTX16Ourg61tbWor6+XQXI0YqxrIWc6nU5bniXBhEJhpePd9PS0xbHj/mLhKoMLM5BnwMJaBgYlDIocDocco6SkRCgNNOxs5cyMcS6Xw9GjR5FMJi3dwvT3BINBtLe346abbsLu3bsRiURkHg6d5mw2ix/96EfiZEQikTX7eH5+HolEQrJaqVQKzz//vDwnGlw62LFYDPfddx8qKysRDoexfft2oQnaLSecF7yZgl52iLheRK8pt93d3RYwqby8HAcOHEB3d7foumw2i5GREfT29gr/XgNBpDJms1kkEgmZqcVMaG1trdCFKBNDQ0N44okn8Oyzz+LQoUOYmZkRJ7urq0u6M3Jf6DqLpaUlJBIJTExMYG5uznJtJhils0PA2g6gmkKkdbR5z/Qe4PH4XZQZ0jv5mcXFRRw+fBizs7PSdS+RSMjfdRE99x6dT1KB2GCE2aZjx47hz/7sz/D2229LsT+HrS4sLOD555/Hm2++iUKhgIqKCqHC0ZmemJhAKpVCMpnEwYMHxeHXrAZTt37xi1+UZ0ca4/le7xZM0PZDByEc+xGNRtHU1IRt27bB5/PhiSeekMyFw+HA3NycyKLOAOvAl3PNwuGw0MwY5FZUVCAajSISiSCXW2ktT8CW58PM5sLCgkVuqF+ZQWVLb5MqSjtPEJdZLXPpbKmWAW0HeFyt37l/KJvav9DBDgGtVCploZpqsI0gLq+FLCCCWMxO5vN56Uw7NDSEpaUlBINBoZu+/fbbyOfzliZauqzB3OvLy8sYGRlBoVCQuYz5fB4vvvgikskkbrnlFuzZswelpaWoq6uTNum8B8X0qN3fTHD3fK/LmaGLsPSD5+YIhUJoa2uTjV1bW4ubb74ZuVwOTz31lDhIfr8f+/btEyMyOTkpWR6ze5ueuUN6DykCi4uL6OnpWdNkgUsrCI3+6X/JndYKTQdWdkrAPK55L/Qm1PdKU+GoYDUPl+/lojLTfFrWD7lcLqkdoiPHdDsVqFYE8/Pz+OEPfyiKjc+BTjIzStqBtAveeI94jKWlJUxNTaG5uRl33HEHXnnlFQwNDSEWi2F5eVkKTc1177334itf+YpQnVpaWnDixIl3jJqYqMz7jbrzeOvVCpWUlGDTpk344he/iMrKSszPz8Pr9Uo3Lp/PhzNnziCfz1sccPO86ThNTk4imUxi586dEkzRASe9y+PxoK2tDTt27JBZKQMDAzh69Kh01ZmdnRVKE+k6S0tLOHbsGK688kp5vpRpyn06nUYqlRLZIa2IlJySkhJbOpiuD9GoJ58TM2XRaFRoELxufSzSqpaXlzE0NCRzmEi7oHH3+/3SvXDbtm2IxWIyv8Pj8UgxOtuoDg8PS/0VkVqzToR0F17P0aNHccMNN4hj4/F4pJkIBz1/9rOfxY9+9CPk83ls27YNhw4dkm5S5yrL59tgnm1/UBaYFQqHw2hvbxfqI50I6oNsNivUnmQyKbNXdEDBQJqILgDRe36/H6FQCC0tLUL/Jf2N9WYDAwNwOFY6/rEVdfdRE3sAACAASURBVHl5OUKhkATyZgc6Bhaabk355f7RNDn+mNkL817pZ6mdIv1De8C9oRF/AnTca0tLSzhz5gyOHTuG7u5uzM7OIpvNWvaNWQfIer5YLCZZgqWlJczOzkpmLplMyjnqQeTpdBqHDx8WoIzZCt5zYEW/9/f3o6OjA7lcTgZ6EiCrqalZI6cOhwMf+9jH8Pjjj0s7aLsOrHbyZgdinU1/v5e/m8/P6VyZf9jY2CiU4s985jMoLS3Fr3/9a6EOe71ebNu2TeptWUep6ZP62MzYBQIBCXBTqRT27NkDl8slNjydTkvrep43M4g8BmVa1whxRlo4HJbsCuc1kn7PmVvmeZo+G+WLPoUGcvTz0QGRuV/0sclo4RD5ZDKJaDRqyWw5nU7LnCbq9ra2Nvh8PqGl6RKKbDYrtczBYBCRSAQA8NBDD4mfobtcUldpeh9XPp9HKpUS/zMcDiOZTKK0tBQvv/wyPvjBD+Iv//Iv8aUvfQkDAwPo6OhANpsVH/Vs/obpZ/J3HTier3U5M3QBl2kAqKjLy8vR3d0t08TZVYvC7XSuFEU3Njaiu7tbNnVZWZlw0Zkx0so5m81a0qjsLU/Ue2hoCENDQxgcHLS0VeS5AqvUN75GZEI3CSCCTueMhkzT8LQhpUDTuDPQMR1AXosu9maTASL1JrpChepyuZBOpzE9PS33QGeQpqamMDs7i2QyKQqEz4PnQX76v/3bv8nAV3YoY0G6HcKjnQU6QzoQ0/MEXnzxRWQyGdxzzz3o6OgQND2fz0uGwW596lOfkvt6xRVXWBCw9eRvvXW+nUoTBaKDdvvttyMSiQiyxu6AlZWVGB4etnQ51C2CdRDOLBCLbx999FFLa9HW1la0t7eLI19RUYHm5mbU19ejoaEBV199Nfbv34/u7m40NjaKoSSFklkLndnhOXDgK8EEHexQnhngaWCA16uvSQfQurUwjYhuSpJMJmVPmQgmqa6UC8ozC9Sz2SxqamrQ2dmJQCAgWdt8fqVbVyqVgtPpRCqVwoMPPohcLodIJCI6RAemptwTJJmbm8Obb74p51RbWwun0ynGuVAooKmpCXfffbd0L+ro6Cia6XQ5XMj973/nY+lrsTPKwFogiz8clFtVVYWamhrU1dUJVVNnzYeHhzE7Oyt1C5wvZLZd14EGny8pPByLUFZWhrq6OqFEasrO9PQ03nrrLcTjcan9ASCZCK/Xa8nKAKtUMmY+AUggxD2mATMTRdb3USPgfK+mwOlz5blrCql+/pryw78nEgmcOnUKo6OjGB0dlayPzkrx/9kCX8/im5mZwaFDh/Dss89KA5va2lrp2Nfa2iqzgEgbnJmZQTKZlHvD/cxznJ6eli51BFNop9jwx6SBfvzjH0coFEJpaSk2btxoW8+i74WJsJtO4/u1zGBWL6dzpfa3vr5eWpP/3u/9nnQZ6+3ttWQJu7q6hK5OmpduO62pxQyEy8rKpFxgaWkJ//Vf/yX2MxQKIZVKoa+vT+oWNShKPd3U1CTtnunY89nTNg8NDeG1116TLKMGNnXzJbuAXjejMQEsfa90tlIHRuZzJPhEvy2fz0v2koFZWVkZcrmcNJjgPWxtbZWaZH1uTqdT6lAdDodkrL/73e/KMWlfmRkiiK4z1WYpxPz8PJxOJzZs2ICOjo41Nc5f//rXUSisUGa3bt2KiooKiy0rJmtn82He6fveybocDJ2HdS4IDH+8Xi86OjoQCAQEcdq1axc2b96MQqGAl156CQ6HA3V1dYhGo8jn83j++eeFYjE2NmZBW7RjwuCIG5wbBIBwck+fPo3JyUkMDw9jbGxMeNcUXBowGhZuFjqKCwsLlvaRWrnp+hpNyTCPbTq5ZtCk6Q7aIOtub5q+xoCGxt0M2ADIZtd0p/LyclEuc3NzOH78OJ599lk4nU5J0XM2BSkqNOB66cwXj8/UtqZeEdUib/djH/uYBG5sJ010zFxbt24V59Lv9wvacy5yZ3euphP4Xhe/p1itEGlFXV1dlkwnACnGdblceP755yUINofEMbBkgEy5m5+fx+nTp/Hggw9KHUckEkFVVZXIITtH6dXa2oprr70W9913H2688UZB6xwOh7Q65yBBIuVmTRudXwblNFCm46kRMpMqZzo6RDjZEYmUKhpLthVnt0l9r3l/dMMVBncbN25EbW2tIKMOhwMnTpzA4cOHMT09jTNnzuB73/ueZFhZd0XZ1sX3dHC04SwtLcWJEyekHTcA0WF67lZtba20y+3s7ERNTc2a4J7/uv73Px0Qvd9Gkcsu46GXDuorKyuleUFVVZU0UeD7dKH/wsKCADakDvLemU6TBoV0HQ6zjqwZ03uXujObzeL1119HIpGQpiQEwkx0lt9DR4jfyXMwOyDqc9PdEnWWXjuowCrVWsu7zvqQzsrr4XGoLzX6vry8MqBzbGwM8XhcEHJtW9kZMhwOS8E9WQJnzpzB4OCggGHLy8vwer1oaWnBhg0bpIOlplPl83kp9Cc9FljJSMzNzWFgYEDoXuz6yEBKt2k2gYuvfOUrkkVhIwfT8TZlzk6PvF+rmLOqfZZYLCZ1lV/4whewf/9+NDY24qGHHkI+n5c5Tvv375cRBMw8a3oaj0050qAuqesA0NPTg9/85jfI5XJi9+LxOPr6+kQXsyssae/hcBidnZ3YuXOnZTyBrkViswfKkAZnzQBf/xA4tSstMJcJ9ppBkN57DBp5DdQb4+PjyOVWRhbwffTrdEdgPTicupnd4ugjPP/88xgaGhJQraqqSphD2obqxiX62n0+HyYnJ5HNZuU+R6NROBwOfPOb3wSwkpn63ve+J3t3+/btUoNbLCA6lwDnfARBXJeDoYu4aESJOvt8PlxzzTX4wAc+gKWlJbzyyitCgyJl6te//jVmZ2exe/duPPHEE8Jv1agiANmwdNKA1bavOro/ceIEZmZmpK8+KT66wFAvjS4zKJqampL5O5wRwIYBGiXUBlKnYLUy4Xu1QWQwpDtyadRD8+ypFKjMTGQDWFW8+vocjpUZKKz5eOGFF3D8+HEsLy/D7/cjHA6jrq5OUvMtLS2ora2F2+2W45gOhkkn0YEm+dHMZszPzyMWi2HPnj3o7e2F2+22tAi1W/fff784Nnv27FmDShVbxVA/O0N9vhZr5G688UZs2rRJnnc+vzI4tLq6GgBkpohp9P8/9t40SLKzOht87s2lMiuzsvZ961Ivpd60IVlCgsACsRgLG5sJW4NDw+dwMDF4Gcxn47EiIMbgCBswxvF5wn8MYQceCAZiHA5kLGFrAAECZKmFpFYv6q2quvbMqsqlct/unR/Zz8lz37rVi9Td/tOvoqNUVVn3vve973uW5zznHMuypAQ20EbSqTyr1SqOHTuGP/mTPxGKV1dXF/r6+qTUtDnoNAAtxPbhhx8WozwYDEq/llKpJGXPtQNPp597mEm8dIS4HxhRJSUGaK+9Pi9mVIDRKvbD0j16bNtGsVjE1taWPM/6+ro4YpwLn/Hw4cOYmZnBxMQEBgcHYVktisS5c+ewsrKCdDqNCxcuCB2DjgvfgwY6eNb0fic9I5PJ4Kc//anMKRwOY3h4WKosMgq1b98+7N+/H9PT09LM9Wr28/V04K80TCNU07AYFSLFhQ6FppyxAIuOztdqNfmee8h0DHg//pxROT4/qZziMAbaZeNff/11PPPMM3jxxRexuLgojouel95nzFMzo5u69LDp1OvojlkqWdPbTNlCfcRrm3pAv1uTlkS0PJVKibOu142R5FgshuHhYcmDq1QqOHv2LM6cOSN5dFz37u5uTExMYHp6WvIG9eB8tMHOfcB3yEhaoVDAqVOn8O1vfxuvvvoqzp07J7Q6c79OTk7ivvvuAwBxMvQaX24/6q83YpgOZiQSwdjYGLq6uhAKhfDRj34U999/P1zXxZNPPolAIIC9e/dienoak5OT2LdvH7q6unD48GEpaU59HAgE5DoaQNRALu2iWq2GZ555BqdPn0alUsHtt9+OWq2GZ599VuQQATPaNtwPIyMjmJmZkTNChzYQCGBychKTk5MAIHuIRQv02pr6nWfMjPjrM6XXTds2ZrRUn8FcLifOEJ+FgHMwGEStVhPKGdAqBHLHHXfIvSORCLq7u+X6W1tbKJfLiEQi6O/vR6FQwNNPPy2gWTQalQIfuhEuZZhfXmBHRwfW19dF15BpMTAw4NE/fX19+PjHPy7nY2ZmRqL+V7u3OW6GjL/lDN2AcTUvjoJlzyXedzQaxTve8Q4R3KVSCY1GQ4TF9vY2/uEf/gFbW1v43d/9XREAJooGeCkJOhpEJFF/plKp4Pz58xLCzufzANq5C1oYELkxc32y2SySyaTwbXV/FX3QOUcTwdT0PN7bpExo5criDIFAwNN0Emijp37RDl7LdJ64/ul0Guvr6/jJT34i5VtJHSoWi5IPEYvFpLEhO1Xre/oNOpGO40g5V6BltF+8eBHHjh1DtVrFkSNHRBCRJsVETj8qFH/e398vNEszsmDuu5shaFzX9USF9D1tu5Vfcc899+AXf/EXxTGhU89yzwAkp4eGto50aoNS99/iO2s0Gpifn8enPvUpLC0tiaNCY+lK48Mf/jDe9773odlsoru7G7Ozs4LysuIRAA/q3tHRga6uLtkfVMg0GukEEVDQzoOmj/ghctop0qABACQSCWSzWSwuLsr8z507J4gz90o0GsX+/fvxa7/2a5idnUV/f79nv9DZ2trawoULF+R+xWJR+m6YqLXpUPNM81yWy2X827/9m3yGRQYACCL/yCOP4PHHH8fs7CwGBgakROyuDpG7S2VEvLG9fCUFbaLzmprDxri6OS1RcNKjSB8Kh8NSclwbHNqR1k4If64bBmvKI6PIiURC0Hd+PhKJSIXL1157DadPn/bQazRQZL437jFtwJnRHoJmOpqlo0fawePnzTU1gS6TSmPuNeo1zrVQKHgQbC3TGWGOx+OSo5nP57GwsCDU8VAohLGxMUxNTQmVLhaLyTv1Q/IZIWJuBRvixmIxoTdFIhGcOnUKJ06cwI9//GN8+9vfxj/+4z8ik8n4glsf//jHJYLCaIXfMAGhq3WE3sjnzIhQOByW/kgdHR244447MDAwgD/8wz/El770JTz11FOo1+vSI/Huu+9GV1eXlHJOJpMi32hUM9qvIy58zzTO6WDXajV885vfRKlUEgCCjgIAMfg7OjqEjge0ABg2MqfDeu7cOY/z4ziO5J3pIkp6HfTaa3tGO0J67cxr6DPBZzTPhD6TdH62trYkIsM9TGeSBSx4hpjz7LqtYhA///nPUa/X0dfXh2q1ir//+7+X9Q8Gg5iYmBBAm7RADdzxTPGZ+T3bM7AVRSKRwH333QfXdfGVr3wFQMs+eeCBBzA6OopQKITh4WFP2X+u6c0EtC43bjlD13lcrdcbCASkV0c4HMaHP/xhcVRqtRpefvllMZyLxSK+9a1vIZPJYHNzUxqKUpib96bA1gdQo4aahsYeFrlcTsoHm7k8GvWlcNIVttLpNJLJpMyPVC9NC9CKU9P5OExerlaw2iEitYSGg25+RyRJX890wvQh5/p1dHQgkUigXC7jzJkzUsGG1ZXm5+fl+ZiISGVMw4QGuokM0WGlkcH8EsuykM/n8eqrryKfz+P8+fMoFAool8uYmJhAOp2GbdtC1yCn2RxEhUKhkBTgMCM/fo6hOW6GQOL+DAaDGBgYwAMPPIADBw6IYUgAgNEeFjDQqDUNQH7PfxTirLKl6UOpVAp/9Vd/JcrxWsb73/9+fOITn8Add9yB6elpMe6z2awHxdTKfGBgAD09PYKIm/RU/TyMFJXLZXG4qZiJ3pkRCROoAFrnZXl5GUtLS/KzxcVF2ds0KGKxGB5//HFMTk7ucDZCoRAWFhaQy+WwsbEhdC428rRtW4x7niXtxGlnXdOZuP/1IJefVRnZJPSRRx5Bf38/hoeHpSy1nzwNWIEd1eVcuLB269B6hXG1AJY5gsGg5A/qc97X1+dxdNluYHh4WFDYQqGAjY0NDz1Hg0464qLlMAEdGoLMJWCBBBryNDSbzVb1rYsXL2JtbU3yWfyQaX2mdIRJ7xOtZyiTtaFn0j41rY5/b37elPfm+/CTY1wDygTt2DECypwqOvQbGxsSkUokEti7dy+GhoY81eqoFyhDTGdIR9KI5vPc/uAHPxAgkLlX/HwymcQ3vvENzM/P+wJbBw8eRDAYRG9vr1Sr89t7b9QhutIwr2NGNLq7u6WSZGdnJ37/938f3d3daDQaOHHiBJrNJh555BFxynm+A4EALly4IFQ0ngtGAyn3AUh0h/uFsp22UbPZxFe/+lVUq1Xs27cPnZ2dePLJJ3cUF6F+1fTT22+/XXKycrmc9NJibnA6nZY1IC1ztzXmufYDQvV+NvOETHDHfK8ssEOZwOuzMpzORQuFQnjLW96yI2Jr2608tx/+8IfSVDiTyeDJJ59EsViUz5CKriv8aUCB96BzpYHHSqWCtbU1KRhDO/Yd73iHh9ofDofx2c9+VpzMffv27QBt/fac33680eOWM3Qdx5WQRX0gwuGw8IMPHTqE7u5ubGxsYHt7WxwKJg/+/Oc/l+gAw/Tk3DNa4ScgtSMCtGlbmsPK/gAUHqQd6IOrFaZlWR5nhA5UKpXC+fPnsbi4KOiYnpcf8qkFrakAzegQh0ZKKSx0iW1No9ARIRP1NClJkUgEa2treOmllzA3N4f19XUkk0nhxpLaVK1Wsbq6ihdeeAEnTpzAwsICtre325WFntu9bw+Rdzq05O2Gw2EMDAzg3LlzKBaLYkgBbeVMB9M0Kj/ykY/Iezpw4MCu1I7d9uqNEjgOHE9USO99HRUKBAJSCp2REjr4a2trEsHhezMrOGlHm+j8vn37cPvtt2NwcBCdnZ0Ih8M4c+YM/uIv/kLobdcyenp68Na3vhV79+6F47Ry7ZaXlyXZlfld+ozQuSOvmqi33pM03pj/QIdb5wCaBolZtth0wpnH12g0MDs7KwU/WGqWKLhO/tYjnU5je3sbpVJJaLwHDx7E/v370dfXt8MJ0+/Ab+TzeaFRUFZxjIyMIBAIeJz84eFhPPzww+IQ7VaW9WYiiaYhzHdsWZY0L2QlSlZu03KGFeHoVDLyls/n8bOf/UyKSZjRB11AgdSfZrPpkaMsAqMj3T09PZLIPzo6KgUWCoWCyHfteGunXFPAuN9MQ8ukTpmO+m4/4/em06QdIr3O/J25LlqeUyazsIiWjwRHgNY+pGFIyvPY2Bi6u7sRCoUkaV3rEkaltTw3HbJGo4F0Oo2zZ88KmMXy8qRRvfOd78RHPvIRvPe970UikcDLL7+Mixcv4rXXXsOf/dmfSRnzxx57TOZ8tTTRGzXM9xWPxwVACYfD+NznPieNUL/whS8gFotJvzA+D+W44zjSiJnDlJP6vXEf671E0JJn65//+Z9RLpel0e1zzz0n4BErZTabTaGgM2eGIFWj0cDFixexubkpPRhJ1+M1zOic3u90xHUk37TB9Pz99K3e/3po5orjOAI+12o1odERKB8eHt7x97ZtY2lpSVp8FItFHD9+XAruEFCm3tJrz33N6GpnZ6d8jsAXz2GxWER/fz9GRkaEJjo9PY1KpYKvf/3rcs14PI7f/u3flvvefvvtHhD/aseNlvm3Smvf5MHDwO720WgUH/zgB8W77+jowNmzZ1GpVJBIJKR/B0PGQ0NDyGazkqejw84cGuWjotG5KzpplU3lXLfVuG5rawsLCwuSs6GvyXvxOVzXlbr+zWYTGxsbUk5WK3dWYSNVR68FDVn+v6ks9fPwc3SIisWiGBuansGhn5vIkUa1+VlyvDc3Nz1dzKlILcsCjreSty1YcOAghRQaaKCKqnwFgE50wkZ77notKFBSqRQqlYrQuSjk2UStXC6jp6dHykz39vZKoQzSMvS466678OKLLwr/N51Oe6Ji5t4zhYrpcN7IEQgEMD4+jve85z1S3YmREAp4DjZfpSNKQU2jSTuM2lkgosvIHpXk888/j+PHj+PAgQPyvMPDw9c0/3379uH111+XPBoaCXNzc7K+pDJwr7J6F/ecRpaBduXHQqEgTp2ODGhniM/LiKQ+F2xozHNP6oRtt8qxRqNRPPjgg2Icm+P555/3JO/SqKDi0oVQuP7mHgPgeb56vY6FhQXEYjGcOnUKd999t3yup6dHIp7sDQIADz74IH74wx+ir68P8XjcI3d4fcDbe+iNRoTMee82/M5IIBCQsrSTk5PYu3cvVldXMTs768mDIN+fRRV0qf+NjQ15h2b0VoNY2jnSBoyOiujKgWxBwKatyWRSaEA0QqkLNHjGs8Y5mc9uRny4p/XPtfGnHR2eB+o6XVCB1+Zz+4FZpqOladtcG64Bo1r8HPcZHRQatHxeUq2q1aq8C1ZEJHXXfD+cc7PZlPLmLNmsf7e+vo4777xTKEXJZBIrKytYWFhAqVTCpz/9afz1X/81jh49ilgsJvR4RvX89uZusvyNDm2sm//P/mwElj71qU8JzRUAPve5z4lxzWJKzHGmfKDDru+n3x91pAZMtHNMejzLrddqNfzgBz/Avn374LouFhYW0N/fj7179wJoR1LYsyefzyMYDGLPnj2S11ypVLC+vi70MhZ3AbCjMauO0vJ7Rmg0zc/vnfDZeIa1s2Out44K017gWaZ9QkCbleHMiLzrujh27JhEcba2tmRfc646x03fX0efOQeeWZ6RgYEB5PN5oeLGYjEUi0UB8KPRKFZWVmROoVAI7373u/G9730P586dk0qx7Pv4X2mP6HHLGboBwy8yoBVIKBTCnj170NnZife///2Cpnzzm99Es9nEL/3SL+Huu+9GrVbDV77yFSwuLsJxHIyPj+PXf/3XsbCwgJdfflmUlhkN0TQHXZGEG48heMuypAxsMBjE2NgYlpeX8corr2BwcBCDg4Mi6BmdisfjOHToECKRiDgQFGaMoJhIoFZ+ACQawN+bn9OOg+M4UsbRsiwxxiKRCDo7O5HL5YRDrJPXeR+TFue6LpqvNYFD7SITAIRCRUNa0/MajQZKMyVJftbGoNt0YTkWmm4TGWSQs1s197te70LH2zo8e4ECkNRC7gnyyzs6OpBMJnH//fdjfHxcEKx4PI7R0VGsra2J86mV0eOPP465uTksLy/jbW97G55++ukdeVh6X3Jcb4XK4cCBDRtwvWhaKBTCzMwMfuM3fgMPPfSQ9IKgA8oy2JzT0tKS5x0B7TwKE6GtVCrCQdfltFOpFDY3N4VD/k//9E+Ynp7Ghz70IYyNjb2h5xsYGPA0N+3u7paoAM9ZrVZDJBJBJBJBNpsVA4vGK50/Kh72EeM5DofDKJVKHoBAK1HZy812Vbf77rsPqVRKKB7j4+PY2tpCJpNBPB7HE088saN0L8eTTz4pibWHDx9GIBCQykY0RgKBgBgANIwsy/JQlEzqCI3tubk5dHR04IUXXsA999wjZ2hychKpVArJZFL6uoyMjOCP//iP8Xd/93dwXRcvvPCCB6TQw77B5AbtKOifhUIhdHV1SRW5Rx99FKOjo/JeGo1W+wOda7iysoJmsyl5WseOHRPnk8Ybn1FT1Fy31Z2euQKkL9KhobzSsknLnVgshpmZGdk/zENgsRztOOtcGG2o6L5WmhpHp8l01DUlmjqP6D4jpQDEuNVGGQChmpEKSKCEtCrXdYVexQpuQLtdA59hbm5OzhurkzHKrnO6qFPS6bSU2qYzVCwWAUD6lgHtnBFGBUulEhYXFzE4OCjlyw8cOIAzZ87gxIkTePvb3y5VPzs6OlCtVnHvvffiXe96lxR9AYA/+qM/wpe+9CUpNjA/P7/DITLti2uV3xqo1Nfh//Mr2SvM+bAsC3/zN3+DQCAg7SgymQwefvhh0f0s7EIAhuulK9VyDplMRv6OcknvZ85FOyh8x3RmTp06Ja0BfvrTn+L48eM4ePAgxsbG5POVSgXz8/MAWgDMzMyMVPrLZrMYGBjA1NSU5CBbliXVfQmqaZmmHXjtKFEGUg4C8NgSdKCYJ2i+N4JiZAVoil2hUJBrBoNBqbpJGaBBL5bU1ykPfBadm6ftIj6LPvONRqvB6sDAgAD39Xpd1nZ1dRXPPPMMPvaxj6Grqwvz8/MoFot47LHHUC6XsbKyInN0HAef+cxn8PnPfx4vvvgi9u/fL/2S/JgFu+1rc+9ez3HLGbpOwxQuuw1SshgynJ6eRjAYxFe/+lXJD3rggQdQq9Xw4osvIp/PizHynve8B47j4PXXX99RmUZ/pYJixEF/jggLe2AwHE+F1dfXh+HhYfzrv/4r3va2t4nBSiMul8shm82iq6sL2WzWE5Xi4aLRpBWcoLl2u1GliQhq4ecX6eJB1cqWv6tWqx40R78L/T5c14V12AJOAe4R72GjQCHyRFSQaA0dGR5UkzLCNSiVSqjdVkN8Lo7o/VGZJ/+O68LvaYCQF3327FlBYphTAbQEeTqd9s0d6uvrw9LSEjo6OtDT04NkMnlZRcnf3ShHSCPDfFZWImLjTjbhpMBmUQkAEhHVzRTpCHDttSFHp5/rSSplb2+vRzmRpvjMM8/gD/7gD97QM1K5kNuuqVFEm0nNIDK5vr6OaDQqZxJoVzWkIRoMBlEoFOQZ9fvT76lYLAofnwAF9348HhcgpFgsSt7NBz/4wV0doRMnTuBnP/uZVGmKxWJCx+IZoJGiDU2zrLxpnFWrVeGmd3Z2SrXJU6dO4Y477pC/Gxoakl5n4+PjAFoUuiNHjmBxcRH9/f0e6u3NHloB631NGXrvvfdibGxMInrMDWS1Mjr83/3udzE8PIy3vvWtcJxWpSd+hlFoPTQ9jv2CmDRNFF07I5pWrM8I3xedOC17tQFEEM2M+Olzxr4neo5mdEgDf1w7DVLp35M1oOnbruvKuujKdnS+9JypZ8LhsLAn6Egyd0LrHp45s0gJyQFyagAAIABJREFUaU/6Gfh3uhgQKy/yd1z/SCQiMiubzQog8+qrryIYDGJzc1PkG9FzFoBgZAJotUxgFTHKdB0h9pPXfj+/0vf6b/32Ou2HgYEBcWQ/+clPehgPNN4ZjdfFDLiWdHrZ60rvD+45AB4dqW0GzeTg57TjDUBoeSyccP78ebiuK3TgUCiE/v5+6Z3GfUwjnUWfYrGYnDnOnXLdT59pvaLPHfW7lt36TGpgWDu2OiLJKCbnQ7YHzwjBEJ49Om3nzp3DwsICMpmMRPgJkPAZaBPqZ+U71TYB9RvPoknTJtOHZzeRSKBQKABolfvmtQjK27aNRx99FC+88AJs28bo6OiurUP0/jSBqBs1bjlDN3lw0wQCAUxNTWFychKBQAC/8iu/gnPnzknTwXK5jFOnTolwYQUyCnxgJwWLQp0b0EQveEh7e3uFS97V1eVRLBsbG6KA//3f/x3vfOc7AQDj4+MIBoPS24FcVKCtZLhRNXdbCw0ii5y35syahrk+BKZw1IdaCxAeSo2w6utS+TWbrSpnJh2Pa0pDhkYE/1YLMf18fC5dZrix2EBjqoF6rO6hDGihqo1iCmwK37W1NdTrdVEyVKAAhJeuy0MfOXIEp06dkggi6Te7DdPZvF6D1CWztxD3/Z49e3D06FEPd5sGC7tvA5DQPotZaKNOG1VceypdOqOBQCvht6urSxyUQKBVOWh7exsrKytCQ7yWUSwWJQeGe4sV7Igg0oCzLEtyB1hFjkAE97KmbzYaDYnEaMfZHKRSlstlcRZ6enrkObe3t6WCUzwex9TUFCYmJnyfZ319Hd/97neRTqfFqdRzY0RCG7SMiPFd6fNMpJ9zIZrf0dEhitJ1Xcm1kn1zCYSgcxgKhXD48GE8++yzGB4exurqqqfc880YuwFcfF+slHXHHXcI7cSkbdFg+c53viNUEpaC5rMwwqbvQ0OEVB7mjGoashmFAeDJ+aHRB8BTZITyhgahNqY4dw7+DRv46ggW1wHw9lLRiDaAHVEfc411bgbBJxYf0MVxeC3TaAYgEQbLsgRwYDSLQJ925PRc/ZxdjeITsNne3kZ3d7cnX1UzMNjQk/Ngfk2lUsH3vvc97Nu3T67P98jSx+FwWK594MABnD59GrFYDJFIZMe+91vL3YCTKw0ta7Rusm0bvb29UomSJe/53NzbrKqp78/oowZiNUhpOpv6e9MOMO0aXeiC+5T5Xtx3xWIRy8vLQn2jzcM2JHTemKtXq9WwsrKCqakpodYRDNKArd5zfGaeK+4j87Om7XE5p5SAHt83I7Wkz2uabCqVQl9fnzh7zWYTuVwOc3NzEtHXEV9ejyABI3vaVuIzaWfHstp54V1dXYhGozhz5oyAVo1GA1/96lfxm7/5m4hEItja2sLW1hZGR0c9AA3H3XffjUQigVwuJ/l6dJyvBNze6HGrgMJNHBTUpJ/RwbBtG319fbjzzjslUvPMM88IP5QCsl6vCw1GCw1uaB5kjchoAUOBNzg4KFEIjWKvrKzg1KlTWF5elsP19NNPy/f8m2w26ymyoGkQOuFWUyl03wB+D8AjbPQ6mf+0Q6cPsK7UpcPU5j9Gd3RvFypsjcAy+ZXz1eFsPQ+di0TOOXMBXNeFM+KgvtiiWTCnip/VkR0+dyqVEoXtui7W19eRzWalURkHQ/msasfx8MMPizAbGhryUBUvJ0iuN9IiFDnj2qwgx0pr3Adc85///Of46Ec/ir/9279FoVBAMpmUEvOmItHonHaouQ/4rrledEBYYYpN6l544YVrfr4TJ06IwqASZiU0Ug+Yy6b3XqVSkdLzpOYQjeZ1SP2g0tbGDfebPjtAq+BBNptFPp9HJBJBX18fXNeVSknFYhEzMzO+z5LL5fCtb30Ly8vLnlK1+XxeksKXlpYEZeSzFAoFaR5qJqzr8wi0ZRPlAt9nOp32zIWoLB0mANIMtru729Np/mYNE4zRg872zMyMpyIiHUEaUh4AJhDA9PQ0HMdBOp2Wilss+cuhHU/XdSWxn9cmVbGjo0PoirwXo8ykmLHAAOleLCTA+WhHymQaUE5qWcev+h/ljnkWTSNbr6tG0XlvVlVkdStWiuN9dGNfk5JE+UtwQVOTuP5cWz03OjKktJKu2mg0BBDjZ+v1uuxP/kxHTQkssm+LbdvSWHttbU0AAvY2omFKOci1f/vb3y7zMuX/1QzTUXwjf9vR0YHe3l45z7/3e7+3g3ZOGWVZ7fwrwNsXsF6vY35+Xp6Xzgypbjrawb2hjX4O6k3uN+4HUlC5hjwn2WwW58+fx9ramoBpdP4JuGigqVAoCKWVwJXZZJhDR6w4X87P1LVcL9pZ2rbgtehY8lp0hhiZX11d3XHtTCaD9fV1eRfFYhE/+tGPsLm5iUwmI7RPP7li2+1+kyYAwqgq3xX/lctloenrtgss9jE3Nyfvk5Q+yi49QqEQ3v72t8uZI1DM+Zl70Zy7ac9ez3ErMnQTBl8keeakyc3MzMgLJlrRbDZx9uxZ5PN5oUV0dHRIYzMa69x4+h8Puk7e5aDQIoJZLBbx+uuvS78FHggiBjzwxWIRp0+flqZloVBIkAIiGSbFQaNH+vn43ETdgHapby10NP3MfAZtXPC6VMYm7YF/q4UoAITmQgjcEYAVaKN7VLpawPuhkHpd9VcaCuTvWhsW7BEbzWBT8lmANvpiHuTNzU3kcjmhYRQKBSwsLGBkZARTU1Pyud7eXmxtbYnA3rNnj/yO9ApdEtZ8/7vtzxuNvEQiEfT09EgPCgBCIzt79iy+/vWvo1Kp4MKFC1J5iIYC56/RcM7ZRMa5by3L2rG3AYiyLJfL+PKXv4ze3l4cPXr0qp5hbW0NjUYDMzMzqFarWFpaQjQaFXpaJpORHBBt0ALeZO9wOCy9Lag0SDHhPtXcefMs23arulNXV5c44H19fRKpiUajqFar6OnpEe42kTw9vva1r+HcuXOo1+uCVLM3USaTkQRX3VyQThEdN5ZJ1WedxhAdw1wuh0OHDsG2bamYaVYTisfj2NjYQDqdlhyKeDyOgYEBZDIZdHV1Sd6QljNyBt9gf6HLjd2Us2W1ilWEQiHcd999mJ+fR6lUkv5Suuy/pnGx4Wyz2ZR8Ig7tPPOZAoGAGBPakNG0Fy0LtcHPd8J7UD6aDoJG+XU+mjYUdQSdf899SodYO0N63UwHi3MxDUoOvtdIJOKpHKnPvAkS6P3Atef/AxADk/2faKQRnDMBOUYLAIhhyLXK5/MS1dZOFnWbZVkeOT42NobNzU25J6PEjAT19PRIcrvjtCh3s7Ozcv9EIoFUKuVxEK4nIOBncNKJo2P40EMPSYsH6lIavYw6sMkpc8K4V9LpNJ566ilUKhWJOjNfkrJb93zT75fr6TjtVgN0UvScdWSx9moNzlFH5DydJlJL6YQxV4XXr9VqAsDxPrSXaBOYoLJpI2gd5Ofk8Ixp2aWvR/DKcVp9qvjMBJB4LpiGsLCwIJH3Y8eOIZlMyn7U74V7l2vV2dkpstm2bSQSCU8Eh2eTZ4MVMAmmkK3UbDYRj8eFlUBAmXPmGWZhEY7f+q3fwnPPPQfHcaSNiBmN9hs32ka55Qxdh3El4aS98e7ubuFKj4+P74iauK4rXdlZSeTw4cOC7LExql8fH51QqxUU52BZrcRA0oS4CXXSrUYIaNBUKhUkk0kkEgkx6pirQPRHKxU/442CVQsQ3kc7Qfw852yis1SOmvah+ccaneXaaKUaDAYROBSAe8pF/UhdUFeN7GqFo4WV/rmmAOh/NHiDfUGE0iFYk5ZHsPD6nBuft9FoCDUCaCNh58+fx9TUlHSVJn2GilOPX/iFX8APf/hDQXc05UrvxcsJlTctcKydlb0sq5XE3d3dLUYx0MoLKhaL+PGPfyyI6549e1AqlZBKpbC4uOhZNz6zNkpNA6lSqSCfz4tSYQls3eWejlK5XMZnP/tZfO5zn5MqRLsNRv8SiQSGhoYAAN/73vcwMTEhvRt0ZUei+hoB5R7XfYl0dIjPqB3AHct7yahlnkIul/M4QkCL+lapVHD06FFJFl9fX0dvb6845U899RTOnz+PVCoFAGIkslw/wQETwAEg54m5S6bxzGfnPyb+d3d3o1wuy/vUVE/9XvL5vNzTtm3Jg0ulUh6O/vUcV3MuuN8sq1U0g+W0V1dXcfLkSViWhSNHjuDgwYNwXRfZbFbktuM4mJ6eliqY1WpVfg7AowdMQ5vGC2U1jTPKHxMc4PeaTqr3limveH+9Rylj+PekUALt3lF04vk5fTbNteNX/r+O6uj56GsxZ0L/vZ8DxTnqaAvgpSITeCFYRBoR9Q/zDKnP+B4ikYicbz4vi6Nw3/PdUY/Oz89jz549UsyFRuHZs2cxOzuLarWKzc1NofFyHbh2AwMDYoAy4qyjwXze6zn09ViVNBgMoru7G7/zO78jDgkNa+onVjoDINEEshuSySR++tOfolgsytrxPWhw1HSeAe95q7xUQRktkNaGjTDCQsd2L/2ndY7rumi80oADB859juRC0xnLZrOeCDT3FPOz9R7zA0FNWwTw5jLpa+jP6PntAHMuOYnca5ZliX2mo6CdnZ3ScqVareLcuXNoNptCq+c8tA2k70XbjVE1/pxRQD4Xzz/P1cjICDKZDIrFIpLJJAYGBrCxsSGFhEiPDofDKJfLSCaTGBoa8sj6UqmEiYkJBINBDA8Po1AoIBaLec75jXZ4LjduOUNvclyNIwRADn9XVxds28bw8DC6u7uFjkYDR/cbaTRapVEnJiZkE5NKQCPLLzdIow/aYAQglDiWAtX8Xhpn9Pi18UjlrZ0OKg9d0nU3A07PQTt+VNq8DtDOz/FDrcwIEH9HAU0HjusglKmVliANItiicR2FhK11ZEkLEK2gTSPD/AwH19B1Xbi9LgKZAHCgLSz1c5iCNpvN4sKFCxgZGYHrulLeeHl5WZrRAS3jyHVdTE5OetaZpZXpfFypp871FjwOHNjuTiqTZbWqj01NTWFmZsZjADECQe79nXfeKYqgVCpJiJ7/T2NHv3vurWaziWQyKU0NuXe140q0j1GOWq2GP/3TP8UTTzyBe+65x/s8l/6GCryzs1OcUgCYnZ3F6uoqksmkUI84L86Re0rPw1x7E6U3FaUe3CcXL16UMuoDAwOSJ5RKpbC2tobBwUGJVJDStr29jUgkgoWFBZw8eRJzc3OC2PIs9/X1oVareVBDXfRBAyecN+mdVIjaWeX4yU9+gl/91V/F+Pg4arWaGCONRkNQQzZ/ZoEW5jxRdppyhPdw3ZYxxOjQtZbZ1vP1M7L1Vzq6iURCmlAODQ1haWlJUFS+d/YfO3fuHICWo09ZxYISlC18/3T+uDaau0+nhiXYST3kvDSYQ6ZBT0+PREso+82mxYC354nOx+DQDpemyulIuqbHUYab74pz1blAflRkoJ1LpaPudEC0fqMRrsE2UqG0o+44Duo/qaOMMhpooIYaKqhIW4QIIuhBD2zYaFz6r4KKzN/pbzk9mUwGg4ODnogZ9Qyr3WUyGYyNjaGrqwuJRALr6+t47rnnsG/fPgCQCox8BlJjmUfX39+PTCYjICLReL2Gb3b4ndNAIIC+vj5ZtwcffNCjSzlfOg4AhE1CWhnQ2rsnT55Eo9FAb2+vVDcjcKplCp/HdDiax5pooIEccsDQpeJTsQjsQJtaSAeX56SjowMdcx0IHAnAOeFIZByAMG84B8ornrNGo9UcmWwX2liaouanv7VNwL2nn41nx68Kqr6WBghYmILngQ43+yXZti2VQllRlwACgB26iGfTdPYcp0VNDoVCkstu7g+gJfdJW15fXwfQsjeWlpYwNTUla9TT0+NhOxCEJOVva2sLAwMDeMc73iH0yXg87qGF89432zG65Qy9iXE16Aw3PFEWGh2//Mu/LAgxQ8yNRgPz8/NYWVmR5E+WGmZSHPnf5EjTSKCC0U6CVpRUgDqcaSo8oF3hijkI0WhU5qydDCoprXC08agREVOYAhCBox0i/TuN7pm5CNph0QIEgCcBvF6vo7HQQogwCthBG8GuIKyA5eGga+qNRub1e2byMAUahbBeb35W7p+pA72AHbOl2p02bLSApaG8urqKUCiEoaEhHDhwACMjIyKApqenAbRD4OY4dOgQvvOd76DZbKK7u1uElrkfr+ZnVxqXMyD9xsDAACYmJvCDH/wA09PTOHz4sKBhFPy9vb2Ynp4Wo4J9K1gMgr03OGe9jtyz5FdT+DMvgzQvzVnv6uoSo+SLX/wiPvaxj+Ghhx6S/UCKEaMX7BNDQ+Atb3mLlM2mk6ZpQ1wfjeAD8OwB7i0CDzpZWiOTepTLZcnbW11dxeTkJF555RWEQiGJNuhyvb29vWKglctlLC0t4Uc/+hHq/1qHDRvjGEcEEViwUEIJNmyEEIILF0EEYV36L4AA7N+3JaeCUYpQKCR0OaKNGuyg4WJZliSEp9NpoY/SGRoeHpayshxDQ0MCBviNm60weVaZ69PT04NoNIr3ve99KJfLgnbPz89L8n06nfZEOhhpJxBDB8O2Ww03dSTHBJFMeaNlET+jgS/btiWCxXLNjJzq96SBGu5T7bhTxupcVJ0zZiL8et+bBh+NJT4P5ah+Rm0w60iYjlZpR4g6g2vJNbQsC86PHQQv/dfxi601yKQzUqSB1yvZJeRDeQECm680UZutoXamhjrqcl3qRgKbdMJ0VUlSnDs6OjA2Noa1tTVpQ8F8w9XVVYyPj8OyLNFFdIaGhoZw8eJFMfB1lUmuP+d9Pfc2czm49z70oQ9JBJprT7CExTQIjDIiVCwWcebMGbiui/7+fsTjcYlgkCWigSFzv/E5a4daoInTcBBOhRG+LSz2kqYUm45EfbKOyFIEwYMtWV8qlTA/P4++vj7RwdqJ1fJaR2gJgl3OEdIAgKbjawdE6wLtzOth0kDNiKimwvIfGQUaTNdnlntTO1W8DqmMtNW2t7dFrmngl4PXY+GJZDIpaR7z8/NSMGFsbEwKKWibj3Q+0hwfeughfPnLX4Zt2+jv79+RQ6r35M2S8becoZswqECZOK7zhXRSaKlUkn4xpPbMzs6i2WxKUhopFhpZ48HRSkYfKl1pR6NxnJdG1IB2IQKWxuXBMTemvrd2DChATGNVF1Sgc8X5mKiQPoxaePF7M3zMv+dhl4RjNOEMOzsEjf5Hha6dR86DyohGNQWudph2U1JuzEW9WEext4jNzU1Rjlw7fqWwAFrVytbW1jAyMoJoNCrVfJrNJpaWljA8PCzoI4Uux759+xCPx4U6pYW2357U830z43ICi3uMRTtI+9CcfNJAPvrRj0rERvPrNdJNgW86sIVCAalUytP/JhQKIRaLSSheJ4qTrqbPxJe//GVMTEyI8xONRiWJmnswnU5L7kpvby9uu+02nDx5UiggzPGgs6/XWe837ejw+aLRqIf+qt+P/iyjA6Q7rK+vo1wuS7Us13UxOjoqYAkRTtJzfvazn6HvX/sQ/J1LXd4DFtABVKoVLC4sijOp6aqMUnZ9vQshhBD6eNsorlQqHjqPmbsCtAyof/mXf8Fjjz2GSCSCZrMpyfxzc3PSB0fz/wFIDo7ZaNh3r73Jxqt+UQz9Pf8R7aRxxUFZ2mw2kUqlJFm+Xq8LC6DZbGJ1dRWpVEreFSNENCapCzgHXZhFGypaflJ+aznXaDTE6RwcHER3d7fkFRKAAHZSk/gzXoeRIkbeKce13NSyXstIMwJEQ1PLP0155vf6epQhOj+IepT0PcppXWiD1wsggMi7WpH1ZkcTy8vLnnLZ+l4ECsPhMOIH47DP2AjOBGEVLOBSFeDGYCtBn2dCPz/nSjkRCoUwODgo6761tYX+/n7U63Vsbm5KVVfKDsqe/fv34/nnnxfdoI1F0xm+1mHuba4BjV1GEA4ePCi0bTryLF1NAId5hSz0sL29jbW1NbiuKw1kGQm2LEt6wWlnmU6Snp/jOKieqsKFCxs2AtMBOJbjycPTjrPes9VqFfWROoLrQUT2tUAU6pRYLIahoSFPWwStY3gdnWejmSBaDpvvQdsFWt5rIMxPrmjWiMd+UCCIzhli0SHKT54XzoGMIuZ0671pnltdYjyTyaBUKiEej8s50tQ/zisSiQjNnP0mX3nlFc+6kqKvWUN0iBh9ZKsQVpXTa/dfESW65Qxd52EaL/xKrqdltaI9VKKk6rAR3srKihi6VABUXqS6aOeDSeJAm5pDRUnBQMPTRO54CE2ONQU370OePzcyIxM8VFTKPGhEyLQDRcNTI3Za+GhnjoLERCpNhFQjj/ozHsrRiAskAXfYK5C00WAi8doJYw8XP8oGr3U5tM6NuWgUG9jGNsKzYfT39+9IgDapHERexsbGJJoYCAQ8vXeYN2Yi5nSUu7u7PfQwv+En2N8o0ij7Hd59b1mtPLVAIIB3v/vdGBgY8NAb6LAcPHgQDz30kOSXDA4OIpPJYGlpSagWurqPrvbH5nnNZrtTPNCiRbDAgR+qF4/HpcoPQYk///M/x6c//WkP5YtnaGlpSXjzjUa7I3g0GpW9rykSeh9zLbTS4tx1ZUVTKfoNbWzWajWsrq6iXC6LIUXlToeDVfNs28apU6dQ/fMqOj/WiarbcuDW1tbkGbWi1LkjjB50vrsTIyMj6Pm/exD8RGsfs8Q3qa6Mcul1sKxWUZBnn30WDz74oDhu1WoVCwsLcBwHAwMDss/5N3v27MHp06dFdppn7UYOv7NgWZa8byZbc49wfhcuXBAqzvr6OhqNhpQ2p8NnGlaUh47TysWizKb8pTGkI/H8GdF8It10zCn/KQ8ZbaUDwfNHipeOyJnGGM8cdRMj8Np54v7XQJfO1QEg+kobPpqqR/3B+5tVxHQkis9BwKizsxOxWEzyfsr/Xxn1++voQhc6Ii1HM5PJYHt7ewfgYKLgdGITBxICVDTRhNPjoGE1pF+Zdg5J5+Q7On/+PI4ePQrXdSVfjnqdOlrTktjPJRQKYe/evejs7BT54mdE73YGzOe50tDyiXZJJBLBY489JnrdsizJFwEgTpJlWRKxr9fr2NrakmdgFPTYsWOy/3iO+b61LgcA65QlOiRwIIBg/RLw6bSpmVpX+QF+EkEZbKK+UffkGG1jG9YdrcIWjJpo4FeDsNr+MKOypp3C/9fvRv/TrJbdwC79LPpc8XzQKSsWi9ja2vIAopQplBvaETKdddIuKT+07UQ9oFkVZAfxOh0dHSiVSjh79iymp6dh2zbOnTuHu+66C7Ozs7CsVk4lqdbNZqtgDPO2aNd+4AMfwNe+9jWhabMyoN/e1rLyRo1bztANHHpjk2IDAO9617uELkLDkCVFGfKk4iNVhwYfFaMuKUmlRkHGn7EKCeegUTY6TmY41BQIVLCFQkHyVmjI8D46QqOb5JlGKIUZDQUtbDSqQUUKwGMc8iDwMxQEfoa8RkHcIReBVADhfWHPfU3nRyOOpKywOagWiFo5X837RxfQyLf4yB0dHejq6hJlzmdkIioFczKZxPLyMuLxuKBufA8UhH6js7NTqFtXoxDN57/awbXz/I1xO147Go1KyWcaD9zHdDg/+MEPtt+X2+IesyITK6eZe5gcalZY5P2Y+Kyb8HI/6P1ERJLPzzP4+c9/Hp/4xCdQr9cxMDAg3GzS9i5evCgGcT6fF3qLpkGae0Pfn0YC0UqNbprn0Vxv/Rnd54frQPT21KlTmJmZwdbWljg7lUoFa7+3hvIftJxpRi80wqoBDq3o6bjR0C7/T2UM/7/DCPzvLcWWy+WQTCYRCASwd+9eKRSjowukD01NTWF0dBThcBj5fF7oe6xoV6/XpadLT0+PAEmssHQ9FeLVGo1axtARmJqakkiC67pS6IBtB0KhkPRHYuNkOlFs0Oo4jlS6ArAD+eb+AuBpok0dQQoo15rOAfNCKW/z+TxWVlYwMjLiAcF0NE6fZy0juR94bzo3Ommca6SjP9rJ0kYgZSn3vI7Q8O+1salp0byPBsF0yXzK0Wq1ivI9reiXjdZzbm5uYnl5WXSLn8GlDVsajHw/YYRRtdrNzovFIjKZzK55jPl8HtlsFh0dHejv78fGxgaWl5cxOTkp/ePy+byARVzbUCiEyclJQfd1tEvLgSs5RNey3yk36cgNDQ1henpabI2FhQU8++yzmJ6elpwVTf+s1+tYXFxEoVAQGVGtVnH8+HGk02k5v6bepazkHggggMAdrT1FyiGjS9zzu4EU5u9c10VzoImKVZF31HAbyK/ksY1t9KAHMcSQPZT1rL2W1ZrWpsFXvQ8vt97aTtJ7RM+Rn2HEWesAfdbJqODaAm3Ktb6O6dCZ3+vou34XnB/fx/b2tpTpHhgYQF9fnwBdjtOi1qVSKfT29iKXy0nRLwJhdN5IFa5Wq5iYmJD5kB3FqG4+n/ddw5s1bjlD13nsdlBpuNi2jfHxcQ99hD8HIJWniDLp/Afdn4TomTaidLjYpFZwaAXGA2Y6Q1qwaIVFagF5pYLANNu5RKxeRQSMSACFikYJtWLUtAqimboykCl4eF+tFPV8Oer1OqyU1cqDOB9CAAFYd3opDbwmf0Z0W1fAc11XqEZ0xkwnTAs6cx84XQ4q+Qpy0zlBW9i80kSWWCxDCxvbtpFMJjE4OCj7ZnV1FcPDw4LSAcDY2BjW19c95UcvN6/L/e7NDq5vIpFAT08Pent7xanjfROJBJ544gnMzMwgm80K17jZbJWYt+1W8z+/cH29XpcSxdzXVOi6UhHnQYqijuwx4qmVQKlUwhe/+EU8+uijOHjwIGy7lazaaDTw7LPPIhqNYmJiQpJCifgyjySbzXrOn14LOnEs3kHjnvMAvB3C9VpqZ72zs1MQWSLxvF6tVsPZs2dx5513YmVlBZubm63KfX9axOb/tumJcDGXkfkPqVQK2WxWokvmPnGcVlntjY0NhP7nEBLfSMD5aItisbKyIuf3yJEjQotn08ntAAAgAElEQVTguaSh+uKLL+L973+/0JsoA5lDRIeuu7sb09PTQhmNRqOe3IXr6RT5GSl+54ERCOYLaQOJEYW+vj4kEgmplshno5wkBVo7DVp+mo4BHTCuDZ0jglMmBYcGEp0goC2/WRVUPydlNQDPueC+Mg0mbXTqe2v9Y54xzTTg3tYGn15DovUaudZzoC7Qc+P+sCwLmUwGW1tbcv088tia20I6nfYwFPwiQ6ZxS10WiUQQGA8gnAmjjjrc3nalRFY7BCARQhqua2trGBsbE6Bke3tb6M9LS0vY2tqSPCHKRqBd0pvRFFOvmXv2Ws+C394m6BcMtpqs8j2kUil88pOfxNDQEMbGxsQQrtfrks9ExzsQCGBxcVEiQKTHETzSZ1fPwXEcOOcduPtcBCPtvE4yYkwqu9/z76a/CLRKOsC0g1w8h9hYDHimvT8ZEdG2BOW1KY8vt+7mHvIFDtVn6SgRKDTz3zQgQeBLF0vg50wnDmhHULV9AcDTgNh0oHg9RnVrtRpSqZToYm2brq2toa+vD/fee6+kcOjzqgHkVColLR4sy8LIyIg4VrSFbmTk50rjljN0HYeJ2vArDWs6LGzORscBgOREkAbHMGU4HJa+IdphaDabgiSYtBwmxWmnhka+mdDnx4fl77TS42eISJCOROOL0Rzt7LB/CefIyBFRfMdxPMUA+DMal1wXExHSjpFGn00HTg7/MBCMBBFMBBEMBYFXgcbhxo7a+rwG50thQwOGhoUZMr8cUucRMF1NFPIFlO8sS3SIz8x1pfCi85tMJhGNRhEKhQR5Hx8fRyaTQTablZwYjsnJSRw/fhyNRkN6JOy2R/nMb1QA+TmBANBEEyErJO9H09W4fqSe0DEEIH0M+OwLCwtiCGiBzfexsLAg/H5dntPMEaKjQafHLJxBQ92yLA8t5+mnn8ZLL72EBx98ELZto1AooFAoCFc6kUh4okvMIQCwa+Itz5Bu0ss5apTMvIa+TjgcxuDgoERMuD7k5gcCAYyMjGDu4BxOHjyJjUc20EAD27+zjY2NDTEII5EIhoeHZS8CEMrC+vq6OEQ7HPtL67+2tgb3MRfW/2OhcOm/+ki9FYF4dgRj/31MKhTxnrrU9/T0tDSgLhQK0kS0UCh4Ip+MImlZcTOUpt+z0xDgftbILACp6hcIBHDs2DF5p4z453I5+X/uWb5nlvmnnmD0hdFTLX9t25Z373cOtXNNfQK0jHXmu+wwRh3Hc2/ubc0u4O/1mdJrxTlQhulzq+W4roSnzyHnrqMBGjwhIKBBslKpJEY3GwK7r7VyTcooIzeV81R79DOa9Vk19xiN8kgk0sqXmwihHq6Ls8q+Wdog1bkTmg7HSBGfQ9OVdPl+UhoJ4mgA80bt/Y6ODqn8NTo6Kr12nn/+eWkGT9uFhVp4phlBo1xjE2X2SvRzYsQJPt0qzuLudWHZbQOaxrWmb/rpKz+7y+//9d5xT7oooIAwwgidCEn1wPodddnTtm17qj6a87+WYdpY5nvU55lrpR0hAi38fzqutAk1gKD3Cs+hWbRE7ykT3NUAOp1EynsA0jg9l8thc3NTCmhsbW0hlUpJMQUCMgAkWr21tYWxsTEAkDLbtVpNwLjd2DY3Q97fcoau89BKgYKRPG0iJETIM5mMpwKc5mUGg0EkEgkpc3nx4kU5UBRSNJKpYLhxTeEBtHsAmI6Q9t6JCPBAaeROX4+Kin+rqRG8Dv8RuebB6+zsFGOAhgDD0+SS0jgg8sR7cN5acep7mU6RRhU12mPdZwEngRBCiN7eMsTpxHFddKlvVmDSSIp+Tj8HeDeFW0ddGvfxfib6ShSYiqVQKAiFKJvN4rbbbhOlZCKGjzzyCJ566ikPP9tPebzZsRsK5/cZlkjm/gYg/WvYu4QoKnMKksmkILL6GakkT5486Sk/SsON62S+FyJu+r1pRJxnjp/lOUilUnjyyScxMjKCkZERDA8PY2trSxKaadSRPspEedNZNs8nAQuNoOkosHbE9bVc10UikcD09LSn3Hqj0ZAKS5bVKtV7BmewhjVUUUXpv5Wk/GpPT48YW0SsOWKxGEZGRuA4juS76KFRSuZNRB6NIFgKwj3rorHeQAEFLGIRQ40hTySB76fZbOLUqVO47bbbEA6HMTExgXg8jt7eXpGDWubQ8TSLK9zswb3B6nmMRFDG0LClXD558qTIMFLpaBzQsaORQrodDUzKo0gkIjQtbbBoYItz8ANpuGYE1rSsJojAeXAfmkizaaDwPRLEMBPH+RnOmQ6Rpn9rGa7Xlz+n8aRbH+jP8foavd7c3Gxf8zBQa9aQy+VQXivDSVye0sy572Zs8/10TnTCXrYRmgh5aM21Wk3Wo1qtCiCjEXjqunQ6jXg87onyMcpcKBQwMDDgcSJ3ozxr2X61TtJuziAAaTkQjUYxOzuLbDYL27bx9NNPw7ZtPPLII5Jwz6gywcPBwUHU63X86Ec/AgAp+6/zv8w1lvkebLW9CF0IwTrYBrt2q3h7paH3kQbQZMwD1mEL5VAZFatFV0YTcJsuKpY38Z9VGPmermVN9c/085uftSxLWhPwMwQBtL4yn09/r+1NHa01K8lRhugIGNAGlfl33HOdnZ3Y2toS1sHGxoYUBEkkEnBdF6urq+jr60Nvb6+A3VquaEdsaWlJnCENYjLXjvrG3M83EgTguOUM3aChDTE6NMFgEI8//rgoN/OgasSEm4MKbnt724Ou0WDmJtHUON6XB8nkdpuh1N2cIc5JCxI6CZyr6TTpg2oqPCrRcDgsfRM0IknDkgeIv9eFFbSCNQ+Hn5DgGgLwKPjgnUG4dRfB14Nw4bbKb+9toyI6mkUjU9/DT6CZ9+a70fN0u1wU80UUUUTwXUGJzOl15L6IRCJCi+N7yOfzsO1W/xc/Ab29vS0I0+UEuJ7n5QT1Gx3a4QiHw7j99ts9tEdtqBHxJmWsUqngpZdekjXQ+7RUKuGVV14RxFF3mddIJZWAzofQSlInl3IO2nCnQUojMZlMolarYXBwUCgiLLHLvRuJRNDf349EIoFcLudZDxo+ZiI4763XTBcWMZWhbdu4/fbbMTg46MkVYdl927YR+R8RZJBB4Y8LKOVbNL7GPzUQ+q1WLwmTm65pGdwDg4ODyOfzyOfzHpmi9w2RX87Vtm04fQ7qdh254RzyJ/OI/h/tcvSaysgEf00F6uzslEpIlA8AhL6iKavXSzle6zWInA8NDUmhGL6jXC4H13Ulvy2bze4AZHTVLeao8RkJAhFsIjuAa633j+lkakobn4uGaiAQEOOc+an8Ow2mERzQzof+Ha/J6n66+aMuAsKvfEcaiOA99e919EdHnPS5N2nR5jukfKaT6Lot1kJ1rQonsXuxBPM6u+0H/q5cLiM6EQWWIb2t6gOt6NDo6KgYd4VCAfF4XIoR6XzYEydO4C1veYuHKskoUb1el7Lnuswx34XpmPJZ9PNdblxOvlM/c96FQgEbGxuyX5grtL29DdtulWzn81FPB4NBDA0NwXVdHD9+3GNHUB/4OUTWGQvWwXbRDJ3vfC3Pop0CDcRq4AEzgDPvtHQ+APeQ69nnZBvwb+Px+Bt2zPRcd3s3GvwiUKbPMtC2g3g++DymbNY6TduYXBsToAOwY49pZ4jyg7mPjNhTDlQqFWxtbYkt+vLLL+Ouu+6SCnGNRgOZTEai5SagdfToUfzHf/yH2Ala7t/sccsZuoGDm40cbdd10dfXJwKBJZspyHUTU/beoDGi+wSZVVkASEI2N7Y+PDoiBMAjKIC2E+PnXFCAaQqFRhu0Mcmvfk6WNrRYMtnkpxO51LQIHQbmnCgE/NBFPRftDNGJ4v2EJnLXpeevWrAuWLD2tSNDvJfOn+Az+Dk/5u/99gIAVFFFZm8GHSMdYsSwkSqNC9KJEokEEomEJNymUikArWhLJpNBPp8XHu/m5ia+8Y1viNF0uWHOd7fw9Bsa6tFtu8UzHh8fF6XE98l3xzwdGjybm5vY2tra4Rjk83m8/PLLkmzPCIdGn7metVrNE2nVzin/X+9j7Wzod8/rAi0aH2lsrPjluu2ILiNDBw8exOrq6g6HR4Meeo/qz+yGBvKzzFfSVfKIjIvx/KcWis2i8O3df3IR/m9hRBNtahf/lsUm+B5I0yLyR2Rez13LCkYagFYZ7HK5jOZGEznkUEABg+6gPAtpszSO0+m05BVplJm0OhpXU1NTiMViO2TezUAL9aAhEovFMDExIQYL3602Vmjk6nlyzwUCAaFb8l2zjxzXiTKKQAELbZBWrcEgDXbpOeloKR1gnjs6ovyekRuzGqJJUQbguZZlWQJiaGOXz63BHjpb+p56rpQL+ryy1L7ZlJHX51et06j/QhdDCAwG0LS8jbS1M8m/94v0e0CsSz+n3uoY7oDlWLA2Wp+tVqsoFApSKKZWa0WlxsbGZA34ftbW1lAoFDxABvPpeJ75DCZgs9u41nPg5xQSFOnq6sLQ0BAsq0U7rFQqQlXlWjGirG2Her2Onp4eTxqAlqUe3XgCcOGigUarWfJs63tSZk2KMOB1sC/3jrjvuEepQ2icO46D5oEmAuEArBM70wGYf0kHhTJfn+nLrSNw9U4q36+mvOln0O9e5zRp585vLcx57PZzc3/pteDvotGoFAABIDKCc2BT9O3tbRSLRSmgwz2QSqUwNDSEgYEBxGIxZLNZybF79NFH8f3vf1/k0W7jZsj5W87QTRh8yZFIBCMjIwAgxioPABUaEdLe3l4JwbMLsqZxaUOACdnaYKHQNjndHNpL1+FJU0lRyQM7DxCVHHmf5mGi8tb9T3SlOSpuHc6mEKMhyYOnHSypPKPQYl1hjnNnBEAbCNro5bpw3QKzAQTOBxBGGAEE4MBBDTXUB+s7hK42dPQwnQw/o9ZJOChsF1BCCcH7grJG8nunXYnp1KlT2NzcxAMPPCBNE5955hncf//9SKfTwkEfHx+Xr3Nzc3BdF5FIRCKKfuN6ChgHrX4erQsDsNrGUCQSEeFIw517T1cYtKxWVOc///M/xRDmGhaLRRw/flzKdQ4MDKC3t1cKJWj6jxkJBbxVCTkHgg/aUaaQp1FFuhKRLfYY0vfQc41EIhgdHUVPT48AGX4K9HLvwEQgeaYikQhmZ2elwSmfhU2b+XOW6i//XRkuXET/1ygiiXbfCF3th+/BPDs0RLUB4Tdvnk8WYiicLKA4UEQFFZyfPI/xd4x73oWWEWtraxgYGNgBaNBAXF5exp49ezA6Oore3l709fXJu77ZQxstsVgMPT09HjlA2Uz6EyvK0bE0I786klIsFrG9vS2ODtAuoqHlP4eW0XpeHDRSaFxrZ4F/T4dAU+2i0Wgriqj+zjSW9PvTEWxN99aRTz9UWs+bstkExkxZbYJ5GuRghDgcDsN61ZLeNJEjEThd7WR/fQ61w2YarOaZNPc9z0MoFEJgKABsAvaYLc4s1yCfz0vPN52jsbKygq2tLenDw8qJ+v3oymZ+LAi/ub2Rod8P17Snp0eciJWVFYRCIezfv19ACgCewifcT6VSCQMDA2g2m3j99dc9zrC51hYsuIdduPVLehmtNdMg025zvRp9ps+alv10OgDAOeHAOryzn5WuaGtGWcw9sttcrjQv8/c6+gnAI6cpB+gkawqduSYmuObnLOmzbUbu/M5cIBBAV1eXUBep/2hn6qrIOsJLBku1WsXKyoo42DqPmQyHYrHoifyb42YAX7ecoes0dntRNJI0qge0Xu729jay2ax8znVdqQ5Gj7tYLIoBJlQUQ6gz8ZbfUxHy8Gp021Q8gBdZ1MaGqdgA7DDsbNsWZJkHQjsCOheHwk5XwjMjR1wbHno9d35WO0MU2sFgUEpOagXOr3oOJkqoHafAnQEEggHAAhq1BvIbeTQ2GnB7/Lm+WkCa+2A3IWhZVit3CHkEtltVh1gWlnPkmrNR5uLiIgYHB1GpVHDmzBnMzs56+LlAC5l/73vfixdeeEEQnWsV1tdT4NBQchxHqHvZbBb1en1HE03XdZFKpXDu3DmpGJZIJASNPXPmjNCQhoeHpUKTRsq4biaiqgEE/RlN/QG8VDvLape2557u7+/fYTzq86af+cCBAzh79qwU3dB77lrX2LJaEZPR0VEcOXJEePu6YElPTw8ikQhc10X+M63Ssc3/pUV3jSaiEpEgvUk/L5UYlbGpbM19rhUTo3CBQAD2T23039OParBV7GVzcxObm5ue6pmUU47jYGNjA2fOnBHnkYM9J9LpNPbs2YNgMCj5ZTcDIdSDsgFoyxJN2+U/ynaeufX1dSQSCTQaDfT19XnWU1NgLMvyrd4HtNeKe9Gy2rkFOmLKz2gZr8EhbZBqmg3fLX/Hn9Pw8pNfnD/vS/nPvBmeL332tAGpUWWeQQ2KEaDQf8t103kONLZoNIbDYQReDcC92wVcCKDBBpHUe3pP62fTOku/e3Mv8DOUz8FgEIGxAIKrQdj3tunndL42NjZkDw8NDWFtbU3opdFoVJwIFhqhjNIUYO0IXy+j0E8vUGeMjY3J+uZyOUxPT2N6elqqdwLwde63t7fFjpmfn/d1MvXcNQDDdWAupfkO9Du63PC7l37ftHMcx4FzuwO83nLMrEPe/FLuGdooJm3tSuNqnTk+u84hdV3X02ha52hrXed3ff2s+qvf//PsaMCbnzFB8WAwiN7eXmxsbEgkk3ud7472Xjqdxvj4uFynv78f2WxWivu4ruuh0TEtwwQwb/a45Qy9wWF627sNXRaz2WziwoUL2Lt3LxynhVgxqZkGyv79+4WrWygUPKU9/RQmK9BQAWletUZ+dTibypt1//WmpoLhM1Lw8++0Uud9WO2I9CEiZNrQ0gnDvDYPA3+uw+DmGvPAMgJApaxpF1Qymi6h35FWrqahx8PIzzQaDeTz+RbnvLut+Hk9LVz0vE2h6Ytm5QD0AZXOijifpGCZ6FOj0eqZcebMGfT392N0dBSrq6tSynR7exunT58WhH1jY0Mia6RvmUj69VCmfsiYqay4JqQ3sYpas9mU/a4NorW1NeleTtok0HKy0+k0HMdBV1cXpqampDeHFu6aJmfORb9bnb/AefJnWsnQOGP/L9d1pdeC3vPZbFYKbFCBMqG0WCz6RiavZg31c3V0dGB4eBjd3d1iMJFOogtTFAoFrGMd+DBEofI8sCQ0zw73Fo0SJomzaAf3mEYQ+c60kUqHKPi2IKI/j6Ib3cghhzrqeA2voQ99iD0Rk3mTDsUz19/f71kD27YlYZdjampqh9F6MxwjEzXW+U1EkXXxCsoo0lfr9bpUk2s0GpIXpasZ6nLa2lChXDIjS+YZ8wOWNNLMs0fklWusnSHen84W0VsN4HGPVatVoQ7pOdIx18CcPlcahON8NZCg6cna2eYe1PmBvE4wGGw3Y4YNBLyRVc5P0870Outn1+NKe4uynuyLMNoUb60nyuUy0uk0ent7PWexVCpJlVhS5Eg702dO6zG/eV2rc2Q+q6kbQ6EQxsfHpYjJ6OgootGoVH1kRIxOP+2Bra0t5PN5hMNhqVipB9eK78yCNy+TVTz9nk9/NZ+Fv9P/+G5MoJLXCJ4MookmGmi0GunCgV23PZEJFrugfjadtDczzHdAWh7zZTQNLhAIeKIx/Lx+Lh31NR19zWIwz4C29cyhHS/KkEgkgkgkglQqhXg8jmCwVeQrn8+jVCpJnt/zzz+PgwcPikPPfmz5fF7SAQqFgjh7fX19KJVKO97x9XL8r3bccoau8zBfKAW4ZbUSEOPxuCdB1jSSZmdnsbCwgJWVlR2IhN7MAMSI1sYWlQYPgKaY8XOaaibCyfKGTv0MNyp9Up90ZMl0CqhMaWB5EBmn3YVbF4mgANWCUR8Ik65jIiRmiFmjbJyfXgf9M60ciXJROGmDwfz8bmgMr8X35nGeewBkWyWobdgI7gl6DEwd2eA/OoAjIyOe5Osf//jHePrppzE1NYWZmRlMT0/Luvopl+stXHyvZynFcwlR4nrTUea5YDds27Zx11134fz58zu4/5lMRqJL+/fvFxRVr79ee9OhNtFmCm2NMvN3mk5DI495C5lMBq7rSq5So9GQ3zM6SyNiN2qLH4jiZ6CYzjYdG9dtUQbL5VbjVMtqRajq9TqKnyliHvPAhyBVkLiOrEpG55h5GDTg6vU6CoUCksmk9EAyz5sfuqhBD8uyEHx7EAPOANyNVsQ6Y2ewvLiMA+4BDye8s7NT+vEwh5DUxf7+fjEO9ecpy6icd91/12H4GV+MNHR1dYkjoEEe7YTk83l0d3d71ghoR9L0WafhpiNQ7EWj5bc5/OSL+ZWyLp/Pi0OsEV9TbnMQwDBRctKMSqWSONZcG8oprdP4jDr3Us9b07/NvnJ6rbQDxUFqXOB4oGVc39eiyJlrdLV7ZLc95eco8TOkONsHbLhnXWTempF9wrPK6nG2bQuNkvRH3ZfFjEIwT+pKIMr1Agd41nUbEAIonE8gEBDaH++fy+Xw2muvCZ2KVGY9J+q04OkgQgjBucvx0Kv85My1vDe/d0QHTGyAVy5d904XtmvDbtho1pto1ptouG06Pvct7RBe71rX15Tpfk43h5Zpen8Eg0GxQ8gcMfeCCWCb9+bvTV2nvzfBFG0Han3Y1dWFdDqNXC4n/f/I/uDnlpaWUCwWPTpeN5UHWg3OKT8HBwexsrJyWUDiZjhFt5yhNzH8XpC54TUP+O677xYF2Wg0pAQrNx0dCCYV9/b2Ip/Pi8NjbnD2HtJChMaZH1pyuQOpN715H/33DNcCEGNLK1T2UOAzAu1GdJbV7jPiR3GiUaF7FfHe2gk0URWiS4VCwYMUmu/AT2jqQcetUCi05p4CAoMBWAHLc389B/NnVyPIXdeF0+OgHqwjtBkSI0ULOkYDent7JSG1UChgZmYGH/jABwAAp0+fFoFCgamr+/glfPrN5bqPSzlDQFuAs4iIWdjBsixsbGwIpYpVEunAVCoVzM3NiSPIYhFca01DNekVNLASiYSnPKp5NvjOtLGt33d3d7dUeWJTWEa52I+DDoqu5EeFohs9AtjVUTJRTP2MrC7Je+XzebiuK53da7UazuM8Ku+rCArN0tudX+hEF7oQ/B/t4hLMKSSgkkqlkMvlJFH/SkYY6RWaUktOeygUwsjICJLJZCuqefgMxk+OY+AzA3BdV6JqjOLxH50h7hsdlSBKe9lzBRcWdj/fb2bwXTI3i/KF509HlymXKccbjQay2azIavasCQQCUnVQR35Y3tiMfPq9CzPyoYcGoBjdJFrrB+bof3TANWBF+cScO74TrgFLiOvIEJ1FTcXUEVQdKeQ68jyzKJB2hjg4v0DgkiN0ryUJ+BpYInWa93Zd16MbzHdsDr3nzTNBg5vNguuH6yicLAD7gN7eXum1s7y8jLGxMWmrkcvlkM/nZW9YliXRNkZrLcvyFC+5nCF9PWQ415iAEPfAyMgI8vm8NG4OBoMCqlAOpFIpoWs3m01peKv1GfdyCCG4d7dyApknp9fT712Ycpqf3U2Gakecaxk5G0Hg7tZegeV1ImhDVCoVT9EEU6eYjshu66jPq3l++TM/MEx/niwXyjw/UESDGTrSa66ZllFmZMgEBAFvgS0NUgMQpyaVSklRG9ocPF+ZTAZra2sYHByUe5HazetTFjIPmvbOf+W45Qy9wXG1AkhC+La3jCkPq47M0EghwkxFQkOBm9dEjoC2I6RpeTx82vvXQsBUsn6GM+enkU/mM7muK6F/fRDZfFJXjKOSYtlMx2nnhNAJohDg83Do3CHtnGnHic1fdXNPPr8WJH6GKJ+pcKqACipw4LQU7JC/0WwKMy3I9Hr6KVC9f5rNJppo+tL6aFjRUWJkoKenRwR4MBjEnXfeicHBQdx2220AgKefflqMD+ar6Hua87qeQ96ZigwR7eW+1PkEQDsnan19Haurq7I3eFZWVlaE0jk1NeWJtJJKR6GtDSHLajdBJSoL7KQg+FEptLKg8cjKatVqFZlMRnJagHbUolgsIpPJCLJKMEM7V7y3edb83gWNjVgshsHBQQwPD8OyWhWeXNeVKj+hUAgbf7mB3MM5kQGRSKTV3+kv44h+qQW6uB934f51u7iK67aMks3NTYlsmeCK355n5MJ1XXlffAaCJWzcmEwm4Z50cfa9ZzHw4IA4FZr6ODU1tUPRa1oI0M6pvBkIod/gWoTDYQwPD+9AWBlFbDabuHjxolQK7ezsRL1ex/r6uicSxH2cyWR2OL7cT35yxzy7puwA2vKDUUpGa8rlMnK5nKcpMWlsvL6+j9ZZ3L/6GRgBoNPEOWumAs+jzinSeQK8n85BACD5sq7r7ijJrx1Ay7JgvcWC85KD5p1e5oOuymkyCnbbR36Op/4bv58TKHEcB9XRKpw1B85t7T5OpVIJmUxGQB5Gh4iOc66cI3V9NBoV3a/nZDpFV2Ok68/u5lRZliVOPK/JfRQKhZDJZDz7gcZ1KpVCNBpFrVZDMplENpv1dQQCJwMSEaIMNdfXb35+cmg3kEZ/T1lbqVQQOBiAddrygCUWLAQOt3Rsfa6OCipoTjZlf+nCUubYzXHj7/yewfw7v7/RNo5miOg2Cnqt9Lnf7Z7aGdJrzOc0wQZGcsz78ZoE4nO5HAYHB3ewjyzLwve//33cc8898vlYLIbt7W25hi4WQZ2hmQD/FeOWM3SDhz5Y58+fx8MPPywbj+WEGU3Z2NgQQ6mjo8NTDIAHQwsjXayAXHZtQGihQGXFOZllh7UhroUPDVld8YsKQDsa3Mh6Phr5M5URhb/O5QC8OTgAPIaWKQBJMSD6DrSrgWlnU9/DDAcT5S+VSqiiCqf/kpFqQRAkPwdNz8k0WvyGnxB0nFa1OvM6WtmzRGs4HEYkEhEDh05FIpHAoUOHJKSfSqVkDzEXwby/+f9vxMDUz+r33Hp9WW2Kil/Tpba2tiSpn86STiSem5uD4zjYsxLgcFwAACAASURBVGePKGltfEYiEU8uhEZ/aXxw39Nw1Gus9wYpY/pd8G+pIOgQ8bkXFxdx2223IRaLIRKJiMEZj8fR3d0tDgyNJU2D3E2h8r40nCYnJ3Ho0CGMjIwIEhsMBqVoQr1exxKW4P7ARRRRdKITHehAJzoRRhj2f7eB/6t17dof1dBEE+4TrjSqZB8R9vfRjppWyJwzy277cem1MUfKW+ZwBhsnN+D8n44oWOYEcT/wPXLwPXHQ2TSdyGsxBN/o4DxIv2VUS1ci5JksFApYWlpCNBpFd3e3UBjpsJMaxc+SIsr7mD2guBf093oP6f1tGi28Fgut8J7MU4lEIsJOMJ07Lc9MGQ1AIvEApICOLvvNf5THlE9672uqtMlAYL4sn13PD6+1mnQCLapxE000D7bzhNhLyY85caWhHThzPXfba9TFlNcuWiBBuVxGPB6XxpUskkOqPBvyWlaLPqx1HgFHOkqX2+PXsv8v51DRQM3n88I0kMjKpcqkLPrA3Kj19XXpI2NZraJQOmeLDkmj0UBztgnnjIPiWDuv2NSbl3Ma/N7f1fxMHKIj7Zw0y7EAFy0HDQ4CewKoL9Qlty4QaBWbuVLfm932FJ/NdIz0mQK84KwGFPTPeD713tQ6TJ8bP2eRZ8sElDQYSBs1EGi1Z9ARXX0WXNeVAjebm5uyvzl313Ul55B7Xs+B99bg5eDgIJaWljxrpJ/FXO8bJe9vOUM3cOjNQ7Tv9OnTmJmZEeoEEdnXXnsNZ8+exd69e6Xb+tLSkigFoltUDCxBSUGlk2z9jHQeHBp1RBqEy3tJIZmCDGhzs8n75iZuNBpIp9Pi+cdiMY8zxgMGQIx3Lfw0zYLX1KFpfQBpuLKiFNeEPGYm9/G6QDvhV4eGeT/y3vP5PBorDWAYsIdtWAF/SooWQH6OGZ/bzxkFvIiWdq5q3TVkc1mMPTy2Q+gQZeHe2d7exvnz5zE6Oio5FfF4HMViEblcDrZt4+WXX0a9XheDWStSU4hcL6Ei11F6gWvVbDalOhz3IEv4si/F4OAggsEgnnvuORHItt1q7re9vS2FA3RIn/uBIIBOvDYda414sYQtS9dqJI4GiNnwj3tHV1zj39frdZw7dw4HDhzA0aNHUa/Xcf78eQCt/mJ79uwRY3R9fR1zc3OCVuscNz43z3JHRwfGxsawb98+DA4Ooq+vD/F4XCrVvf766yIHTp48CefdDob7hjE8PCwUOcdyUHAKcl18AagUK3DqDmp/WcPWR1qUP53YHY1GJSdN8+W5F3nWWfq/UCh4InJce91UNR6Po3Z3DZX/n703jY30Os8Fn++rKtZCVrG4N9Wb1LtardZmW5biKA6cGzsJlDgwEsSYyB6M4iST+I4niXGD68wAtmcGGQM2bMMXFxMoi2Mo1kUG+WHHufCS2LEUQ7FlyWqrtbZ6Yy/cySJZZJG1fN/8qH5OPd/LU+xuiS39GJ1Gg2TVt5zlPe/7Pu92fnHdnaumRhPmuWlTDzcAV6aYc36jAZA25R2lUskdhMwx84yNVquF6elpnDx5EkEQ4K677sL4+DgWFxfdAZsLCwsulIx5oUDH22bPUiK/Jn9OgAIgwZNY2EP5C41ZhULBASHSca1WcxXAKKM0F5RzTH5JLwVpo9lsutA7XSsNn1QF3yriCoxYtRHApoiCRqPRDhM9cUWW3NlKXKPP5rgsSLcGPo7PRgr4eCSNaDrX/I79bzabnYPQdwaIpiJM75xGHMc4cOCAM35SWaQxr1AooNVquTLyfX19blwcgwUYr6d1M9pRpubzeYyNjbkQaxp+zp8/j5mZGdxzzz0A2gDj0qVL+NrXvoaenh6X90HQywJE5JN4BVjCEprDzU2VKrVfKh+tvmDlqb3XXqu/kyZotHI0excQNdqyKYccNmY20EQTAQJkdmWcB9xGl+hBw3Z+LQCywCSfzydCVTn3qvdQJuTzeaen2fxx7lvVObqBSxrPaIhhWCvvpaea7+ch6DafK5VKYXx83EVBnD9/Hnv27EE+n3fvGRoawnvf+15cvHgR8/PzrvgGc7HVmBlF7TOr6ABQsPNG8njgLTB0wxuJjKh5fn4eAwMDADoHqsZxjOeffz5RoGBxcTFhTdM4aMYpU9BpxTgb9sNGwKNnq/BzWhF54KfPIhYE7TA8KiMKjGgljOPYbV7er5Z4bVRo2XwAg+9XT4l1I5Op8lpbNEC/0/eRobVaLcSjMTADYDSZSGibMmr7bMsA7dzznVYhiOMYjcEGWsdaCWarVYnW1tZQLBaRyWTw3HPPYWFhAXv27HEKkDJL/rx06dKmqjM30qrCsVghQDBHKzGVtUuXLuGv/uqv8NGPfhQ7d+50IEXPVpicnHSgb3V11dG6joFM1VrNrWAhzTAumTH6Gi5KuuX+smutcdRUgBhKUalUMDAwgP7+fhw7dgynTp1yz6L3d9++fejv78fk5KSz1LPfVGSZON/X1+dypPr7+13iOy3KPBV9dnYWrVYL+Xwe5XI5EV6rBRBUcAdBu7Q7AJf7wxDWKIqc4UM9z9rUS03Ph606piFQLL2sRgOu4erqqnff0CKtz7RFVW40PdtG6zlDmQn2GQJWr9fdSe3kL8zvYgUx5kjwHo6DtK+KOgG//rdgSPumCobNMaURAkACqKhhimtBIGqVUPJ8hiZrIQgbdm0Ncrav2uhZIQ02m01X6dTyXNyTDONTxUnvvxa6sMYtq4R1k6M++uOcu8iEHTFaUy3UUMPsu9sRH1oengUWKHfX19cxPz/vcgP5LHq5tpPOu8kqRlporgjPhKOHnzwiiiI8/fTTjg4YaksgVKvVsPrKKoJdAXJnc9jYt4HWSqdkP/uh8pvzyHnequ9Wn7DrYWmXvJihl+r9cEBjT4z0RBqtm1qIg9jxLtsvDQe1nuqt+s57tWod55shtqRdlWtAsjiUelK7gVt9F69V/mD5CeeIwMyeG0QeRf0rn887g/zS0pLraxRFWFhYcGHoavAOgsB5SwE4+TI2NraJ93EMbyR/fwsM3cBGRVAFBq27RMoaQ83fgyBAf3+/YzqMtQQ6McqM7dXwNFUCVZhpf2zIGK8F4MLhrBLNe3m/xprqGQ5M+PRZNxUc0cOjSX0cA/tjhSn7rMqttVhrMrc2jlWfS6GOqXbIRTwWIwg3h8HZ8asgtICS9/jAmO87ftZqtbD++DrwABICHoALbRkcHHRK6tLSkksMZgIiE+qpfE9NTSUUVO3PdjCYTYpO7A8j3NjYcAfxkdk3Gg2cPHkSq6ur+PKXv4w//uM/dsqYemkuXLjgmDbvs3Stli4A7jpN0KSiSQWenhIFIwpwmAhsPRAMEdH8B84pC52odZ0KDd/PHBJW4aFA5brRA8vrmXeioZ+NRgPnz5933q1qtYp8Po9SqZSIK6dhg+uggiaOY8T/MUbmbzMI/sfAecO06iPBGb1D3GMEJWy9vb3uPVRsGJ5IXsY5X1hYQKlUcnueSpNtfJ5aK+fn5zE/P/+GWwvZrAJOpU7nWUMKGebMxHPm8HH+ae1XxccqOLaogKV9u9+0ipme50S+yO/VS8u1UK8M301ewb2gxQgUcNlQSsCfU6GKqX7P91vPK2mxcaqBBhoI7+oYw7QCIeWoylR9p+XdbN34sQVHvvm2QCgIAucFcUa6sQDN6aZbe4YVNZtNV0kRABYWFlCv1zE7O4t8Po/BwUHEcezyYG2o3+vZA1sZ7Tifzz//PN7xjnckvBGk2cXFRfT29rpwYD5TwxLr9Xq77P9owxmfGAGjBkGdYyv3fIq+XTufvNH50WtIp4wIUcOY5lCm9qSQvdz+PIUUMrdknGGMz9PwTpUR3UAJG0OHeT/3EUEL9yabnX/yCcoDO26lec310n2pwET7yOfRuKOgVXk/7wvDdmVEHisxMDDg9LxGo4H5+XmUy2U33zRu6PioOzLc1q6x7duNbm+BoRvcaH3I5XLYsWOHO1RVS9eqFZShT7ROU/ACHcKwpRaBjlLNZ1KQ8jtgs9vZKvDc4JbRqPVA+8kKXaqk8v0aI6qAJ5fLJSot2b7Y91ggpJYhXylWKmv8z1wEvZ+Kd/NiE8H4FYCX7YAra+3xWZxsH9kHn/eH3/mYN3+uYhVxLd50UCqtnUtLS+47hgdOTU0l3PVUBnii/dWYyLYyGiMHdGy7du1yig0Z7eLiolOmWOmKVrI4bpcCXlhYQLlcxtDQEAYGBpzw4jxrHLWGllC4kZ6ttVGrY7FpqJEecEflLAzbBRFYJpyFBzQZvlKpuMNDqdwVi0UXFkEjgR44S3pR5ZR7l/uDyeQMHZydnUWxWHQ5B/l83uWxAHBKJXP8qKDxfa1WC+GXQmT/MAukO6FFzG3JZDLIZDLOo0dgRmUpCNo5UAw5oYDnmnOsBKph2E4APvWXp3DL/3VLwtpJeu3t7XVzMjc3h0ajgR07drjPzp4967zPb2ZjyBmBrPK/bDaL3bt3JwxSrIjGkKcwDF0RGY6FwFMVDg0FtRZcbZYfEfCQ55K+uD+Yl2WVG9IIryWvJP8hn1Hvs77XKq/dfnZTxhVokkdzXlNIIbglAPKdgiyUi6TbqwEYn1FNr/eBONu26jvQ2csKkuiBjaLIVRSkp1gPVaURR2W2Hups+6r89Wr9vpaxEMw1m023/8j/+B1zm3mmEEO0AbhzthQ4B0HgvJFaIML241r73w3E+b7rJq85nwyFDsMwAdJSqRQyh9r8L/18GrVMzXnxAST2owJfBSQawaL9IJjx5QCpQYTeNjW4kb+oB1bHx/dy7K7sfCqVoPut5jCOOwcuq8y0Y6LspP5Jj1uxWHT3XLhwwR1SXqlUMD4+jr6+PlfUSSNwqBN205veqPYWGNrmZpmvKiLM/QCQcEPytGae/pzJZFCtVrG8vJyIfSay1pwYy+DVmudD892sd7xXk5ivZkVj2WK1KhDtKwPXKiGsjqUhSgyLuhaGqYJHQYu9hy7+KIpcNTHOC89RaaGFNDqHP7K/ylQsU9A11jXn2vhC966lrWIVWIMLk7CWR8bU6/pWq1UsLS0lPuvv78fExITXK7RdLUC7jC2TmH1NlRo9Q4BC5ZZbbsH58+cxNjaGbDaL6elp54lgGB0A3HTTTRgeHnbhl3yGMmnOPemOQllDiuz+UOWL92vIglqcKaxUKaUHZ3l52YUgBUG70lsQBI6Wl5aWXCK9lny3SoCGgar1Lo7b+RRMttdcQeawqMBTgU9a1v0XBAHCz4RI/XEKraCTN8KxksYYUku+xPmnF3J1ddWN2Qp9euPU8pnP5zGPeZf/ofuxXq8nwBBLyt58883us1deeSVRsjlBjzfIeqh7XvmjzjW9JVy3kZER7Ny5E0Ab1L366quJw4bVs0veogqSBRV8twX0PuULSJ75xn0AdIobKO2rLCA96Tu5Nuvr617erM+hB5R7iUqS9tkalXz/NaeThoh4NEY8E6O5u2PciqJO6W3Lo320oLKjG3ACknmmvua7x/dcAso6OoYZzqfyJo3CaDabDjw0Gg1XTc6Xm3K1Pl3tep9cIsjlT/6uJfOp+DLMmGF+HJdW1kvPts8Uwm2dirA+hbfbfPrGdy3ytNs1uk4ajqaghIbnTCaD9NvS2Ag7aQMELDSm0WuvgIVeHtVvqBNYozIjcdT4oUYM3d9a8EqfobxC+YDNJeL1uvb2WWrkUNlKGULdkGGbNHLxzDstuX7hwgXcc889Tg6wqI4PlA0NDbnwxWsxStyo9hYYukGNC8vNwnhsWoPm5uYc8dKS+p73vAd9fX1YXl7G+fPnMT8/74Qo0MmJ4QZiU2uSMlrdULrhfBtKCd8XuqbMjBsH6BQMoALFsxPoAeB/yzR0A5N5xHGn7K/OI/ugG5LWSiDpIdP+R9MRaqghg4xT3BtoYBnLaKKJeChGnPG76TkmnQsLPK2lzoYAWHqwCo2uQx11pDc6Z1Kpkg+0LWvVahUDAwPO0xDHsStJrZ455qto37RP26I8XkUm6XowfBLoWEFXVlaQzWbx8MMPo1ar4fTp04626GaPoghDQ0OJnCD9z9ACICnI9f2qNGrj+LlXlCYZ6sk8F6toUjBqZSVa4mjxV+v66uqqCw/jHmRTJZL91r7zOQRC3Eu8rqenc/K93kMFJpfLIfg/rzwbQTskFO1+1Wo1VCqVRJhIEASJPUglLooiJ+z08D/LL3hGDgDnweZ8tY63sPzTZeQ/k08o/jzAj23Pnj2YmJhIhMkRZPro7I0QnOTlvb29jvaAjidSD7ru6+tDELQrazGJnICCBQiUl9rKnvxP5dnyZuU9GoapChV/Z+4h8z5sCPRW+0MrSvEzlWt8B/vPpsYkAM572Ww2N1UEVN7EvpHGGBkRxzGisQj16ToaOxoJWdENtNjmAz8+3sjPuymM3e5VuRDNtD1CLbQQo91PFkVaW1tDJpNxhX8IUnXN6ZldX1938v9G0ziBgIYzq7xj5U5VtovFIhYXFx09k16p2PahD5k7M2gGHcOoVYS34tO+9fLxgK3AUjfgp4Yzvc6CT91nNFqQ/lkGn3+rEUs9KQAS86O81o6NegI9Qd0MJJZXaEQBAZnV9XifzrXOvw2f5bh1XOr9VB5B4yG9h7VaDWfPnsWBAwcQBAEuXryI0dHRTfpdELRTQmzon6/PN7q9BYZuYFOFK45jzM3NubADMph8Po89e/bg0KFDOHToEOr1OmZmZjA/P+8qySnTpYVOiZwbQYGJEhyFC63Z2jduJMuoVHlXAKTgSC30bCqMKczYXx8zBOCEqVVo1XrMMXCMVgnTdzulFTFawy2s9qwiLrSFLEvbxlHHgqceHdt8DNhaUThHPgDUDRxZC2S0IwKmgMY7GwnlXz1WKysrGBsbw969e13FMTL02dlZBEGAp59+GgsLC96+2DFsB4PxrWcaaXeeA8GAJo3mcjkcP34cv/RLvwSgvf5TU1NunEtLS65KFQsH6HxQEKmAptLGUB6gU7zDJwxt/3mNPlvDoSwIpseDwIDryfXwCRzOuwpKe56D3mMNDqpcMqwKuOI5/C/tcJUQITawgTTS6Ed/24v3v7Xz4dKZNOL/PUbrP7ew9vk1VD5QcSG1FtzbJHSWn6d3Wwt36PqwIhrBGPtHfjGHOYxEI4kx2rwhHrg6Pz+PoaEhd6bT1SzkN6JZ+ujp6XGVDZkgTOWR66meC46fB2drHgCbglt9rw3ZJe3ze6ATbqL0wD4rKPJZ/H1eeHu/5ijomVL83oat8TudN8odWom1wqUqcXyG8nHNA40RI27GCQ+5r22lUF/vNQrydH+o4URbNB0hHooRbUSIWhGa6SY29nS8KFQcV1ZWnIFQASX3oeZlqZzp1raLn5NWua9VLlvDJQs+MUSuXq9jeXnZFXfKoJND4gPgdk59zeop+pm9TunO9wwro7vJZo0ssEYH7YuCD1//FRixZTKZRIqEFgRSfUsNot2AuX6uctGG19q+aX90LghutN+q99Hwx99VHjLihvKwVqvh1VdfxbFjx5BKtQ+XfvbZZ7GxsYEdO3Ykxufro2/9bnR7CwzdgKYLqwS/uLiImZkZZwXN5XIYGhpyh4+SIRaLxU0KCTc6kbUNadCNwLhPfs6yqWrB8ynnSty6Qa1VUsdoGYoqlaxcovcqY+fvtIYVCoVEvkaxWHQgIAiChPWTCfDLy8tuMylQSk2l0BxuC2cmmvP9dhNzvqzg24pB+6yb7LcyCh+Q8s1dHMeI98dYPb2K9Ls6JTX1fiYV0yL68ssvu9AKCrBz5855hacKy25C4HpaEAeIg61D5dg4x2HYjs8eHBzEoUOHXC7Xv//7vyMI2p7Fer3uKuGpFwLo5Knxv4YTaqUrVdD1GgtoujW+F0CieqIWOuGcaty4giaOjR4kKpQWeKm3id9rcQXyDw29UGUxjmNEX4ow8yszThhRic0MZZAqplxoaiqVQuv/aKH25zWs/vaq82Iwh4lW6vX1defR4H5hGGsYhu7QTt6j4NNX+h7ohLXOY95VqCJtXL58GbfeemtiDXjILQCcO3fOHU6q7UYLSSol/J1hiZxjzZNgDgj3bRiG7qypmZkZl4RNXsOxqPVY3+sDKqo4qHHA3q/0rkDLevt4neVlFsxkMhnHi7XKovZdrd1WeSO/0jBqAIkiIaQHy6ftmqtHzcefrwUU2CgA3/U6BivbdL/a6yMkz9VjmJnyJ3oKObda6IQyjiXV1ZPQra+vtdn5JR+dmJhwVv4wbIfGVioVBwAo41ZXVxN7gDlc0XKEGDFqt9QQZTvlue1c2aZy0QLPqwEd33h8318NHHO9Wq12UZ7olQjheLLQFABXEEf5t8p97Tvv5d5VT76OWQ2ydl/rPPgAhMoEC4R8OojOB99NfqGRChyTVpHUkELSJsMnWRSEIeLMDc/lcpiYmECr1XLVcdlPFgvzrZndzzeS528LGDpz5gyeeOIJPPfcczh58iTOnTuHOI7xxS9+Ee973/u2vPcf//Ef8dhjj+Hll19GFEW45ZZb8IEPfAAf/OAHvQiW7fHHH8eXv/xlnDx5EhsbG9i9ezd+5Vd+BQ8//HAivOLNaipIuBF27tzpkpLDsB3CwnwCEuT09DRmZ2cxMjLiPcBMT9MmYbCKDc8P4kGMFHgMw9ON6+svGy1WylysQukL2dBnkXHasCWOg8/Q0tulUgnZbBZra2tIp9MutKBarbpKTD09PS5ch9ZXZT7RCxFSSKHnlh7Ug7rb5L54ZfaDVl2CKRs7q+Pnfb6/u11raULfzXupbK/tX0N0OkLq51IJOg6CwFUlmp6edoyOlmgyprGxMXeg5dWU/hvRfIJu3759qFQq+OEPf4hWq4W77roLQLvC0MzMDF588UUHHqrVqssX6uvr2xSGydLTNjSUyrfmylCp2Eq5AjZbd3kfDQlMCNaqQnotQYl6SoeGhhwwI6BToanGDCvoaDxRwUODBseQTqeBz7SVr+bvNV2SL/duFEWYm5tDvV535zhFUTuJe/6hdlW2YrGI3t5exHGnclUqlUKxWER/f78r3MFKUAASMe6tVitRIpxeuvX1dSwsLLhSu5zzVquFRSwmlL9arYYTJ07gPe95j5uP9fV1FItFV4KVZ/NsZT3c7mZpJQg6lUGZL7G0tORAey6XQ29vb8LLTaBZqVQcP6Z3RQE+5Zwq2apQK19RGvOFPPuUdGvostcr4LPvZOvp6XH5oQTN7DuvLxQKKJfLiVwj7keVW7oX2A/NH9VqkLoeEfwA0fe772/9zDdv+vfVaI1rsUlGonulPHpSAGBpaQm7du1y8ocyiKHQ3PMa/XCjeTnHTY84we8//dM/IZVK4fDhwwlvr+blxnGM8KUQIUKEpTZPXM+tOyXaBxCuxbjRTeZeT7sakLT9YKhc6oUUcMDvuaXxg/RvdTL7fO5D/q0yh39raKIFQupFIdDhnKgHWKMOthqjnRvuPf6uQJ757TpGjeLh3wzpZN8oy/fv3490Oo19+/ZhYmICly5dwq5du5yBj4eHdzvgVnWmG9m2BQw99thj+MpXvnLd933qU5/CV7/6VWSzWdx3331Ip9N48skn8elPfxpPPvkkvvjFL25KAgOARx55BJ/97GeRSqXwjne8A6VSCU899RS+8IUv4F//9V/x5S9/2cWtv5mNlh4A7nDB3t5eR0TKFHgg1YULF1yyvLUaa4iFonkyLbUIaOiLWiX4vm6Mxyp6+rlP2HQDGLzfCmj+nc1mMTIygp6eHlSrVfT09LhKXFQ2WCaW92QyGZTLZef9YqK1xrQHCBAc6yQ683Pr8vWNWX/aPluvkRWCvvlzfTKM1CrfKhBTqRTqaIdRlMvlhOU1iiIXDqcKuwLV22+/HcVi0ZWu7rZGW9HB9bQIVyxZ2LxPCfIYVjQ9Pe3AQbPZdAUgKPgBuHNzUqkURkdHE8/T5FTOC+dNy4FynApUOO/WombXmffpXPG9tOjZmGe1onH/0drF+HkNK9X9wX2ugszNrYSn8FBjWphbrRaaaCL6kyul+b/bQvxAJ+6bc8J8lnq9joWFBczMzCCKIneWEXNJtHoRLfU9PT0YHh7GxsYGlpaWEmebkecwbJf9bzQaqFQq7dK6V5QgVQLqqCfOLqFnSBvDKmllnJ2ddZ7Pa6HXGLEL03y9jfuK1k3KFdIvldhuHp7p6WnXd1YMU3qzfEoVK16jz+NP9UDzOh/Q0efyc190AMepYbnK52h4Uc8XAXGz2T5va3Bw0J0pZRU+LcyhTc+osqBNFe84bofJKYgkwN8qp+ZaeV43UOWbI59Mc+8Z2Dx3NNJwvHEcu0qUcRw7gwINGKwmqxVhff3ZbuMA5VChUHD9rVarLsSThiXyIN2T5InZXVkEuY5H3p5BpjLTzqWP5n1j7/a9zxig91o5b+W3NTo0b20iejVCam+yQA33iTUuqz6msoRyiN9RDrCpR8jmjwLYBHLUa2QBkfUc638du0+H0XVgNIfKVZWvfA7Hxe/JC0gnExMTOHjwIMIwdDlD9IbSUaCRE1dr26GzdGvbAoYOHTqEhx9+GMeOHcOxY8fwZ3/2Z/jRj3605T3f+ta38NWvfhUjIyN49NFHcfPNNwNoFxb40Ic+hO985zt49NFH8eEPfzhx33PPPYfPfe5zyOfz+Nu//VvccccdANoC9Pd+7/fw1FNP4fOf/zw+8YlPbMfQXlPzbdp6vY7h4WGnqJARMi/o8uXLWFxcxPT0NJaXlzE3N+cYEpsyfjIagi0ezqahRdb6bPvXrW1lNdvqfssI9HcbRlEoFHD48GHk83mcO3fOhcfx2bTO8Gc2m3WH1nEemLip3qfgSACkN5+zpH/7wsh8DNKnTNi/u3kvLQhRa4sVaPyOFYRSR1JovdRC42c7+UPs98zMDDY2NlAqlRwzcZasKy5u5hT9+Mc/dsp4t7693hYidICIc6MMub+/34VOkVZ5No4FL61W+3wkhkiOjY25+VUhoPSlEJYZrAAAIABJREFU4MDOq80ZsvTJz/gsS7vWOm9zNvifuQ0cD2m1XC6jXq9jcnIykZTsU2b1eWpFJji56aabMDQ0hCiK8NJLL7XPJvl4Ha3PtZO0g3cHiB6P0Hx3h2dEUYSVlRVcvHjRgRcCTZ7CDnQAJemIyd08F4m5WQwlpbBUTxmtiEEQJASoKrbpl9NI3ZtC452dcAuuD/ORADiAzLVn9Spfu1HC0dJIOp1Gb2+vOzNL14990NCXZrOJV199FRcvXnQ5AlQMlQ61XLzSnDWg+PiTKmZW2dH7fCBS6c0HvnzeJBrZqKhznOwvqwzyM2u8s0qs0pENU6YBgmCicbmBcDhsh+aGneRyrVrqU6wtD1Z+CyQNUz6+sJWCbcdCHmUt6PSSMQGfsst6zaiEc021Cqpt2w2EOC/MAapWq84YwagSegdYlrparbo1bjabSN2eQu/FXuQPtg0GLHtOY0k3IGf3sI9WtNm19u0V+4xuAMknE4ArAOXFCK29fl1BIxCADujxfaaAgQYkjltpxQJCH/DyAR6+S/mA5RO+5tN1OHatgGmNgFauamREvV53RY0A4KWXXsJ9993nQqt7e3tdBBQrQ/KZmj/VTd+6kW1bwNBv/MZvXPc9f/EXfwEA+PjHP+6AEAAMDw/jk5/8JB566CE88sgjeOihhxJM8pFHHkEcx/id3/kdB4SA9uF/f/7nf45f/MVfxFe/+lV89KMfdZv5jWqW6Cgs6E6dnZ1Ff3+/E+4kno2NDczPz2NxcRGrq6vue0sAqvCpAkHipOVWLQfWAsGfPiVeXfIWSKjFoFsisDZf35XRB0GAgYEBp7xfuHABtVoN6+vr7qR2Cj0yA8Ykr6ysOKai4RQcl1pLfMqD9s/HKKw72ydsuzWfUmEFsE8ocG6dxwcd5sfnkCHpGS8EwVYADA8PY+fOnTh37lxX9/PrZTDMF/J5hdiKxaIDdPfffz9mZ2cdnfOsnuXlZaytrWFhYcF5BXbt2uXOLeD4aSVVxYFWVypfpAEaBdRi71OQ7HwoLSkY0vntFsLAfACgkz/T09OD3bt3Y3p62il9ZPzdBBnXuF6vI5/PY8eOHdixY4fLqRscHMTi4mKb9j8WI6heoUvEibC0OO4kvetcMN+K+1ir/WkMeBB0qqbRuqthh5qIr+PW+eTPKIrQd28fSj8sYeP3NxzwYejj9PQ09u7diziOnWecjUDiakLd/b1NXiHlF/RUcR/qvtT1JA9dXV3Fiy++6EIP1QCmSo5W5rO8xfIre6++m9ewWZDN31V5VSCggMjKEMsDyWPVq0XlWJX3rYCYNuuxDYLAKUrc4yFCINUBHXZPWyWQ31k+rOOwHvpuTdfAyg+Okf1Jp9OJMuR2r5B2+H5+xjLhQRBg3759jr+pAcWObzuajol0W6vVnHdoY2MDo6OjiXAwjoWeIWcUeC5A9ngWyHfOWaN81txNu/7dDFK2n3q9j9btc3xASa+z408AgnMRooMR4vMxsCf57Gaz6XKVtcKe9djY9zPkTMMer7au3cAPf+d3vogH3zO7gT+9T0NcNcyT71EjO+UJ5cza2prTu4MgQKVSweTkJA4ePOjyyAm2V1ZWXESI5Rt2PbR/N6q9KQUUpqam8PzzzyOTyXhzit7xjndgbGwM09PTePbZZ3H33XcDaAvkxx9/HADwq7/6q5vu2717N+68804888wz+P73v48HH3zwxg7E0yxTrlQqLq9jbW0N2WwW58+fx9mzZ1EqlXDkyBFn0Wfcvsbh6rOoLANwlhoqxvx8Y2PDxdpbQcifChisZcxacNTCRWVPrXF23ED3JFcqsVHUTq67cOECdu7c6cZtD/ZTC2kcx6hUKk6wUMh0E7RBELh8D5/VSPuszMEyCWsBtu/pxkz5LDsHqjDZ51H45F7JIfX2FFJ9yRA4MiGtaDU9PY16ve5yLOjezuVyOHjwIC5evLhJeGxn8wkaVaqCIMDo6KhT5GklZHnty5cvO8/O/Py8U+6Gh4edR4lKnwpkoHNiunoh2Aet/qNNFTRfCC7pwxYP0H5Q6FnDgZ65UavVsLa25qqrDQ8P4/z58y48IAg65/HkcjkMDg6683wIEKOonXdSLped0YNgyh7IF3w/QPwzHQGsygf3kyrPHKMN+9PWaDSwtrYGAM6aScu3jpMekfX1dbdOBFu6T0ZHR1FGOTHv9ABQCLdaLQeWa7UastksVlZWNuVO+mjPff86w+S67VnmMtIIMzMz40INqSSwYtqpU6dQrVaRy+VQKBSwtrbmvLSqOCsoTowh3hzezMZ3UbnQkGiuuRq++DxVbHyhuldToHTeffxeZUU3Dzjfpc0XNs491mq1gMtoJ7GHSWu+71m23/bd9l47b3ZsPtmg9+m8hGGInqkeNNBAPdspFEFeonlRBAhcy3q9jmq16izy9I6zlPtW490O/q5jX1xcdN7hZrOJgYEBp8RrYYdqtboJWIdB54gH9Rzr+H3jUH5qx2Zp0ifztf/WuGCBtp0z32fYAwQTmz2FlK8Er6VSyQEi7n89q1HDhwkyKAPtOK2RzVccxRp8uwEhu5+6zaW+j+tkQ+PIe8mrbT85fhrx1DjQbDbx4osv4siRI47meR/zfykLbQ6kjkf3543SZd4UMPTCCy8AAA4ePJhwqWm7/fbbMT09jRdffNGBobNnz6JWq6FcLmPPnj1d73vmmWfwwgsvvClgCEgqwTMzM67yWU9PDzY2NnDq1CmcO3cOvb29OHDgAOK4HS43NzeHarXqFBAgCUYUDJH4+Dnfq2ErABJWKd5HNG4FnCYK6rP4HAKWbgy5G9OygoNu2J/85Cd4+eWXE2ESDDniZmb8OfuuyhObgib16mjZVwUUPsVKn9VtTe093RQHXuMDClvNVavVQu18DX239SHo3RxGoPew1PCFCxectfree+/FwYMHMTAwgBdeeAGnT5/G008/vSl3aDuYSTemqq3VamH37t0YGhpCELQtnYVCweW+AO2QKIa6Xb58GVEUOWCgFjENB2ToBelRwRCvZW4Rx0vln0IMgCvQocydoNSe76UhMBoSoeui+4cl3FkxkqFpVOzz+TyOHj2KcrmMsbExV0FyZWUFy8vLrkgEw9TU2EHByvhsPAKk3pNCPe4oYNwTWl1Iq9KpYFE+oIYIAhRexzEr2GMOhNIDc9mcMnulpdNp5NA5NFNDDikMoyjC/Pw8lpeX8cMf/hDHjh1zVey6gp8bJBzt83t6ejAwMIBGo4Hvfve7iKIIt912mxsr+er09DRefvnlRJ4A8xzZCBiVt1nFW9dNQ0TZH3ofLVhRecG/FaQoeOG7SOM+L6WCWi3QwTAonX8fSPApnt3mmC2KIrSeb+fF4abN16sh4np5m+Wnli/zb58FX+fS7v84jpHZn0Hf6T5sZDbc3mF4lHpVaDhgQaClpSUHVmkxbzabLiTtjWgKmPWcsr6+Pnee0M6dOxGG4aZKcnEcu4O46SFQkKRhZXY+LRDgWmi/fM3KWh9I0u99Rg67htxjqVSqbVDZs7k/bCz/zz3DSAA+M5/PuyqejGhZXV1NyCe7B33/gaTn1gcafIDBp4tcDUyrfLXeYu2z9ptVISnz9Gy0IAgwOzvr5GYul3OGvIWFBQwODjp56As/vhoNbGd7U8DQxYsXAbRPl+/WxsfHE9fq7/zO1/hMVqR6sxoXk2cKMOE/DENMTk66cwaWlpaQTqdx+vRpVzWJhMjnUFEG4KzDCgw0hlMtsj6rOaug8Nn6Dp9lhZYfhqUxfMYyFf5UCwOATZtKr282my7GXBm+hpMAcIzGKgxqIXXvf6FdQIFzRSt6s9l0FhvdcHa99G/fmuoY1HrTTWDa5rNw6M/mYBO1hc65K+n/kAwvCIK21W1hYQHLy8suDCeOY5w8eRLlchk33XQT3v72t2Pv3r34zne+g8nJya5jeL1Mxgf6+OxsNotdu3aht7cXQJvR8pyaOG5X5VpeXsbGxgZWV1exsrKCKIpc+KTSlRYEIE0p0LfjsuVBWS6aAhyAq1iojddSCVHaU6HtE+gM+YrjOJEbsLq66koIK8PfvXs3isViomT8l770JYRhuwADKymur687cKTCiu9OIeU8zzoOKtyFQsFZ76hYKzBixSeeJcS9SOVYFWQtma0hqpb2uQ5KG2tra4mKYNw35C+ch7179+Lpp592eZPLy8sJj/XV6Ha7wuS0kX9wzHrgs65fvV7Hj3/8Y1cimuNj6J/Oj83p1ERpHrypnyl/Jb1pU76jlRVJtxao6Hf2PWyWh6lXUQ8E3cowxN+Vb2t/9Vpe12g00NrXQv1MHfHlK2s97s/hsfRgv/ddpwDweuWA7x2c9yAIkEUWfX19jp8FQbApT6TZbKJSqWB8fBxDQ0NYWVlxBYGAtqL9xBNPYGFhwe377eDXvjnRnxsbG+48vziOnfeReXzj4+OoVqs4depUwvAan4yB24A41aE/5VFAMszfzqXPk9GtXQs4up5mdR9nqDiSBEj8nXnLDN9Vg5DKHfXc0ggXx7HjwT46tjyTzco47lVrFNAx6R7vxpNt8+Xekjf4QBjH3Nvb60LlmB/Htra2huXlZZTLZXdI+MzMDB599FGk02l88pOfxF133YUTJ0685jXcjvamgCEK7a0qvlGBWl1dva77GIuu970RrdtG5oFzuVzOnaJ+4cIFVxRgbW0NuVwOxWIRExMTWFtb2xSGo7HGtKoSZetBpFTc6Ork5qPCqDHq7KtuGhsyx4pJtGar0PdZMHyChf0HkudScJPZ91sBqf3vBi74riAIECJ0VYd4Lg0Zs1buCoLAy5yvFxBxPnzzaEGSDwDZdwdBgNp4DdVWFZVMBeGlEH2/0Je4h89ndadCoYDx8XGk02k888wzOHXqFB566CHs3LnT7SMfGL1W5fJam9JVGLbPWbnpppscaGFyJUPk6BWs1+vO8hgEHbe7Kn8EzEqz1guqdEiPM5kz85L4HFrqLb0ynpnf6dk+ds6sYhaG7fLwAwMDOHLkCM6ePetCO0m/VCaXlpbw6KOP4l3vehdKpRKmpqbw+OOPY3l5Gel0GpVKxQEqnkPGsILdu3fj9OnTaH6h2a6e+D8HifM/VKEjb6GnTQUyrc/0uPkKUaiiwvmxBhZLX932wMrKChroAALNe1lcXATQ5mE333wzTpw4gY2NDSwuLmJpaSlxRtqNbJZ/W/DC8tp79+51oUS0jLZa7cp4U1NTzvsYx7ELKdL5VT7E96pV2ioeuqYKXpTv6LVcU1aopAFMn+kDQVZZ0uRo3k8AbcMgLaCxv6vSebV5p/LfGpfKjZNB+3BqJCt3aR9suKy+1/I7H2iyPFr77HuPBXwbGxsoHC6gOFVEa6Tl6IBeXD18+syZM9izZw8GBgYcz2EY5uTkJM6cOeNKyisI1vdul9LIsdZqNadjkHZZ6ZbXMXrF1wfl1b759a3B1RR0vde3P7XZdbbf2Wt8/eLP8KUQwd6kXkcDq0bb8H7VUTgmekn4fN6v8sS3V/Rv9ejy+wQQjTsh31cDRKp/+a7rpg91M2CQb1BmR1HkysOTv6ysrGBiYsJFSD377LN48cUXsbKygjAM8cQTT2wCiN3W50aCpDcFDHUj1ht1341uW1k0BgcHUSgUMDAw4EpFs5QmQ4RSqRT27NmDH//4x85qTQJWi2zCahF0TvZWS0Qcb7ba2XAfH0Oh8NQwIBZ20FAZWqgVEAHJMsa2MpyCBt/msn3xzSkt0vosbVSUCygkgBkBnDJoDTtRK7vOjw+c+ZplEhZQkpnpmm7FrBmGQk/cPObRG3dywugRoTWGwpQ5ZHHcTkB/4okn8Pa3vx2/+Zu/iR/84Add+78dzSpYVJgYzspwAh4KWqvVcPLkSczMzDgvw8TEhPOgqPDQtVB6U4+QpTOGXHEv8KwcPfDSMl5ey+IdGmZKr4BPWdTxh2GIwcFBDA4OIpVKYffu3a6PS0tLmJycdICISsY//MM/uPFx73MPtlotrKysYG5uDuvr67jpppvwsz/7s+78oH/Fv6L1sdYmZVbXQgGzClZ6h+gRUk+C0qlVBq13A9gMEK3g5vf1eh1rWENvo9fNJ/fi5OSkexd5Gg0wPCfN13x78/XmDGnTMVDYZ7NZ7N+/H/Pz807JJT969dVXHVDgGOgBVZq1gEfnGkiGaLHR0qznVvEa+xzydOaoaTioD/hYpUw/U8McP1dPhfZxK9ls32fHrM9P8MypK/eM+w1tV1OUfM+3wMmOeyvF0Pcd92CtVmvTK7Iol8uuxLyCTqANji5fvuyMmf39/VhYWADQrsL2L//yL1haWtpUDdQ3v69FQfTNexB0DKBra2tOB1hbW8PS0pIbJ8EScGX+f9r2CvFvraqo7/MBIdssz7B/d9MPlLbsuKzO020+2SfHT5E09JKfBkHgQvvVWKAGIB2nhizrXvQBnwQYMwZBu190DtlvO18ayUPe7MuVtWtg38uIBpV12j/yaeZGko/Te33y5EkXElepVBK5ptPT02i1Wpibm/Pz8zcACAFvEhiitVrDOmyjZ4fXXut9/E7ve7NaHMcYHBzEwMAA7r//fsRxjO9+97suzK+vr8+dK1Cv11EoFFCtVhMonzkudjOoVU83EF231ptCEGUPpOVm1cIN3PS0jpOw8/l8ImRI30vhTkGvVnygk0hoAYMdmxVE9u9uQpwMJ3MkGYtL71A35ZkJzz7B52OglpH7LJScb+2fT9lQRYPzrgwUAJbHlhFPxwh+sZM3owmNw8PDyGaziUPRAODll192zMh67G5k45hyuRxuvvlmHD161IVZ8IwBzclh7sHMzAyazaYLJbOKihU0llaUKdN6z/Ak5jbQo8H50GdFUbQpDI+NtKz3WRpk31jlj4cBDw4OYm1tDVNTU66qH9dQ9yjHq9b+KIqwvLzs8gl4HkOxWMTo6KhT+EnHus4aosH9GYah86pruCKvy2QyCUu0zjP7182byncoGLJ7IooiLGMZvWu9jkaoWE1PT6NaraJYLCbKxjcaDRw6dMgbDdBNSN6IMDnObbVadSWS6W3j3Lda7UNVOW4tp608xiobNiSatKbjVH6jVdz4PPtsYHP+F9A5KNV62VXp0+fZvcA8FjVMdfMSWsVVP7Pv911r/1aDkE9OXK3pNVsV3/G9u5s8Yr/4nzSQRz5xSC95NBPGW62WixRJp9MoFosOfFy+fBlLS0sJ+Wt5zXY1q1wzLLVarTqjDfkWDW7T09OOFwBXqoqGSaOQ9lm9aN1owkc/er2v37zG/t9qfFuB9U3PRAcEMWyV/Ir8jrzAGjz5u4aR0gC1FThj80XR+OZGgQr76aMV37x0Gzv/tv+tjqJjTaXaRzHQ6MjQbj5TD4LP5/POCLq+vo6zZ8+i1Wq5okE+Wngj2psChnbu3AkAmw7b0zY1NZW4Vn/XHAjb+J3e90Y2JRCGCt1xxx0YGhpy5XL7+vpcrgJjdMfGxnDo0CG89NJLzvpPAmRcqm4sn9tShbBP6WdFKl5LEESLORVqrXbV19eXADvcCGpx2KrCljIC/s0yjRybLY9tN4SOrZulhP+XX1pGfn8+4WHIZrOuzCcbN7b21f7uezf/1jm0Y7WWGL6Pjf3S69TSotfU63VsYANppB24Uca7tLSEXC6HiYkJVCoVlMtl7Nq1C81mExcvXnTrZmP7t4vJdGOyvb292L9/P2677TbEcZzIhQuCzvlDVPj5fW9vr7NG6knoCkhUSNoQhEKh4ApsMOQtUe3oisDQUDrSpJbE1bGo8cHuQQUJ9JpolTCGVBCoEQSxAIGW2GeYHZNw+YyZmRm3T775zW/i4MGD+N73vofGOxtA3B6TjpvhXPl8HkEQOMHEBF9ds1QqhaGhoU3nZpBPXEu4izWGdKOTMAxR+9kaVp5YQfRQpzJVGIYuD+Huu+92xWaAtsHonnvucYrlVkrEdnuD+I4g6Bw4ykIXABJFOsjLuGbkrTaUk82Gn/EZer0qkQRd1pvk67MCUv3MKlT83LeG7IMNhePepFXcPo9/K99nf3zAxcdv9b44jhHvvEJ/l4H03vSmCmbXqtjxMx89++73fa5rafcAv9/Y2ED9UB19r/ShD33IIIPM8YzzGBI0xXE7dJQGLeYIrq6uOsOj5gNvBRK2g5+TD1JPabVamJ2ddTl75XIZFy9exMTEhAP4wdMB0vekEaUjxyPT6bQDzCpzr6WP13KNDzDzM/uzG9Dy3W+NOvFt8aZ9x32u+gPX0+o+3LfcCzQ4cZ5oLLHjt3tZ9Sy+T/ce362GGd+4lY58c9hNx+FP6wW3+0rl6dLSEvr7+9135XLZybparYbl5WWsrKxgbW0NL774oguX9+3pNwoQvSlg6OjRowCAU6dOJRCktueeew4AcOutt7rP9u3bh1wuh0qlgomJCW9FuZ/+9Keb7nujmiUyCpZbbrkFqVQKjz/+uIt/7+3tdR4MKgRUXvgsCiOWK+TnqhBqCJzep0SaSrUrWWkeBTc1iVBzMnRj8bR5a3VRZZRASN9vvVJ8L0+u5rP00D69n80yOjIYq6RxPppoona6hggRMocyjjnz3AT1rHR7PvvRTWjq9RYocb65RpznrQQYGZ3OrwK1CirIR/mEsCFtTE5OOmsdz+oplUoYGxtDEASJc2fse+2YrpfpdAOO6XQat956K+677z4HAHg9q8lo8QxaSLPZLAYGBhInljNsUMFyN89kb2+vKytfr9ddcQYaEoBkzDbPP2JYogomFWxK36qgqnChUWFyctIp+UEQuMprXK+1tTXMz887kEZBRhqJogilUsnRKS3KfE6lUsE///M/t+foD4DUf00h/Fi7DO/KyorLy2JYWRAErgQ/c6WYN0QrtU0A5rxz7HY/63rQi0zFjaFZvnLnHN/yLyxj7Z/X0EQTPf+px4GKyclJlzdGoJzL5bBr1y709/c7WrL78rXQ7vU08lwCeKCT08J9W6/XUalUHG+zpdnVm0G65T7QsBV+b8ETx7mVp1f5kbVIdwNRbGq11n7rtSxCYs/R8SlRfC+9ZwzHvJ51UoNDdCFCsCtAqqeT78n3dVOcfErf1YAQ39vtep+xzsrGKGqfwVN6WwmZVAbpH6aBnuSh6ex/pVLByMiIozEqir29vRgbG8PKysomWdQNVL6WPWDHGkXtnI9qtYqenh6cOHHCeUNLpZKz5js+iABBmASY9F4zR/N6+vBaWrf7fevYTWbp9W6vPA/gQAcIaIiwBffWeOEDaLxWjRsqc6zuYT1IABKAx/IVygz2nwZgGgD5DksrVo7yd/aVzydPV31ddTfycYam6/tYLXl5edkdGq6l5PVMqjervSlgaHx8HLfddhuef/55fPOb38T73//+xPc/+tGPMDU1hZGREdx1113u856eHjzwwAP49re/ja9//ev46Ec/mrjvwoULePbZZ5HJZPDud7/7jRhK10bBdffdd2NkZARhGGJ4eBinT592VjWtrhFFkTupnkROC5gyFN1kvvAKbkxuOG4EhthQkND9rWEcahXh/WrttQKPG1OTQjX8R++hRUAr0ilTUSXAvo/v0ndqAjyfE4YhMApEYYRGuoH4Yozs4WwiZIgWfFWqdLwWZOq8275YZsf50/h8OyYfQ1ZmpevHVt1bReN8A8F/2Pz8crmMiYkJV546iiKcP38e4+PjiOM4kRPVjU63iwFx/ENDQ7jvvvswOjqKKGqX0Mxms+7cjOXlZZw5cyZxrox6dTRkTOe3Wz+ZP8VCA6zgqOFxAJxSyIRyChSeuq4KvNK4hnfqafEqWKKoHSs/NTWFSqWCnTt3Ip/Pu/Nozpw5g6WlpUR4oDUcWIsf149AptFouKIH2lJBys0BK5DZZywuLiaANOctDEOsr6+7EAbeT0+SAnoKbs4Zr+/r60NfX587Z6larToAqCCIZfJbrRZqP1ND7Qc1lJZKKJfLANqKIc/yYTlfzm9PTw+KxWKiKtd2C86tlKpcLpewdFJw6xlJFy5ccIqiAnDNV2QjMGZopdITcwvUmESaZaleroOlbSot/FwNB91AFvmPhhf7wlW0oqide6tkKXDj71qG2wdKrDFK+aqGLF2NH2zVfO/VPl9NYdaxq4xVazznqvnjJnrQg/TPpBH3JEEuZcwrr7yC3bt3u4JKc3NzmJ+fd2Db5t/caGUxjmMsLi7i1VdfxcjICObm5hKyXEOZ4jhG8PYA8VMx4rva/SLdUwnnnKqxVH9aoMDPtgJI3fQR/q73Wj6hepIPLDl+/HyE4OjmcDd+r8q7D5T6PqdO12g0XMgd95zKOp0zS++qp+jYVAbRkET5B8AV8WKOmg9ocZ/a6BMdN/M4leaVb9HYSSDMKIe5uTlUKhXMzMzg8uXL7iwrPtPHU+za3uj2poAhAPjd3/1dfOxjH8NnP/tZ3HXXXdi7dy8AYH5+Hp/61KcAAB/5yEcSsdP87Dvf+Q7+8i//Eg888ACOHz8OoJ1j9IlPfAJRFOGhhx7aVDL3jWh2E8dxO2dgdXUVxWIRd955J86cOYP+/n7cf//9aDQamJqacrXnmRtgmaqCB1XUfUng2g8qPzz4kcofczYIglRwqhWRG49NGRpBiZZ3tfHxnAta/9ULZPttBSnflxCIMibOg7Um8J7WxVb73IOXQ6TQPjMgdTTpwbJKpbXm+Biy7xplUBrry2vIgGzeEueRFtQ4jp1VXeeoXq+jfl8dqSdTiH6pozT39fXhXe96F37yk58gCAJnbSHIIOjVZoXRdgIhoG0dOn78OEZHR3Hrrbcil8thdnbWWQsB4Omnn3YJ5QxlS6fTGBwcdEC3v7/fKfcWoOi8E0QxfImVjwhuqLxRmbS5M9wLmnNFxq8hAQpafEBI56DRaGBmZgZxHGNmZgYzMzOuZLUV1KQZGhVYqpmCkpZ17hEL0mPEiL/QPt8j/aF0QhnheqhhRT1rpMcgCBwYL5VKKBaLiUPwFKRRmPOogCBHQUK5AAAgAElEQVQI3NlRNDYw1FHDb60ln8UULl686Ep/B0GA6elpjIyMYHR0FOfPn8fJkydx/vx5DA0NoVAouLmwOYnb2awizjBEHo1AsKPjUaVAPwewqfKaNQTZSnlq+OHa8EBeeqYYMcAcL1YaBJDwzPkUH8u3NByLc2s96DbHTedJ/7ORXngMBHmdjQJQ44+dPw1FYjK75mxYZdC3jjpeH9C5HvqxPEhloF3T1nwL1QNVFEYLSKVTiXVlPxqNBk6cOIHbb78dfX19zpur8lXpoltft2MfKL1nMhmcPHkS2WzWgfsgCLC6uuqS3Pm+5lNNNI51vBuU/wp8KQPDMHR0qTxzK+BztTX2AR/Ory+cS5+zFYiJDkcIXm6DcBzq0KNW3dR79X3dolaU1injeZ9GH9g9pcY4O3Yrh7hHyaetLqFAzB6gCsABGupHdt+Sd6uhQz3bGobN87LCMHQyeW5uzkUwkEas4YVrY/f4jW7bAoaef/55B2CAdkUdAPj85z+Pv/7rv3af//3f/737/X3vex8++MEP4rHHHsODDz6I+++/H+l0Gk8++SSq1Sp+4Rd+Ab/927+96V3Hjx/Hn/zJn+Czn/0sfuu3fgvvfOc7USwW8dRTT2F+fh533HEH/uiP/mg7hvW6W6lUwvr6On7yk59gaGgI6+vruPfee7F7926kUimnBJJBKPBRIKEgSIGDhj4Am4VcJpNxJ6ATOLFiFgWmS4KUECwlaKvkK9PUuG4t3KAbl4miNgTJbvhuQI7X6zu5+ajAea0K40CECPVUHWHuimB5KUR8JE6AEuuZsvOpzTcHPqFs+xIEgfNMKcPiuBjipUos38HP6k/WEdwfINWbcl6gvXv3Io5jHDhwAPV6HaOjo7h8+bILhdrY2HDuam0+IfB6mtJKuVzGsWPHMDAw4M78ojWfJYYZ+sGwEApLKv6FQsHlt1nPDN+jQIi5RQRCtEppBUIq91T+yPDJlJUOGEamB1rSaKC0y5AwXs++plIpzM/PY2Zmxp3SznnivmSFtEaj4bwo/f39GB0dRblcdoUY1HpYq9UwPz+fKGsb/EEAZK54L76SQ/23OmcAAdg0hwASnlz+TdrkO5W3cEx6iDH3u5YMBpL8Sq2onB/SXxAEiBChUqkgjmNnrGFydrVaxfz8PC5cuODm5lpCbra7cc0GBwcBwPEx9oXltcmPCaxJI/Qm2mfyp60ISh7HNSA/VsBErxINTAqmASRylfg85eP8m3uB9KDWXytrNC+B17L/2WzW8Tf2j+NWAGJBHumPz7LyRMeA3UB4IUTqWOcgWsvDOX+Wp+nc8n32O3s/P7NKsn5v91UCRCNwYJUglftYaYMJ5Lfffrsz2NADCQBHjhxx1TB9tLldiqL2S+Wurv/s7Cyq1aqbv2aziTWsob5Sd/TK/eGbR9Io+aaNgPDJTd868lqfIUqb9W74nmOb0mFwa4BUnEKEyBkWba6aAgLlb9bwZcfItddwbZ8uZyNM7NzqHNuoHJ0jpWUaCSkHyTeATtiz7nfrdSaPIM/Tsene5uHhYdipSqiGShsxc61rdKPatoCharWKEydObPr83LlzW973yU9+Evfccw/+7u/+Dj/60Y8QRRH27duHD3zgA/jgBz+4CbWyfeQjH8Hhw4fxN3/zN3juueewsbGB3bt346GHHsLDDz+8qWLaG9lIdGEY4l3vehduvvlmfP/738fU1JQjnMnJSQwMDDjFhuE9GuMJIKEYa06PKl12IwJwFbVUgDJHQw85JfHRukXrorr8raeI/VGhSCuwPjOK2nHTNildhRUZAa1i1hKtVhGfQFIrMc+SYcy+/m+82kC8P0ZwIHDXanUxXTP97wNGClJ0I2s4lr2eoTDDw8OO8VABp5DgGlsBTCbcQgvlchnFYhHT09NYXFzE5OQkvvWtb+HOO+9EKpVCqVTC0NCQS9JdXV3F2bNnvULGR7evpwVBgN7eXrz73e/Gr/3ar+GOO+4AAMf8stksFhcXceLECRdi1Ww2XQgdFb58Po+BgQEnXEulUoJhc86U6TabTczNzblD32i9A+D2geaO9fX1IZVKuQo3PgWejetMoM+/KVC47vQwMU+JgCWdTmPHjh04duwY+vr6vN5X3VvWOwXAeajy+TzK5TIqlYo7yyYMQ8cXetCD8n8rY+V/WHGhdaQF7nEqrqpY67s5V/yvgk/nnc+0IbHckzb8lmtMAVsulxEiRPiDED3/qc2vV1ZWHADiOtEYkMlkMDAw4Mqy+sK9Xi/92t9JXwQkd9xxB/r6+lx4G2mGc3LmzBnMzs468M/509A+VTYJ/PUZ5OfcC+rNJFCvVCoJkM1GfmG9y1xDBcZcP00M5702nK3ZbJ8LpopuOp3G8ePHE2eCKY3wXh/vt0qtBRxR1A4ZZ7gYAKSn0ohvjhGWQhdGWalUvEoVm86pnadu668/rTKu66TPV6NWf39/29hY3sB6ZR0LNy84Y6QWMeH9YdjORaPCWKlUnBGHBpm3ve1teOaZZ7C8vLypP6+1dVO+uc9ooCsUCqhUKtjY2MCFCxcSofZRFCFCJ4SWJfyZZ9xsNp2xS70UGj1xvQpwN9Djoy27P3ScPqNlGLaPZcjlcghfaJ9XWD/YMSxYnYqAX/cF+TurzClY5h5j3rSmKeRyOScfOAZ6cXxzpQYK9eLyeeS3AJzhSvd1Ot0+CJbFOigTSQOZTAa9vb2JdIooipxnlnNidTUevaIymXyL/VSjOedlK1reTtC/VdsWMHTvvffi5Zdffk33Pvjgg3jwwQev+74HHngADzzwwGt6541qytiDIMDY2Bjm5uYcIdVqNZw/fx71eh0333yzc4ur25KKorVGUyhrvCbQifemZU4tuKosUvGzXhQKRWt9pFDm76ow8SefrRYTDc/yCSpVpEqlEkqlUiKfycfsrGBSCxz7k81mUSgU3IG2vDYMQ4S3hAjOBsCBTpiPdeOzaSiUhnfwOg05UmarDML2m0yzXq+7ObauZybOMrTFzvUqVpH57xlkP9QeJ2NwGXd+4MABN49hGLpiCqdPn96SkWwXkwmCwCW7j4yMOGsoi6RQMeTZWvQY6BwAHU8GG+lbhYJ6cahsUnkAOgq+0jQFFMOxdL2sYKTVmYYJfa4mQCv98CwltXhms1kcPnzY7XXlDdcynxyrVi8KgsAVWJicnEzm+v3HAGErROHvCkh9KIXmV9qHsoYIkUYaBRSQ/lga+GLbch2jHV4XIgT+16R1WPejenmthVHnTpVfKn9aPYlgFQDS/28aPR/uQaFQQHl32VmMlUeFYYiBgQE0m+1yv8ytWFlZwfLysgOyPqXntTarqDO3k6F/9sR59dzp8QS6fsoHVdnxhbBxDnVcyv+0/Du/I3gCkDCoKD+1hiT7HenMhjj7xpXJZBzf1uf4FFIFjb7v7byT7w4PD6PVamFhYaGt9N0UIb4cI749dtZrBTvXwse6XaP7Uset82ZpQ+/j7zQoUsbEAzHqi3Xg5k7OFT2B2qd8Pu9yOijng6BdjpjRIuPj41hZWbmmcbzWpgZR8q7h4WE8+eST7iwYNkfPSB4HoQDRN6e8bqvmM4L71uZ6mt1jVk5rJE34Qojg9gBRK0oYkWyRI/ss3z6w/JF6SqFQwKVLlxyg8RUPoK5heYR9tw8kcZ9ShvnC9Dlu7m8aNthogGMuKHkP+wRsjpYh7RCAkeerR83qoD5gamn5jQBEb1rO0P8fGmOCSWynT5/G3Nycs6yMj487j0g+n3dnkpBoVMmjwNP4ZN2EWiRAY2UJhMhUgWQuDhmADZ3hc5UBqRtWLY4aI0sA101BieN20vHg4KArIGEteD5mpczFCmDd2MPDww6A6qbHASB6NUJ9Rz2RK6Hv0D5apq0AxVrDu21U/cyCLD6TjGJpaSmR29JqtdCYbbRzQhCjtquG1DtSyA61K65duHDBhcJZbx8t8JVKxYXJ3ShGouswMDDgysizXb582cUYawEN9TjwdyBZKhtAgonqO3mPVU6tcmKBkHoTlW5Vked8afKp7QsVW3qsarVa4rDNfD6PY8eOYdeuXYnyuDpnfI6+037Pz3V+aL1dX1/H9PQ06vW6S8JPpVLIfCyDnq/0YON3OvlStGoGXwwQfzyp6AVBAHwBCD6+Gawp3SoIVGs4gb0abexnvJbPWMMaWn/bQs9Hehy9alVLGgXGxsZQKBTwwgsvoNFooL+/H319fRgbG3OAf3Fx0Z1Lt52NgHZ8fBwjIyN48cUXcfr0aYyOjjo+S+DMstpWyFsgoQYmBf46p5QPvvBCpXVeS0DGz9R4o+usPM8HhLTYCr+nQsO9QG/tzp07N71Hf/fxcuvV1XniT+6TfD6PHTt2oNlsulDKCB1apJKqBguf8nStSpRvT/pkjP1cG40vfX19bdk9XcfG0AZa6fbe3djYcIBDw4symQwajQYWFhacF7RYLKJQKLjDiIvFovPE6lpeTYm8nkaPW6FQwPDwMA4ePJiQddpXhoICSOx17mMWS7lWANMNpPM7G1pp15rN8i/7fCvXgyBwoaJOv0Lg5rlUKiXAqzari9j36U87FnreVlZWEvtP9zE/10gCfbdv7ZVGuVaqH4VhmEhZ4HyQNtXQrs+kXkJvkjVucA/SMF+tVh2/smCvm5yzc9ft8xuly7wFhm5QC8PQEXocx66SRr1eRyqVwvLysrN81ut1d+iaVt2x1jhbpYyEbEPolGjoxrVASD1CGjJjQ/FUKGpirbXOq1BVq5A2bpzBwUEMDQ05AGaZoBXIKpyuxnjK5TLiOE5UweEzmugABivAu4EZBS82JtcquD4wqfRgf+e1am2hJab+Yh2rA6vAlXSD9XynehfDESgcSTMECFRYRkdHvUrHdjcyy507d2JwcDAxVoK8OI5ddRulG3XxKz2zSpcKBI1l1/OxmOSrY1QapmcJ6HgGrSdThTmFg09B5f6gQsb+qGIQBAGOHj2K3bt3u3HoXNnmE/BAp8SrVWIZzjE8PIzp6Wm3/zXHKf5fYmT+MoMUUuhBD7LItj1AfwogBcSfiR3QBgB8fHOfCFx0D/A7jlOLuChf0PHSSMJqZGv/tIb6z9SR/0EeWEp63KhYUZni4b3j4+OYmJhIeNhoyCmVSnjhhRe2pNHX0gjwe3p6sHPnThf6SL5FxWJhYQFLS0sYGRlBJpNxeWpRFLn4eDadR1v5j+/kT1WCdH71OtK3zrNtamFWYMK/Nd9Tn01PnRYh6e3txa5du1zBF50rH79nU6MDAbNeYw0e5IWjo6POmNdEOzSVxU9YucoHXPS9ypsV1PiUSR/9+sKUbFOQ29PTg97pXjSHmpvGzXLC9AKRjgHg0qVLju+wOiPDYBlGRZ2C+8TO9fUAP6vQ5nI55PN5lEol/PzP/7yrbre4uAgAKBaL+PVf/3W88sorePLJJ9u8Esl1o9FVQ2S1Xz55dDUZxb0AbK7mZ+/vNt5u8p6GMs51/EKM1tGOUdGmXHQDzRbQ+663fR4cHHTGhjiOsbq66oAZn0Xe7vMO6ftt9Ap5qYYs2qbPVLlrv9e5CsMwUUnP6kAEelY/1H2lNOeTFW9WewsMbWNTokin01hZWUE2m0UURZiYmHAhcEEQuBwebvRareY2HzeACidbcYiNRKwWABWMDNvhcxTlax6GxpkzxIWNgtj2i99RYVWlht/ZDZzJZDA0NOQUN8uo7IbxCSxe51MyM5mMO+CLFgz3H5uTZNnoRrZ9sDHSVrht1XgNBRrnT5VcloFmOA6ZV4SkUOZaMgySeVaqRFK5oSfg1ltvxalTp1CpVK7az9fTwrCd+3Ds2DFUKhXMz8+jWCy6s3E4D/R68j9DLG1xDa2EpZ+xn81mE2traw5c6drofGgYEudaadOCe9svrbSYSqUS66dFBqIoSpRuz2Qy2LNnjysrei1MvhtgshZ/0m4Yhu4skkuXLmFtbW1TjHr8+zHC/ydE+o/SCHtCBJ8J4M4l/VMAn7nybsTAZ4HY/IsQYQMbaKGFDDLuM4bWtdBy11RRxTrW26WEkW5b8REhhRRaaGEFKziJk9jABuKxdrjI0F1DCIbbh8KOjIwgn887XsSz1SYnJ3H8+HF86EMfwt69e3H+/HlXrW9mZga1Ws2FPm6nICXoYQz83XffjUKhgNXVVczPzztjVhAEzphB45LS0vr6euJ5VBQoI5THkGb53t7e3kQVUP63/eQzSbukJ/ICfq50pHRnvatAx+DAUETeNzo66gqdWO//VoYqNo5dFTyrULFfQdDOQ+zv72/LMUTOAJLNZpHP511Ype8Z/L0bUOgGinxyy/dsq5Qn8kCxOaSKtE1+z/ek02lsbGy44gQslKJFKaIowoEDB/Dyyy87Psr+v1ba17knGBobG8M73/lODAwMOLBfKBRQr9dRLpdRLpfx9re/3Z0VE90SoXmhidZoy3mLtgqDUrmuc3o1QKNGAfss37jsT9/aaxgYr6mjjrARulxmG6mwlV7SDQh1uyeXy2FoaMjtPx6jUCqVErKPxhWVBRYIqTGQMo0GROoUFvxaeeLbNwq0dE/SoKjRFWx6vQIiuxY+3e9qdHAj21tg6AY15m0wfpL5IEHQKYMaBIFTFpvNJvr7+5HNZjcxeFtxiI2EpW5WLc+pJVa5mWht1OpPTJAjMdLKDHTCZCjwLVG3Wq3EQWzdNhU9USzb2024+DaKKrD2Hv2b7+np6XG5BnrQX4xkwrNaUMhQVLhwnjjHPobmY/p2/FQ4SA98JxOTKWhYFa31VLssOBVwznOtVnNC4aabbsKlS5fc+pEBkUHx3Jlf/uVfxk9/+tPXJTR9TZllPp/H4cOHMT4+7sBNo9HA008/nciX0GIapFlafTl/1oqkzFTngRXjVAgokLIhSxboxnHH82pBLi3pqtywUlIcxy60NY5jF66j5bAJ9rsBHEs7Snc+AW7Dqfh9JpPB2NiYAwVra2ttq/kX2pUUW2iPOfp85EAM/m8g/M9XlOE/BRADcRRvmgMeWvvKK6+4QyD37dvn+EImk3HFDGq1mssFY5K49fAtLi5ifnLe9Z1eomq1igMHDrhk/Fqt5oxElUrFHdRXKBRw+PBh9PX14fz581hZWXHzotbM19Os8qIGm/HxcUdrDMOlAnnw4EFsbGxgamoKhULBebXoveTa0oMDdKys7L/SkIbt2LwYXScACd6lVeRIK6RfzZEkQLLl5JUumeStnpf+/n709/c72t9qDrvx6q3mXJuOr7e3t/3ZaIzGTANrBzvAP5PJuPm29+pabvWOrb5TPucbs3ptyUvC50KER5JFJfjMZrN9zATPi2IiO9ePRkiNAACAmZkZBEGAPXv24Ny5c4mS1+ynfdf1tlwuh7vuuguHDx92ckoPiC8UCk7WaA5KE000ZhqISp1CBhbo+sCDb96vRbar0dUHkPR6zoV9vxa0AIDWKy000ECAALlTOZTuLzk+ZhvH5Puu27XshzYaEfv6+rC0tJTQ2dQrw7/V4OmTk3wf9Q0Nx6ehzgcg+b0NxfONBehUH6WMpOfYjlHliX62FYC1e3IrfWu721tg6Aa1VqvlzoDgmSpUHMfGxhzooDJIS7Se2E0AQ+ugZSC6GZkbxPwfbiK1HhCQaNgXLW1qUddnUzG0SiMJleeN0HphK9upwM/lchgcHLwmBqibQzeFVRrt9fybZ88kyibvjIE5IBjuMGz1vtnQAzII6+3SsVkrmD6LjX3mGvGdZCTsbxiGwI/QPsButXOQIr0ky8vLANqfDwwMYGBgAK1Wy1XwCcN2MuTs7KwD3DzQ0td8QuJamwLc/fv348iRI64oxr59+wB08oVIQ2q1ppW0Wq06S+f6+rpLQFZ6U8s2K7XZilekdypv3AOWllSA2NA4gi3Ne1Oap9eHz9SS1ECnEMrhw4cTYNsngCz4UlCuc9ztPhpHGN8/OTnpwGYGGeAPAPxXIHo4QjPXRCqbQhxeCUMLNpe01UTeWq2GU6dO4dKlS1hdXXWC9dKlS+7wXIYBk8cQhLLUMkE6FRfyGFUkqGz/27/9Gw4dOoSDBw867wqV3bW1NXzjG9/A/fff7+6ZnJzE888/j7m5OTdPr7VtdS8Byv79+9uhq/U6FhcXHR03Gg1X9S2bzWJlZcXxKuWtfI+GxFk+wzFrJT+7/jZETtePe4z0Rr6lc05QxOfo9TYvifuSvCqdbp8DRiDkUwSt0qN95mdWUdZ1UF6vin4ul+uE3ozFWJ9eR++dvS7EqVared/vMyz43rlV8z2H80sZDnS8ts1mExlkEmPkupNuNPSpp6fHyQSet7V///6EzKQu8e1vfxu5XM6Fx3LNfXNo5+Naxnb06FHcd999LuJgbW0NTz31lPs7lUphdna2A07JmweaaDaaiKoRgt5OLhwVd9IU3+OT3VczHLGyGt/rU7TtM3VO9DvOOw1m0asRGruv5Idm0ugb6EO21PHI2v7qc7Qfdv4tGPTRGysQskw+dULN/Vb5qbqb3VvaVPbYOdXfOResWmn7rs3OOUGx6kjKG+z1WwGhGwlyrrW9BYa2uXGxKYiKxSLOnj3r0PehQ4fQ29ubOByTpVfJAPP5PKanpwF0FCyfxUO9FWQ4zWYzcQaDXqsMmooPQ+x002vImA3P0N8VzNEbQQaiMayMXWVVJss0dO5s7KvOqU/YdlsDKuYrKytufgEAwwDmgHC0Mxc258rOLRmPAiffprbCnmtKgcj50fAsAoogCNpA6O1JRkMPQxiGWFxcTJQwveeee/D0008nwsHobVldXcXx48ddOAnjkrez9fT0YGhoCDt27ECj0cDly5fxh3/4h46J83wpWqFtmBr7yVCcSqXiDlpVOlark/V20qK6vr7uvCNUUtSzx/sVfKgHSHOIaNGn8sIy3ZznjY2NhCAgvYRhu4AHQ0y6WRW1+QCT3avWEqjCl/lhS0tLzkPb+p9ayP51FqnfT6EZNZ0Vmcq2gi6dg/X1dUxMTGBqagrz8/OuhLUCzdXVVQfKff2hN1bzUHzKgu7phYUFfO9738Pc3ByOHj3q9px6PaampgAAX/rSl3DhwoVESXQ+53rb1UBUHMcYGhrC+9///kRuEL8jD+WzLl++7PYZwT75ioZUan6f9kXXWUE755o0bxUW0gt5ifJNrUSogMnSHj9rtdrnwhEE8x35fB69vb1uba42h7518dG+Txm2ypOGj8dxO/eTB5kTMFj+ZsH+Vs1e20026e9qqVcZ3Gq1HBhSZZrFHjQsF2gDPcphHokxODjoQoDJB48dO4Z8Po/HHnsMfX19LqTO0sn1KJYW3P3cz/2cK/O9vr6OM2fOuPPOWq2WC49i6Wauofufi4B1IOgLEt5zeuqpeNPY61PmrQzW7yk/LM/spujzPr2OOpYWc2miiTjqRILQa+d7nn6mtGvpphvos88Jw9AdqMzz93gUBaOHuMd13/nW3f7nvu/WN667yoVu80k5a4u6WBmgPKYbaN0KHL2ZwOgtMLSNTRe32Wxifn7eCcNsNouRkRGUSiVn6e/p6cHi4qK7hkoxXcH83QILEriNZ7XMURmLJUgqK77y13wW/1aGx+tVwbXWMX0OGy3KNnGWzTK2bsBHLQ/dQAk/y2azKJVKrkqPu2c0QDgTAjuS8fPWikOhpTXyOac+YU+FR5VkhlGpV05BUxiGLpk2QgQ8BQR3J083p1WaAIKlbcfHx3H77bdjYWEBY2NjGBgYwJkzZ5yieOrUKRw+fBilUslrPX2tjcrRrl27MDQ05EqF3nvvvS7s4KWXXsLs7KxTqAhkNDStUqm4A4Dr9TpmZmZcnDZDGLRaFBVyzkUctxOST58+jdnZWReqxdCavXv3Yv/+/Qm6I92SYVMRoQJPhcV6MhgyxbAnpXVe39PTg7GxMbf2dn9a2lHAbK/XfahCzPd5b28vent7XS5VvV5HgAA9QbvP6+vr7tBG5sBQALLv9XodCwsLeOWVV5zHhuNnU4VP/9bxcT7Uo6z386cK7LW1NVQqFZw9exalUgkjIyPOC0djwOLiIur1uvNWdYtX365GGvrwhz+MYrGIz33ucwiCAA888IDzUpAWabWdmppyY+P3qtADSPS70Wggl8slQJXOl4IoHadVMNRI46zdYixQT4QF6RZw06DAfUrlsVQqJSzz9n5dY8uvdb0t+LLNyi/uGXpQgHYIaK1WQz6fdwBCT7TX+3190abXqGzR7320QeXR3qvv1nO4aHnXPNZ0Oo3bb78dPT09jncVi0UHkJaWlvDTn/4U8/PzSKVS+PSnP41isYhHHnnEGZI0uqHbuK7W2J9du3YhjmMsLS1hbm7ORbGcP38eQRBgx44d7swkhrszzN/JbXRy1bToAY1TGvppARHp3RqCyHPs/PrGzPWxn6unReemeb6J1o7O3igUCgk67wb2VU/xAXpfH61Xlfel02mUy+XE2XD0DmletxqtbfSE6hN2T9vrFAhRLirPUNnG7ygjtQ+8zhrKu8kFC8quhT7t/ryR7S0wtI3NKiuzs7OYnJxEf38/isUihoeHAQCrq6tIpVKu9DGVXgpZFW5agpOf+SwS/I7vVmugrfhE5ccqfAqerKuTv/PZtKDbvvqYAsO6qFCy+RRF/U4Vr25NrRTst46nVCphfX0d1WoVgGGUUwDGkJhL7R9d+6rUKdOwoJMCIJfLJWr28zq1IpIJurLmzwSI74mBpzvzQUZFhkhlnIKlUChg3759aDabOHjwIB544AGXj/WNb3wDJ0+eRBzHLgSPa+2jmethNPRw7tixw7n5y+WyU+gmJyfxzDPPJN5lrdL0BNHaBADz8/MuPIqWaCqaFAZUAqhMnjp1ChMTE84LxbldWVnB4uIiTp065UBxqVRyoYTsN/tHoMWYeF27MAxRLBYTCr5aegnA6NVVocNnWCHDzzSRupuiqJ5WvYb/aR1fWFhwQGH919ZRLnfO75n5bzOYOz7nwPTo6Ch27Njhxrrwea8AACAASURBVLG+vp4ApyrUtO/W6mdbq9VCFVU/4Vy5PINkjk+9Xnf5NlNTU44GlNesra1hYmIiUX57q35cS9tK2QnDEEePHnUVn06cOIF8Po/bbrstcQQC+WmtVkschErvonptLJBcX193oF8BsfJ8C3659nwOw0d1LEp7fC7nTM9LsYCeIah6jhGV9r6+vk28w9cv5XXsSzfwZNet61r+d7hqiC20gDGggXYoH5PN6b1QeeEDQhYo6Wc+a7s2n6Jof1dFN5fLJXLLyLNohGBFSAJlft9qtXN2L168iMuXL2NpacnR1i233IL3vve9+PrXv47p6emuivi17Am9plwu4/Lly/ja176GmZkZlMtlHD9+3PHdVCrl+D29ROr5CsMQ8WqMKBchSCc9FEAyt83KTZ0/X3ioXq/5alau8h1aUIRy1J7D1Wq1EF2+kld5hWQIhnzrfj1/X+1au0+DoF2UoKenx0Wx0FNvow8ojxQMaaMR1fIIXzU5Ak+uMT/Tc/10r6pXk7LAAh2lB9WTrNzqNkd2z76R7S0wdIMahV2lUsGhQ4fQ19fn/mat9nPnziGKIlc1iMxUE0J9zFdjz9XSYJG+3RgEQeoN0hh1fQefwT6oUqTWRl5vFX99Fs9M0E2t36tFQ8flE2AqZPlTQaAVZj09PSgWi86q6OZyx5X3TMcIrpTYCoaSuSV8nmU6qnioEkOltFgsdhScZ6/0BZ01ZBUuHoYZIgTeBiAA8DYkqt7xJ09+Xltbc6evFwoFjI6OYv/+/bjzzjsd8AOA973vfThy5AhOnjz5/7H3prGRZWf98O/W4iq7qlwu7+1u9zprMjM96clMJvMSEsI/kIRECFCkSIAUgcQqBfEBvoKQCEJI+QYSfGEJRPxBiRICLyizJCQi6ySzT/f09JJ2b96q7CqX7Vpc974fqn+nfvfxue49vB/6tFq2q+49y3Oe8+zPc3aVwWWft0JsuAdTU1MuN+Ts2bO4fPkyTp06hb/927/FRz7yEczOzmJqagrLy8u7LrgNgn7hEOacELbtdtvFwrNiniaxUmBbW1tDvV5HtVrF4uKii7e2gg3xNJ1Oo1qtun1Sz43Gt/M7vShU73DhGe31emg0Gmg0Gq6wgia8c/6W+WvIguKR7rN+pueBnlwAsepp2jfDT/SMc++77+s6mEdR3/q7sLDg7jxhrpAWSvGdMY7ZhoSeskX9/yPhtUIg1/B88HV/rl10kY0GClEYhlhbW0OtVsPFixfRaDScx1FDiBcWFvYUPG6n6Vrpidi/fz9eeeUVXLlyxcHmlVdewWOPPeYEAeb91Wo1F47Ic6pFZbhOIF4yvdVqoVgsxsbWaxQU9y3t5+ek73qflZ7tdDrt5hJFkQtVZmNOyubmpisFrnjFXBaOaxUKhZ8KPvrfnn8f3NkU9/AVAB8FsstZBIsBsDMYgxVYGVJEpZTzSOIntlnhWufJPVGvvvID+xzOInYxLPeSwrhe+gzAKUvMb+V+qKFxcXERjUYDf/iHf4g//uM/xk/+5E+iWq3i3LlzLjzQrvdmWjqdxkMPPeTOXhiGaDabuHLlioMvaUkQBNja2kIqlXKeDCcfIE63SH+pkFi8VPqodFvhrGGelBGsscCXa0f6x70j3Q7DEJ3Lnb4HayJ+Ruhp1L5vlN7Yc6HNR9+18cwXi8VYKLl6dC0vUMOi4p/SFj6T5K1hn2pYUkWLhhNrHLS8gfvGcejRUkOJLXakP30ws7D9cbR7ytAdar7NZHWlffv2OWZDb8DKyop7j0I0kZjxwD5FSIU5m8OiipB6fGhxajabLg9AXdaqDNkDrUK/HlJbyttnzeScxsfHdxFDe5B9jEvH5UH1ucAtkbWMuFAouIvwlDBEUQRMA6noWp/VawJbJd6PTxGK2v3btwE4pSaPPEooIY98/2ZuBMATu+eZilKx9QVBAOpKllnwbwqsy8vLLuEym83ioYcewtTUFEqlEnq9Hl599VU8//zz+OQnP4lMJoNKpYJ9+/bh1KlTu/DzVpknACdUX7hwAY1GA5VKBRMTE4iiCN///vfx8Y9/3JUHbrfbzupMGFSrVdTr9V2WLRaAAPrhXywoQlgwnOvy5cuo1+suX80SezUU2N8Vpy2T1co6vEBO845I2IMgcF4MYBCSqVZfZTaAP5n8Rhgu161eABUeKBDo3xQkmHNQLBZRLBadUN9qtdBqtdBoNGLztGGzGgoRhiFaUQuIgCEMxeZH2ARRgCD0W3bZssiiiy6GMOTmSs/K5uamK4/PcaMocsK89S7fTvMJ4mwMPez1es7bFob90M52u+2qbdHLX6vVYoKpVlii558Wdi3Dbj3ZGoJF2KlgY+eswokKkrpG0notaKE8RD1CGo7EORWLxRhv0b45voWjvm9D87QfPQe+z9l0vnqmCX96yrkenY9PGEwSyAh/LWutPFcLq9h5plIppO5PAW/3jV+pRwYKEWkIjTvdbhfr6+toNpsol8uOFlIYXVtbc3e2vfTSS2i1Wnj11Vdx8uRJPProo/iZn/kZPP/887EiIkpPkmh6kqBOhZkwDoLAGdyiKHJ0kAYA5hSqEYohcpQ/CC/FESu/qPeXc/dFpyh9pmeetEm9GCrP6B6H4bW76S63EY7H8TUI+kZTLWnNz5MUHB88fbC9nmLERqMD7+XjmeGF5fa86xnlmlXGUqXK1yx90X1j/2EYOiM2FRzlD4r7un/6LDCohkoPlb6bxP9+XAqQtnvK0F1qPAhPPfUUdnZ23L0ZpVIJMzMzOHnypDvIxWLRWWiZCK4hTUkHSv+mdYEWEBUQWSZXS6XaGFolplZoVIZGq5W6oe2h1/d4o/X1CIsKd/q39m0VIX6m/Vm3OwAHY14ex/53jTFz7cvBY7vuXXFepFxfgQlSAdKZNHIjORRGCxjKDyFIX1NuzDItQ05qlmnT0xCGIarVqivzu7a25sIPKYC9+eab6Ha7+I//+A+8973vRTabxaFDh2KWJIWNjrMXE9Xnut0uTp065RQDYAB3eiKIv4zBVliHYYh6vR4j2ErsqRC9/PLLqFQqLo+IxJTlnLXIAfuwsFO8VqVIYctnyIQY9safscpDYhWm8F6pVFAoFDA6Ouqdg7Ui++Dv23fbh2Xuuka934bPaW5KLpfDzMwMut0uGo1GrCKfhZGdaxiG2I62+0pQFL+E0LcWpR174ZN+R6WDuVekiTRgZDIZlMvlWK7TjSiSt9IIC14MzRwONoUzQzavXr3qCktYAwrvMiGusfocvfXAoHKkFstRnOXfKqhYwco+z++CIBjcXyahKxS2aCCjUKXnd2hoyIXZJuGnpf06f5/w56M1lte57z4OBP9vgPQzA4u39sMQT4Yl2xwsO7Y2fsZ1j4yMuHAl9QTpnWP6jp5L51l+O4000s5Lohd6AnBKKeeYyWSwubnpysXXajWMjY3Fcvz47Pr6Ov7mb/4Gn/vc5zA/P493v/vdeOmll7y4eyO0XOFw+fJlzM3N4erVqy6XTUO16GEH4HIQtZR7GIbO80tlD4ATnu1+KPyjKELUjgYREfIvhRSCkYGng7JIr9dzVQa1+QxOThG6dleVhRdpC4tC2O8trHw4bWUguwe6L0pvtdk7xYDBZfdKi1UZV4OD0gE9J/Y8al86Xx/taLVa7vxns9lYvq32YXmH/q5FM2jotzDyjf/jVojuKUN3qNlDEgSBq8+/tLTk4nunp6ddeASJd6VScUSPli21qBDRLSIrwtH6B8RjRClkaPluKyyxWUbGz/SnKlo2zl0Rm0RmbGwslhdhm7V42AO7lwKVpIT5fmduDiuDWeYcI2pTAYLeNQUsSAE9IOpGLra4/+AA7vSAUOhXrxz79Hm0bNN5KJPZ2dlxhLrT6WB9fR1hGGJ+fj4m8C4uLsYqs1GI9MXR+/D1ZhQi4i/xgDk3IyMjmJiYcDH8fJ6KBvGEVuokGHQ6HSwtLeHb3/42Xpt/DTgKIATQBtAD9vX2eQmobRQ4lIlaWFuiDAxC6IaHh1EsFmN5d3yGIVLlcjkWa67CsJ4xywztutkss1XGp0YJbblcDiMjIzFGyrnyzDIhmuXwtW8dW8MIXX9h3Bt0veZjjPp5BhnsYAcI4DxEzPOan593CgPxaGpqCg888ACWl5fxyiuvxGBL/L/Z5qNJ3BvCgHSVXrkwDJ2gSvzf2NjAmTNnYoYB3XcqcMzfYthUEASxKxT0Il+lo7qPFFC3t7eRSqWcxV6Fc23sT4Ulwk7vl2O+GwAntABw++AT9CzdSIKx/V35hm1e+vNzQPpbaQQH4zSde9TpdJywxnWox1jPjc6Dn+udPjQSqteYiiw9qj4PGunF0GNDSGUGdJEhhuTNhC9h2+12sbGx4e5mW15eRqVScYaidDrtDAJhGOKVV17BF77wBXzqU5/C/v37E+n7jTbizKVLl1w+Jst3UxZpt9vO0s+QORoWY4YUDPBU777r9Xrota7NUdMFu3DGxSgreIJoYExMA9gCotwAtwl3zXmxhllVEnZ2dtC61OobMycCBKk43xseHkapVIqdPZ9yo79buYi/X+9dfce+S/y1Bg8tQqSKkI6pXmHrCbUKm/ZFvqy4wHFp+KZxYGhoyIVha78WNqRT3KNcLodcLhe7k8gne/lg9eNs95Shu9Ty+TyOHz+OUqmEYrGIS5cuYWNjwyWJU1seGxtz93YQObV0MEMa9HBH0eBeDzI5W5eeTd9RIUoR1hIPHkDtg2NqLDMQV4T0eRIZjU+3gr5VSKzQdz1Bl++p4GC/Y2N4Ii25ui7fOJbg0T2vjYKSrUBj+2A/PuafNDZhpDHTzE9ZXV3FyMgIxsbGUK/XnaC+sLCAtbW1mKI9NDSEZrPpJY5cm/68UWJkBQ260sfGxlxVOXoiWS2Oz7HqWVLoDPel2+3i8uXLwDrwE42fwP79+/F/m/8XDzUfiiV52/ctHMMwdPMjc1RjAhsFGiq3pVLJnU3rdWH/9GJQ0AUGl1qqYuJre8E6yWKWpEil02kUCoVY2ImGlRJeDEGjIGwZp49RR1GEIQyhg06iQuSD/fVaBhkECNBFF7koh3a7jdXVVURR5AxJ/H/gwAHs378fv/qrv4pMJoO3337b5Yf0ej33+820JAEegPOmka5SqabQSoWdJZDp+Sft5B09pOHqdWHfVGSozGjIJmGo/7lO5iOxb3qe9Dxy31Vp4POsDKVKxPDwsDMa0Prb6/WcgmANVBT2lU5auuJTNJNgvxdNwn8AaaSRWejnV9K673IuD6XQfbuL1IMpdy8faaWeB/2d/XPttMo7gfOlfk5nFlmkrv3LI4+h9wy5fefdeqqIqaeCipQaAzWcaWJiYtddVAyRY59UkjUX6rOf/Sz+4R/+AWtra146diut1WphZWXFKfyNRsOFXqtAzqiA1dVVBEHg8K7X618UrgqnCtlR5tocrzmIAgR9xcgTPaHNhhirMs+wU8V1q/R3z3axhS30KteuWhiK53LSK0TPovJI/XsvI6EPr5OMBL5n+RwvtiWtVqUlFo4ocoUqQjEvnUfBsDRdYUkYW69NEATu/j+eF1/YK9/hXNknDTZcVzabdeGY/39r95ShO9T0EKRSKUxPT+Pxxx/HxMQETpw4gV/4hV/AZz7zGTSbTbTbbSdkMRTDMiGfAKTIrM9oeIUyP6CPjCT2SlBV+VACrdYUa0nQeGlluj7Gl06nY+VY7bhWUUhSfKzCFCOwHqtC0oEH+nkAq6uriUK0VRi0PwrKOi9aS0gcCBN9xhIs/V6Jlk+RpVdIhQ/uDZmvloV+8cUXUa1WEQSB8xr1ej2nDOlab7epJa5cLuPIkSM4evQoPvShD+HEiRO4cOEClpaWsL6+7ixMhEm73Y4ppb5GuLdaLSAELl26hDAMcaJ1AqfWT6HUKXnPiU8x1twN7qMWdVAvUKVSwfT0dEy5pafVhiZlMhnMzs7uspxTGUoSDpOEQh88LCPTfbRnjiXENYxVbxYnHk5OTiKXy7nQHFt8QsdWK971FKKkNfi+i8Hi2jLCMHTeIRoY6vV6jKE++OCDePLJJ1EqlbC8vIxer19p7urVqzeF20mKENfMe1YOHTqEF1980eV/Umlg3iT/qyDCO5+IL8R99Ry3Wi1nFKPQa/dK6SUvKF5fX4/dAaReP3txojVUMVSF91EFQeDuIVPaRroWRYNKlEn464OppYOWxlnB0p7ZXT8/FiC9ncbQ5SGk19NA71rp8+K1O3Au9LBz3w7CMyGid0Sxip6K92psJJ/U/9HLg1AtHO+X8G5jUEp/aGgIqe+lkEMOaaTRQgtddBEgcEpT9PiAVhP29K7Qq6I5IawmawvJMJk/DEMUi0WXoxlF/dBMLRpzJxrxkvyF9JHhnKlUCtVqFZlMBm+88Ub87j5cC4dDiKg7KEikIeZO0rz2k3BOUqZjuIEIuGab1UJEIULsjO3EkvzVW9T5UQet8RZ6tR7Sa2lkkEEWWWSOZhx9zOVyLgwb2Fvpsc3KR/ZzlbGu1wgH7rX1MvN3HUMNJ9ZrZvm90hQdk+dBcYkwJL3i96RRKidaeYm8XscijeMakvb7TuHyrbZ7ytBtNp8ikMlkXKhHuVx2wtcv//Iv40tf+hK2t7edAjM6OgoAroqPxuGyfzYiknXPU5mxVgO2oaEhFAoFV/1FBXNlChzjemvVMAffoacFQYkM4FdgfM0nuPuEvxvpg/MBEKucpZ8nzc3CUeGlFWyAuHKg87WfWesN4UlhRPeHjJPPqPVX19PtdrG0tITFxUVn7b3//vvRarWwurqKZrMZU9hut6lyVi6X8dGPfhSHDx/G/fffj3e/+90YHR1FLpfDyy+/HLtXg+tmnH8SHqjSuNnbxEhnBEPrQwOXfnu395Pz0r/1cxJ7xXP+TYY4OzuLiYkJtw9J7nyeuXK57MpTJwlzKkjq+zrfvYRBvq+WPx/cUqn+vTjlctl5KdiIq2r8mJqawtDQEM6ePevyt3ROPhpkz+Ottl04GMGF2LTbbVy4cMHtCa3fzBPqdDrY2tpyyuv1EoWTWhI9YV+dTgdf+cpXEASBu8+FRRXU80DBUc/1xsZGDP56KTXXz/e0cqHSU6URzPms1Wqxy7oVt7gWhrSosQoYXJpIjwbXrwqUxRn254NTkkCj4/roqf5+MzRdPSX0evOumxAhWmda/TLJbwLRIwPD0V5zj9Hm70bAU7Kea/o+4cbQ0vzxa6XQgxRyvRxS3QFPiKIIYRS6v6l8VqtVtFotFAoFV5AAANbW1lyOEq3l3AsWb2GuDoViCpzX8zonNQtzhYHtLwz7CfQs+XzhwgUXQqk03YU+0fsTDBShG53Tnp9nB3ONfZ+OEG73y2OnkEL62r8IETrooIUWwlrY9yoi0//2SBrpzOA+QCqdSQYq/u2Dm32GPy0dV1qaZDTlT3qL1euofShO6xm0sgXfUZrPz9joaeb+MQqJcgVpA71wKv+oQq/j28vV7fhJ9MDt6f+iQnRPGboLLZfLYWJiwhExJloDwMc+9jEnJJbLZQwNDTmBVUNxrMAMDIRpEkWtfqUCnwpfPFC0lKl7md4FtUgC/tvONbxALXw6L7WIjYyMuNADvu8T5KwQaAVD23zP+hRHS5yiKEoUoHyETRmaesOAvoBAgqHroBJj16ZhjiQYHMcKQdqY46Vx7IT/oUOHnNCzubmJH/zgB06R1hh3hpolhR3eKvFJp9Pu0lfClJ4IhmNR8NKxmPO0lxAbRRE2w/55ySMPhHACYRAErryuZQbXW4s9T7QgT0xMYP/+/c4wwTlzXzQHjOcpl8vhyJEjzitkjRB7Mcck5W0vPNYQHm3aZzabxdTUFJaWlmJesygaVJujd3doaAiVSgX33Xcfzpw54y4mtuEo9mzkghw6USd2V5BPMPbhs68/90wwsFT+6Ec/wuLiIh599FEcO3YMKysrzqjEu1eYwM2wsTvder0e6vW6m2+hUMDk5CTGxsYcXSuVSjErOufPBHmujwICQ570LhEW6fDReBoONjc3Ua1W0Wg0Ypfh8h0bmmIVEnqWNJTPKmAcm/uhoXu79goDL73FVZ8CojRdv0vykifhjXqstOhQ9P9ESO2kBhevvh5hBzvInsjuOn9BECD4boAIUczLkEKqn5+C3TjK0J6trS3nlWOOoOYCkQcrz1tbW8P6+rrDk6GhIReSRfozPj6OarWKdrvtFG7yZQA4fPgwVlZWEq3/9qwlnb3rNeVX5FO8X6parbq73DREms/djqHEx4utXBBTXNWwNrKDdC6NIBsgnUsjSkXuMuQAAbKpgYyTzWaRGx4UKUilUs7zaZvigG9+SUp2Eo5b/uQ7DwBi4ZbWoAEgJoNZGmDh4yu0oEoKaadG/FgjoZb455xp3PeFLip9UtrD4kI2L0vhFASD9Iz/DaXonjJ0Fxo9MWQoJ0+exPLyMo4cOYJCoYBnnnkGQF8wqdVqWF5ejhVMiB12UXBIbPVA0CKlApw9KMAgZ6bdbjvhiKEV1t1KS5iWdNTa9j5CYUO+aHFRVyrgD5FIij/Vd/TdJIsCD7E2fZZ5FfSQKfGnwkEmT5cwLV8a220JFmGm4VhWQCQcbDwtYU9GTlhvb28774klGul0Gvfdd59LbmT+B587ePCgK73N8sl3krjQI/TYY4+hWCw6IS2KIgwPD+P+++931nGbn8N7guidU9wmzrbQQj7Kx8YkjJOUZG0+huVTlrLZLEqlEqanp92FrBoeSvxl6JniWLlcxoEDBxIZaZJin6QM6LMW98kUgUGJdZ+SlUqlsG/fPiwsLLiwGuZQqIVfQ0LGx8dx+PBhp2za8D7fuhAA3bC7K1zuenuTpAza1uv18Nxzz+GZZ55xniAKZd/61rewsrKCjY0NrK6uOoXiTjNPnlXCfnR0FOPj4ygWi+470i0Kg+r1tOvk+eSZp8Kj54D/SSNouVVBVPmD4opGDVjrLwV5PqshcZynFZaUL+wFW59Ao+uxVnGfN8saNnRO+jcFWgCx0te6pjAMsfPOHfSiHoI3AwxhCAGCWDXQ9NPpmCIURRFYECfpXLGiIOlyEAROKda5a/5FFPWLa2jYarVaxdzcHAqFAqanp/Gud70LIyMjqFarOH/+vDMiKg+fmZlBuVx2Id7W+HMjQvaNNip4NJZWKhVkMhnnQaBxUPPhrIEmSbmxn/laEn+3a7Jr1rNELyx55fDwsFOcVTlxoY+Ghlt5wypmSXP2zV1pt903HzyIa8QxhgvTiG0NVkmw1KgGHZt42Ol0duGmGjgoH2rOmI2IUQWJSrHKNvyOeMP10LOo54s5lLVazbuuH4dydE8ZusONRLtYLGJychKdTgdvvfWWs5I//vjjAAbeF5awVNe3uju1JKUiuB4ym8wOIKaB68GnUMRKTeq+1OoxnKN1yfuYo0XcTCaz62I/ZW7ah67nenC93vc+4dOOQ8JIty/d0vbWZrrOGaKTzWaxvr7ulCPfZZ2MrbWeM65d95d7TEuiuqvJdNUCrHHu+Xwe09PTLpGa+MOwm7GxMXenVKPR2MWsbrdlMhk89thj7i6YpaUld8fH22+/jVKphDAM3X1IaqFqtVqo1Wq7LMExpilbrZ8779y1MIwk5qjv+b7j97lcDuVy2Vmt1FqooZQsRDE0NOSESgo0ZAok/sQHzTFKUvb1c2UsqtCrMqSCZFIrlUqYn59HtVp161NcJo4662nQT+SenZ11la18TfcojzyiIEInurGCClao3at/rvXy5cuuYhoFlmw2i1qthmq16kpZq3BwM82HHz7lmfOZn5/H1NQURkZGAAy8MfTcsA8NYVPhR73BVIYoQOj9URQw+R2jCvi+Da+hsq7loDn/MAxjipAKObTY2kIb2i+NQ1ZB8e2rwszSXCsA+gREX7N901oNDPL/9BzRqOWE4nf2sJPdGYRBXesuDAZefp0zebcPRylU02hFQ5Xed6P0P4oGHgr10m5sbODq1auxO/4I13w+H+ND5D0zMzM4evSoo5tJMNrrs72anj3eTVcqlTA2NuZoPAV0VivlufMJ3Tc7F59SbJVS0lb7nPIFFdhp3GRRAs1d1rPmi3KxMoqdUxLM9V3Fcd87qnhYWKicpjjB8DkNufX165sf6Y2GGutFzKrUaKEsH48Cdnu8LD9X2tFut50CpXdqcb3EuenpaUfTffz8bitE95ShO9yiKEKpVHIXRp4/f94JrNVqFYuLi5ibm3PP6sHWktjKRIkE1uWpGrl+x8RcVXQYwsTDxVLTHJuHgFWG2De1emCQWKdEgtZzhgFoiJyuAxgcIA3nUCVGYbiXwGcZgrXK6PyUSEXRoPoXixDQA8R5aew2+1IrExUP3sKtAgkZBJnYXs0SHV6CqRWQuAZ+n8/nkcvlMD097YQc3gPBC01pqWu1WqjX6y78QvfN/rzZlkqlMDc3h0wm46oQMdF2fHwczWbTezdPGPbzKVZWVrwKmptPCETBQDhRJbWFFoYx7J63wpclmj4Gxr0slUoYHx93JYVTqX51Rwq8vAiUnzPEJZ1OY25uLsZIiXs8IxSWrEKkeK14rPNT2CjTtrHtvpbJZDA9Pe3Otz3jnGMY9ktEb2xsoNfrYXZ2NhZKZc+gj2nn0A+ZAwblsX3wT+rD9qfvr66u4uzZszh06JATNKMoQj6fR61Ww8bGRuwS5TvZLC3JZrOYn5/H9PS0mx+NHzRiAIPQEw2T4vxIN4jP/J40XwUnKlo0TGneoAqFVBDp+VMFgfDSS7ZpAGMoq61kpjRLow44Px++E0b6u90PwsEKt/zdB399jv9pCALixiqdEwVgCulaRdHmd/rmrGGElp9QIaJQyb1R5Yf4Qhps8w57vR4ajQYuXLiAfD7vLjZdX193gnA6nXYh0kNDQ5iZmcETTzyB1157zY19p5rieirVz4ubmJjA2NgYpqam3JUfnI9eQGzP3s0oPnt9p/LNjTzP/aPhhHxS869smDhxxaeQtY0kRwAAIABJREFUKFzsd6p8JxlULC7Z9yz/teugfAbEZS7yAPVm0Qhqaa4aXDTklgVUrMxo16N4pnBI2nf7jMV5ylqFQiEWoZRK9Qt8zc/P4+DBgzh//jzW19dj8PHt991o95ShO9x4GKjUsIQwGeKFCxewtbXlkin1HhQqNirA0RJlhQoedA1fAxCzSqulkNZruiNZ4YPjaEgTG5myxp+ToZAx8YZiVjtiKFqS5c9afNisQKsE3zLRpIPoY9IqSHP+dP+qMqNCho+5E3Ya3tLpdByxomCi+QO2D10DP2coDD2HupckflEUodlsurAM3i9RrVadJZ83VxeLRUewqGApUbtdRUgJUq/XQ61Ww7lz5wAAy8vLGBkZcZ4zhRfPxNWrV3dVktM966KLbJTtX7iXSqFYLDrBorHTv9QynUrvYi5WeNe/9TxRcaV3jRemUthjwjD3k30x547nhp5PPXead+dTxPdq6vVJekdxPam/dDrtFDfFRSsE6Dllf/v378fly5d3VYryNfaXC/o5U1SKslHcAmuVnOspc3omvv3tb2N8fBxR1L/UtFwuIwgCp8DdKaa4l0CeTqdRqVSwf/9+RFHfyjkzM4PR0VHUajWnDPHMNZtNR1OAgWBA5cYalHg+9IyowKIeYUvnVBnSsF0ArmIcvcW8PFZ5Ascnr1A4WC+TVcgUT69nuPIp1xbOSZ9zbA194r7o+DpXwpiKEAV5wsl3xpQP+gxZfI5eONJrNRxGUd/YRlhREbU0Nwz7pasvXrzovHbEDRpnzp07h263i7GxMWSzWUxPT2NychLLy8vOop8E9+udC99eUAifmJjAxMQEJicnMTMzE+P7W1tbqNVqTri+lfO3lxLMz62s45MTNKeG50PTExSffYacIBh4AS08koRu33rt3urZuJk+9HOeVcvfuOeKnxp2a2l8EATOi0nlh7IL5UGlBToPyoOkS2rQJI1SPCAtIg3jOWKfevlwPp93ESO8juPIkSMYHR3FgQMH3JUcP+52Txm6Q00JLC2Em5ubGB8fd5f2RVHkLCsjIyOYmZmJeR1obaTljojYarVi7ng+T+RUq6Jq5xRqFOmJkEosyGysS9S6K2llYUUlWin4HRUM303OvqYHzzIln2BrmbAKolYZsuFobLSQ6tqsUGsVGT6Ty+Vigg+9MsqMrSuf+2jd8RZnlLjo94Rrt9t1Xqz9+/cjm81iZGQEW1tbTpmiByMIBjlIlqDadrPWFj5HQYMVrrjWkydP4hd/8RedlU4F4l6vh6tXr+5p2cwii+6gjiqO5I+g1+thOVxGMewreikMYE0GkbQ2ZQwAXBGN0dFRTE1NoVgsolQqxZQlLUxSKBQcHOlVZClinzAG7LY8K5z5+15CJOetjIZhH3vtCX+ygAY/o0Coc+Xv2WzWFSdIpVKoVCqo1WqJBS58eBQEAfJBHhEidNHPJfKtV+eYtAbOe2dnB2+99RZ+6qd+Cul0GhsbGy5kiGu6ESUzqV1PiOf3uVwO73vf+xCGIVZXV5FOp3H8+HEncPFyYwtnu1berUWFmudBhX2eWb2ckDSVirkWU1FeoInO3W7XhTMRRvQUspEnkLaQL6iyoedG58vGuSUlRfsUjiR6o7zIKk/ECZ2fpdlBMPAeqoLPfVGvvw1FUxrB5/U823mqJ8ha11kOm/uZRH+73a5TLMgf8vk89u3b5/bi7NmzWFtbc9U5f+VXfgVf+tKXcPbsWZdTYnnVzdBx3Y8gCDA6Oorp6WmMjY1h3759zpi1vb2N9fV1VKtVl+9px7qVc3irvEeNAaRhrD7JgjbqBVRln+u2ZaKT5uRTZnwKWtLzvjXupSBx7jSs6hnwjQ3EvUf6nzBS7xHHYv6dGgdsiW0aETQ/jJ9rIQ020h/1HHIO7XY7ZlDkeRsZGcHRo0dx8OBBpNNpHDt2DOfPn991ibaF0a3S/b3aPWXoDjXdnK2tLaytrWFtbQ1Hjx7F008/je985ztoNpvY2tpyAmylUgEAJ4wVCgUsLi6iUChg37596HQ6WFlZcYIwmRkRjESbDECZgFoc1TMCIKbAqNbPQ8gQGuY+DQ8PO49TFEXO7axEh2XCGaMLxMN9VCjWMDBtlsAoE7TP6aHnYdWQtySiROJJYROIX+imSqedIy8gbDQarpoVL1BUq6smalI4YagG1xNFg9vFlSlzbMY5a3hQoVDA3NwcDhw4gHw+70o7nzp1yim+DOVjdUJ6aQijJCHQKpvXa1RqTp486frm5WxTU1NOMCwWiy5G+fLly1hcXNw1jp1TFlkgAlK9FHLVPkMeCUdi+6EGAVuMwSco8p6aUqmEcrmMSqWC+fn5mNBHAt/pdFzCLUMq2ZfeM6M4pSEJmudnibhl5MQRZXQKC/Uq23w0PQeK41REyQT1bFAQZ38A3P055XIZALC0tISFhQWsrq7uEuh8jbgbBAGGU8NIRX38bqOPkznEjSNR1K/2BfQvXu1PfvAdz/7CwgJOnjyJqakpV+zlHe94R8xLste8rteup5Dm83n82q/9GvL5PK5everO7csvv4yZmRnUajVcuXLFeS/pnVVrqsJoc3PT5fRRENvZ2XH3iqgwzznwUmfNUVR8UyVC8wCIrzofNdSkUv2iEAw3pFVdoxQ0IoC4TVrGBOxCoYDx8fFdMCVdZighw2G4Lktn1IAYhqGjp9xrpcvsl/QagFMiNbyPtJ5eOdJFetiVdmjZbq7VessINxoB6flRnFFDhi0eY3Fve3sb3/3ud/H+978fo6OjKJfLzuqez+fx5JNPotls4utf/zra7Tb27duHT3ziEwjDEH//93+Pq1evDspa38IZULqRy+Vw9OhRdyfhxsYGarUaut0url69ioWFBbc/mgNl+1JYWNpnf/fNWXHax4NVcaU3iN4zWwZe5SStyqrGA1Wo7VqoIFhjq6W9xBcAMd7vo1FqyLH98XvSbz2/eqZVeaEcQdgpnwcGRYJYSZj9Dw8Pe3PGGX7PMemFLxQK7hktn8194LOkgUC8wt3i4iImJiaQSqUwOTnZ5xXDwzh69CieeOIJ/PRP/zR6vR7W19d3nS2fXHI3FKJ7ytAdanoINzY2sLS0hAcffBBbW1tot9s4cOAATp486YgvrXFMclYBjopFu9121TV4iHU8Pg/EK/no32QeKvhbTxP7ISEmU6Emz3FpZaDipESL1jZatXjok6woVoCzBEGFCUt8uGZlAhQsfBY9O77tU92/+pwm0asVanh4OOYhokuXIYOqlLIvG6qmcFehjELK+Pg46vW6E4BZAnR2dharq6tOWeKeMCxEEx9J3Gxojq4xSRi8XmNumd5PQ0WZMfOMFaZStrS0tGvM6xE0a9FSPLAWSnpQcrlcjBlQcRwdHcXIyAiKxaK7dVyFPvXGsj/FS8V5O3c1PijeWjz2hSYoc/R9pwKVetz2aioM8xza/D5lZhQ89EqAIAicl+h6oTE6f+J7Dv196KADe+UIlaAd7CCDDALsVgQ3NzexsLDgrKRclw0lvtVmYaj9BUG/sAS93LpvUdT38PNyzGKxiHq9HrvfycfAe72eqwrHcOUgCJwFlrhIQYjGKS1zzX3S9asQo/jMQjEsQU6jFt+ll1Qvj6UC4MsPUtgweoFXRNhcKFYkZV4awzeVbrERz7e2tlxhGzUqcT5q/eYcVDHkO5yD4jbxVz36Krjq+lTAVc8/P9c9smfT0lqrNCiuBUGAhYUF99zq6ipWV1dRKBQwOjqK4eFhlEolfOhDH8KFCxdw5coVXLlyBVNTU/jkJz+Jv/u7v8Py8vKe5/JGGhV/5qhtbGyg0Wig2Wyi1WphbW3N7Q3Xf728pTstqHKeSuMpP1HJVr7K563SYq8R0X3SufM/BfokGYa5Y1QgRkZGnCHNpzgB/tBUOw/FOa1qyedJv63clwQvVXoAxAzaCi/mKmmBDF4LQ4OU8mTOsdPpOAOsT3FhSkEmk0G5XHYXnNMTSmM/z76ede3H7tWdbPeUobvQ2u02Ll26hGazibW1NVcCmYmRAJxmTM2dN5KTOI+Pj2NnZwfnzp1zxIeKhrWQA3FhRIUrHgQtzgDEL/ckYyPjBOCIjPU8acKv9VQpg+KcfE0FND2I1rOlB8sSfA2TIUNU4mWbPVQqtKmlke9aJsc+rNCnShMZoRIeFY6UgVghnu/RQlcul3H+/HmndBWLReTzeUxOTjrLyfDwMIIgiJVLJ3wpNOrN5/ZC37326HpNhX+Fm+Yv6MVxLBHsYw62KU7ofBWvrLeTwn6pVMLIyMCLxPCJUqnkiDmVfFqVVfjTfq1yYhmPMjf+tEKQXSfhRa/i2toarly54sIfmWCq+UpRFDlBxHqI9adtOl/iJs95kkI+PDzscLrX6yGXyzlhyJZh9e2ZVQSBa8UV4N/vjLAgC9sw7IdhHjx40OW/0Vrt8yzfTPMpQjpvGh74ORVCKvrb29sIgsDhGoV+9QZYowgwuFuIYSO5XM67HxQQ+N96q9UTSc+rKhIs4EOPFUtC834c9kcaAgxyRK2yQrqu+0LBRucE9KMimMuoZc+DIECz2XTKI0O/iHv0ypKvqDCp3luOZS3k1vinPEujHggvteRb4Vj5TRQNogX4PRC/cNzuHfn1XgYLPr++vu7Wvrq6ina7jenpaeeVLpfLSKcHBVuWl5exvb0NADhx4gT+67/+K4a31zOS2KZ0rtVqOb6hxX1U0bfJ+gqTvdZ6o81H01Sop3FLCwxoASSfodbXl/0saQ22eAj3mwYG5uaRT29sbLhIEXrZrEyk50VxR+dAfKOMZpUjjSThc5b28nv1lHIeFp8Vdxk5Qy/Qzs4Oms2mkyWiKIoZE+j91WIsug6eQXq5eT5nZ2dRqVQQBAHOnTuHw4cPA0CML98txcfX7ilDd6GFYYjl5WWcOXMmVtVkbGzMVf3i4VZlRO+a0ZjWbreLzc1NxzySLDNEHJtcSmbGA6OKCA8FrcVkPtaFCsTjzLWwggqTVsHR9/k7K21ZpsvG/jVXQwmKMiq7dt/hSbLMqdJlhV+fV0pDoGit1rh/rov7Z8fjXDguXc2p1KDEd6FQwP79+5FKpVx+GUO8hoeHXSw3CRGZO0PhtLTv0NAQyuUyJicnsbGxgWq16i1beT1Y+VqSRYveMbXqBkH/Ytjt7e3E/m+Ukfve51orlYpTFnk+mPdDRYjhFJZZ8Izo/qtBgec0iYlaZuNTzHu9HlZWVnD69GlX8lzxbGFhAalUP8H0wIEDOHbsWEwpSlJkryd0qbValVcqkGRW/LtQKDhcp+d6aWkJ9XodrVZrV/iPXbdl7jeKU9ZgwbmzCEAYhrhy5YpXybzVlgS7KIpcMQ0K4VRGec4oFKRSqV0XCavQpbBSQYi0nv1ScGJpXSoFxEk13JA+UiDTkBkqWRQeqSzV63WXXwEM6DkrQXIu6l3i2MSNIAhinnD1eANAo9FwsLAGK9JIlv2fmZlBPp93yhDH0/wl68GxBirNqyLfI29SbxXPMQ2DPAvEe5s/Yo0ZXLs93zyX6g2iJ1wjC/gO+1Ale3t721Xm7HQ6qNfrGBkZwfnz5zE0NITl5WW89tpr+KVf+iWMjY1hcXERAPDwww/jq1/96g3jelKLosgVQGKopRpO6TVUfnmn2l50X2kAFQx6hLiPVo5R+UYNtEqLrYKU1JLkl83NTdRqtVi1QD5D2rC5uenCqlkUw/IOCwf7ueI0z5KGwtkQN8oS2o89O1aZV2VLeSLPCsNMaShnoQ8ayqkwWQOVwpq0jfdWHTx4EFtbWxgdHXV9cQ1UxpQn2T1IguHttnvK0B1qVjDodrt47bXXcPToUceAxsfHsbi4uOuwMneEN1WTmJIId7tdNBoNl8CthNc3Dx4im7PDz6yyQotPEASOCasgy0NERFWBngfAulw5Fx9z0fLVfIfhC7Rw0noaRVGsTHMq1b8Hhne88F3fPui4vmatKWpttEyX1iB+TguJu/U8iodtUWFJsjrS8s6xGT7CflX4olB2//33o1wuu5yvkZERVy2GFr2NjQ1UKhUnVExMTOCZZ57B4uIivv/9799QpbAbaWqRY+PeUNkYHR11+9loNGKlkJOUVos/lhFZwYLC39jYGGZnZzEyMuL2IggCFxvNs8PiAhTO1FKm+QbAwCpI4TQpH802Zc6qEDSbTZw+fXrXPUtsxB/CaXJyElNTUzGvlVXIgN1x9iqAqkdIvcG6Xt1TWlZzuRxKpVIMbul02ilEaghIMoAkMXwfvPR7/s0iIfSi8IJhC9dbUYo4P/tTx9/Y2EA+n3d4RAGHe6Gx8ltbWwDiFl2f4qqf0XDBkDnSABrClHaoAsT/qghRWdELJrn/pVLJ0dLNzc1Y36T5VF5UkbAWdH7OuagxizDkd/ac608Ki8yNUcFNL3VUg6APP8i3+C4/U0u+Knd8L5fL7QoppjfW4pOeJ6UN+lM9gRyPnjHFiSSBbmVlBZVKxa2Z+R3NZhNXrlzBuXPn8KMf/QiTk5P42Z/9WRw8eBDLy8tIp9MYHR1FtVq9LcMAac7a2tquKAk1otj1Wjjo3iQ13/c+GqKREiMjI8jn8w6OyldVxlEjMGmiGuXY943QJjUW2XNIT7kv0oPPaVgm+6FhxaY77AUj9axQ8Sd8kgxcfA+I53MqbuvfGhpulSXSAYYDMnSS3nCedzXI+OCYSvXD+A8dOoQnnngCm5ubeOmllxzdmZmZ2bWHvnY7eH69dk8ZugPNJ8QxxEM9OhQ0yBD4Nw8bQ+qCIEC1WgXQF3hpqalWq+h0Ok4RsBWt1ErFpqFmapXS5zX0QBP3SOD1Hc5XLRWqEPngYWGlygsPdKfTwerqqiMyui4V4IMgcKWZWTlNw3zsYbkRRYjzUGujKqskROyLsCe8mBdGYYBMmgRQ86jYbHiZWl0ZNkVry+joKKKoX/qYY2YyGZe4PDExgbNnzwKAs94wBDOKIgwPD2NiYgLFYhFf/OIXvULazTYSdg0JoTDDEIaJiQlcunTJxaHf7JhJewoMvEG8K2hsbMyVitYwTlqkhoeHXYI4GZWWLQYGZXNVSdKQILXE+ZT8vQT0KIqwvr6+6xJcn8JHRrO9vR3LWQD8YSSWBiieEh42tMKGlxAOKkgwZI9We+avkSFaBqjM2J7zvfbS12ggyOfzTvBmLt318pdupu1lvFlZWUEU9Q0bhUIhFmpG4YxhRKRRNFSQHpB+2PkqTea9dKoIWNpD4V3LbmsYWjrdzyvkJbuKE4Rds9mMRQDQ2EIc45x9+8m/NZJBPSIci7zOrpMw1abGLJ5XKj82VM7OKYoGoaNWkNZ+ecY1pI+eMeIvYcizzrWRnukeKt/kmuy6uF8+S7mlEVHULxtPSzvD06MoQqPRQK1Wc6F0p0+fxic+8QlEUeTCkuhZu11laGdncHlw0nnW568nrPro1I020nYashilonBXJWFnZ8edO9J3pWPq/be4YumUnbt6Uak0qkfI0ly7/l6v52g5cwSJTxZmFl6q9Fg5y0awaJQO56VeU9u/5VmK21bOIa/n/FdWVlyUB8ewNNmOk0r1Q3enp6dRLpcxMTGBN998E2+88Qa63S6eeuophGE/HUA9ureL2zfT7ilDd7jpJtK6w4ovAFz+hoZ/hWGI8fFxNBr9e1QYQhUEgSMGLJVar9extbXlYq8p+CkTsoqKjxkRyaxbWQ8UCykoYpNp0eplLQv6bBIhJIPRii500WuVEgtP9s/LIbXwhN0D+5kedM5ZQ6GUSOlnbEp0NKZVCbISYSZFayU5q1ha71u73UYQBC4mnGNkMhl0Oh0899xzePrpp3H8+HFkMhlXlerQoUN46aWX3Byq1SoOHTrkbkyn4kRhQ0MgbqUFQYCv576O/5P5P9hObSO7k3XEknfcBEGAw4cP44c//KG7uVz3kf3stWdsqghQ2GEC5tjYmIvNJoyV6RBf1equXlMKmxSW+FPPgk/g0nn7mk+o0HLHti+fMkUGz3nyebUsKjNTuPrCRtSYoQKjroHCNjAow09axTNPLwnPLBUtXavOy6cEJDXdN1YfCsMQ5XIZ5XIZhULBKax3gkkm4V0Q9PM5eNlxpVJx3gzmC/HKBHo/iT8AHB1TGqww4rgsYqCXppImEjc1L8EK2eyP4Y1U0jS3g4ol6ZSGHarCRKGYP0nrrIBGnkVFQxUD5jaq11vXQh5CT5+eLzbrEdKx1UpOJdAqZOxTk8zVi20NX6S9HJtw0TG4DlWWlH5TcVJhnDDx4Rx/hmGICxcu4PDhw065bjabzhi2tbXlDCilUskJirp/d6rtVRTByg430/Y683aP1StNms19p0yieE2Pgyo8hJF6Jy1N99Ffuz6loz4Z40bhoGeF/VjFRfv1jaXwsrirnlA+T4WcMLV7oH+rUueTidRgQsWUhhjrAfPNlXtKryMN7u94xzvw/PPPO3quYeM+A9LdbveUobvUeFjIJBuNxi5rl1aFiqIIhULBeYTYaCUJwzB29wT71XAXVS6ShH79jkzFhsxwTmoh0wOqzIRzp9XYJzDad+k5UILAg5JkTbPESgUL9sXv9KcdX8dSIqnEQImWjq3hRTp/DUXiTyDuKmdVKCqtjMVlPxRCSWhIQLkvFAKXlpZQq9Xw4IMPunA4WlNSqX6hgsXFRWxvb+MDH/gASqUSOp0OyuUyFhYW9rzM7EYJTxRFQBZ4LvUcikExBld6ELRMrd50r4zGKtD8Xf8mbInfFPp4Wap6oyhQaoiMMgvtyypEaglWTyO/t/PkWlRA0+ZjfD7hzsKefabT/QTqvd5LwnXL/PQzG5qq4zOnwyayA30hcXJyEu122+3B8PAw1tbW3AWUFtYaT369XDWeX8Iqn89jbm7OreOBBx7AyMgIZmdnnXHobjPKTqeDV199FR/84AddeVrCnkKZ0hKlH0A8tzFJKFY6rUIfhXl6eukJYP++SmqaW0maTO9PJtO/JoGVofSsEidoRCBf0O8Un3hOVDHTOYyOjjpco6CjF0BnMhmUSqXYvUfAQHjyVZuzgiPH49lTGq1KnRoKrWHQFlGwe6Llu1XYJHy4D1w3vXtabcsqaVynro0RH9ls1lV0I45Xq1UXlnT//fe7/c3lcg6mdn9upe2ltO31zJ1qxJd8Pu/OmtIfSwMVr2ko0Pxs61EhLqjx1GcEsXKGPkuZzWeM0nX4Ptc+kp7VfdTn9MzzeZ478jTbD8OYVSZTg65dv45p+Qr3BkDMgE965PMI6XtUhNLpNObn5938l5aWkMvlsH//fleSu16vY319PZFm3i6e79XuKUN3oCVp8qyyYXMrgMG9E/l8HltbW856rcxIE7fJOPQiLGAgPNjQHlV2rKDF5ykYcwxlfOrxsN6hIAicZUrXrNayJNio5UatDxor6iNSvj6S4K4EzGcNURe3WshtMrBlZipQWwJm569WFq3OE4ZhrKIT4c/vMpkMtre3XX1/CgfPPPOMY5aNRgP33Xef6+eZZ57BF77wBacwNBoNvPzyy6hUKvjYxz6Gffv2od1u4/Of//wuJn0rrdPpACHwM72fiX3e7XaxsrLi7vJYX193ghCtnroXSU0FG4Yk8T89QiwJzLAXDTFSCy29MWQoyjzoieOYuic8TzfCwCzT9OEhAGfpJByoIOtdU5wnwystDquQ6PtMDRV8lzBROsBzoOMqXVHFkH0VCgWUSiWH6xQMNjY23P0jFGhoQez1+qVZ6/V6LFTSNjVKpFIpjI+PY3R0FKlUv0T08ePHkUql3F1W6+vruxS6W22W5ui+v/766zhx4gQOHTqExcXFWEgVYUjFjB5hFaT3Wi/H5tnXe8h2dnacsKtFKwDEeEUmk3H5Sjpv4j/3RI0GKsRQcOL5oeDC9TFEUfkCG4UiADHaybxWDakmn6Ogz+RpYJCrBsAJwYr3Sm+16IE9C3xOLebEUd0LvdSWXmZ9RsfmeBqWrsYTni97DYXtxypENgKjVqthYmLCzX9jYwNXr17F2tqaU64ef/xxxxPCMMTFixexubkZ6/dOnAdtys90XfzOt9br8W/b1HtQLBYdrfLRX1VqVUjXvDnKMupltXPXpmP4+KJ+rxEeN8M/fYp/Uh92joSP0m0grsRbWUzvHVR55Eb4Ln9XHkFZVIsb6H/f3Aknpgs0m01Uq1V3rcXzzz+PMAxx3333uaigF1980eWF/rjbPWXoLrYoinDp0iUcO3YM6fSg1DARbWVlxSUIdzodVwGIYUWFQsEdeE2s3d7edkTRhvMA/lA1KwjpvRa+cAjNWaFr0xI87VutZdaTxMb3rRVYLS42/MVHLMjAlBmqUKpCqLV+6E9V3JTAKpx0fGsh1O/1c1rEdV5cl94qrcSe+6fCTxD0E7ff9773oVKpuD04cOCA8xoAQKVSwaFDh3Dq1Cnkcjl3se+Xv/xlvPDCC/i93/s9/OVf/iXq9XrMWn1bbQNYb6/H1tHr9S9NW1tbw9TUFCqVirt0VSshKvwJRzsv4tH4+DhKpVIsyZwWWFVg2dR4oEquL7yCHle7lzRe8Hyo1Vjn7GNmdm1sQdD3dhSLRdc37zzieWSCKgC3Rq5BlQXbb9JPzpfn0Qq5tB4CgwqOnLeGbRE2VE65jwwT4xgMyeRFzarQbWxs4Ic//GHMQ2jnzN8zmQzm5uZcMRd6QXd2dhxcbrfdiMCWSvWrxD377LP4/d//fRw+fBhvvvlmbM1U9glvDZdNooFK97RYApUChsZtbm7GypkTH6nU8F2rgHEMeinUIqzeH6XbbFTQ1eJrQ8KIC/Ruq2IFYFfeED8bGhqKlRRXePiELQs3CmZ6DvmdpeMaKcHP+d3W1pbzkDEfDICDlRoWeZ7VsEiYEF7EUz6vxSd8CpFPiL1y5YorohBF/TuHFhYW0Gw23Xzy+bz7u9ls4u23394VSmSNMzfSblWJsS2JNvlkBjbFZxZsUU+r7c/CVBUF7rHN+d2Lbtq/fYqfvq8hxkmyhW9TdXKgAAAgAElEQVSNtlph0li+PVAcVo+klb8UV3lG1FPsa77xVPFS+U/no/DWdasMpvOemprCk08+iWKxiGazib/4i7/At771LRQKBdx3330u9PjMmTMxOfa25ZSbaPeUodts1yMkKysrmJycxMjICIB4xSYi9ebmpvMOTU5O4vLly2g2m46g8zkSDmBg1VZLN+ejB5tEV/NZKPgAiDEiDQ+iddJnHdC+FXGVYStMVAH0WXyCIHDMksIS16KHQS0NDFmxloi99kLHt4qQMnMlBHyegofuOd+lMsc+VThRIV8FDyssJBGXmZkZxyR5Wdn4+HhM+QL691JRuGdoUhD07/b48z//89iFkLont9xWgNXOaqzPZtTET6z+BBYXF1EulwHA3VzNW8J1/WrJtY37XC6XXdgEhWu9u0HzsoiT3Ctlhj53vlWoVLEl/qsy5GvavzJEG7oQRZG7B4ljjo6OYmJiwgmtrOYEIKbs3kqz50bxypf0qvkRTJq1oUO9Xi/mQeA9NqRL7XbbhUAxZIWCPsuFX7lyxSkPCkP9u1AoYHZ2FkNDQxgfH8ev//qvI5fLod1uu5BQu8bY2hEhwN6wS1LG7HdRFOHy5cvo9XqYmprCyMgItra2nKGKxUrUIGWFP7XKqnKqHh6OFYahU4pp3bVCBg1jmntJbweVbSCeTM6947nRvVcazr3U4jyqDCtOUUCyRTSsoK+KH8+u0mr+7TOiWZrMOSpv4N/qASZsAMSUGGAQ4kiaSqWOcFK6b9fOs2vDlPQMqSLKtSsf8An51WoV29vbrmBIrVZDo9GIKbjk26z8duHChRjO3imlxgd33+c38r79W3GZynmxWMTIyIirpGr3S8dUYxrlKOUrlD9sGGOSomHpgO8ZS6s0r1Rh4VOE+JxvDso7gN3yi+I316bjK11WeGkVVH3X9u3bQ58MRB5LuNrzlwRLtkwmg/n5eRw7dgwA8LWvfQ3//d//7c7RpUuX3HmxcsqPs91Thu5A24sIhWHoqkKpK54hFZVKxRG3oaEhjI2NOebLQglA/HZr310uyizY9Hf1uuj9B8ogrYJi31GLiO95yzx8B0+Zus6T1WP0jgMfQaRXSC0VSbC3DM0qPUCckZNw2BwHhb11R2vOFZWRKIoc06eVl3OxVn7ClonoKsAzT4PzoQWyUqnsIkQsvU68URj67kO4nRZFEVAFqp1qvBhDCKyvr+PChQuYnp5GqVTC0aNH8eKLL2J0dBSFQsEpiup1AHZ75jKZ/v1AmjRPwVo9dIp3qrRyv3ipJcdQqy+f1bBN9qln63ox4twvtVzzO/5UnKC3ZGpqCqOjowDg7oLhdww14pjEX9KQJEacNDYw8FhqqBE/91m67bsaBkfjBdA/H9vb2y7EhTSFQgDbwYMHEUURFhYWvAow0D/fMzMzrhrigw8+6LwIALC4uLjLe3w3mtLTMAzxjW98A+9973vxwAMP4NSpUzFr9OTkJC5cuLCrOIYqBeqBJ72lkq+4H4YhGo0Gtre3EYaDam+kxdwfxc1cLueqgTG0UBUQNQSo0qH0UGkRx7MhX4SL7hVpnD5nDT38XNdu/1t+wXcsbyMcFWcJY76ntEXD99R4Rz5KTxlxWw0b3F/raWBTIZfzVmMGc304vhVerfeIBYtYOEGvcqCCFQT9sMbl5WU0m81dHrI7cS6SlKkbVbKSeDHnynWzUIIW/rDh/tqf/Vz328oKhLOl5VZm0Z+KY7pftrE/G1bvU4R0fPsMf/cZj7URl5WeKn7yGTV0a5izPuMLq9P5WAMIABfiz999z9h+FC9nZmawb98+Z9Q9c+aMo5/Dw8MYGRlBp9PBD3/4wzsXuXIL7Z4ydJcbY4nVtUjE7vX6FWIYV09kpDucycrWuqFxq8BuZcOHSBybwpC1WKgSAwwsf3p5nsaPA35LiiUsOi/7DH+PokFp2I2NjV3CgR48huFoLKz+1PUC2MXYtKlQaAUEay31MXgVJDT8RP+msmCTjenh497zbhklYplMBrOzs04QpXBPSzAFjG9961uoVqvIZDIuEZHzsMm8dq98+3O9FkURsAFsh32BbSfYAa69vri4iB/84Ac4duyY82JNT08jDEPMzs668r5JHkagj3uFQgGTk5OOUSaFXqpwQcFQc1209KzNy0myGFII9VWW8zUr/PpwncIM99Xee9Tr9ZzXK4oiVynRrlX/qyBln7NngdY99VZyforv1qvGZ7Vgi176S0+XKkbs1zL3XC6HqakpLC0tOUFRnyHNoTI0OTmJp59+2q2jWq06/L4TzcJJmxVeT58+jYcfftiduSiKXIjz8PAwpqenXfgyMAinUTpCRYZnXC8uJKyZQK85QsPDwy582t57EgSDO5BsjqoKP8QBLfPvOwMM+yPP2suqzvdtTo4KnYqv7M8XZmTfsd/zM8JU+9XQRBU8rdKhY9FLpUYVfY77Qn7JEFDdf5+CxM/pxbbGEXuGqeyWy2UHR17Eag00m5ubyGazaDQa7uJa2/etKkQ3qujcbj/cf3qElJZQcFeFVKNolCYp7+V+KF8BBryByoGPj/uUE/u3hadW2dQ1qXGPvEa/07209DvpfLF/3VvyC/VisvFv9QppfxZPlJdYA4D2SfpPeCYZV+25V+OfzndychLb29t45JFHMDc3hzAMcf78+Ri8f9wK0T1l6A41JUrayOBp2VMBgLcqZzIZF0bU6XQwNjbmhEYfMWe/ShQsQltBl8RCiyZYpUqbCicqUPsu27MCTRIRUfjod5wvLc42TMEmxFKI0PXxWUsMk5oVitWdrHtphXAlGPZ9evuoDKVSKSfUaHgYFZsgCFylKA1XIoHPZrOYnZ1FKtWvGDc2NuYS2JvNJhYXF3Hp0iWcPHnSzeu1116L4ZlVCrUlKc031LpAD/01ZdAXErph36L50ksv4Z3vfKcLl3rHO96Ber2O+fl5LC0tubwYHU/xiCW6Z2dnYxWC7DsWN0h41frMhHEADne16bj23NyIIsRn9Tyo4UOFPHo1KUgzWZxrKBQK7p4thk/Z/0lzSTIGcB6WgdnvbZgh10AYq7CpFvRMpn8psPWKWRiz33w+H/MQ2n0oFAoYHx93CphWInzrrbdQrVbRbDbvOKO0OAAMzmq73cbS0hK+9rWv4amnnnICwcTEBNLpNNbW1nDgwAEX2kQhQJVMpTE251FpK/dfhUEqydwj9stzYYtVqHeOypOGy1HhVYVL4ck1+/IjrBBnaS6AXfRbYWyVK4vfuhf6nipcVmjT/FfNj7NjW+VCK0fqWggz8ktezkrabOejjZ/RuLe1teWdh/49PDyMffv2xYReez4AOIGUYXS8F0hhdidCjJLOVpLQrmvZ6zvSaHoDtJoun7E4p8ZjS4/1nCYZLIHdYfA6XhJ+WvlEn9EcMe4fcymJlzRqANhlzE5SIJLG071VnPfNUXHYx4cU37XZvnwKEuegV0ToPG1/hNX09LSjpUNDQ3j/+9+PnZ0dVCoVTE5OIgj6OaUaMvy/0e4pQ3ewWcIURVHsIju1GgJ99yGFPVa0qdVq7k4ItSr6DqgVyPmsEi0dW+9d0FAYFZytMMD/WoGIFhglPmoB0eYjQDbUjJ+zPKm1hHCttET7LjHda0z9XC06ClsAu5KfNWfLEhDdGw2HAwbWde41mQDHoUIahqFjaPT2cK1RFGF8fNwJOvv27XOWNOaXMMl2cXHRVXKrVqteV7MSS9v2+u5Gmnsv6MNwcXERX/va1zA9PY2HH34YR48exWuvvYatrS0cPHgQCwsLLhxS81cobOfzeUxOTrqwK8UpK4gRxtwHhT2VUq32paENqqBaYUwFH3ueLPOyZ5OEX+fLeZbLZadAaJVJejxphWZOnJ5JK0zuxThUCU4qbW0VIxsepYoU90bzPfie5q/Y8CV9TvORCBvCi38zV6rdbmN9fR3/8z//g2PHjiGV6hczeOONN5zCcaebZe4qWG9ubqJWq+HKlSsOJkz6PnPmDPL5PI4ePYrz5887gwhpP/sj/hGWwKAKG5UhNVaR5tGjRBrD3CzSFPIPRhOweiMwuNNNPSqcjy2wYBUi3t+ieKpNlR6fMMT5q8FA+YZP2dd5+IRGxVldD+GkipD2a4U69ZrZMXQuGoLF8teWH1sljd/TIKa0wJ5lGrw07Lvb7aLVau2i39zv7e1trKysxOBv242eD0vXbrTp+u2++fpRbyjpuj6rMKEhwYcH3DfNEVJlQ+enn9mQO50r156kCNl91ZxK5v1x//guS5/zmgmfHKS/23ntNde9woStQqlwtPKZGmB9/fhgQoOvpSXadG5jY2M4ceKEM+rSs0namUqlUK/XcfHiRczNzeHixYux6CXfOpM+v912Txm6y40lZxkOoxa/6elpd7CJKEwYJ/OyQhmb9mWFCiBO3KgIkfFp3oUqXTz0an1RaxutVbRM7GUx97W9niURZH6IjxBSWFLLURLjtAzKp4Dp/NXCqPMhM1RY89ZyEka+T6WSsFXCpZ48vfW83W4jlerHrzPUBegz4aeffjoWUkDLOnOmgiDA17/+dedd+t73vrfrQtXrEY1bVoQiAIEnHBL9ak2vv/467rvvPjzyyCMYGRnBk08+iRdeeAFzc3NotVpOgbMeBSoMExMTLiTQNt174rwq49aKyMtnuQfMD1Cro632w+d81sYbYQI6TwqELC7AfSSOqPBUqVTQ7XZ3hWKwP6u47blFUTw01ho7VOkj7FX513AMFQ5981IBxv63Aq/NMVE4TU5OxoxGzzzzDDKZfvnoS5cu4bvf/e6ualNRFN1Q0YTrwUoblQU981QQKJDSSDE/P4/Tp0+7S2JZXl4vT9b9UCFHYavFY4h3NFoxrEsvRVXY0qvIktws2KN3fhEP1QhAz7/Og+vnelUQ98HMCrRuT8z++8KFbkQJYiP91CqItl/lZzbXTxU0zTtkP7oe/q2GAZ4FpRXKG5ReqOHAnhXCPpPJOFpHwToMQ6ytrcXCSPkOi2NowRilL+z/Vr1DvjNwM38nNdJgelC08h73T3HC5uTYfVFeqnttvUg+fPTN3SpOe8GF86Oxil5YK5/RuKVn2tfvXkqQnR/xzzbFQ5XZVO6xuGLzqPRdNczqXJQn+HigngnC5sCBA05hHB0dRSaTQa1Wi62bXujh4WE8+OCDOHny5C7v/91Qfmy7pwzdweZD7Ha7jatXr+KBBx7A0NAQtra23CFmAi0wEL4Ydz42NoZqtRor0UxEs4I+32dT6xuFby0trAIgFQB7n5CuKQgCp6BwPlSwlLCpkqHwuFHYpVKDnBirgLBftcxZZUgJgi9Uw/7OptZvjqOWV32ezFiJLjCo4KICvArrFj4MAaJli5ejklBNTU25cCEm2VPoyefz6HQ6OHv2LBqNBtrtNs6ePYt6vb6L6GvbS2G8leZ7j0JBvV7Hc889h0cffRQ/+ZM/iUceeQTf//730e12MTo6ipWVlZjyqQrBgQMH3KWM1gtBZqTKk2Vmih9kSjxXFPIouCi8aFGzZ+pmhADLFNnIoMhErXWc+06ByFfUhPhthTwd1+K3Kt4+hqvKI8ODOI4yPj6XZOUkA9W+OR4ZOAV1KqYqoAdB4Mqmp9P9YiQ/93M/hwceeABhGOLb3/42/u3f/g2rq6u7hL0Q4W0pQr6WTqddoRJW+mT+Wa/XL2385ptv4p3vfCc++MEPunj3sbExtFotbGxseM+bFeIonPN30i+GT2qJc3vHhzbNEaChhrgeRVHsLPF9LUjio6VW8LJCqyo6FrcsD1A802euxyNU0LNGPTa1XqsirTSbjTRAr4rQ/zpnVWho7GKRA4vjNhSL6/N5G6iEjo+P4+jRoy6vuFKpYHt7G0tLS7HKePxfKBRiURwaYns3mjWc6E9dO5tvL4m34+PjLo/WKskWTkrzfF5L6+XkOKp4WiGduGFxWN+3Tc+PPssQSMVfiz/8jrQ6KdzUB++kM6EyjS9MU5UQKwPxHdu39dzq96QjShd8inbSnCuVCsbHx7GysoJ3vvOdqFQqAPrFnjg34kYQBGg0Guj1emg0Gjh79qyDfVKkwZ1u/iDLe+2Wmm+Ter0erly5Eos7JuGcm5vD6Ogo8vk8NjY2cPbsWbzyyivY2Nhw3iFr6Qd2C1zKLKx1loI+MEB2/YwWXb1w0a6HB4nljZWp6ju+9SvBSzo0SvDJgOx/JqRaJutTcHyCn8+N7vubxJuCgiX+CmOOrXlCWulJ10RLDH+yfG4qlcLY2FhM4CmVSnj88cfdnuzbt8/NhcR1Y2MD3/jGN9But7GxsYG33nprzzhiu6+3owhFiJDykY4onv+wtLSEL3zhC04ReeKJJ9xdQTbEhQIwc6MYhmAtWBa2jEFXBqD7yWfYn+KuhZWeI/VY3QiMrHDEZj24zHmzSoXCgMnrVhnSdfnGsnMB4pXifAKfwkcNGwoDC0Odl+K4L/yJMGDY28rKCrrdrrOKc69zuRymp6dd2NCf/dmf4aMf/ShSqRTOnz+Pz3/+87vuKbIwiHBrTNJHK/L5PB5++GF84AMfwPHjxzExMYGpqSkEQT++fWdnB/V6Hdls1hX7oOJpz6pVgmwIkA/HNGRRBSvukcVfFXasoqkGHN0TVSrs/rGpJ9smVeuzPtqu51UNdLruvfZCYWcVIRWoVQnUzyw/IF0iPqsArudf12Ppjy/8VdeikRQKB/2bhXEOHTrkwqsqlQrGxsYAAGtra1784Gf79+9HpVJxURS2AuReAvXttL0Uo6T9z2azGB0dxdjYmEsFsM9Y2cAqSYSD9YZZOqjnzc4PiNNCS19947MvSzfJc5jzqREJ+p/n1Zf3qvP0wdkaD1TW8sGAn3MuCi+VO+xa9RzpnDTc3Ee37Hzt/tNrPjIygiiKcPHiRSdTsUgWI4GYNz88PIzf+Z3fwZEjR7zyl213Wim65xm6y43C8ltvveUYP4UhEsJ0Oo2LFy/iRz/6EZrNpkMALVuahLxJB0wVISo+ZK6sOmQtwfT02ENAgkSLFjCw9tLCboXMpMNqLSKWoXPNqmwoY7oeQdF3rKVFYeez5OgcrPVdlVhdm8LI5jKpVZ39ET4Mn8xmsygWi6jX6wD6scYHDx50niLuG9+hi/k///M/0Wq10O12cerUqVgVPl+7HeXnZhth2+l08Pbbb+P06dM4fvw4jh075spsq+eDijZhwVh7G2ai+8k9oMWb+NjpdBwTUjxUKyr3jXvD/rjPiqMa+qLP8e8k+HIMhQcwOEO2qhtbkrCg/fgYtI8eqGdnL8arQjffs8xXn1G4aT4R6YCOSQF0c3MT586dw+bmplOGmB9EGE9MTKBUKuE3fuM33F1aKysr+OIXv4jnnnvOhU7caUXICkG5XA4TExOYn5/H0NAQjh49im636yzzVMgmJiZceO3bb7/taCrvYGq1WrGcUY5nS3DrXNQrqLlY/K95Pkp7reCunxPPtPgNx2KVNM0FUw+HzktpnU9I8dF6YLfFmS3J86rj8kxqJUS+o/0SJlYZsQZCFiHgOfMJvfY8KR0hPSKstW9gwGN1ThZGNATQEJlOp3HkyBGk02m8+eabu4onEP6f+cxn8OlPfxqpVApPP/00isUiTp48ibGxMczMzGBxcRGvv/76rqINe7XrPWfx1MLFfqZ9sjDU5OSkC/HUsDGfsqneekuPVA7R6BFb2EJhbvm/9bonyQ++dzknDYO34/M94qH1CPmajunbD8pxPn6hc1DeZudiz2ASD1FlMZ1O7wpJBeA10tv15fN5HDt2DEeOHMHw8DDm5uYwPj7uaF+n00G328X8/DxOnTrlzunExIR3fjrvJDjdbrunDP0YWq/Xc0Ls6OgoisUiCoWCu8iqVCphfX3dVZALgr4FuVQqodFo7HLNA3tbZ5SIEJl5IPSugs3NTZfMqO53KwyqIsIcFiVs6mViS3J7+6wQ+rnPcu9j9L4+fIqQPmstm5bpK6Gzz+nhJKEgcwUQs/6odyGKIgdfzpWwC4IA4+PjSKVSTgmenJzE3NwcgL5gf+TIEYyNjTkCtLq6iuXlZVy+fBlhGGJrayt2xwlh4hO27kbbS5AJwxDr6+v45je/iUcffdRZgYaHh1EqlVCtVp1ywDwoLaNt/3M8tb5RAWV+A0NNKTjyHXpdVFDXkDP+rQIc+1XByTcfXbOFAX/yOcVvMv4kxuUTMpIYov4k/muukO6X3TMdV8dRr4HNO1FawUb4qjDCedTrdUfL+LkVblKpFGZmZpxlsFqt4tlnn8U//uM/ol6v7xIswyBEKrqmqCK4ZYXIwoLrm5ubQ71eR7vdRrlcjuXXAMDs7CxarRZeffVVl+PBOfpy3divzfmw46sSbfdbc7MYa0984cW3VugD4jlw3E+bf6TeEmvU8tFcH+77zoV+b5/zCTWqZGjEg08RomBFPqVzVfjp76r42+/snvjyI8iP7X7puyy64YOVXsYKAHNzc7j//vvRbredAcy2KIpw/vx5vPDCC3jXu96F4eFhPPLII5ifn3eJ+sViEc1mE6dPn/ZGlCS1vfZCn7GwsWu3zw4PD6NSqaBUKiUK6RqOrko6MKDBxE9VipQH8z/5hm/P9BxYemjn71u3PqM0XH9a5UrlFjZLo/VZyy+S8NDO2yo11nin87Dnwc6Rn3MvfOPq3X2Eh84/CAKUy2U89NBDmJycRD6fx7vf/W6Xx5jL5VCr1fDcc8/hwx/+MO677z78y7/8C7LZLKanp/HSSy/tMmIo7O5Wuxcmd4ebFfCB/mFptVpoNpuxUqcLCwsA+m7vj3zkIzHkZx4JAGcRVUFdD4z+txZBDY+gpZF5C71evzpREATOVanEiONYFykt78psbQECrtsX06wH3efCtQzNtr2IdxLR1nd84YRclwriSjAskVVCQUFb3yGxsFZ3CutUkliWmInOs7Ozu+KRS6USKpWKyyPKZDLOs8TKbLpfVimyxMRndbmTilMQBNjBgIFdvHjR/c4qarT8E0+JO+ph0LmSaBPGVISIhwyj5DsUkPRdvbMLQMzaZkPjuA6Lwz6FCIgzWQtbvqd4bS11atG2ChHP7l5hA7qnhLX1QPisgzo3rlfPuyoqvjALuzbL/IG+Ut9sNmOWcuYYUYlIp9PY3NzE8ePHHY07ffo0Pve5z+HSpUvevKc00ggR+kM2b6Gxf4Z4Pv7443jPe94TUxK63S4ajQY2Nzdx4sQJZDIZLC4u7vLiqGfNzpuKuxWiLY3Su6H4vnpLNWQMiOfl6N7rnmi4m4bC0PtiBVFLh32KtZ278gy7DqvQ+uCv+Ktnz84JgLeYwvUUMZvzY/FS6b9a/e3ZUYGUZ4B7u7m5ic3NTa+XQouj9Ho9fPSjH3V3qjGfzgeXnZ0dvPDCC7h69WpsXqpUjI6Oes/g7TS7Titk+3gti0EVCoVYTpqVVXwhZtqX0h8Au2i67iM/81WXs3h5I+vVOViPq2+++q5PQdlLLgH89NnKY0nyHnkgIyx0XJ9co+eKMPMZc31wqFQqLnrD53VKp9N47LHHsH//fhQKBUxNTWFmZgZBEODKlSuuNHe1WsVv/dZv4TOf+Qzq9TomJibw8z//8y6Ueq9Il7vR7nmG7lJTYknkYwUiYOCl2NraAtAvs/3QQw/h3Llz2NnZQalUchafKOqHSDG52ArpbPYgkQHRI8RkXHp3tra2sL29vevGeZ9AyN+tNReIW0jUcsP+khBaDxjfV8KrsLNr1XXa363gyr419t3uj66NzVoLuWdqNQEG5Wv5Dsui2vhdJpBTyBwfH3fek3Q6jfn5eXcrOvfr0KFDTlFlu3z5stvbhYWFPUOh9oL/nW5ppNFDDxlDVi5fvoyzZ8/i2LFjOH78OM6dO+dy5Sgkk9kzmdLnIeR6rKdUGTAwUMwpWPgUDD6nfdn/3DeGM1qir3OyTEufTWKEGtKhzCjpWQ3BSRL4fPPxMVh9Rz0+NhxUhRXSHu0nSUhWxTUIgtglkqQp29vbzjvO3IKnnnrKvfe9730Pr776qrOW3y08trDr9XrY2trCH/zBH+Czn/0sTpw4gTfeeAPb29v4zne+g16vh0ql4i7KrNVqDk704O7FyKMocp5gLWxgQ3OtV4R7lM1mHS1TnNMLWRnyTNpEQV2VKBUaSUM0EsAK1Ro9APhxUJUea0RToX0vxZxrVxzjnBTnuB49/9bCzT51LmrEU36neKvKLJ9VnFaeQXoeRZHz7mxtbcWKFimtokGLe8lqcpcvX951qbCer52dHTQaDXzlK1/Bxz/+cVesJ5fLYd++fej1evj3f/93bxn9W20+umjx1Qqu3AuGPAfBoBqjVUQsfSZcuX9qKFXjAschDeWeWI+Rj/b1ej3HT/eSoXR+Pngqfbd8VvtVumff0+994wPJ93bZOWraA/OY7fr0bLFZXmrPrfIB3Vs1uOgah4eH8eEPf9jJLQ8++KCbz5/+6Z+i2+1ifX0d9Xrd0fYgCFCr1dBsNnfts213iw/c8wzd5aYEncSAysjrr7+OarUKAC4MY2JiAkePHsXhw4cxMzPjrN3NZhNra2uximO+g8MxwzB01crI+ChwpdNpl3QehoO7bqwHwxJyqxzQGmrDMfiOVXa0L/3dd2h9sLO5CNqHzxKjAjWTb22RCMCf9KrE1KfUaQiRJjWrxVeFYAoK7JPV+VhIYXJy0l1SyhKk4+PjTuDSfs6ePev2VyvIJQkpFqa27fX87TZeEEjrOWOIc7mcCxEEBhc91mo1pzCSMFuBgM9agk1hi0yaFmkb8mOVrb0s9BquY+HlUzR9OJgk9OlYOg9fvzp37SdJ2VUBL2lN7NfmC6nSz/8+ZZBj2JAmAK58eC6XAwC0Wq3YWFQ4uD+5XA779+/H/Pw8oijC4uIivvGNb7g7haxgA/Qv/U0Hu++KuZ3GdYRhiHPnzuG3f/u3UavVUK/X8dWvftVdGsycoEKhgP3797v3Ca92ux0LVdJ+9dzTWGUt2sqOL3UAACAASURBVFZx1H0mTIFBOW7SFArZnU4nVkWUZ4N904OhHmybN2Rx1QcrXRdpLBUie4+Y9RBZhcf2Z4VLjklDhxYGSopUsDSbfEsFbqXlHEPDbpW2KL3ivFSo3djYwMbGhgtX9MGNl0umUikcOHDAnRNWm00S9gjjy5cv45//+Z9x7tw59Ho9F1r813/917uUqRtpSTTEKkCEMw11nLfNi+FPeg8AxPZKebOlUYqnOg+lpUrPdWzlu2pcsnzY5x2ydNKu22cI8ykW+q7C1uKy9S7Z8ex8fTxe50pFyO6nrl/lKH7nCxn1nUE7FtMrLEzS6TROnDjhcLxQKKBUKmFnZwfPPvssut0uOp0Ozpw54+g/K+vuhfvK7+5Wu+cZugvNRwTJoBYXF11VoosXL+KDH/wgKpUKwjDEpz71KVy9ehXPPfccgiDA1NQUHnnkEVy4cMEJHtVq1Vm8mUtirRdktiqk8CJHPkvm12w2nVufd/jQskWBRhkkNXy+T4WIip6GW2iioSoU6j2y3hg9iErkVEBj7LslvvagkKGppTYpDMQKrGSC7IfhhGrNZ/5LEAQuSTwMw1iFmSjql+ZVAZ/x5Jubm24Oc3NzyOfzGB8fdxesPvLIIy7emvN49tlnUa/X0e128fLLL3vDh3Qde/29F+xupzk8xKDM9tmzZ/Hkk09iZmYGv/u7v4u/+qu/cnO/cuWKE5xWV1fxzW9+Ew8//DCmp6cdjGlx53yJl9xTJeqpVGrXvTB7FWWgIWDX/KNBIYher+eqnvnCM+wZtLgJxEv8Ko7ruLqX+rs9Jzq2Np5Rnv+k/YmiKGalp/CoBRGI77bK3M7OTiy/QWFNTxuVp3q97i7crVQqGBkZcfeokLHOz89jdnYWn/70pxEEATY3N/HlL385Vj2OzTF19JBGOvZZcJv3DOn+Af3ztrS0hD/5kz9x55Y5ZPTovuc978Ef/dEfodVq4V//9V/d+aSCo/ui+xsEgfOMVSoVZ6RiIRQNuWu1Wo7OEodHRkbQbDZdRUre31IsFlGr1Vze3NjYmJszQ2lomKFSQe+cNSYovbReEX7PtbGYi9JvpblRFO3CI4YW61hW8aUCoKWmrSKvRSGUD2l/NIRZ45UWXiBser2eKwGvigW/39zcdBff8ty3Wi0XPqm4qkIt+yCPHB8fx2/+5m862nbx4kUsLy/vwkPFUZ7v1dVVfPnLX3brVgXzdppPCeHPfD6Pffv24aGHHkI2m8Xm5iauXr2K8+fPu7nxTAdB/9Jh3o2k9NGeMd1vnoOhoaHYXUvEX8UvPkd6rgqRzZFRekwYqudUYazN5/UhPtlQbAs/AK5YjEbf+J7zwV8Vep+sozIR12VpuEbvkCfQcKI8hSHLVFqtUqiw6Xa7qNVqu4zTqVQKs7OzOHz4MFZWVnD8+HEcPnwYzWYT//RP/4TTp0/j/2Pvu2MkP8v7P1N2p+7M7Mz2Xq4Xn8++s88VYisGG+wggjBBOESKSJCSSChCCRKBf0gTAoQCShGkgBKauQjHJi4CbONy9h1n++58vezd9jY7uzOz08vvj+Hz7PN95ztrE3yFn+6VTru38533+5bnfcrnKe/Zs2fx+uuvWy4V1ufZbq0b7c073a57hi5js9s8JgJXq1Ukk0kJv6ASwXr8FB7Dw8MW1IBlifP5PBKJhJR5BayhOSROMgUqL1q54o3QZDI67EIrPnax3lqZY1888FowrVcFhT/Nf+uhkqagtXuO7y4UChaGRaZih8Cw2QkizkOPm1Wj+Hw+n69D5EymyXHr3yuViiC6gUAAXV1dkkvEcBiuPasSknHxzpW3wyQuNyOpawavTyaTOHr0qMQLh8NhhEIhDA0NSf4Qx5nJZHD69GmcPXvWoqg5HA4x0HXpbRNVNFFEbRADa55AOyTNjk65T4VCQQRGI0RQ01QjQ4c0oGl3PS+SHq8d3erfzbwnu/ezDx0SpHNTTOSSjc/l83nxfPCMURHWa1ksFnHx4kW5W629vd2SQwDU8uFisRhGR0fR09ODarUWQjYxMSF39dgZh5ejNVozrin3nOj8E088gaWlJeENo6OjUvKYnn5NZ/odGugxFTYAdYqM6ZnUhUPS6bRFySE/14akqVBpT4pp5GpDQIfPaU+P5mOaz7MPyhvSBnmW7lfzQZN2GFJM2WiGApvnXRt4pqzSXh69DjRK9JngehMM09EUfEYbidxHzlmffZMHOJ21Ykl+v18uouZeraysYHp62nJ2TUXQNDTtZKG5jr9uY1+sgLdr1y7s2rULg4ODGBgYQH9/PyKRiOSqECyqVCqYnZ21hMcSGIvH45IewHdoHkTjhx4v7gn33AzrYli5yT9NnmqnR5hrZfJwvcfasNX0qM+nHZ/XOpRJE+a49N6bvFwDBFr+6NQL0xDieDVvN6tH6orD2vg1ZQA/SyQSQuta3no8HoyOjiISiaClpUWiWlZXVzE+Po7l5WWcPn1a9FCt670V3V4J/eW6Z+gyNVO48W+5XA4rKyvo6upCtVrFuXPn0Nvbi2AwiEqlgvn5eWGsFFgtLS2Ym5sTFIvMhsKpWCwiHA5blHPAehFZtVpFNpsVdzywJlS1UsPv8PBQWLBv0+DQypKJvJPY9UHTa2HHHBoRPeel+9WCUCsXXBOdGGsytEZhhiaDNNFDvpeMWhtegDXUgkarzmGxY76suDI0NASPx4NKpYLOzk40NTXh1KlT6OvrQzgcFgWxXC4L+vvrMIlG6NSv2ixjUF2atBKPx/HSSy+hUCggGAxKgZBKpSL3a1FBWllZQS6XQzgcFo8l944Kiml42CkfDFvk/mjmbXottSDU8zLprlwuS7y+VnQbraedkq2VaxMRM1FUuzNih9jxrGmPkyl02OyS6tmvVv60MsJzRUPIVNC1olAu1y7Pm5yctKxtNpuVgh/Nzc3o7+9HIBDARz/6UYlDn5iYkLvZrrgRbzQN+mgluFgs4qmnnsJHPvIR3HjjjXA6nRgdHUVfXx/m5+cRiUSwtLQkIJcOT9H7CgDZbBbBYNCyr6RzneejvUUuV+3iR4JhLJHtdDrh8/nqig8wHE+fGRpUmk/q/SMQoUPodFieDnkk7a1XGIL9a3CHhohp9DLMzK5pAE7zYG3E6PfpohH0CgGw7IldqDfnzbPDufI5rme5XLZc6qznrhXZ5ubmunu1yNdWVlZw9uxZ5PP5uvna8Q/NjzRN/TrtreQBc/pGR0eRy+WwtLSEQCCAVCqFmZkZxONxS6RCLpfD2NgYuru7AdTuT+LFmqurq4jFYohEIpYwLRYS0nusK1CaxhHX1eVyNbyM124N2Yfdnpl7Z+pyev3Nku76GfP7drly+j1m/2aelWk0aHmlDR4AFlCaRibfR5CFn5mh/TrnSofUUb9iKKbOu3K73ejs7JRwfxZ9qlarOHbsGMrlMn7xi1+I59tuTxrR8JWSAdeNocvcTMW3Uqlgenoa3d3dcDhqSWPT09NypwVLDKdSKSm4sGXLFkxNTYkLnpdTkrDoJYpGo+LKB9YUHgoXonY6HILeJmBNONgl8vLA68NLZgKsGTrs2xRC7KdRuM96a2ciOvp95rM6XEcrm6YhxHXRY7NDKLRXSLvmNaquiyKYY9UxsXotOAev14uOjg7EYjG0trbK3ra3t2N6ehoHDhzAtm3bsGvXLkEOiUzbeQDYv/77lWImFmFarYXJORy1ZO5EIoFIJCIKTGdnpxg8LDfP/BBgLdzr3LlziEaj6OzslHfYKVkmoqcNHDJ7rdjyedIq/9l5Z0zD3QQITMPaNG7MM0PhxP3TtKgLZbyVcWXSmjZo9BjM/deCW+dVcS5mMQftXdMeAr3Gep6VSq04wsWLF0WpdTqdSCaTSCQSgv5Go1HEYjF0dnZi586d8Pl8WF1dxaVLlywV5PScL3czjWPTGNJjWVpawv79+9Hf34/W1lY4nU5s2rQJhw8flpwKIuAej8eSR6T3Znl5WcI4CXSRVzKvk3xE0znPEq9JYB98L5UZ9kmwS5czpoGlvZ0m/9NKozYEgDW64xi1cUEaM88qv6fXwfzcfB/74fj5u94Pfca0Yc7zz1BD9m/+nfutzyURb/ZpyhQAlqgLzVtMgIP8jwq8Vtyr1SpmZmbqvFrr0am5nu8kz9fzczhq3pfBwUFs2bIF7e3tSCQSAtaurq5KOPPU1JSEt1WrVbn6AVgLiatWa6HH8XgcgUAAPp/Psl6kWSrZ1CV0pIs2uDV4Y4JM5t/NNeR+a3CN/dqtiZYHpkzRvEMb0JyTGRrKMdgZbPod6+2R9gqZvBhY8/pwjKYhZOpJ5Cn8mwZkaOAy9Jzvcbtr90l1dHQgHA6jra0NfX19cuHq9PQ0EomEeNHtZJIdD7jS7boxdAUbCZzhTUTaVldXpSZ/KBRCPB4X65xIyfDwME6cOCH/DwQCcDgcSKfTyOVyErPc2tpaR6gawWC1Dr/fL0yIniKiUvpQa4ahDRC+Qyv4WoHSB8tcA6C+jKSpWJkISCMGYq6tRq01esL3mS52zXS0UDWVYDYzvIrICuevmw7V0/1rRIt5MaOjoxL+tWvXLrS0tCAYDOKWW27Bxo0bkU6nceLECVSrtZh1HVJhro3deq/Xfh3BaaeYs5VQQhNqwn9lZQUDAwMYGRnBwMAAqtUqHn30Ubz00ktobm5GOBzG9PR0nYHKebe0tNQlSQOoo0kdHqfRKyr9WokynyUtmwnBep5cb52/RCX0rZi5FkAm4kc602Ei69G8eVa00NOosUlzes24Jhr902EoPAO8PFR7Sc0xaGWG30kkEhbv28LCgnw3GAxicHAQkUgEd999t4yTCbeLi4t1Yafrres72TT/A6xVLrVyUi6X8eSTT+Kee+7BbbfdBofDgaGhIYTDYTHyU6kUAEj4mjb4+R7m27A8PGmEoUcEUrLZrPBr0ojX60U+n0c2m0Umk4Hf74fLVSvQw9Aw0qamOa1Y0nAxwwHtlOtGa6LpWufkmEqilg+mAg+g7jm+U4/XlBF2vJvvpxFPeaTlIf+u8ye0McSmeYwJOGikXK+rNqSBGo9giKjP50NHRweam5vFYx2Px6UYznp0yTUy98ROwfy/NlMuNzU1YXBwELt378bWrVvR2tqKpaUlzMzMoKmpCUNDQzJ25kXr4iFaGdc8t1QqYWFhQQrqcO/JY2g46lLR2qDVHjyeBx3WaRoLOlSS66bHxb+Z87fTNfjP5HvaoDN5tJ28Npv5fbvPOS5Ns5omuR5aN9GGIfs3I2fM6wEoV7hX+XxeQpf1OW1paUF/fz86OzvR398Pp9OJcDgMh6MG9judTpw+fdqWr9jNzVyLK9WuG0OXsTUifFbY4uWaLK/pcDjw4osvolqtYvPmzZibm0Mul4PL5UJHRwfm5uawsLAg1d/M0qiZTEYYC4lIHwwaCplMxpJ8qBFIMjF907kdYqYFoTYEtAGiD6ypTJioHp+xYz6Nmha2Gpk0DS6dW2Luj56XnQKgBSvzovhOKijcC90/DTMtdHVIH/e8p6dHvEEulwstLS3i4RscHBQDdW5uDouLiygWizh//rwlAdFsb5eBXG5G44YbvAfT6/UiFoshGo3C6/WiWq3itttuw3PPPQeHw4FYLCZJs3rd3W635EdFo1EZt37GFF46zpl9AGs5AlqB1/uiacH00NjRjt5XjVY3Yuraq2KiwiatMelWG+7aQNHf0xW8Gnk4TSWTZ10rA6YhxDOl8zzMvCKOg6G1HD9DHgm4sCxwtVqF1+vF4OAgWltbsW3bNtx7772W8CWPx7OuIcTiCZeTfrXANz3a+r2Li4t4+umnccMNNyAQCCAWi2H79u1YWlpCOByWy7S1AW6Xu5JOp+X+Dnp1SAd8pw6Ho2JDHl4qlZBKpSzeIe6f5jvAmvGi+a02hM1cBXPO/J2Klq4Sx/4beVhNpc3urACwhOpQPtnJBTuDiGOgAsc+uJbFYhHZbBYAJIlef0cDHXrMVKjJH6rVquRYsVHW6O9ROWRoLYu/6BC/CxcuWConrtfMM325lUaPx4Ndu3Zh+/bt6Ovrk/yhlpYWnD59Gm1tbQiFQshms+jq6kK5XMbMzEzdBbKm7uBw1HKtlpeXEYvF5IyQP1JBp8HKddchYGafeu31mvAZMySY49LnXK+rHSimeaaWLWYUDGC9XFt7fPkcf+p3aj6rx6fHbIazmboOZYI2hLRhqHU7ALKuuk8aP8yTZWEejon8fXh4GOFwGNu2bUMsFoPH40EoFEKlUsGZM2ewuLgokSx6HfX62xn4V7pdN4auQiuXyzh//jy6u7tRqdTyhCjkzp8/L2iL1+vF5OQkgBqxLi8vI5fLYXl5GalUSkJaWM2tXC4jlUrJwdKGDt9LZp7JZKQOPA9WU1OTEDkZERUmjR6TQZlMA1gzjrRxoJmJqSyaRK9dz3ZMgN/RjEormSZz1CFBHC/70CEedmg614Ixy0wO5TgZDqCZIt9DQayRfn7P5XIhEolgZGRESpyzb5ZTp1LqdDqRyWTw4osvCnOampqq81jpuTVa23eiVVGr2mVW7hKm+8u7hvizydEkhvfy8rLlO6VSCaFQCCsrK4hEIohGo5idnZW5eTweScJMpVLw+XwAYEnStQuN0woUva9aIFFIUJGksNUem1KpVOfp1GvNOXN/TZo3abxcLosHV+f+aRSZ545GN+eq32/OUyuiGtW3G4M2YMyCEtoYYh+kX40Oar6iqzsBa2e3UCgITyO/IH9xuVzo6+tDb28vQqEQPvnJT1qQ+Xw+L7lxdp6DK9lMvmP3eblcxtGjR/HCCy/g7rvvRnNzM/bs2YMDBw6gqakJbW1tllBbvb56bul0Wi4kdrvdFmCnqalJvMvZbFYUaqAmFxhiWiqVkM1mLTyF36Mibhq6ms/oEDrNT02+aCLS/BvljL7vCLBWptLzNvdWg2g6PEfzcLs9MddSG46kTa3oseonw9K1UWKGIurx631kVbjl5eU6XsxzwPPs8/mkKiiN1uXlZfEUpVIpzM/PWyrRvZ12JRRHjj8UCiGXyyGVSqG1tRUAEIvF4Pf7EQ6H0dPTg6WlJaH5bDYrOXPmGE1+nUqlJFKFz1arVUseLulLA8AmHZh0xr60oURDQRuU+p1v1cwzYOol/Mwuf0jrGY34igapTGNIgwg8azp8EIDwZF24wiyZr9MX+B19RxcjMpaWlpDJZOpANm1A9fX1SWpHT08PQqGQFAhZXV1FPB5HNpu15Evbrf16P69Uu24MXeFGYuCdQS6XC9PT0xgbG0NnZ6cIrfb2dgSDQSQSCUmeHRkZQalUwqlTpwRFoqJJRs74ZW3YMGGTigqNolwuZ1EImSwKrCEaFEqNYlL5N314tRDTgtYONdd/0+FKpkGk1w+AxbjQ4zPD2OyMKLv++Xf2ow0lKoBamdAVtLiGei3oFaKgpMHKtevt7RWEkCFgLpcLXV1ddes2Pj4udHDp0qW6JNv1FDa7ZsfA36mmDSE33HCgNo9YLCau8ttvvx0tLS3YvHkzHnjgATz66KNobm7GyMiI5BF5vV75PxEpnhcWFyEirosBaOXcVKL4Nz7D7+owC63IcN/tiiToNdT5DY2QxFwuh0wm07DkNelPC03tveUzer945s3QJlPY8HcNHuhndAgS+9GVGE2ggGFYfF4j6tVqLQcmHo9LxSGenWAwCL/fj4GBAYRCIbzrXe+SNec8lpaWcObMGUu1qavd1lPgy+UyxsbGcPToUdx+++0IBoMYHh7G0NAQzpw5g2AwKPvE4hF2nsFisYiVlRWpQkdeTWCEfFh79uktoReIoXL0djBPifzezltDHqZzIbXiCVgVNI5bg0763DQyVrQhpM+npj+7vA2dz2EaHRyblhlatmlwgcZjuVy7JsHlclkqqZpKolbW+T0q9uTLlLd8ns9pOnE6nWhtbbV4+JjjOzg4iKamJmSzWZw5c8YSWraecn65lUS9h6SRpaUlHDlyBPl8Hh/84AfR1tYGh6N2/Uc6nRaaffXVV9Hc3Ize3l5Uq7WrQLSHAkAd7efzeUvOG2Uo90TL1rcCJ7hn+idgDU3X3llzvrrZ/c3UhfhP8079Prv11H2bBo8+R3zO1AcILunzpo1EHbGgQQkTNAas94txzTKZDOLxuHiENF3qtQkGgwgEAuI5HB0dhcfjwe7duyUkOBwOCw2Ycsfcu/X+fyXadWPoMjd9MIE11KJYLGJxcRG9vb3CoLPZLPr6+pBIJNDV1YVCoYCZmRnMzc0J2tXd3Y1isYiTJ0+KYkWmD6x5LMh8KVApEDweD7LZLCqViniHeMAYduFwOCyVfjgP/tRhBCaD04aNmUBrojpm6Il5AEwkkU2Pl59pYWOuv+5fGzlsVMZ0DK3JMDRyosMvNOpCJs57mnQFM4afUHkIBoOyJlu3bhUFJBAIWObpdDrx5JNPileBSbbrIVua3sz2qxpOv2qr8wyhtm6BQACFQgFzc3NYXV1FS0sLnE4nbrrpJjz66KNiMPX19WFhYQGhUAg+nw8zMzOi0IVCIbhcLmQyGUs5VTtjhHtNOvN4PBaFTis/GsnWiDRpQdMqz4Sp4GljwaRN0hfHY47TBBM4tnw+L2FmfLcWlqZ3xxybue/aECIdArAYhDrkTj+rha72kOrGeTKJmmPOZrPwer0IhULo6+uTfLjf+q3fkmqWxWIR8/PzOHv2LDKZjGVP2Y9uV0pYNjKC9OfpdBpvvPEGpqamEIvF4Ha78cADD+DSpUuoVCqIRCJirPCOME1f/D2bzUpJfdIEjQGGMbtcLqENbbiwCA69Q9xTenn4HSqcJi1xfmZenvYYmmCSLt3NtdDeQzs+pA0oMxRU98OzYp4lfUb0GSYNMWxNg3n0rlYqtQvGHQ6HGELsk+GggPW883v83OFwCLCoS5qb4+c4fT6feJ+4lh6PB1u2bBEP3sWLFzE3N2fxxDWiwyvRzPnk83nMzs4ilUphcnIS+/btQ1tbGwCgra0NCwsLqFar2Lt3L06cOIGVlRX4fD4MDg5KSoDWUfRcuH+rq6sIh8N1Xh/Smw6L497q8Wo+asf79E+dO2bSVSP5yHfwLHFMmk7swCf9XQ0EmO/S79fgnn6W55Dns1JZu8tRe3XIM8zcZh3KB1j1KP0cS2fr92rjr1qteasZzt/W1ia83OfziQ6TTCbhdDpFf9Xy1Jx3o/9fyXbdGLoCzVROuOEXLlxAV1cXisUiXnjhBTz44IPYvXs3urq64PP5UCwWMTQ0JMpgMBiE2+0WlPz48eOWyh7sm+EBFGAMh3C5XAiFQiI8CoUC0uk0qtWqCAd+R7s1TcWNn+tDZ7qFNcNg4//ZnxkmZCqfpnKvBbNmMKZBYBpA2mAzQ4lovJjls7WRRQaknzcVSr4vm82KW1gj6Zpp6vDESCSCzZs3I5vNYmRkRJQVzv/ChQuCkqfTaYl1N2lpPSZyuQ0gcywuh1VR5iWBvISNihsAuW9oeXkZTqcTW7duFRSXlwFXq7XQlnQ6LR5P5llRMOgwJK45x0R6ouJNwUzEkiGquuw2FS0KY01jdkYNGxVEnQMDrAk5U0Fk/zyTWtjxM7vwO017+llT6OrntMeW9Kg9X0TVG6GTBFW0J4CNZysejyOVSomg5ToWi0V0d3fLnSTvfe970dfXJ2uVyWTw0ksvYX5+Hslk0rJudrS9nsH/TjcTaDAbvUMvvPACtmzZgkAggM2bN6OlpcVitPj9frlgm3vONQdqiiGVQo/HI0YpeQI9PdVqVS79JJjFZ2hIMlyOleVM40UbGdrIIe/Wn5sKn/6/Bo1MRbQRzdJzpb1AZgEQngOttNopdBrIImDERpo183tY6U8ruNoQ0uGxeo95Vlj4QF+kbdILUKNr5oFxHOT5Dz74IJqbm7G0tITTp09jbm6uzmNiR4dXsvF9NDIDgYB4xNi8Xi/C4bDcn3jnnXfipz/9qVzjMTw8LF5PLde0VxmAeM11FULtkaauof/G/jT4xXGbBpUJEmmdhs/o3+3OuT4nWt7oEtN2/J1j02CBqVex6TNhekl59vidRmHcTmctZ9Cs/qnlg+n95XrzMnjSu642qfunR8jj8eDuu++WfkKhkDyXyWQkBLKRgar/fzUNIeC6MXRFmz4ERExWV1clcfxnP/sZfvu3f1ueb2pqQm9vL6anp0Uh7u7uxvT0tCQcmklp+rCSeTBsjkKzpaVFEpypXDscDqlQpxkSD68ZRqMPOZmQNgw06qkPvUYZdYiTiYjxdxMBMlFyk5mZiCu/x2c06s910knhegxcBzI8riWfp5Bl//Tw6VAJ/W6Ov62tDW537Rb5O+64Q4RrV1eX5aLGSqWCo0ePChNbXl62xDuba/WrtivFfFwulyi4PT09EhsO1GicVbdIg319fZicnMTy8rJ4IUulEmZnZ4VGWb2IqCvXS6PlOkQAWMt349zpBdJCSufQOZ1Oi0Ax0TrSs0lfGt3T9KkFuaZBrRw3ClPSxos+G9ro0+i9FrYEGzg/Pg+sxZjTYDHDnfScuc529Fcq1S7JZI4jlXMijG63G9FoFIFAAIODg3jggQfqaIQK4+TkpBQRMPkCvY5Xumn+YKf8xuNxnDx5EtVqVWhv8+bNiMfjFv7Y3d2N5uZmpNNpC7jBPnO5HPx+v6UIDj/Xijg9+wDkDNADwrXL5XLimWDYGL/LMZohoJq/2yliGtihsQLAwk/tPBz8rj6TPC8MKdbvJJ2zL903FTMaSAQHtcLGqm3kNfTWA7VKhuy/UChIpIQZVsS5C8jjcknxl9XVVRmzqXxzrVhkgDkU+u6k9vZ24WMnTpyoKxxzpZupUOtWLtdykcPhMMrlMiYmJnDjjTcK7USjUZw7d04qje3ZswevvPIKisWiXMR55MgRoRc746VYLCKdTosn3DTUSQOmvqANcW2M2xk96yncJt/kd02dRHtgOCY9LrMvrZdQX7MbgzZ09N/MvbEb5bLKSgAAIABJREFUm52Mo8GqjSA2AlUasOMYdeVQGlWUrezH6/WKV2j37t3Ys2ePhEQPDg4CgFyhwOIxJl8xgRJzL65Gq7/05Xp7R9t6G1soFHD06FFBxJaWluRSShIjlQcirJVKRWq4E0G3O3j0XmgFnsyC5Ws1Yra6umpBxygsybw0Ime+i8iaKQQ1szCNKC0IM5kMMpmM5YZysx/T2NFIov6MaKqZDK+roejb0XWoERUOhlaQeetEfDIKMxcFsIbWafRdC3C6lRl2sbq6KkoLmY7ub2JiQua8vLxcxwD1Gl0LTTNrN9wooighQFqQ6PapT31KwmWcTqckYSYSCYtwYmUboGakr6ysYGVlBel0WtaR+6/31vQI6vAA7a3hPmljQAMDeu1N2uTftaDXdKUNDrswNKL82mto9mWGNZn/tPFD4cz5aVSb/xjuRmNTVzDimEjH5jqYZzidTmN6elr2h0YTEca2tjYEAgEMDAzgs5/9bB3d5PN59PT0wOVy4dSpU5axmOt8tZodP+K/UqmEkydPYnJyUvjH+973PnR2dophQg99NBpFS0uLfE83hgzRYDFRZx1aVq2ueaJJ1yzhbK6/viQ6n89jZWVFKt3p6whMrxVpVuftmZc4akVO062pgOnzT96XSqUkSVvzTh0qyHcyb4deGaLY9MRTPjFskIp1uVy23Pekq8qtrq5aUH47Q0h/DkAiKkzZw2cI8LByZigUQiQSkXf/7d/+LTo7O1GpVHDy5EkcP37c0lcjurvczVTGdePlvgxT1i0SieC2224TIC8cDuPLX/4yPB4PgJr3qLW1VUrFc511fla1WsXKyop4Nvl3wBoerHmglu+kVS3f6S2ksU3Dl7l1/J3P6H/UDzTtaV6taZkpDtoo17xe6yLmnDT9mLLc1HvMdTANQtM4NKNguMd2nllgLcRWv8Pk/QDQ2tqKaDSKSCSCm2++2SJj9DNOpxOrq6vimV5PV7kW9JjrnqEr1LRSp/8Wj8flfqBKpYLJyUlMTU1hy5YtotD09PTg4sWLWFxcRLValTuJuru7cfHiRVvFIZ/PW0IBtHeIRhaFKT8nOs98DPa1XhEFUymwi3c152z+3zzcukKKibbpsDo+rwUwYL0rwmQo5nc5HwoxvkuH/2nFQ6P07E+HjZhGGwALc+/o6BAv0/LyMqamphAIBLBnzx4LckRBubKyIoKDxsHboTW75zQjvhJMR3vM0uk0MpkM5ufnRTFgC4fDeOSRR/Bv//Zv4lkJhUKyN9zfUqmE8fFxbNmyRaq/mQIBWKs+VKmsxVTT0DRRbr0e2qCmECAtaHTRDF9gX2b8th6TDkE1FUdzzXRf7Ed7gNczhNc7n9qrow0tDSwA9UqRPs88W1SIGdq1uLiImZkZlMtlKYNLrxAv5AsGg/joRz9qSyvVag1tP3jwoMXoN+esn7+Sjetqx8f5+ezsLI4ePYpbbrkFTqcTw8PD6Ovrw8zMjChdVND9fr/FE6f3lDlWfr9f6Fgj4rqSFL379FpQ2XE6nWIk0LCg50gDRsViUYw3GuJs+ozoeep8LiqGdhECJj1Vq1UxQEgb2vNuVgvjWdSyR3uItNLG9zBvQSPa9JTRG08Zw3AgwFptjvPjc9oYKpfLcnmknefA7a6VnSaPa2pqQjAYRDQahcvlwh/90R9JcYGpqSk8+eSTdfcLXS2FkHuqwSAAIquy2SwCgQCOHDmCu+++W8JcAaClpQUtLS2Ynp4GUFvPb37zm/jIRz6CarWKwcFBzM/PS1K+Boq0jrK6uirFP7RHQXseGSqtx6oNJD12bWDbGSJm43e190IbEIA1NI681e69Zl+kcXMcpOX19kOPT/PwRrJCnxH9LP/ZRTlks1mpaGjOn3lyANDX1yeG7ejoqMwzEolIf+VyGRcvXsTk5CQmJydt52fO9WoaQsB1Y+iKtEYCFKihU8ePH8ett96KpqYmlEolvPjii9i4caMoTC0tLdi+fTteeeUVFAoFueRqfn4ei4uLSCaTdcgSFRZ9oaqu1sJ+KTSpvPCSQKJYJnqjc2u0Ysd58oCz2SmP+jDrQ1culyWcw67cI1B/jwMPvFY2NZMxlRiOWY+PzEE/x/70vGmkmd/n3Ok5MsMnOF+Px4P29na4XGvlPbu7u1EulxEOhy1MvlAo4LXXXhPBTDTLTkm0Y8JvRXe/LvNZr2/ri2p7NzU1hbGxMWzZskWQYK143XrrrXjqqacwNTWFarWKSCSCWCyGS5cuWegslUphaWlJwky08cKwNoID9IAQTWcfWojw/9rrCaCuX36Ha6fpRv9kHzyP/BvHQG+sfpe5L3yn9ixq4a3pXJ8r/qRybfcec9/fyhAyBTcRViqphUIBiUQC4+Pjljuc6EH1+Xzo7e2Fx+PBww8/jA0bNtTNeWVlBYlEAqurq3I/id3YdYjc1RCe69F8tVorEfzUU0/hwx/+sJRSfuCBBzA1NYXl5WVBjalY6Hu1AGsxmmQyKbkm5HNU2HUuJj/jZdo0aFwuF/x+P9LptOyLztdxuVwyHvJdeqO0jNC8UYeuAZAzrL04bNogIt0Qied4OE4W9zFz43SugzZ+7AAnGnuMmKAiTQCL60EDiZ46AMInAFjCkHVYIedOT5reL463Wq3C7/dLCBE9csPDw9i+fTtuvfVWRCIRkaunTp3CwYMH6xTFRmf3SjU7npLJZLC8vIxQKISFhQVMTk5ajCEA8Pv9ooj/5Cc/wYMPPoh/+Zd/wSc+8Ql4PB709vZifn7eckkt6Yr7mkgk4HQ6EY1GhU5N/kS61CCCncdEN22YaNox114bTzo0GVijaR1eahcCpnUgO0OIz2lAQoNd+v2NgC32QUNNhx+a89B6T6MQxGw2i8XFRTkrfCd1MQIprArqdruxY8cOOS8tLS0SIgcATz31FF599VWcP39e+v2/tCvJ56+HyV2lpok2Ho9LxZVyuYzZ2VmMj49bDIDe3l5s374d4XAYwWAQvb29CIfDGBkZsaAN2rhgyAoPrFkq1+VyCaJjhgBoxYsHSldh4UE2wxvsUA87JM9ETjg+fbeJzunRbm4dGsFchWQyKSEPZows38MwIc6DoUJm9SR9zw+NHBoidl4BuspZKUorN3qeusRqc3MzhoeHRSnXFf+CwSDC4bBUPgLWKoz9X+nsbRkul6lVq1Ukk0kcOHAA09PTWFxcrLtzCAA+9rGPWW4d37VrVx3SVSgUMDExgVwuZ0HrzARsKkJ005NezBA1HT9tl9OgjWpgLU+CNMR/Zr4O/5nhcLrps2r3XcCaIG6GcpghIXZnzTSkyFO0wWYah+bekfa4njx3xWJR7r0irbLELhXegYEB4Vm33367LX0wZCuRSGB2dtb2bpJrvXHd3nzzTfz85z/H4uIiCoUCBgcHEYlELHtCQ5F3aOk+qHiVSiWJu+cZIDBihlHy82w2K8YPAPFAkTZ1qDTvvgkEAnLmiMwz7FSHFDGEWYerMUE6lUpJyBpL45MWM5kMksmk3I2nS8uzCIquoMem6dguzJpj4Jp4PB4Eg0ExhKjg0YPDO5wASFgTFT96kbSSyPBP9k+ghbLRNBgAiFLIMEa3243BwUHcfPPN2Llzp+QqFQoFXLhwAd/4xjcseUTswwQv+PfL2ThnU+5relxYWBAZdPjwYczNzVn62Ldvn4R7Mwc6Ho/jIx/5CIDafnd2dsLn81nOA/k9DQSzmhlgzUnTxpE2bPS+2D2v19aOx5t805Qn+rvao2lWRNT6EO+Mo3Fs8mJtDJn6jjluu7Ga8pHP6WI3BByo15jzzmaziMfjUoyLOYvcd4LAfr9fwFy324377rtP5jY6OirzP336NC5dumQJgzWNNJPOG9H3lZQB1z1DV6iZCrK2eAuFAs6cOYNIJIKmpibk83mcPHkSQ0NDwlx8Ph+2bt2KSqWCubk5OBy13J/29na0tLQgHo9L/9rAoGUPQO6n0AgJETMAlpA5Vt3h4eEB1AmzPIAALP1S+GoXtkZxdMwt+2YYCY0Jjt1ERPhuvpNeFp2Xoz0A+ncT8dYMUedG8O9Uvik4dQKo3leGGPL9vFNIoyFerxfd3d2yNrxvhQUt6DUg49KueAASwqhp6a1ozJyn3bOXq1n6d9RofHJyEocPH5Z5cu5sPT09GB4exrlz51CtVhEIBCRhXCspq6urEi5nFgQgistGeiqVSpbiFBQOGvXWnhitGJiMm3tjho/pubMPwJp7wLw808NovovKFJXURqW52Y8WsgzD5Fy0wmGHZBLg0HPWzzAWX4d1Mfxobm4OCwsLEh5HI7RaraK1tRWxWEzu3rFrGuA4efIkFhYWLKhqHS1d5bYeuFCt1kL9nnjiCaRSKXR3d2NgYAA33HADXn75Zct+O51OqcKlK6Bp3s1crHA4LCgtw4SI1FJh5z5xT3mhJ0PDSHvkrdqIZ+UpXgdgGslmKBuNBp1oTUW2Wq3KFQHmmDSo5vV660An0iCwBuSZ4Jk2hLRhR17BfSCo5nQ6LfcJVatVUc4o+zSgogsx6DWoVCpy55ndvlOGMLSRSuWNN96I7u5uBINB6Wd5eRl/93d/hzfeeMMSFn216Zzj0J4EzZcSiQQSiQTC4TBee+01uN1uPPLII6I/uN1uPPTQQ3jmmWdkPtPT0yLbgJpB1N7ejkQiIXyCHmRWPqThpY0IHSap9QzTqOHvpoeG+U46pF2fNTuwiu/jmtAjq/dLrxPfxed1dAn/rqMN2ExAjL8DVs+O1qXs9ozj0DRrepY0/9agBsPjAoEAvF4v0um0jJmys7W1VYyhgYEBMYCi0ahl3QhMRyIRKfpkN1dzzle7XTeGrnDTh04rHktLS0gmk3InxWuvvYZt27ZZcoc8Hg8GBgYEMdy2bRuy2SxGR0eFoNk/38G7K3iYiWwxn4gHkwgiFX8m8TLJ2jy8FHoaPaFg1rHrnKdpHOl+tMAE1hQ4k5HYeZXs3MkaYV1v7fX3Ta8Wky+1B0HnufA5GkxkcrxkUVfDcjprCeRcc7fbjY6ODkkqZWy5zm1ZWFhAPB6XMZkonB6D/mn+rps2ki5XM4VKE5pQRBHNlWbE43E8//zziMViorwMDw9LIRCfz4dPf/rT+Ou//mvMzs7C6XSiq6sLU1NTFuOyVCohHo9jYWFBku75mV1oBfeBRjOFKxU5M47aDMUEUPecnTKs6ZthR1S6+E6eER26p/mALrRBY8jO26mVARMZ1T+1MAfWqsfp/eKcubZaaGq0UjdeHDk/Py/hUlQ0K5UKvF4vhoaGEAqFsHHjRvzu7/6uLb1QuUylUnj11VclTNccnw6Rs1NcrnRrpDyl02kcP34cPp8PbW1tyOfziEQi2L59O44fP27xNDidTnR2dmJpaanOIOcepNNpAUuoTAFrYZcEgzSv4ufAGkhlngttXJBXM59GG0SAFZ3XocIcD+ekvSv0yOhz5fP56hRZzf81nROl1mts0iKNGW3Q6FBrbQjxM54/AoxmoQa9hhwnUDPOKBtNIE0/q/Oz+vr60NbWhq6uLgmbLJfLOHjwIF566SXxCl1LCqEJhpgycWxsDN3d3XC73Th8+DD27t2Lm266Sb7f3d2NnTt34sKFC8IzSX8sIBKJRNDV1YXp6WmLMe/3+9Hc3IxkMolcLof5+Xl0dnbKmmqjn03Lb9NQsAszNsFg02tv6hF6v7WhqL0wOnKFdEBdQYNzPNM678k8Y3wPv6vnQ36s58Y+dUifPtO6D90X/08gF6iF8be2tlq8Ypy7z+dDR0eHADGf+cxnJAxUV4cFgCNHjkgeHHVSzs2k9bejt1ypdt0YusqNxEzX+Y4dO+TejSNHjmDjxo117k+fz4d0Oo3u7m709fUhmUyit7cXFy5csBgWPKhM3OVBy2azFiFDBsGcIsZ1c3xaiWfjAdTIPA8QDQNdIcxUxO2UGaLtNCRMRqLXgWPgwWcpVT1G/R47D4mp1PIdZqlXKh58Rv8j43A4HBL2srq6KsqvNn64zn6/H5s3b5awCTN5uFKp4MCBA5a8mrdbPMFu7np+l1vw2u1rU7UJRUcRnqIHY2NjOHjwoORDBINB9PX1Wb73V3/1V/jqV7+KsbEx3HzzzUilUlheXrYIo3w+j7GxMQQCAUHOs9mshM5RGGlDXK8D94z7pIWqRsK1oWx6ckxlQXtLs9ms9EuEU4crmRWqqMRRUJIO7BBM83t8PwCZD2AtJEKDkTRpzoPj10i1iX5yDLlcDul0GolEQnJVGP5DBHZ0dBTt7e3o7u7G+9//fsRiMVt6YVUwxpe/VSjo1RaYHIM2OvXfyMe3b9+Ojo4ObNiwAT6fD/39/fjiF78o1SE5D3p42DSfIp0sLCygt7cXbrdbFC8q9Az9BSBGAOkPWDNAgLWwHWDNsNEgFZWe5uZmS4iYGTLFM8J++Dca9xw7P9O5qqQlEwDTa0K+aiLi+jssMKEvkeUZotxg+BuwdmdZLpezFIvg9xiuxP71vIvFIpLJpCUk3ORzbrcboVBIzno4HBYjiMZsuVzG5OQkvvGNb2BxcbEuT8SOzvTPK9ns3kmvFr3y1WoVJ0+etBhDAHDTTTehXC5jcXERABCLxbBlyxacPXtWQM7R0VG0tLTg9OnTUs2WSfnBYFBKz1cqFXR3d4t81B4iYK0kvz43pmdZe8NpzJt824wgMY12DVppuqThbl6pwegQEzTRdK3BXja+V/elo3E079Hj1uPR89ZroufENcxkMmKk8soPelW5vqFQCD09PcJn/uZv/gaFQgEulwsdHR2W8R89ehSTk5NSyl7rLVr3MOnrWuDr13OGroFGwpydnZX7WCqVCsbHx6X8KQ0EhldRgd62bRucTqdc7manAOvwLQoHnQithQyZEQ+kedA1IgmsxbmzNDDD+vh9rVDp582fnA8v8tLIIbCG7millt+lgUgkRCuGdvkdOtxNG6OMj6chSIRHe8e0sKcAJSKkE/K1Oz4UClkute3t7ZU9KJVK4pXTCufFixctyjlDCtgn9/Zab9z7pmoT8pXapYevv/46xsfHcfHiRUxMTNSVagVq5bbD4TACgQD27t0r9wuxT6LmrLjHfUgmk7IfJl1pLxzpkwqnRveYh6NROFPgkBb19zWN6r9reuTFr6urq1haWpJcChaGoOdWV3DUCqdGNbX3xi50QiukQP1dMOZ4zcpdbDQMtWKZTCYxPz8va8R1czgcaGtrw8DAADZu3Ij77rsPoVAInZ2ddXu8srKCU6dO4cSJE3jllVeQSqXq5rEeXV0LzU6op1IpvPzyy9i9ezdcLhdaW1sxMjKCP/mTP7HkZ9Iw0Mo8+bCmuVwuJ5X6dH6PDmvT+TdU/hh2rPdZ0yJDRc3QX5fLhUAggFAohHA4LBcjM8eIIU1+vx/BYBDBYFByj6gcJpNJLC0tIZFIIJlMShh0LpdDKpXCysqK5BMwp0/nW2pFkTRLBTIYDCISiYisASChnFxTfVVBNpuVcET9Gfs2ZRzPKcNNmcNiAmEcq9vtluquvISU5dM3b94sRqLT6cTPfvYzHDp0SOZjKrAmXV1tOjfHUSqVcPHiRaGrU6dOSX6Pbnv37kVra6voFDfccAPa29tFd2hubkZ3dzc2bNgAl6tWFITeBNIWI1Tm5ubqDFUAFh6mz40+T6YBofmf3gPzfOg5A2j4ubk+PLf6LPN8aXmjwQz2z/44bhrpZolvvsc0dnQJcNPg03TGsRCIAmp3b7FYC6t5Uq/ctGkTgsGghLdOTk5idnYWS0tLdftOsMfhcGBiYqIuJ47NDpy+2rR+3Ri6Ss3ceAqvM2fOiICbmZnBxYsXsbCwgGQyKd6bjo4OcbsHAgF0dHTA6XTKDdFm/2Qq/L4ugsBDpmOwGX7QqFgCGZxO/jWFrFnHfj1mohkU303DTjM4fYDoCeJ9ErpsuC5IoN3igDXkQ987pO/O0O5fnRvCsfJ5CtJKpWJRBDRq4/P5MDIyYinTHA6HpXiD3+9HT0+PrEulUkE8HkcikRDGZibtNmIub4fmLjfDaSRMqtUqmtCEXCWHRCKBgwcPYn5+HvPz8xgfH29oEDkcDkSjUezcubPuXq1KpYJUKoWzZ88ilUqJ4CCiaKJ8gNWA5r5qg8I0DkwjRwsp3mjPOyZ0yWIdjkShTTqncra4uIjp6WmMj49jcnJS7tkwhZg2UDT9amHPubFpL6o2jvQ9R+actEA2PUNameCdQiySwLNEz8Lw8DCGh4dx2223IRaLWW4lZysWi7hw4QJmZmZw5MgRi1fIpFOzitzbofXL3dY7R+Vy7X6wz3/+85iamsLKygr8fj/27t2L+++/XzzIVJRo6JPXmsZvpVLLz5qenka5XBbDHlgrBqAro+kiAjRAtKFr0o1pGGngh2Mkv+JFpgQWaBBRkaKhQ0NNV5FjQvXy8jKSyaTcKWPKAc6DQBTlid/vRyQSEcWMa8OzB0BAOYfDIQU+yA8I9GlAUBcFoQKok905TjuwgeciEAigs7MTwWAQbW1t6Ovrk6gNXhHAcKTHH3/cUkHQzui5Wkpho/eaf2fCfalUwvz8PH74wx/afm/fvn3iqR4dHcX27dvlMuFqteY94VoR/NEeTYKbyWQSk5OTAghqXq692fybCd5oHqpBL+1B0nzPDmjiP+1d0X1rLxLHQhCOf9fXEfA7Zjl5jkfzW20I8TyaRVT0WPV89PvYCMYRfGpqapLc3YWFBeHroVAIO3fulPuyWNxpYmIC8XgcO3furNtzn88n4z579mwdfZv8+1rg5WzXjaEr2N6KyVUqtdyhlZUVUV7279+PXC6HSCQiSafBYFDc1ABw5513IhaLoaury+Id0u9jJRwAFqSCiowus0p0Rlf64fhMxMM8lObn2itjClk2zcD4nH6WpR1NQ47GBtdFl41l0wxQh0Poynp6DPQyEcHSCjOVXzIWGkZkoPqCNwBy+7ZmEM3Nzdi6dSuGhoYwMjKCrVu3CoLGZ+bm5iRnq1JZK5ixHi1dbVRFt/UMIlRrSsiZM2dw8OBBfGDqA7h06ZKEeOpGJsyyrH19fXXld8vlMpaXlzE2Nib3hmihYBpDejy6ihwFq1ZETSWNdEQFUxvFpqdFC1QtBLPZrMTEa8PLBCVMjxDPKT9nfzS6G+XXmQaOVoQ1AqmFvz4vei6FQgErKyu4ePGiJbeH++bxeDA4OIgbbrgBd911F4LBIFpaWtDe3m7Z10qlgtnZWVGSDxw4gOXl5TqP1G9K0wKfa5XP53Hw4EF87Wtfw4ULF+Q+n49//OO44447pPyyy+VCd3e35HXaGb+kTZYepyeIRhS9HwyzdDgcwg+BNdRY05hZWRFYu0+EIaza66L5pB3o5HA4JAxN76NpXGvvKys8si/tHSdNs8hKa2srwuGwhMUB1tLXVCw5Zxo6lcpaxTgabfw8k8lYclZ02He5XBaPLeduR5tNTU3o6OgQAzQajaKzsxMbNmzAvn37xDDL5XJ4+umnceTIkbfNu6+2UWT3fsreM2fOSDjV6dOnG/a1Z88eADW6uemmm3DXXXeJYUA63r59O3p6euB2u4WvOp21qz9oPGUyGUxOTkq+tAn8aGOV77Pji5oP0tukIzB0aLSOBDH7pV5jRoyQzs0iO/pM8/0aOOY5IphBEEDrVtRRdNSJOTbuEeenQTmOjVeoMNSNBRDi8biAkozIiEajCAQCAjoDwKuvvor777+/bq9zuRxeeukllEolzM7OSsXYRvL3WmvXc4ausVYqlXDp0iW5wTeTyeD555/Hjh07hKCYhOhwOCTHYNeuXXC5XEilUpicnBSFXCMVPAShUMgieOmmJoOiUaCZiVaetKKpPTZU0kxDxwyLs3PfamVPo4NkNDpWmMI7l8tZUFWgPklQo8wcm4kiaWamkSf+nyEYZNIcD5Vvl8slY9fo4uDgoIQcAjXBec899wjT4+V8REH5zNTUlKxXuVy75O/XEZhXgwGZnizx6FXdKKEET9aDV155BR+PfRx3ee5CpVJLujfvofnQhz6E/fv3o1wuY9u2bUilUpZ4e9JEIpFAsVjExo0bEQwGRQDosAk7DwqNdsDqTQFgEXBs2oDRz2mhpfsyP+OZ5TnTHkWeKxojmj55RqlQAmvha6agMY0pnk02E4zQnlltPGmliPdQnDlzBvF4XIww7gM9oBs3bsTDDz8sd1HouyfY1+TkJKanpzE5OYmnn34aZ8+etQ21AaxeoWutmbxC/43gyKuvvoqVlRWhpWAwiPe+973IZDI4ceIE4vE4WltbAUDQbyLAWunhfqTTaczOzgqaHggE5DvcQypZmvbtFBL2qXm5Vv5Mpcvk+2w0xuzuQWM/+t2kMQJ09HRpYMIMG9ZrrQ13u7OqzxeReb0/VLh5JngOdR/pdFruw2nkjXQ6nQiFQpaIjGg0inA4jJ6eHgkLK5VKWFlZwbe+9S1LQnkjmtI/r3Yzx8H9SCaTSCQSCAaDiMfj+Od//md88pOfrPt+NBrFHXfcgddff12qkPX19eHixYsoFApifO/YsQOnTp3C3NwcstmsGKaBQAAAZM/m5+eRzWalsAJgrS5r0rgp1xudVx1Boj0zpqzQniH27fV6LUAWgLrIGOo0Wlfi+Ah26fGR5zudTgk/5mfk0/p82oXbau8v31csFi0VLOkRyufzcl+l1+vFvn37EIvFLPKFURff+973bGnlsccek/G88cYbyOVyFt5lR9vXEr1fN4aucNMKmT5smtHH43GsrKxIZbk333wTi4uL6O3tlQNGBCGZTKJarWJgYABTU1MYHBzEysqKMHLzQDORlGEWfEYrZRyPRj6ANYRaI+h6/PTs6KZRP30wuBY8tFQCmf9huo6Jquu4WXq06A2zY9x2iIRmfvozE0GhgUa0k/0xVIjGEQU7jS2v1yv3i2hPFcOFKpUKotEoIpGIxNrr1tXVJQqNw+HA4uLi22YW1wJTYbNTFoFfGkSVEjwpD3784x+gdDRSAAAgAElEQVSjWCzinnvuEY/cwMCAPHvXXXdhbm4OL774IqrVKnbv3o2DBw9KQQXtvUkmkzhx4gQymYwYVaRzu3GYXiNdac2OeWvaAGD5SZoC1pB0hnLqcsRE/Zj/wQR3TT8auST98BxxrmwUjCZoYfIZk/614Wd6fPV8iZCPjY3h4sWLltw1Te+bNm1Cb28v7rvvPrS0tCASiSAajdYhqwsLC7h06RJmZmbw2muv4dVXX7VcGv2b2sz1BtYSzp977jm8//3vl2c3bdqEhx56CLfccgv279+PsbEx8Q5PTk6Kwqz71HtLxLWzs1OqounQH6K/9PRolNvkk6bCZCqNGmHXiqU+ezRqzOI95jto5OvPWJxA56KS1vWZNc+69nrycz1ejcqT3vl+XRKcyLyWv7y3TgMe7IfzdzhqIaHt7e3w+XwSWt3f348NGzZgdHTUcv/MgQMHcO7cuTqw7lprjXi2/pzgyLFjx9De3g6n04nXX38dX//61/Gnf/qndd9pbW2VMMpgMIi9e/diYWFB8nNZ/n3Hjh0AgMXFRWSzWYkEodeURj91no6ODktFTu6pBhJNRdyOrk3wU/M/9qeNc1MekI4IjJp0ZUYqaJ5YrVYF6AKswJtp5FA2aE+oOS5z7yhbSP/pdFry0lnYI5/PC8DY1NSEm266Ce3t7aK3VatVMaK07NHthRdewOTkJABI6LeZF2dHS9dSc1SvtRFd4209RvF/6cdUyHgA2tvbsXfvXkmu7+vrw1/8xV8I4wWAmZkZHDt2DKlUSpLsn3vuOSSTSaysrODIkSPi5tcGgGbmTLjVCAmwVmKXAlWHoWmhYCqMWhBp97P+jvbuaMUqkUhgaWnJkrsTjUbhcDiQSqUk7IHf4zoxBt/Opa3fwd+1sWMmwGuBy/8zzKJYLMolnmSCXDugFiY0NDQkt4wz74rhcZs3b0Z3dzd2796N9vZ2tLW1WQoDADXl4C//8i8F4Z2ZmcGTTz5pydnSc/pVmcyve9yrqMIBqwH/dlojY6TkKMHr8qK1tRUPPfQQdu/ejf7+ftx+++2CmLP94Ac/wKFDhyRn5aWXXhK3von6ud1utLS0YNu2bejt7ZV7V/R5M5Fv/XeGatoZB9poNmmrVCqJx5JGLvugsprNZjExMSH0xd+7urrQ2dmJlpYWidE2Cz4A1vw7LRwbKbvrNW08cfxMzl9cXMSlS5fkBnH2zT69Xi82btyI7u5utLW1YXh4GFu3bsWOHTvQ09NTZ+S/9NJLmJqawrFjx/CTn/wEJ06cqDvTuq3nFTKfteyDotEr1UxQC4CF/+3evRvf/OY3MTo6KjxhamoK6XQan/nMZyRsMp/PY3JyEvF43ALA6LXXSHgoFEIsFhPFWxsd5GHk69rzYoJN5IXl8lrZdy0rtFdfG0eVSkVCmLShrBsNMg0qsWm5wUIb2qulFUAdvcDv6ZBq85wyn0/fc2KGJmllLZ/PY2FhwZJPYjbKg0gkgr6+Pint3dnZiRtvvBG33norhoaG0NLSArfbjWKxiK985Sv44he/+JYXrK7H06900/RsKtmaDnw+Hx544AGRdf39/fjsZz/bsN/nnntOctgWFhbw8ssvI5VKyb4ANZBzamoKFy9elHB4DdbqHK7m5mZs2LDBQtu6kWZ0UR1TBmivkGk0kQ510SWeU50fnE6nhdZYNIVRIeSp+iw1NTWJ5wWov4CVtKHPJw0aE7TQ1Uo5F0azUF9ZXV0VD1NLS4tcATI9PS2FRfr7+7Fnzx4p40+eUSqVkEwmsW3bNnzmM5+p29MnnngC09PTSKVS+Kd/+ifMzc1ZyvM3oud3gt7fybNy3TN0ldp6CEy1WktETSQSkm8yPT2NxcVF9PX1AVgrANDe3i4JmT6fD11dXZJjtHXrVrz++uvChDWCTKWsUqnUVTgycyiYIG5XmEAj1abBpQ+CneJpKkFm+UydBOnz+WyRRS3A10P/gTXGqJESM45Xz8NEKePxuKCKWjlxOGrlsoeHhyVkguV0mQvR29sLl8slBlVXV5cgXro9/vjjMvdKpYLp6el1GcpvcqtWq3DDjVK5BG/Cix/+8IeYn5/HnXfeibm5OYyMjODd7363PP+BD3wAhUIBZ8+elUTqp59+WpJuTbpYXl7G4cOHMT4+ju3bt0tIAD02uvw2YEXgSQ+mkaENadPoYM4G+9JeGwCiyJEGGfLE8KJsNoulpSVs2bIFACRenuMww/jMcCE7Q289o4F9ZLNZKZFNrzIr3VFJJ0LI9zQ3N2PLli0YHBxENBrF8PAw2tvbpYqWaQiVSiWMjY3h1KlT+PnPf46TJ0++Y4bQtdJMz4E2MN944w186Utfwuc+9zkpU8twoS1btuD8+fNSkn9oaAhutxsLCwuWPDqTv1YqFVEkGW6rn6HSxnHoJGwznFkndQMQA9wEGbQxzHHoPEnduA5mX6ZizT6Zc0QPKHmr3fzNkGs2ni/mUGmezoR2M7mec1hcXJTwVBp6ZnM6a3fJ9fb2SghcsVjEjh07sH37dglvZ27h0aNHsX///jov07XetH5irrFWYguFAg4fPow77rgD1WoVs7Oz+Nd//Vf84R/+oW2/7373u/HYY49JCNXw8DAuXbokl5Yzj7O3txder1dCaAuFgnwWCATkclaCB21tbRKaa45Z6yIEAjSoq5sJjBE00PqFHR0Xi0Xhl/RKMYUBsN6HRANMj4nv4LOmbLEDdk1gQj+by+WkUin5rNNZu0+SFyLPzs6KB7m3txc333yzGJ0sREKQmncLme3pp5/G3NwclpeX8Y1vfEN4lqn//Sa068bQVW4mcWvmzNhwHoQnnngCjzzyCAKBgITTAUA4HEYqlYLD4cCNN96Iubk5VCoVtLa2IhqNCpPXCDIPHIVlKBSyHHiTWVCoU4hqFIJjJxOoVCpiMHE+WohppdLucLN/n89n8WoFAgEJx+DzdKebCYuaYWulxEx4B6ylk6kQ6NA+Cmoq3aaA9vv9GBkZkfhmp9MpLvzW1laUSiWLZyIQCCASidR5ssrlMl5++WUx7pxOJ8bHxwFYw0TeqtkxzqvZGhn9uuUqOXhXvXjxxRcBALfddpsYL2zNzc342Mc+hjfeeAOHDh2C1+tFPp/H888/b8lX0Ocol8thamoKS0tL6OrqQk9PDwKBAPL5PGKxmEWpqlPIf0kLOj4bQB2jL5fLFqTQ4/FYqiNqmi+Xy1I4IJlMyvkLBAJScWp8fBzDw8O292aZ7zeRZTMWXdOCKVRpCC0uLgpqePLkSam+pb0QWqlkWNzo6ChisRgGBgYwMDCAoaEh9Pb21t1IXq1WEY/Hcfr0aTz77LM4fvy4oLt2NHot5wmt17QCqQ1Wh6NWCvuxxx7D/fffj9/5nd8BUDPKh4eHpUAA8wO8Xq/c7r6wsFBXWEKj9ZVKRcKGtEFEnsmQTO1JBGABgUzQShvxpCM9J41WU+nS9KHH6nSuVWdrVGaXfTMUhwVx2J827jVN6jVmMQWi85wXUXhd1ct8Lw0heg8aNQ16+f1+S1RBf38/AoEAWlpaJJ80Ho/jP//zP3Hu3Lm68KJGIMW1xrPfCrQtlUqYmZmRu7AA4PTp0/jZz36Ge+65x/Z7o6OjOHr0KIrFIsLhMPr6+nD+/HnxjNAwiMVicDgcUqxBh897vV4Bn1i9MBgMStii6S2kLqLD9k2AVntc+HfNRzVtE6zkd2j8UjdZXFzE0tISfD4fQqEQQqGQFPDge3XuD8eqy21rzy7HQHmgQWgAlsIohUIBc3Nz8l0aN9FoVML5ZmZmxBAaHh7Grl275MwRXCmVSpienkahUMC3v/3tun2kpz+dTuP73/++eFXN3FO9xpp29M9roV03hq7RVqlUsLi4iFQqhUgkAgA4duwYjhw5IpealctltLa2IhQKYWZmBul0Gs3NzbjnnnvwzDPPoFKpYOfOnThz5oyUwuVhJ3OgEFleXkYwGJSqONqgISqtiVwnaANr4Qomys7ftTdFu3r15zoBmCEMVHIpzAKBgLjZtQCtVCqSc8L142HU47RDvDQ6SYbJeXNtaAhpxcDhWCslHAwG5e9U/srlsuSMMJSlo6MDW7ZsqVP0AUglFq4nY6cbKY1v1UzF7J1mPI0Y3a/SStVSzTuEUs0gSnnx85//HPl8vk6pZtu5c6fQ4+rqKpLJJI4cOWKpwKfHRWP20qVLiMfj6O3tRXt7u9xnoXOF+D0T3bcLE2u0Hgzt4BnQhkU2m8XCwoLEbjscDqkqODExgbGxMcTjcUuFxPUQTAp1fT4pYE3EUAtvhvMtLS1JQQRWi2s0L6ezVuFp586d6OrqkvyI7u5uRKNRyYMz29zcHM6cOYNnnnkGp06dsniEzPZWhtC1JDx10/Ri/p0tlUrhy1/+Mvbu3SuFJVwuFzo7O7GysiKhJeQbGzZsQLlcxsLCQh1N60YPEQEwnauiFT4ThLJTWEgH5H861NMEb5h0rcOWNN8nukyZQkWpEQBYrdYKRPj9flGEzaZD5yiHCC5omaQrRWrF2JQJuVxOwABzfU2DwOPxYNOmTVJVi2cMqCmuVHbpsTh37hyef/55i3fPjhdfqzTdqJlypVAo4JVXXsF73/tehMNhFAoFPPXUU8hms3jf+95X9/0dO3YgnU7j0KFDlmIJ9C5qIzYWi2HDhg24cOGC5TJQ7ofL5UIul0OhUJBLoEOhEKLRqCWXWAMEOs/GzttjGkN24CLHR72FHiHtcaR8cjhqF7KbV46QJulFAmDxWmoPpaZdzsnpdMq7k8mkhOoRsOZ7PB4PwuGwgIczMzPiadu2bRs2bdokehNQA8KLxSKmp6dRKpXqSqcvLS3h6aefltL1jz/+OM6dO2cJjftNbNeNoWuw8fBlMhlcunQJ0WgULlftArnHHnsMkUgE58+fx9133w23u3YrucfjwdTUFJaXl+H3+zE4OIgLFy7A6XRix44daG1tldueNRpBQ4cISy6Xk5u0eaDIVGg46XwfjdJppUmX3WYzvTVawDKxleiIw+GQ5FoaOiyt6vF4pLobDx+TMTWj0YzJzF3SwpEKAJVYrnWhUMDS0pIg/trQ0h6hSCRiYQCMsS0UCggGg3IDdyAQQDQahd/vt933F154AeVyWdzY586dkzAlrWit5/l5KyTmcrT10MP1xgQALrhQrpbFIGL89csvv4x0Oo0HHngAPT091u/8Mgejo6MDzz77LDKZDFpaWnD48GFLzpn5foYypNNpTE1Nwel0WsIrNE3o9TYVF/Pvmu75064KY6lUwsLCguXuE7/fjzvvvBPBYFBu856amsLc3JysWTQatVwSbKdMsjEUlIKfwpTIIRFrlvBfXV2tWy+t4LHvpqYmtLe3Y/v27RLeGQqFMDo6KueS3g3dtEfoxIkTljtWbFu1lvPDuf3/0DjfcrmMN998E/v378ef//mfy+d/8Ad/gO9973s4duwYpqenxaj3+XzYtGmTXFqq+wKshgcN/kqlIiXpTUUQsFZdM+ld90+eVywWbS9mLZVKiMfjUlGT4yHvJzClxxAMBlGtVoUGzHfynCwvL0uuqB0fI43zqgNdHlxf52AqshpJr1arcl+ONoTszjzPEsMbuXZEz1keure3V3h1sVjEj3/8Y8zMzKxrIP8mN71vmUwGTz/9NO677z5Eo1FUKhUcOHAAq6ur+PCHP1z33X379mHv3r34h3/4BxQKBfGMa+81Ffmenh5EIhFMTU1hamrKAuqafJsyO5lMWu7DMg1jHQ3CuZhngX9vZDAR/E2n08jlcpJL5na7LbnFTDMw6Zm8WetU1OX0vYTaIOI4ODZGEBEM4frxXi56ohyOWt41L8pubm7GnXfeaQFP+L1SqSQViX/wgx/U7d1Pf/pTCUP97ne/ixMnTliKt7wVfTc6Y+bfrnS7bgxdxbbewSPznpycxMjIiDCYRCKB733ve+jq6kIgEJD4TLpBqdTv2bMHqVQKCwsLcDgc6O3thcfjwfHjx+VuBR4A5unw4JZKJXR1dVmMGQoZ5llooUqkmYZMo4vE2Cg0NcqnvUJEumlQaKOLrl6ijkRSzfAPE5kHrKU3TY8X14FIfLFYRDwet5QxJlOim37Dhg2ChJdKpTrXPFBTwJlLEQgE0N7ebin1yvZf//VfmJiYkPnn83mcPXu2jglqhqrR3fVo7HK3X1dpdcEFVCEGUTOakcvl8Oabb+Kpp57C7t27sWPHDkseCg0ZMvvW1lbcddddePPNNzE+Pl5XqlkLO3oTX3/9dbS3t6O/vx8dHR2WW+tNwWUaIaYBor+jlUDSHsEGnYvT1NSEe++9V3JsmpqacOONNyKXy2FhYUEuYt24caMkluu91/yCCGEqlZK5c72Yf5hIJCQ0TwMaJnIKrJ1r5r9t2LABfX198Hg8cuZmZmZQKpXg9XrR3t5uMfLpZZqYmMAvfvEL/O///u9bGkJllOF8i6vv7Lwv10pbj5+z5fN5/Md//Afuuusu3HzzzcJL3vWud0m8/tjYmCh8vLvp7NmzYrSa/WqDiBeZxmIxqVRoyhU7RFyPmT/Jk7WniO/RSekM3dHhaOS/pVLtgkd6OamYMqlce5QoU+hZMUP0GOas78UjnTJM2pQ7/K7Oq6M3KZFISPVU/ayprDkcDgvvrlZrIYk33HADpqam0NTUhJGREbhcLunz5Zdfxosvvlh3zn5Tmp2xaqew8vdSqYRUKoUnnngC73//+9HR0YF8Po/XXnsNKysr+MQnPlH3DpfLhTvuuAP79++3GKQa9CF9BYNBDAwMoLW1Ve45454yt1KHR+q8TN5TyAuCWRDJTl6b+6QNaDtveyqVwuzsLADA7/dLuoHP5xPgrVKp3avm9/sF2Na0zb40eKbBXDPHiEYfq3zq8H3qX6FQyBKOl0gkxAvn8/lw//3314XnNTc3o1wuy4W63/rWt+r2bHp6GslkEouLi/j3f/93TE5Oyjm000UagbLX4lm4bgxdI81OYNHyP3bsGO6++25RkmdmZvCpT33K4tokQ2htbUUymURTUxPuu+8+/OhHP8Lq6iqamprQ1taGm2++GW+88YYkIJLZaDSYhgAveqXyoyuq6INsJ2jthLU2TDTT04KRwkrfCs5xMcGYLl+NVvIwasXULG2pBSLHQGagEx2LxaJ4GHTMO+PofT4f+vr6EA6H5XkiQ/RcARAmvG3bNmGEdmFEAPDaa6+hWCwiFAqhVCphfHzcEiJnKoGaadt5jUzauhZaI6EqCr0KmWsqNyGTyeCZZ55Bc3MzWlpa6u4g8nq92LVrF958801UKrX7Efbu3YuRkREcOnRIyuPajaNSqYhnZHZ2Fq2trRgcHEQsFrNcqGeGVJjGCA15voc0p8P1aNhPTExgbm5OSmbfcccdkudBRbi1tRW33XYbDhw4gNnZWcTjcQmV7e/vRzgctpRop2BkBUmCGVROVlZWLBdL2illem4aXWxubkY0GsXGjRvR2toKv98Pj8cj59Ln8yEajaKvr6+uYMLc3BxmZmZw6NAhfPe738WpU6ca0mEZv8zdqzY2hEwab2SYXu1mZwCZn4+NjeErX/kKvva1r0n58aGhIQFlmpqacObMGUko7+vrw9zcHBKJRF2+jF3/uVwO8/PziEQikpuo972RsQ/UV8XTNK6fJc/UBhefpdeGfJ1yhhfF6sqkZtERoMaDiXRTxtFAsqu2ZeaLcn52MqpSqcjlkuZ7G9GU3++XUCLmrTz88MMyz3379oliSQX5Rz/6EWZnZ+vOnLlv1yodA2/PuOffyYuy2Sz+53/+B4888gj8fj8qlQouXLjQ8B233HILRkdH8fnPf17WSefjUObS40g5MD09LR4ZHRpJfqhDQekVT6fTWFpaQiAQQFtbm6UKLc+DpiHODbAW72AkzfLysnhQGMJPLyrDnN1uN5LJJIrFIi5duiQha7okOMFXAq368nlzjQlYX7hwAUtLS2KsNTc3i6Gn5QLlQaVSEV5y2223SYgdsHbPVrlcxuzsLEqlEj796U9LOCjbxMQEDhw4gOnpaXz961+3GKS/Cu3aPXst0P51Y+gaaHbKiTYC0um0hA7wkDJmlcTv9/ulzDAPgc/nw0MPPYRnn31WEuoCgQBuuukmHD9+XOrG06tBZsCQC4Z5hUIhCZXTiIbJGE1F0fzMRCmBtfuDWJaV6CZRR70WFDSFQgEtLS1SJ18nHZqeFB5WXUEOsF5YqRkfFUuGGumb2MmMOzs7EQqFLGiNLp9JRhiNRvF7v/d76OjoEMWkUVtZWRHEqlwu4/Dhww3zKuwUovUQ82sZTdfN7agZQu6qGyVHCc2VZhw6dAjd3d1yA317e7s873A40NfXh4cffhiHDh3CqVOn4HQ60dfXh/b2dhw/fhznzp0TtFw37jtR5tXVVSwsLCAcDqOtrU1yvYggUpHjvUU6PEfTCvumAGJy9tjYmKDQXq8XH/7whwVRp9ILQOLk3/Oe92B8fBzPPvsscrkc4vE45ufn4XK50N/fL1UmWTmL/3g5oV3SvKl42SnEBEcYAkePmd/vx7Zt27Bx40b4/X6srq4iFAphZGSkzhBaWVnB+Pg4Dh8+jG9/+9s4depUw0tV2d6qYMJvAv2+nUaA66c//Sl+/OMf44Mf/CBaWlrgcDiwYcMGCfX1er04duyYhKndeOONOHjwoITCsS8TgOLf8vk84vG45Z4r/ZyZQ2P2p8OI9Of6+/SAUuFkVUIzd4A/+UxTU5N4Q3V+KGA1iLTnhwaZpoNGleX0GHVeBtF0ovV6T0yDiD89Hg/6+/tFWXS73bj33nvR2tqKcrmMnp4ebN++XQy+UqmE//7v/5Yqrnbr0IgursX2qxhEbIVCAY8++ig+/vGPi7Fx+vRpbN682fYdsVgMn/vc5yR0lLyU/JUGEQEjr9eLtrY2AWqZ5K/5l8PhEN5u5skxMoDylgAT5bYJHmjQlsDW/Py88Fmn0ymyQYfp81oUp9Mp0QAnTpxAf38/enp6pLy1SYua1k0P6/T0NObn5y33QXo8HgSDQclh0uXHeUYikQjuvfdeS/isjvTJ5/MYGxtDpVLBF77wBezatcuyR6+88oqAjl/60pcsVSrXo931dMJrrV2/Z+hXbOuhfu9Ef3ZMnUn6JNBKpYKOjg78/d//vUURKRaLyGQyOHnyJGZmZgSBKJVKOHDgAI4dOyahKpVKBZOTk5iYmLAoKnw3w8NodNEFzDhUu3AEcx52aCMPBQ2TZDIpJVA5fh40ojEaeWI/FKK8AZzhGXxWVxei4sp/RA51RTwagXahFxx/R0eHBSHXTJN1/P1+P3bu3Im2tjb09/dj69atCIfDYhA1an/2Z38mZbnPnDkjRQS4TlqpBRqjK3ZC/Z084nZ3uLzVmbBDXu2+Jx4i/NJD5CihxVu7K+hDH/oQtm3bhh07dkjyOVsikcDCwgKef/55TE5OwuFwSFLp8vIyTp8+bbkHxVROTPTPDLfhuCg8WWKewpP0w/u4nE4nMpmMvJ8GucvlwoYNG3DXXXdJqFAmkxHl16xwxCp1r7/+Ok6ePCmx5S6Xy6IokC5MoW/O0RReem6cazAYRFdXFwYHBxEIBCTnbevWrYjFYsJTGHLS3t5u4UHZbBavvfYannvuOezfv18qQdnRYKn6S2ACroY0+nY8nXX/vwr3DJnN9LCYvzudTgwODuL73/8+brrpJst3f/KTn2BhYQGrq6t44oknRNFbXFzEuXPn6u7z4e9mHgRQM7yDwaAYH3ZeNU0z/Myu8hrnoOlGJ3CziMHb4Tc8a83NzZa78xgSZN4LBqxV1zLnq3/XHiDOjxXvzPE1MlL4f7fbjc7OTgwNDYnXobu7G7//+78vSmQ4HJZkfZfLhXPnzuGP//iPcfbsWQl1XE9pfDuG0tVujejA7m/aCA2Hw3jkkUfE4Ni5cyfe8573NHzPd77zHTzxxBMAIHyW8ljfpaO9g4VCQYrOMBKgUqlYaJ05TaYxbepabNXq2rUe4XBYPFzpdBrpdBrAGr1RN/J4PBYeTt3C5XIhnU5jfn5eyofz+x0dHfB6vcI/OT7KBY6PF7+b92VxjcyKpdR//H4/Nm7cKCkVNCZpZFHOlctlzM/PY2FhAV//+tcxNDRk2Ze5uTk8/vjjSKfTWF1dxRe+8AVb+aJ/2q2pHc/6dds7eW6uG0O/YrucxpDd70RJOjs7cffddwtC1dTUhM997nNy75BuyWQSjz32GADIfQgM5/rqV78qzMLlcgkiMDs7a4mfNhELABIGRuGqy5WSCWrjQit2JDMiF/l8HtlsVpgUDSF6hPguIo92CCGZFsfEkI18Po90Oi1hFVph1IeS413vjiLOp7m5GSMjI5KQSeZMYUvvwJYtW7Bp0yZJsO3v75eSzhSgZjt9+jT+8R//EZFIBOVyGd/5zndEiaYxZBePa8dcrkVjiM/YjcOkeZOZEnW755578OCDD2LDhg3Yt29fXcnp5eVlLC8vI5FI4OzZszh37hzm5ubEoMxmszh//jwuXbokniITtTUVPdNzYjduHf9NAUklTz/T3d2NPXv2IBKJSPjB6uqqJcSCCpfOYaMgz2QyYvT9P/a+PEquusr/86qqa9+6u6r3NXsgeyJLMMCwKAICgqiABpVxcANnjuhB8OjPGUVAHBUdRmU4hEUjx5AIMaxBEwIJZIUspDud7iS9L1XV1V17V1fV74/m3v7W6/dq6XQnndA3p09qeVu99/3e7/3c+7n3NjU1ceI6jQ36DSJdR5wzInASvf+UJ0cGyznnnMMeToPBgFWrVjGdhDz6NpuNqarkHAFGgNAHH3yATZs2Yf369Th69GgaEBKfbyqVSqsclysYymRQ8vspAIYA5fEjvtdqtbj66quxbt26NEqMz+fDBx98gHg8jra2Nqxbt45Lt3d1daV5woH0uS9GiOgzAvHUIFSMFMmdA0rGDG1HupgMLzIOydkkrhdqv1vpmuX/a7VarpI9N7oAACAASURBVGwqji+6PhEAKRllRKkmFoG49pDQsUTatiikv+fOncvrSklJCW666SbuUUYOLrGE8QMPPICnnnpqzPPJBIbOFBNMzVaRbyP+6fV6fPOb34TVaoXBYEBxcbFqDyJgpKLqL3/5SySTSe5ZVlZWhhMnTsBut8PhcCAWi8Hv9zOwaGtr42pqXq83rUAHjXVaS0lnikUYlJ6PfA0Qf69Op4PFYmEQRPaD6EQjZ63VakUyOVIZuLe3l3PKyCFLIk8fkL8Wxz7RUwkYkh1Ev7WgoADz5s2D3W7n9gw0d6ngBwEwWjOGhobw29/+VvGZrF27losv/P73v+cm3NkAvtqcV9p2vDKRc2eaJjeFRFT0opAx19vbi8rKSp5wL7zwAu68884xhqHNZsPixYuxe/dutLS0cGTJ4XDghz/8IX7+85+zR6GgoABz585FWVkZ2tvbuSeRSDGggS8aZn19fdzFmxYsESSIJVnF30H5SGSgxWIxhMPhtKppRqMRdrsdkiQx8CHjjWh1pPDIS0SlIsngEwGEkiec3pPyEL1QQLpyMplMrMyNRiNzgyk6RI3GqPINGbZWq5UryKkBIQD44x//CKfTCUmSsH//fgSDQb5uudGuNm7kr0/lAqs2buXbjEeGkkMwhA149913MWvWLNjtdnR0dIyJDtH9o6iJWPKXFqalS5di7ty5OHr0KNra2jgHQ74w5ePBSqVSaYasWGSjsLAQTqcTpaWlXEWQFiVamIHR6m3EB29ra2OvNNFgCwoKuHw7AKaAhMNhng9iQ2G5IUb3hsCbyWTi6KXdbk8zkInzvmjRIrjdbp4nZrOZKaJms5nH5tDQEILBIA4ePIjXXnsNGzduRHNz80kDIaV7fTZJIpHA5s2bmXJIUlRUhBkzZqCzsxP19fUoKytDW1sbtFot3G43wuEw5zRmcpAAo7RhcjSFw2HWY+QkE/9EfU/6h8aTOG4pJ03JaSY6w+RGHo0DNQcVecbJSUDri1i4R+xhR2tKJBJJK91N1yq/JgBjIu0i2KP3FosFdXV1XBWvoqICl1xyCQBwbicVVKDcoXA4jBdffDGtMIT8vkyGd/xUiXiP5AavfDv6PxaL4Q9/+APuuecejq40NzdzHy25XHTRRTjnnHOwevVqLjF//fXXY2BgAN3d3Vw+myhdNpsNFRUVcLlciMVi8Pl8XGBBCXiT3UOOTNJfchq1/LfQ/uQkIn0p5qWJdgo1hyUHl81mY/BGhaFEp654rUoRXmDUeUvXTvqVokQOh4N/o0iPJWogbT88PMzls/V6PRYvXoyvf/3rY367z+fDP//5TwSDQfT19eGPf/wj/H5/RiCkdu+yObumwlw4aTAUj8exe/dubN26FXv37kVnZyf8fj8KCwuxdOlS3HbbbTj//PNV99+4cSPWrl2LxsZGJJNJ1NfX46abbsItt9ySNtDk8uabb2LNmjU4ePAgYrEYqqurcc011+COO+5IKyww1SUXQ5JyeMgIpElYVVWF/fv3j6FZJBIJ7gi/YcMGrj8/c+ZMSJKEr3zlK3j55ZfZ6Nbr9ZzIbbPZ0NnZyU1cAaQtPHJvM0V4gLHUB1pIKLpCBhwlxyYSCTbiiHtrMplQW1sLk8mEWCzGpX8JAFIEhhZM0etNYWS5x5MWYZF3LIIgKpcqKib6nrjERDchz6pWq4XZbMbMmTPR39+PAwcOoKCgAC0tLSgpKcHMmTNRVFQEl8vFzViV5Ac/+AHC4TAXTnj//ffTGsOKnnz5uBH/V/ruVEou4ziXY8jf6yQdhhPDMHlNWL9+PQoLC7mRrXxBdTgcnER6+PBhjvrRtUnSCA1szpw5bGy2t7fD5/Mxv1/pOtR+o7jwkROAKKQulws2m41pEGIenlhNi7yWBCiI8lFQUIBAIMDbEigKhUIIhUKKFQnpGkVQTwuo0WiE0+nk63I4HExPEj3nZPhVV1czBU6rHemFU1hYOKb/USAQwODgIHp6evDPf/4TmzZtUgRCouQKhCY6Cn+qJZPBSJ8PDQ1h586dXE2OpKKiAvF4HB6PB7fddht+85vfcM5KRUUFJEmC3+9PAwCip1sO7kUHEdFuSP9RMQNyqhHYGRoa4uRzeRRV1Lvy3yRSTel8AHhtoPWEwLvobJODItpfBFO0noiRTqX7TPaD3CgTC+nI96GoFDkJTCYTampqsGzZMvagGwwG1NfXc+SWqjj6fL60nlDyc9M1ni2AKNN78fNIJAKfz8fVbl977TWsWLECS5YsGZNvCACFhYXYuHEjfvjDH8JoNOKll17CjBkz4HK5EAgExjgMCwsLGQDY7XZUVlYiGo0iHA6jp6eHC+WI45X0HgEPsbouMGoz0BgkR5Joh4ifiw4AsdACzXFKRSBWAJXbBjBmnRcbvsvHqxh9onObTCaUlpby2kPrDrVIIUcIzZdwOMw28h133IGVK1cqPuutW7eiv78fXV1deOqpp+DxePIqmHCmje2Tpslt374dX/nKVwCA+1CYTCY0NzfjyJEjAIBvfvOb+M53vjNm35/85Cf485//DIPBgAsvvBA6nY5r01955ZX4zW9+o7joP/7443jkkUeg1Wpx3nnnwW63Y9euXfD5fFiyZAnWrFkzphLGRMlkLNBqlAJxAdBoNCgqKsLVV1/NydOXX345KioqsGTJkrTIg5gbc/z4cWzevJm9WclkEh0dHZwACIwuEJRjMzAwgJaWFsVEWPoTezuoRVzklVnIQy+WRRX3cTqdOOeccxg8kPdR9EaIFDux+SpdIykJWrAlSeIKbyJvVvR4kpeFok0EdIiqQeFuKm9MXvJZs2ahsrISGo0GwWAQJ06cQH9/P2644QasWLEizZOvJI888giOHDkCrVaLkpIS/OMf/8DBgwfZYyRGD+QLjtyjJEo2b/HJSDYKUr7zI9v2ZDgnpASsRisWL16ML3zhC5g9ezYWLVo0pgcRyaFDh/D8889zMQwAbICRoU7Vocg49Hq96Onpgd/vVyw/Ta/Fa6fFiZJRaUEiGgMtVpRMS/OMxhrtQ9Qe8nCLRoW4UNK4EL3uInAW5yvl1JWXl6OkpITLvorzTnQCaDQaLuNP+UGUK0j0PjKaJWkkL6ujowPt7e04ePAg1qxZw8USlIzAeCoOpNKLJeQLhnIa71OEJkci6nP5/xqNBkuWLMFjjz2Guro6jkADI79r//79XC79qaeeQk9PD+vAvr4++Hw+rhildM+VqE3yKKE834aEQJE8Oi+CZyXvNTkHRLBAY52i6qTL6biUeyRWPlSiKMk/kzu8lECgUl6d/P7QdbtcLpSWlsJkMsFms6GkpIR7mgEjuSxLly7lMvLUeLKjowPbt2/Hj3/8Y1WwI399phmLoiiNK/n34v3V6/W4+eabuQCLxWKB3W7HrFmzsHz5ctXz/P3vf0dTUxPrzJ6eHgSDQW7GTrrXarWOcZ4TYCYKfnt7O3p7e5nWKepWiuaL44H0Nelb8Xvanpp2U/RepKHSGCdngFjEiRwBANLsEDmwp/PTnDUajSgqKoLdbuc/ajFBv4PuFelsWl9aW1t5/Vm+fDnuuecexXseCoXw1ltvwe/345133sETTzyR5hBRinqSjBfoj3cuTOQcOmkwtGPHDqxduxarV6/GihUr0r576aWXcM899yCRSOCpp57CBRdcwN+9+uqruPvuu+F2u/Hss8+i7sOkLY/Hg9WrV6O5uRn33Xcfbr/99rRjHjhwADfffDOMRiOeeuopLioQCoVw5513YteuXbj99ttx3333nczPUpXJ8lYqKXzxtSSN8G8vuOACzJkzhw2x22+/HTabDYWFhSguLuZj0OClss9PP/00N11sa2tDOBxmRQKMLhI0kXp7e7lUrxy8iIahaKxnSp4VF1PxGFqtFrW1taitrUVZWdmYEqpU+SUSiTAdghQJNV4VgQNFf+g3Uc4JGXJ0blJIZAwTMNTpdCguLobFYoEkjVDknE4nK1zKm5g1axbT4PR6PQYHB7F+/XpIkoTHHntM1UgX5Rvf+AZzo30+HzZs2MDltOX5HeJ9lBvm2QzEUwWGxjM38tknoUnAbrJj0aJFWL16NebOnQuXy8VlzuUyNDSERx99FL29vewZp8VJr9ejqqoK3d3diEajfC0irYCcA5QcTvMnEAhw0Q+5MSkumOI4FEWcA+TsoeiqWOpVfmwx4kn5PnLDjvjsLpeLe/+QYQqkAyc6Ds2RkpIS1NfXw2g0ory8nCsP0RwQKy1RqdiDBw/i8OHDePHFF3Ho0KGMvYSGU8OKVePUtleLhmbbf6qCIfG1+L/RaMQ111yDb33rWygrK0NVVRU787q6urhvVigUwvr169HW1sYGHfX8GBgYSKPdKJ1bFLlxR6LkSBHHr9zglIMRirRTzhzpaQCwWCywWCwc5aSIJzmvyCFFf3JAJM4xOjf9ifdT/Fwe8RedZOI9MJlMqKioQFlZGeerzpgxAwsXLkR5eTlf48yZM5mSSyCUdP+TTz7J5bTl9yfbZ2eqqAF9ei2+p35Mt956K+f4UhTuoosuAgD09vbinXfeQSwWg9vthtPpxCuvvMK6mIoQEJWXInKU9yi2/xCdSXQ9VGK7t7cXXV1dafaDqP9JN1IEVBwv4pgTnb5EoRPTFsSIE12LPG9JXjVRtI1oe2LvzJ07l1t6kJNXbMgt3iOiwy5btgzJZBJbtmxBVVUVfvGLX6g+T4/HgwMHDsDr9eKvf/0r/v73v6f1NxPnezZwLwd28s+zfZaLTCkwlE3uv/9+rFu3DjfddBMeeOAB/vzGG2/EoUOH8NBDD+GGG25I22fnzp340pe+BLfbjTfffDNNAd9999149dVXcdddd+Hb3/522n5tbW34xCc+Aa1Wi+3bt6fxsCdKJgsMicdWA0Na7UiH4+uvvx4mkwnJZBKf/OQnYbVa4XA4sGjRorTjiQUEQqEQnnnmGfT19cHj8SAajfJkCQaDbNiRYqAiBFSFh6IxSnxo0Usn907T96IRR150o9GI8847DyUlJUxnGhgYQH9/P3t+yKAkUEd/YhlhAOzxAJBWo1+SJPZU0jgiQ5ciBnS9er0eZWVlnK9EIWe6L3a7HcXFxViwYAEDR61WC5/Ph127diEajWLZsmVp41xNHnroIW7YZ7PZ8MQTT3Cpc/lCTqK2iGYzEk8FGDqZeZHLvgkkRihz0jCsBitqa2tx/fXX48ILL0R9fT1mzpypGg0+dOgQXnrpJfh8Po4mWiwWXHHFFTCbzXjhhRe4QheNG/HeyY0qeva08AwMDDBgJ6BB1DiiUihRmcT8BjLQyKsoltomWhqNYcqhIDoqUfFEPry4QNP/qdRosQ9gxMtdUlKS5mmcPXs2rFYrexrF85EMDQ2ht7cXe/bswb59+7Bjxw688847PGflMt7F72wBQ0BmI1Gr1cJms2H58uW49957sWTJEhQWFvL37e3taGpqYh38wQcfYNu2bZzbSV5vMRdBNABJxLEnX2PEbdSMGGAsGKLPyDAkyh3NI3I4SZLEkXZgtJml2GOLnFzRaBQ+n4+vQ+4QEA1LcU4q3XO580icgzRXbDYbampq4HK5GPSYzWZcddVVqKioYMBGUSMCbrRWHThwAL/4xS/S2Bbi/RT/l9/js0GU7BbxO3lEUqfTsTOLbIF58+bhwgsv5P2oNQjJX//6VzQ0NDBLw2KxcN/B119/nXOGTSYTM0BE0KzkiB0aGkJfXx9SqZGoJdk9sViMwfzg4CASiQSDDtKhgUCA9T39PhpP8gpv5GyihtVEjQ6FQggGg8xeoPFMzBSiM1PFXLHCojiHKfVAdDJQ4QSdTofCwkJYrVZ88YtfRE1NjepzfPvtt9HR0YFAIIAnnngC+/fvT6tgJ9470eYT56I8YituK5eJsE8mch5NegGFc845B8BIeT6S7u5uHDp0CAUFBbjqqqvG7HPeeeehtLQUPT09eO+99zgnZmhoCG+++SYA4LrrrhuzX3V1NZYsWYK9e/di69at+PSnPz0ZP2nCRI6u6TNAfTCFQiG8++67uPzyy6HRaNDU1MQVb+RCBkwymURhYSG+8pWv4Gc/+xl0Oh0cDgd3zT5y5Ag3ZwRGPRx6vR4Oh4NBEfWQIM8DLWjiAil6G0kBUbSGaBIOh4OvweFw8GJIvV6oTDUpKfpevB+kVMm7QgakvHw2RazIky/yhgnwkMFXXl7OPFvyqNPxiKa4cuVKpFIp+Hw+/r02mw2XXnopPvaxj6GmpiZNKSjJb3/7W3R2djK4JW+VEsiUL+RKojRmMn1+JooWWiRSCeiggxST0NLSgj/84Q/Ys2cPrr76avT19XF0kao/kZx77rmYNWsW+vv70dDQgMOHD0Oj0aC8vBx6vR6rV69mT+/OnTvR0dHBkRoRqNDzIe+31WqFy+ViYEOAnBwGBLjJsUB9wCRJSit4QMen4hy0iFK0hspZi9x0Oo58romeSvI6isYA7WMwGFBTU4PKyko+L1VvEisiiRFVYITq0dbWhpaWFjQ0NGDLli3cxDkT6BlPwYSzSbLphFAohHfeeQdbtmxBTU1NWsGMqqoqdHZ2IhQKQZIk1NbWoqGhAYODg5znZTKZ4PV6ucSwmCNAoqRPlACn0uekc0VngZzCLuobAvr0P41JWjPEPCExh0ikVMujOnIDTHydCcDJr4/WDovFgoqKCrjdbo4qEKCjnDlaP6h4iF6vZ0ptf38/ent78dxzz8Hr9aaxJJR08dkGgpREyQlKrwGwsf7UU0+hqqoKt956K5xOJ44cOQKNRsP55XJ75uabbwYABAIBNDQ0oLOzM43GTOOLIqZms5lLXQPpNgqt+0SFpJwaKtggFhKx2+1jgDcAlJWVcUGpYDAIu93O+aq0VohRJbGRqugMo9derxexWAxWqxWFhYVcCIhylUXKHs0RsQov2Uoulwvd3d1YsGABl5S32+249957Mz43igb19/fjt7/9LY4fP55WcU8UNSAkf/5K42IygwknK5MOho4fPw4Aac0SP/jgAwDA7Nmz2VMkl4ULF6KnpweHDx9mMHTs2DFEIhE4nU5VhLtw4ULs3bsXH3zwwZQHQ6KIAywTkk6lUhzeLSgoQGtrK6xWK4eZ5ULeCJrY//Ef/4E//vGPXO1Ekkaa/fX29qKtrY2LG9BCXFBQwJ4FMvBCoRAvvMT7lisL0YtH78Uy1qnUSEjX4/EwlaK9vT0NtAAj0S3yslBESOT7ipx2UjDypFqlCUrGnsFgYIohGX6U4wGAFWRVVRWuuOIKrmZHXGEqqrBkyZK0Ma4mP/7xjzlB3ul0Ynh4GC0tLYqJibkAIVGUfuupWHxPlYLTQosEEkAKKBguQDAYxPbt27F//36cd955WLZsGRYuXIgFCxbA7XYznSCVSnEz0xUrVqCuro4BTzKZZHBjs9nwyU9+EoODg/B6vTh06BD6+vq4rLGYy0AGHP128oiL800E3fIFg4CT3ACkP7GXkbznEY19ebSBRJyPdJ0Ugayrq4PT6eSS9OSQIOOBroO8+3LKR1tbGw4ePIhDhw5h/fr1OHLkyJi+N3IRgdB45WwzIuXznHTrk08+iXnz5uGKK67gZw+MOAjXr1/Ppaznz5+P5uZm9PT0IB6PQ6fTwe12w2azwev1YmBggHW1Gn1ZHI9qY4ne05gUPe6igS8CFtFIFat0ETgXjUGRNkTzkeYXkN4vSF7xS81IU2JVAKOee6fTyWWe7XY7zy2qYEdFEyh/yWw2o7q6mj3vFBUOBoPYuXMne9DF+yg6TzI9+zNV5MBavvaI0QulNWl4eBjHjx/HI488gttuuw3nnnsuGhoacPz4caxatUqVZm6z2fCxj32M34dCIej1es617ezsBACuuJhMJpn2LrJFRB1N443GuKhf5TqcXpOTl3KJRXoeHVfsBScWPKB7Qk5ivV6P4uLiNN0v0vFIRHpnKpVKawmydOlSXH/99diwYQMSiQRWrlwJl8vF1W3V5Pjx42hsbMTQ0BCamprw3//930y5FZ+X/PnJ/zKJXNdNVUA0qWCor68PGzZsAAB84hOf4M/b29sBIGNeRXl5edq24mv6TknomB0dHeO86lMrSgNDPmDkE2J4eBi7d+/GqlWrEIlEsH//fnzmM59RPYfIjXa73fjGN76B559/nmkW5FmhnBxgRMlQNTWqDEcTkD6vra1FOBzm+vm0eIghUwI2Yg4GTTaRCic2I6NziIqU8jjESFAymUxLhqT7KZ+g4r2ke0GLYmlpKYfVxTA3KTS9Xo+amhrU1dXBYDCwd9btdrOxSl7ETPLEE09g69atnNBot9uRSCTQ3d2Nt956K+1ZK3lZlDy44ljJZOycShmPByjTeJcfR5saKaYgGpA+nw+bN2/GO++8g3POOQef//zncf7556O4uJh7YpFhTz19mpub0d/fjxtvvBEmkyltDJlMJlRWVqKqqoqpmH6/H9u2bcPg4GDa+FOqtAWkL1zkGRTHJo1DsRGeeC9EmpH8WErPW6x0RADIZDJh1qxZqK6uZnoPRaMoGZd6phCQI2NATocaHh5GR0cH5wht3LgRjY2NGXOEUqkUEqkENBiNFk/0mDyTDEv5XJXfk0QiAa/Xi8cffxwzZsxAfX09iouLeSzceOON+N3vfseUTOo5R9XW6BlSNJGKLFAVQ3midi5zlMabnKomfgdgzByQ06XFgh8kBIREurLcKZQpoiJGScXcDHENoRYIBoMBZrMZhYWFsNvtaXQ2cb2iiBE1krXb7Vi6dCl75mOxGDweD8LhMDweDzZt2qRYMETNU34mjVclkYNmNUCtNr7kjpxYLIZnn30W11xzDS666CJEIhFs3rwZV155ZUY7j8RiseBLX/oSDh8+jIMHD0Kn02H27Nno7e3Fs88+i56eHvh8PvT29iKVSnGfNKLFiSBbaWyLoI5sJTEKT9uK80MEViLwl4Nls9k8hkkjAiYAaY4FEYSJ16bRaHDDDTcgkUjAZrOhqKgIZWVlqK+vz3jv3nnnHfh8Pq7w98wzz6iW+5Y/80wgKJtuUXL4TgWZNDA0PDyM733vewgEArjwwgtx2WWX8XdEF8lU8Y3QbCgUyms/8uiL+53pIl9khoaG0N3dDQAcTv2f//kf3HXXXYqJ5CQiPeDSSy/FP//5T25W2dLSgv7+fi7fSl4N8l6IXhUx6ZXoHOSF9Hg8DBg0Gg1zcOm6yQNI3sBUaoSDK/LO6VpFuo+8YhYVWBCTD+XKjP6nRY6MBZvNhuLiYo7uiMqMrpOMyZqaGixYsAClpaXo7+/H4OAgzGYzXC4XA8JslQu7urrw5ptvsuIqKipCPB5HZ2cntm7dmlYmVK5ksnl05ducjsV3Irw9+VynNjUSIdKmRqMz8Xgcfr8fu3btwtGjR3HppZfisssuw+zZs7kBHXm1i4qKsHjxYmzevJlzAkQOtzhmADCH+7bbboPRaEQikcDRo0fR0tKC3t5e+Hw+Bi06nY455+QFF8ENkF7BDVA2KpRKtorjFBjtQk5jddmyZXC73dwMOZVKcU6GRqPh+UYRUaqUKF6buOCTviEj/cCBAzh48CA2bdqEgwcPZgdCGAFC43nGuWw/lRbSXEWcK0qOjHg8jj179uChhx7C/fffD7vdnvZ8vv3tb+Pee+/lsto2mw2xWIz1tQiytdqRZr+U4yAvsSs3eOhPja5Ljjj5WFQynOTjGxitmiUajuK5RLqcGGmROwBE0EP3hiKz5KCiBH3R+07fyat0iiwBl8sFs9nMzsCbb74ZZrOZezRRKXmfz4e1a9eiu7tb8X6qPfuzTTIBIvEzio4orRPxeByvvvoqAoEALr/8ciQSCaxfvx5OpxO33XZbTtcxf/58NDY2AhixHc8991z87Gc/g16vRyQSwSOPPILDhw9z42J6XhQhF6vAAWMb9JJOljswxGhRKpVK20Y+TsXxS2sK6VuRYUNzjOwemg9k/5DupvMnk0k8/fTTqKmpgSRJuP/++zPeq56eHmzZsoUZOX/729/wj3/8Y0w0SM32yJQzLr7PJlNtPkwaGPrxj3+MHTt2oLy8fEz1inxv2snuNxUlV68ciTgIyfCjRO2hoSG0trbiN7/5DX70ox9lPCbVl6+qqsK5556Lt956i3ufEAAhOoAkSZxLEAwGEYvF0gw7mojkkSagJS64xFsV6/zLaRui157oY+Xl5TCZTEgkEggGg2yo0qIfiUSYViHeLxFMEdCh6kBWq5WbX4ohZrq/VICBKgstWLAAtbW17C3v7e2FTqdDeXk5G9jZJBgM4ic/+Ql7glwuFxKJBLq6urBt2za+L2JELZvXRen/TNtOtuQS3RyvqB2HKHPalDZtO0qKfeGFF/Dee+/h5ptvhkajQWVlJUeKtFotFi1axJUoAfAYod4/ALg4AYF30eM3b948zJ07lw0pmgcA2NNN/at6enrQ2NiIUCgEnU7HXudYLAadToe5c+di5syZnJu3ePFimM1mxGIxmM1mrnaXTCbh8/ng9XpRX1/Pc5nmm1arTWvmR9XzaDxRRFJsGCgaKKKhSwYMNTLcv38/9u7di02bNuHw4cMcQVZ6XkA6NW6y9PVkRZsmWzIBolRqpEHqa6+9hlWrVqGuri7NGQUADz74IO6//350dnZCp9PB6XSm0YspCk/Ag6KjlF8QjUbTCi0o/cn1ETDasgEYpZzRNcvnqehJlxuY8pw3JceA+CcWASF9TtXEqGQ90b6VKoqJ5yGnnXgsSRqpJjdnzhzo9Xp4PB709/fjzjvvZOcqOfYCgQCCwSA2bNiAAwcOjGk/IT7jTO/PFsm2/qiBJflnkUgEb731Frq7u/GFL3yBK7SuXbsW9fX1aZWI1eSGG27Apk2beAyTo7iqqgq//vWvebu3334bf/nLX7gXHdkY8pLuZAuRc0HMQQLS+wMBo/YQ7UfrAY1hMaJDDjyK7tLcomq+g4ODbBvQeCbqNLF0qNpnKBRiWrlRdAAAIABJREFUcPPGG2+o3p/jx4+jt7cX4XAY/f39OHToEDZu3KjYwFnJmaFmc8gd0LmM9ak4HyYFDP30pz/FunXr4Ha7sWbNmjEUIor6UKRHSSiyI/Idc9mPvsvEk5wKkouxKN+GABEZfYODgygsLITJZEI4HEZLS0tO5yaO6oUXXgifz4cjR46gvr4e8Xgc7e3taG1tTZsM5eXlsNls2LdvX1rXYzGaQkIeNrpemry0QIfDYU78Je87UcfomERloIpWVquVvZu0iNOiRkYlXSspDcr7odLXpIyIBicuuhRpooTxK664AnV1dZyIH41G0d7eDkmSsHz5cixcuHBM8rCSBAIBfP/730csFmOOeio1kiy5e/dupgvKey6dzMIq9zRPFTkZR0Y2QIQUoJN0aYtSLBZDS0sL/u///o8BRlVVFRYvXoyioqIxNDAAnANGnnaxihtRZMhQlBt04uInf19bW8vFSmhfKupBc8hgMDBljX4zjQnqLJ5MJuFwOFBbW8uGrwjSJEliA5U8iR6PB+vXr8e1116LJUuWcJUk8VmI91ZMzg0EAvB6vTh+/Dj27t2LF198UZEaJ18ECQgpGT/jkTMV9GQSJUAkfhePx/G73/0Oc+bMwaWXXjpmPfvZz36Gn//852hububvKHfL7/fD6/Wm5dvo9XpYLBZYrda06ItozFElNzLIaB4o0dfkOkuM0ogGH31H1yGn09E28jwL8Tjyvl1kmFJzSbHgB4l4fjo+rUFGo5FpUjqdjnOC6POysjJ89rOfRWlpKe9PNNFjx47hrbfewvbt2zE4OKhoRIr/n22SyW7J5hSj5y8+JxH0RqNRNDQ04NFHH8U999zD1P2WlhakUqm0anNqcs0116S9J2qvVqtFNBrF0qVLcdFFF3GONdH2Y7EYWltb0dzcjGAwiKamJkQikbTiCoFAgCOMQHqbAopk0n0QQRUxbQCw7UHvqQpeLBbj3ysyc4xGIxYvXoxbb70VpaWleP7553Hs2DEUFRWhsLAQ1dXVuPTSS3HxxRer5t8D4L5BQ0ND2Lt3L9auXQufz8dATHwWSpIt6ilKNhtkqs6NCQdDDz74IJ555hkUFRVhzZo1qKurG7NNZWUlAHCym5IQDYy2FV93dXWp7kffifudaSJfGOUeLmBEub/88stM3TEYDIhEIrj77rvx6KOP5nQeq9WKm266CS0tLdi2bRvC4TB7P8RkUZ1Oh6KiIlx88cXYv38/+vr60iY0TXhx8aX/xSgTUdSompwYCiZPJpUkDgaDMBgMvMgRL17uXSElR575oqIipgmRQSomoJOIxRfo+ufOnYulS5eioqKC85haW1v5Wm655Zacy7Vv2LABzz//PHsdCwsLkUqlOEfI4/Gwca2Uc6Ik4ljIBi5OpcKRewCzfX4y55ALRR8SqREDSodRb1w8HkdfXx+ee+45zlErKCjAueeey2NQFEmSuPEiFe4gw4sq+9DiR4YnRWBEOil552nc0/iiRZSet9j3iihr8utRMirlhp74GeXDEW3ojTfewMDAAA4fPoyVK1dylFNecVGMcIXDYXR0dKC1tRVdXV3Ys2cPXn/9dXR3d/M8lT8bEhEIya9vssbkVHUAZJNMgCiRSKCzsxMPPvggli9fznQeUX7wgx/g4Ycf5ibBpPOqq6u5V4sIMGidkI9FGo9iVIjyO6l4CL2Wl4OnaxepysBYACSOMzGSRI4BMdkcGG2PQIVNqKKimIguz6+gcUC/gY5PnxNwOf/889HX14dAIICSkhKO4MbjcRQXF+Nf//Vf0yooRiIR9PT0wOPxoLW1FS+99BK8Xq9qo9tMBuXZIOLak4tzSz7O1Qph0DPo6+vDf/7nf+Kuu+5CZWUlhoeH0djYiJaWFpxzzjlYunRpztdaWVnJtuDu3buxfv161tepVAqzZ8+Gy+WC0WhERUUFSkpK4PP5UF9fD5/Ph6NHj8Ln83E/I4rWyMcc3RPKTwNGS+YXFhYym4VaGFDkh0CUzWZDWVkZli1bhsWLF7OtRELOjdmzZ6OzsxNz587FvHnzMG/ePADAs88+i7lz5yreg8bGRnR3d6Orqwsvvvgidu3alVa4R7x+pTGqBITUIn5K38uPNVVlQsHQww8/jCeffBJOpxNPPvkkZs2apbgdldtuampCNBpVRLQHDhwAMMIFJZkxYwaMRiP8fj9aW1sVK8rt379/zH5TUTIpEXFwKS2WNKACgQD27duHlStXorKyEl1dXRgeHsYvf/lLfPe7383pOjQaDZxOJ0pKSrBr1y50d3czQCBK0MyZM2G1WqHT6bhk44EDB7Bv3z4MDg7ydZKhJUZcSMQEV5GiJipH2oZKd4vXIFIfxCgPlf+m16TkaAEWc48AMMAj7zZRhz7+8Y/z75QkCbFYDI2NjZz/cckll6QtkJkkEAhgw4YNkKQRalxRURESiQRaWlqwe/du9Pf3p3mSMikjtc+nmrc8FwNgPFGhXPdlUIQEdKn0CmherxfPPfccPvGJT/AznDFjBqqqqsacg0C7WM6dvJliYQ+z2czRIjGBXZIkeDwezk8QqRYi6KAxL9JTRRGBL0lXV1ca3QIY9ciL29M8SCQSWLVqFfbv38+/XQRUYml8mjNerxeNjY1obW2Fx+PBG2+8gT179qTRSNREqWqcmi6blhFR0uv0Ph6PY+/evbjnnnvwwAMPoLCwMM1AAoDvf//7TAkFRhgR1dXVGBgYQFtbGxYtWsQUGirnThFIpdwd0pnUXoCACjUbpmgRRVloPwJHcsedktNGfP7kLBO302g0KC4u5pLvxBwQy3rL5yZ9TvodQJqzg+Z1eXk5Fi9ejMbGRgSDQZ7nyWQSX/rSl8bYLIODg2hqakJfXx96enrw9NNPo6urK80pkG085+NVP1Mkmz7O5qxT2p7mQjKZxODgIH7xi1/g/PPPx+c+9zlotVrE43EcOHAAnZ2dTGHPR1asWIEVK1YAADZv3oz+/n689957zNwIBAIcsSeHAdkrFJ2nvLFoNJo2zqnkOtlTNIfKyspQW1vLOZtutxtutxvJZBJOp5Odz0T51Ol0nL8aCARQUDBSNZVymi6//HJcfvnlY36bHAg1NDSgp6eHqdWvvvoqXnjhBYRCoTHO12zjWB75nAoO2MmQCWu6+sgjj+Dxxx+Hw+HAmjVrGPCoyXibrt5111147bXXzoqmq0rHUkLYaq+J1lVcXIyvfvWrKCgoQCgUQk9PD7RaLb773e9mrSgCAH/+85/h8/lQWVmJw4cPY+fOnXC5XFi4cCHnWlATLzHC4vP5sGbNGtxwww2YM2cO9u7di+3bt3PPhVQqxQCJRJ4XI35HRmI4HGYvIS06RqORjUtgrHeKFkrq85JKpdK8kCJ/vaamhpXLrFmzGGTH43Hs27cP0WgUer0e11xzDerr65mXPjg4CKfTqXofN2/ejHXr1kGSJDidTk7e3Lp1K5qbmzn3RGnKyWly45mWuS7OJyPyhpbj8crn6kXKtE+2xTaBEUNfi9FIIuVPrFixAldeeSXOO+88uN1upmXSdvJKhgTY5Z5v8dwEcoaHh9Hc3IyOjo60ojGp1GhOGo1FAuRioQTR4COuOgk1HqY5IHr3aPGl6I4SeKbfRF5Kn88Hv98Pj8cDn8+HwcFBvPvuu3jvvffQ2trKeSiZxmMqlUJSSiqWzp7IcZiPx30qNl3NJJl0vGhsffnLX8ZPfvITFBcXKx7n5Zdfxp///GcMDQ2htrYWixcvRklJCSRJ4me7Z88ehMNhdi6J+ojyLOTlhek7YLQqXDweR3d3N5f6FvOP6NozPS/xt4k5GWazGQ6HA06nMw2sidEn8bW80A6BHqLQmc1mmM1mzgmaPXs2otEo2trakEyO9N9TqsQaCoUYBPl8Prz44ot44403EAwG2ZGlNC/kOvhMNxDVZDxgSO4UkX+uptNpfXe73fjUpz6FRYsWwWw2I5Ua6cVGeaFTUTo6OhAMBlWjNhMtXV1diEajbIts3749rUIckG5riKI2lsXXSuuwmqND6f1Ey4SuMRMBhn7961/jf//3f2G32/Hkk09iwYIFWfd55ZVX8J3vfAdutxt/+tOfGOV7vV6sXr0aR48exX333Yfbb789bb/9+/fjc5/7HIxGI55++mksWrQIwIjy+vrXv46dO3fi9ttvx3333XeyP0tRJhIMKR0vH4BEXguDwYCPfexjuOyyy6DVajEwMACv14tUKoXHHnssq6L41a9+hVAohB/+8IcAgHfffRfPP/883G43L5gWiwUzZ87kRYY8amQ8Es81mUyiu7sbzz33HHp6ejhhXKxAJ6dXEJVDpGxQrpFYu5/oG1Shjo5BQnxbOX3C4XBg1qxZKC8vT6u0JUkS7HY7DAYDAyHKEfn2t7+NoqKitPtEnhqlSOb69evxj3/8A8lkknOVotEo1q9fj97e3jH8fLnIFZSSIlKSXLebKJkIQ1PN+AOy50MpbZdpThIo0kkjXmLKaaurq8Mdd9yB8vJyWCwWzhmzWCzcn0Ecf3LajRjxEa9peHgYhw4dgslkSlsAxTFOxyDPOhmfNJdoe4pGiULUJ7om0UNN0VGlOUYAKB6Pw+fzob29nUviDw4OYnBwEM3NzdiyZYtiGWa1Z5REMq1inPhMTpUheDaBIfl7ETSYzWb86le/wvXXX885QEpj//HHH8fevXshSRI++9nPcu5jOBzG9u3bsXXr1rSSvfQnNohMpUZopqKjSYxKplIp7rUTCAQQCoV4fMnp0nJjV/xcBEFi2WMa90rFHMT9xWaWBQUFKC8v56R0vV6P0tJSGAwGpFIplJeXo6ysDO3t7dBqtbjssssUowsDAwNobW1Fe3s7uru7sXPnTmzcuDGtmW22eXE2RoOySTbbKBdgJIp8/Ih5kcuXL8d1112H4uJiBs4ulyunQguTIY899hivF6RPb7zxxlMCgjweDwYGBnDgwAEMDAwgGo3ipz/9KRdGALKDc6XP1cZwLs8s03EnUqYUGHrjjTfwzW9+EwCwYMECzJ49W3G7GTNm4N/+7d/SPvt//+//Ye3atTAYDMxn37FjB4LBIK644go8+uijionqjz/+OB555BFotVpccMEFsNls2LVrF7xeLxYvXoynnnoqa7nj8cpkgyG1z+VeaPFzAkRXXnklli1bBkmS0NfXx2WCH374YW6imqs0NzejoaEBTU1N3KeioKAAM2bMQHl5ORwOBwwGA5+fvOmUvB4Oh7l89F/+8hfm6QKjhj8tdLTYUSJhMpmEyWRKOwcZfsTdJWNNXu6SooyUVEzGL9ExyINPnvnh4WG0tbUxXWn+/Pm45JJLUFhYOIYWRx5ROXd/27ZtWLduHQBwxCkej2P9+vXo7Owc45khyaSgclUqp9oDOdFgSP4+l9+RzZOoJAkkAGkkp4jG7MKFC7Fo0SLMmjUr7Xnr9XouzZtIJNJK7lLCNS18NLZIiNq0YMGCMUnvosFJ2wKjVCE6NxmbtF0kEmF9Rn2C6HeLfVooVwgA52AQxam3txc9PT0IBoPwer1cEryrqwtHjhzhSJBYfU7tebCHUQUInWo508EQkB0Qkd7S6XT4+c9/zg3F9Xq9ar++tWvXYseOHbDZbFi1ahX0ej36+/uxbt06psuIkSB6/gTcaSyIDiZ5FU7S4YFAAD09PRgYGEijAJMo6T/SzXa7HaWlpTy/xDwiecSJ9iPwQxUf7XY7iouL2bFFjbFdLhcAsPPMbDajvLwcX/ziFxXv2eDgIE6cOMFgaP/+/QyEKDdV/ltorn7UwRCQWRdnioAqiVp0m/S3VqvFypUr8bWvfY1p9VRVUOxrOdly5MgRdoBdddVVp+y8LS0tOHz4MAYHBzEwMICOjg689dZbaGhowMDAQFrUN5tDNRsYysVpf6qB0ESf46TB0Pr16/GDH/wg63bnnXcennnmmTGfb9y4EX/6059w5MgRJJNJzJgxAzfddBNuueWWjBGNN998E08++SQOHjyIWCyG6upqXHvttbjjjjvGJCJPpEw0GBKPKRp5uXgL6bVYCvhrX/saXC4XUqkUc5uNRiP+/d//HdXV1Tlf00svvQRJkjhplBr9kcebPOpEz3E4HFx0IBgM8uIl9gOKxWLo7+9Hf38/tFotV4GjKkfDw8NoaGjAnj17kEql4HA4mKJGx6Dyw6nUSJW52tpazJ8/nxdT4vxS1Tkx4VesAhaNRtHR0YF4PA6j0YjKykp861vfyvvZPfzww9zQjahWfr8fmzZtQldXVxqlgp6t0v+5SD5gajJlvMZmLgtlPmBoPJJAAjpJl7ag2u12uN1uFBcXo7i4GKWlpXC5XMz9pm0cDgcDH6fTCbvdDqPRCLfbDbPZzPzspqYmLFy4cEyPGDFiAyCtgTCNb3nUNRwOo6mpCYsWLWKKkphPJ0ZXgdESwH6/H/39/ejt7UVnZydz3ZuamnD48GG0t7ez55CiBHJDT22BTOLDc00BIAScHWAIyMwKEAGR0WjEHXfcgWuuuQZ2ux01NTUoKSlRPOZDDz0Ev98PvV6PQCCASCTCkT9xLFF0HxiJgPv9fm5lIOaZiVEiq9WaVuCmo6MDnZ2daaCBRCkviHIlioqKUFdXx6WCh4eH0xxe9Ef7Wa1WVFdXw2KxcD6HmDtEuh4A515YrVY4nU4sW7YMN954o+K9CoVCOHHiBFpaWtDT04M9e/bgb3/7G+ewKhVMIMkVCOViRJ7JkotuzgcUKTEARPsHAFauXIkbb7wRxcXFacWW3G43Fi9enFPz1jNFKF+vubkZ+/fvRyKRQFNTE5555hn09fXxdmKElkSNhSH+r8Y0ycZYOtUMlck414TlDH1UZDLAEB03H0UieknEzxwOB+6++25uFNfX14fh4WEYDAZ89atfxZw5c3K6niuvvBL/9V//BZ1Oh3Xr1uHEiRNMQ7PZbKirq0NhYSF7EKkjel1dHSwWCy9eJpOJo0bU54JKSlMZdOr9EgwGsWnTJq7UJRZOoGEai8U4b8LhcKC+vh5OpxM2m409+eSlE6sTpVKpNEAm0pW+8IUvcGJlrhIOh/HAAw8gEolwtICqjK1btw4ej2cMtzyfCFCmheF0eGDSzjcJYEjxPApOgUzHyrS9KASIxJwEeTI5eZ0JBFFn75kzZ6K8vByFhYVwOBxIJBIwmUxwOp0M1sPhMG9TUlICm83GizRdI0VsiPZJncApz5EScak/0b/8y7+kRTvpd5LhR/PJ4/HA4/Ggs7MTXV1d8Pv96O7uRkNDA06cOMHnURuX2caYGA2aKobd2QKGAHWjQxynFCFavnw57rvvPtTX18NisXD5fiXx+/146KGH0NbWxg4yKuWbTCbTevbQWKJSvAAYGImgxmq1skOMIuy9vb1pOUQkYrU5ijBRVKikpIRzmygvrr+/n7cl4GSxWOBwODBz5ky4XC6uYEpzicAQNfYm4BcOh3HBBRcwg0VJ2tvb0d7ejp6eHvh8Phw4cAAbNmzg9TNb8ZBcnVxTZc5MpuSj5zM5eYHcaNMUrVywYAE+//nPs76lfanHoMVi4ehhcXHxlAVJxMYZGBhAKpXiuUhzgHqF9fb2YvPmzdi3bx8CgYDifAOyU9EzOWtJcn2mp9wWmQZDp08mEwzleh45h1YUjUaD2bNn47bbbuP+KD6fD/F4HFqtFp/+9Ke5xn4m6e3tZW/j73//e2zevBmpVIo95ZWVlSgvL+cIDxmBVIrbYrEw/5sqtlHZzPb2dsRiMb4mt9uNWCyGjo4OBkriRKbJSgsfXYfJZEJNTQ170qkhKoEnAk5UkIEoT8lkEsXFxbjhhhtQXl4Oq9XKeUD9/f14+OGH8b3vfW9MzhDJAw88gEAgwODQYrEgmUxi79692LNnD1NFlEpXyp9hNo+KkvfldHlh+JwnYWxO1vzJ9xwEiADleSQeS+50MJlMcLlcmDNnDurr61FVVcUVgogmCows0oWFhaitrUUwGERXVxdMJhNKSkoQi8XQ1dXFwJ9yliifjbzmZIxSvoPdbkd5eTkv9rRoRqPRNBB05MgRvPfee+js7EQoFOJiCGrJsyRKY5WBkEqhBPl2p1rOJjAEKK8FSl5xvV6P2bNn45e//CWKiopYH2UqPez3+3HvvfciEokwQKcKcyKtMx6PIxAIcB5PIBBAe3s7gyIA3P/HaDQilUohEAjA4/HweCMdKBpmBQUFsNvtKCsr47LWRKGm3laDg4OQJImbqFosFpSUlKC2tpa9/3SNBJyIxk2/R5IkuFwu3HnnnXA4HBnvdzAYxDvvvIP29nYMDAzgzTffxK5du7hkubz6lhqgySVSny8l+EyV8eh5pTGezZAHRtMGiDLvcrmwevVqlJWVMZ2Sop/kFE2lUmmUYqLXUUNSnU6HmpoaOBwOFBUVcZ/BSy65BH19fSgoKFCNxuYq27dvh9VqxcDAALeZoSbbNOYoMhuJRNjx3NfXhy1btjArSs4OULtPmZyomb7L5VlOFd1/MjINhvKUUwWGcvlMbsTRoyQe+Y033ojS0lI2moaGhqDRaHDBBRfgU5/6VF7Xt2XLFuzZswfDw8Po7+9HMBjEnDlzUF5ezrXvt23bhkgkwp51WpzIQKQeQrQNbWc0GhGLxRAKhbhUsdyzKElSWoMw2s/pdLKHUJKktKaVZBxQo9WSkhLU1dVhyZIlqKmpSWt4SQr1/vvvx8GDB1FZWYnHHntszH144okn0NDQgFQqxeeOx+PYvHkzDh48mPbb6Dpy8SjmIrkouFMhJ2tsThVApLR9rk4J0cNNwN9ms6GiogK1tbUcNaXqWNS9noxMomfS5wUFBbDZbJxITmNSzCGyWCywWCyYP38+vF4ve+7JiCTqRHNz85iiHdnGIYnSNmJlvmzbng4528AQoO4xl2+j1+uxaNEi/OhHP4LBYOBeQB6PB/X19bjkkksUj+/1erF9+3a8/fbbaG1tZUonNVslZ5XVakV5eTlTNqkRr6jnxVwfisQEg0FEIhEAo+0MdDodKisrOeGdviPqDzW/TCaTKCoqgsVigd1ux4IFC1BYWMiOAsoJCofDCIVCCIfD8Hq9aGpqQnFxMa699lp87Wtfy+k+Dw8P4+jRo9i9ezdOnDiB7du3Y/fu3VxKPpeIUD7OqXzowGe6jFfPy51P4rGUQKkSiKLoaWVlJc477zzMnj0bdrud2SOi44kaEIusEtLv9F5O+9Tr9SgsLITFYmFbhRy/bW1tvL9YEp5AmU6ng8/nY4BTUFCAWCzG1Wbj8TgGBwe5uI3P54PH44Hf7+eIp0gFpfuRK9ih3yT/fLxyOsfyNBg6jXI6wZBSFEhJuZIXxOl04qqrrsLChQthMBgwPDzModdzzz1XsaRoNunr6+PiDMFgEAsXLkQqNVL9zev1oquriyvL+Xw+DAwM4MSJE2hvb0cymRxTn59+By085O2jRZ0iUUTpoE7NYgM+4rsbDAaYTCamkmg0GpSWluKWW25BfX09/H4/EokEG5ty6e/vRyAQwMDAAGpra8eUZr/33nvZI08FKRKJBDZv3oz9+/cjGo3ys8jFU6jkfckH8Jw2b8xZAobkRr7aHMzkJSPqEr2mP7H4Bo1fGt80roHR3loibZOaY1Lp/JKSElRUVMDhcHBeGhVU6OnpQUtLC44dO4a+vr40b7woudJ3xO/VQJDScU+nnI1gCFAH6PLvKKft6quvxtVXX820LpfLlZPTa2hoCBs2bMCBAweYJkb9hChybzab02h60WgUnZ2daX3gxAandG0ixVmeL0dAQ8wpjcfjMJvNXCWWAJEY9UmlRvPsyIl27NgxHD9+HMXFxXjllVey/ua+vj74/X50dnaitbUVTU1NeOWVV7gFAhm/mSqAZjNAp2VUxuucotdqdo78tdJ5KNfSZDKhtLQU8+fPR1VVFRfwoFxQoqNFIhFYLBa43W6u2CgWraFxTbYGfSbmJ5NtIla2JeeZRqNBf38/enp60NTUxPOOGCyU80S/Vx6NVCviIUou41J+jHyf0VQY69Ng6DTKVAJDNAlpssi9JZT3UFZWhjvvvJNBCtEQ5syZg5tuuumkr108Py1WZOCRAujr68P27duxY8cOeDyeMT0sxCRyyqMYHh5mb3s0GmUQBozyhKmRZGVlJWbOnIlPf/rTaG5uxvDwMJYuXYrS0lK+To/Hg1gsBrfbPabIRjAYRCqVGtPUEAD27NmDF198EbFYjKkkyWQSHR0deP311+H1etMaENI9UbpPat/lSpvL9PmplFNBlVOjpEz0eZSaheazvwiGSOgZyUtv50JHkAMwkQZC70VDLZfFUUmybaN2X/I5xqmQsxUMAZmjQnIvttFoRE1NDe666y6Ul5dzURAy2nQ6Hdxut+q53nzzTWzfvh1dXV2w2+1obW2F1+tlehFR0erq6mAwGBAKhbiktrgGkGOL2hSIhT/Imy3mDZEupxw9ouWR15w87mKE1Gq1wmazobi4GDNmzIDf78cXv/hFzJ07F3/5y18y3tOuri4cPXoUXq8X/f392L17N1599VX4/X6Ew+FpIDQJcrJ6fDzMGQBj9KjYe5CACQBmrYiRoGQyCbvdjsLCQjidTlRWVkKn03HU0GKxMEWanFQUJaJrjkaj3FqEHAjNzc04evQo58UBSBtzme4D/aZMkf5cgZH883ye0VQZ69Ng6DTKqfRqZzpXJqAk7k9RlMLCQqxevRrl5eVIpUb43anUSDPTO++8c8JKkYvNKcmDJ68K2NLSAo/Hg+PHj6OxsRE+nw8Wi4V571qtFuXl5XC5XKiqqkJ1dTUKCgrQ1NSEjRs3IhQK4ZJLLkF1dTVT5Ww2G5LJJMLhMBoaGjA8PIwlS5YwuInH4zhx4gSGh4dRWlqKwsLCtGsKhUK8eIvS0dGB3/3ud0gkEpwwH4vF8Le//Q0ej4c59KIHR1RUcsOWRE0R5RNNOt0y2YUUThYM5XO+XKIguR5bLZokjgkACoEDAAAgAElEQVTxfT7nUbonmY4jP2eu+2UCQlNpDAJnPxjK9hpILzctSRJWrFiBr3/966isrEQikeDy05n6ngSDQaZXkg4eHBzEjh07cPToUbz//vsYHBxEUVER50vEYjHuvyM3AOW6jCjLFO2hgg0AOAeUdHAgEEAsFkNRURFqa2sxZ84czJgxYwz1mqrJkSEq78ulJO+++y7a2trQ0NCAV155BcePH2fwJXr35TRt8bdkej0tyjLRgEjJ+ZTpXGrMGrKTRAeDvEInVbQlByw5e0X9Sv2tKI9HtAlE2rzYO1FuMyiNKSV9n4vOz+ezMzEqBEyDodMqpwMMyaM/2fZRWjSpJOsnP/lJXHrppdwMNRKJQK/XY/78+RNSm18EQ+I1KJVJF8uhZjLaaNve3l7s27cPDocDS5cuTfPmkPcxFovh2LFjiMfjqK2t5SIIQ0NDTNszm82oqakZc91iGeQPPvgA69at45KqxDXu6+vDG2+8wWWz5T2EMoGfTAap3OujJFNtqo7H6DzVQCjTeZXOkUs0ROm4E329apLLeU5mnGQDhVNtDAJnNxgC1B1fakwBihSZTCb84Q9/QFFREex2OyoqKlBSUpITYAiHw9ysVRSfz4eGhgY0NzejubmZc+AGBgb4vJTTIxp4VIJep9MhFApx/pvJZErL6XS5XCgvL09r3C4apcBoSXoAObfRCIVC6OnpQTQaxb59+/DGG29g8+bNCAQCik2G5TqdZDoiNH6ZiCh/PsfI5kxWA0dAevSF7AsxCisHMEoRHXGsyCNUcjClJNnsAPlaMNnjciqO82kwdBrlVIIhAGNARKbHpQaIxO+NRiNWrVqF6667jgsPDA4OMu87U/nRXEX0eIxHiSlJNBrl0LLNZsO5557L1Dq6J0TPIGAjSRLTNEROuk6ng9PpVDxPIpHAmjVr0N3dnZaflEwm8corr6ChoQFDQ0Np5YmzVejKVc6kqBAwYnQCmBRANBngQmnhED8jIADkHiHKFuXJ9hvyifKoyUSMi1x/+8mea6KfqxIQAvIfk2eCKDnJAOV7SkabzWbDypUrce2112L58uVwOp0wGo1cFOFkxOPxwGg0IpFIwGw2IxaLYffu3Thy5AjnxwUCAZjNZlRUVMBut6OoqAgVFRWw2WywWq18nWq/YyIkkUigoaEBnZ2dGBgYwIMPPoiWlhYu1pBrkRG5fp5q+vhMkfE+44kERPk65USHtPw48nGj5njL5DSV22wnG/n5KAAhYBoMnVaZbDCkRndTG+xKCiKbR8RgMKCurg633nor3G43NBoN5+IAI5637373uyf1O+QAQQ7qaBEiQCMvvypGaagMcSgUYjBTV1fHpcPF6IwYhk6lUkwdoe0oKV0u8Xgc27Ztw9atWznhXafTMdjat28fXn/9dcXeQdkM4WzPTum7s9n7OJXAEEkSSWil/Chy4znvREo+YyJb5FWUTNGhkxmHJ0PLoP3VnuHZDIJEUXN00XeiEEVZq9Vyo9JvfOMbWLp0KfcloqjReIRoQ+I1UZEcKthD+rq3txfJZBJOp1PVETUZ4vf70dvbi46ODuzatQtr165FY2PjGACUq/Gp9npa8pfx6IBc6G+5fi/aVbk4tbKBEDVWDm2XqfcPMNZGEo+fD0ifaJnK43waDJ1GOR1gCMg8SfNVEJI0Wm1u1apVuOKKK7hEdDQaxdDQEMxmM+bMmYNFixZlTLrNJLTI0KJJlYUkSWLetzxcTIm3tG0kEkEoFMLg4CD3ohBLrwLp3ZZ1Oh0XVSAwpNfrkUqluJIdcX6HhoYwMDCA999/H2+//TYf32QyMUe4sbERu3btQmdnJ5eKFZ+H0kKq5u1XeoZyhay07VSfovkYoidDk5sIgCQuekmMAnZqJJrpGrMBCvn15XKcfECKfP9crklpn1y35fsjjQCjiQJCma5B7Rkr/U6eK2cZLS6TZPOOy9kB9J5AkdFoxE033YTPfe5zcLlcAEbydajxaa4SiUQUnUqHDh3i/kdyyTWn52QlEongxIkT3K9l27ZteP7557kvi5zarDY3Muniqa6TzyTJV6ePFxDlsn5k2ibbM8+k+5UiQ0oAazxMgWxg/mRlKo/1aTB0GuVUgaFMQEgpVJvpWGqfUx7RvHnzcP3116O4uJgXilgsxvQwAhXz5s3DOeecg8HBQRQWFsLlcqVFcJQklRqpMAeAyw1LksSls2mbVCrFVDZSEuRZJJBCwGloaAgGgwE2m40r5FGjPUrCFSt8URltKgcei8XQ2NiIgwcPoqenB0ajkUEQUQdjsRhefvlltLS0MC0uU7niTONCTJ7M5fmcSUBIlFyM0pMBQ5Mh2TyCmfZR2y+bwXq6nul4gBNJEsk0wJjPOfIBfGrbyg3WjyIQArIzAEQAJN+WABHl2Vx++eX4zGc+g9LSUrhcLhQXF0Ov13MVUmpELUo4HMb7778Po9Go2Ny1sbERxcXFDLQmW2KxGPx+P/x+P69TgUAADQ0N2L17N7Zs2YKjR4+yE00tGqTkVJRvdzZH60+nTFSEKNN3+ege2l5cg8azPsh1IP2d7Lo22ePwTBrX02DoNMrpiAyNFwzJj6Gk8CVpJK/GarWitrYWF198MaqrqxlMiMmlkiQxWJIkCXa7HcXFxbBYLLjgggtUF0A5GALAYIjoclSFZWBggGv6U/lVAiuUeEjXYLFYuIM55fdQhSKRKqfX6zE0NIRdu3bh9ddfBwCudkRNA4lKl0qlsHfvXuzdu5c7m6slOmYLsStFj/IxkM+0qUkRorzkNNqxIi1uou/1eCM9ueyrNO7UaBz5XpMaEMpZMl1CLreE9lfaVuXYHyUwRJLJ4FMDQ3L9T/pywYIFuOaaa7B06dK0AgtUUjscDnOuUWdnJ/x+PwwGAy644IIxzrDJiv4kk0n09PRgaGgIdrude+ZRk1ePx8MNVF9++WU0NTWptjxQAkLy+yXf9mzQz1NVJiIylOv3ubBtlEQOjPKxuei1mkNnvJLr/rkCujNxPE+DodMop8JbrXaefL0huWxHCyQBjYKCAlRVVeHLX/4yTCYTotFoGgASux7ThA4Gg9BoNFixYgWWLl2Kurq6tHMQTU7kxBLIompt1GwsFApxdMhgMHDzyXA4zI3OUqkUQqEQTCYTzGYzIpEIgsEgdDodbDYbdzs3mUxoaGhAV1cXIpEI3n33Xe4+Td5PsX/FwYMHceDAAXR0dHB5zEzFETKBoVyiO2pG7EdtSmaiRWXbbiLPr3bf86Eu5LpgZjvWZESVskVrJmrcicfOFulRO3+uY2Ja1KNFmUCR+J4iKi6XCzNnzsScOXNw8cUXo65upJ8QFUEwm80IBAKIRCKIxWIcMddqtdyLhdgFfr8fDocD8XgcAwMDcLlcMBgMTFOLxWJcyTSZTHIj7GAwiFAohLq6OoRCIXR1dXGBhkQigWg0Cr1ej2AwiM7OTng8Hhw+fBg7d+6E1+tFIpFAJBJRdWJliuanRRwzRITUPpuWkxe5Lh5PlEeuUzI9Z1HU1pxMOjqbzsp0bKXv8mFOTKScqeN5GgydRjlVYEjpXJkMivGCIaX9NRoN7HY73G43SkpKUFtbC6vVCqPRiFRqpDEplUNNJBLwer1pHcuvvPJKXHXVVdDr9YjH40xrEz2GBIDo+6GhIUQiEUSjUU66NRqNnLvT1dUFq9UKl8uF4eFhNDQ0QKPRYOHChdi1axeOHz8Ol8vF3suWlhZIkoRgMMjUD/Ja2u12aLVapuJ1dnZix44d6OzsZMqdSG3Lhbojf5/LtPqogyBRcjXKlZ7BqaTTiedV22ainuNEeA/FY5FM9jjLNF8yGRCZjIKP8tzIVXKNFmVaA6hwDOl/t9uNoqIi1NTUoK6uDiUlJdBoNAgEAqz/iV1A+Zqk100mE0KhEMLhMLRaLTdPpf3i8TgzAvR6PYxGIzvMHA4H9zDq7+9HMBiEz+fD0aNH0dPTg4GBAfT19WFgYIB1tdgbJhOQURO5/p7Wz6df1HR7rpGZbNuSTKhRnec6kM91qu1L+493vJ+pMg2GTqOcSjCUz3nVvIO5Hkv+GUWKxK7NBQUFsFqtmDlzJhYtWoTKykrOx+np6UEoFEIikYDBYIDFYsHixYsRDofR0dGBGTNm4OMf/zhKS0uh1WoRCoW4K7nf70dnZyeOHTuGY8eOQa/Xo7KyEhUVFfD7/dixYweAEdpcVVUVHA4HduzYgWg0CpPJxIUNjEYjexpFOp1Op4PVauXy4aQ0PvjgA+zZsweBQADhcJjpfEqLYD40uZNZgM92ySdCoKTcc9l/oq4z07nPNMN9qoAhtWvK5Xu180zLiGTT60pUOWCsU410vtgigYovGAwGmEwm2O12LFu2DJIkcfNTirKTHo5Go9xElRxP5IQihxPl8iSTSYRCIS7g097ejuHhYQwNDWFwcJD3Hxoa4n0lKb34jpqOzuQwyRQ5UjvmtJw6mQw2jFzOpmecLwA702UaDJ1GOV1gKNv51aJI471euSdRXCgNBgMKCgpQXV2N6667jiMt8Xgc4XAY/f390Ol00Gg07N0DgLq6Onz84x/He++9B5/Px2DF5/MhGAwyDU9cWOPxOIMU+o4Wanofj8dhNBphMpnY+yhWlBMX+3g8jvb2djQ0NODYsWOcOySnRciNx1xBS77h8I/aopsvmMkUgfmoy0RHoiZKMj3TXL4j+SgZMRMtmahz2Z6L0loiNqQUPycgI4Io0YFGUSOxuTY5GogiDYArfBJ1WiyuI2+6KkaAlH6D2u9S+i4bGJqWqSGZ7J5sa4ioJ3PROxMhp4qxIJ5vIrc7U2QaDJ1GOd2GWC5gSA0I5Ws8kaIRj0cViQBwfhFVoqNKbLTQxWIxhMNh5nLrdDpotVp4vd40aoMYraFFkc4pLnwEgvR6PXdHp/d0DGq2SteSTCYRDofR3d2NI0eOoL29HbFYDEB6SW5RMi2q2e7feKkVH/VpqBYZyvTZR10mkkaXTSb7/ucKej/q8yQfybRWZDIQld6rUR7ptbgtASf5NtnAinytoe/l/VnkDi41yaan1b6fHmNTT/LVO/mwY072eSs5T+XnyeToGa8e/6hR4pRkGgydRjndxlguYeNsnsBMNKRs56bFTvT6WSwW1NXVYdmyZSgrK+PIEUVxUqmRHj99fX2IRCLw+/0YGhqCJI0USbDb7RzZMRqNTJ9IpVJpRRcIZImRIqJZEEDzeDxcPpv45sRbJyqcWqlrNVHzFmbbf1pZ5S65Liane/591GSiPJyZDIZsciopfmeb5EMzymdtUdKJalEl+Xb5XrNaNU+l7XNxVE2k3p6WUyf5sApyBUMTAYQyHVPNxpoonTqR252JMg2GTqOcbmMsH48HMEotyMegUDJc5LQ5OgYdX6fTwWKxoKCgAG63G0uWLMH8+fO51DUBEIraJBIJLmVNr8Uy21T1jTx4lKhLpVSpQWxPTw/a29vh8XiYb07HEM9J1yznmOdDxRlP1Gd64c0s2bz/auNQvl2m452MqF2L0nanWzdMtJyOaJCSqBlB05Jd5BEXtW3k2yvtqzT3ss0PtfOqPcNco4F0XdmuKddjieeeHl9TV3JlC+RiJ03Ec873GOPRpUrzN98xfrbKNBg6jXI2GTzjCSXnQ0vItBDSQib+iQBLpMllEvlirBT1ERf18QKY8SjPTAvvtIxP8vF002fZPIpKtCGiWxIYJxBPAJ0ilwCYOkpJ5g6HA4WFhdwYmPLYiN5JTgMqAxyLxVBQUMBR0XA4jIGBAfT39yMcDvM1DgwMwOPxMOUUAPffIgrp0NAQR1RFRwMdg66ZHAZ0/fQdOSHoXtCf6FhQoi5lknzoSNPzY1qmZeJFvn6l0RepgdfJmjZ0eKXjaD78Xpze8u1SwmeZrkVJRUjCn3w7jWw74Tr00KfpfzkgJoftmNPlYAfKwbnSWqR0TgCIIz66gebDP/lvS2V4nYsaVfoJuex3siqazpvhOFIqt8E4kevFxHdHm5azQvIFQpn2z/UzNZpfJnCipuTVzqPmKc0ltJ2vKB1n2vs4fhnPmMp0HDkYp0RwQDkKJQfmkjRCGdXr9Qye9Ho9DAYDKioqGGQYDAbu02KxWBgM0Tk0Gg0ikQjC4TCGhoZgNpuRTCYRj8cZ5CSTSVgsFkQiEd6PPhcLigBI67FCf6Jk+kx0RMgXcXE/pbkq7jNemai5Ny3TMi3KMobKCEm1YbYmDUlkFjqGUhNkMm7F80hId0IlpMSY/T7cKbPITycCKgWAZpSMfB0aSaMKUvKJXmbaTu3YYgqAfHt9Sj/6OSRIKQlRKTr6W2SgbuSgUAaD+UgGoKKF9sOvTlI/pz7U87Lj5NXcexJkGgx9xGSMIsxAQ6LPxnts8TM52FBSQErAiF6rGWFyI1VeQU7pGuSRALVt5Nc9kTINinKXTONE6bNs0SPRuJd7BUVvnhhllCSJqZe0j1ar5eId1PB39uzZKC4u5r5WqVQKBoMBbrcbNpsNWq0WOp2OozD0XpIkLk0vSRLMZjM3/hUpn+FwGJIkcbVEANysmCJE1LtFLddCHOPifEmlUpx7J58HBLjE+5SNKnWyumN6bkzLtEycZNSLkNhIFSWJZF6AKB/miCgJJNjYpuvJmUb7oQUvffiPAE6mc5LulFdJVHIgqTk1s12f2r3Ihd6n9J0pZRq5ZunDyL3CP/FzSKNrl+K1Kjzv0a/S0wMkSUp7RhPtBMt3nE2GTIOhj5Dk6jFXEyWwlOv+SpQkuQErB0ni+ZT2F7eRe63JyFO7PjWjTakc93glFwUxDYrURc1jl2l7uWQas/IxIgdJSsclj57BYGD6m9lsRmFhIcrLy1FcXAyj0YhEIsE9UaiJsclk4oIj8XicS85TlCcajXIvFmp8aTabodFouN9KJBKBJEmwWCwAkFYZkRoUJxIJRKPRNHocgRwRIBHVjiJMagBHPIY4Lwgwqo3hbJFRpXst7jcdJZqWaZk8UZtbood+ooCQ2vY0x7XQIgEhMpRCGjjKdD6184rHl4vYRxEYdX4pRc2Vzqn2nZLdoGRrZFpn5LaO/Joy2TVq3yndh7T7DaRH0uSSArSSMhDKV3LZ/3To/mkwdBbLyYIf2iYTTS3X48i3kwMftWgRkE7rERWYHDhRFTrx+pToQGpKUk25yhWYkuSqQDOF3qcNv1HJtNBli3YobacEoIHRRVH8XjTw5cfWarWwWq2wWCxcKt5iscDlcnG5d/oLh8NMY6Oqh3QsiirF43EGTlqtlnOAdDodV2S0WCwwGAyIRqOoqKjAsWPHYLPZoNFoEAgE0npuEbChsvZiJEv0eip5Q5XeKzkk1KKumb4Xj6sGOml7OVCanhfTMi0TK2PWRcEKngwPfbb1kQCRKGOM9bSdhD9gLF1Mvl0q/b1NY0vTV2r6T7zGXH5PrhEjudMpm7NY1JXhVDjj8Ud2xlhgI1tKdYL5zzoZH/52SfiNJ4d9chINNOMG4RMl02DoLJXxRnDUts81yqFkaCkBHvmkJwOQci/IcCTjTuyGLt9Hkv4/e28aY+dZno9f79n3bc7sHo/Ha+w4JHZMEpwQkiYBIgIoUaRSIGkpBAgSUj9Q8QFKVaS2Em1Rq0r58QEk1IJasZQKSkgbqAIBZzPO4iW2x/aMx/YsnuXM2ffz/j9Mr9v3efyembHxyt+PNZrxOe/yvM97P/dzX9e9POc269PKxcnQWqk5eZT4HBfbOoFJ87sbXqLlw91WAyqXW6TM/3cC4J0WJnp1QqGQyF04HEYsFoPX6xUZdbvdcLlckhfU1dWFRqMhXh0CGHqZeB0AAoq8Xq8UZAgEAgAgmwrXajXZlFiDLs6/cDgs12aoHZ9Bh/5p0Gc+s55vTuO+HPg09YUp1xfyjv7/PBdutBvtcrU2gxx2W/7O5byX/myltpxnSIfDaeNdwv30P8uC5WrXb3nkAQAxxDreY6W1eblnWOl5V0NUm/csowzYQAABx/vo97l0Eed7iZ5eIRTxSutfAiCCIsrllWo3wNDvYes00VajgFYSfiemGMCyyYD80fG5uoIV/+/1euH3+wUQMRwpEomgUqm0GZH1el2MSMtayrdgJS3LsoRV1yCJBqBZIcbJ+L3QsbkQxWEa/DcMvqXmBIQuZHyWCztw8mB0uobZWC2OFd/8fr9UluPeWAAktK2rqwv1eh2BQADRaBTBYLDtWuyDx+MRUEOPJu/v8Xik6ALzgBqNBoLBILZv3y45PIuLi2i1WpiamkKj0ZBqcPRSlctl1Ov1thwik/k0565unQContecV8tdYzVsaafjb8yRG+1Gu7ztcgGh5e6j9cfFXKcTSeN0D4YJ62NjiDnqw059NT3Wyz2DSco6ncfjOpFEtIP4XRBBwAIqdgUBBM7ztDtdYyWbZqV2NQha00t0pdoNMPR71JyE/kImwmq9P52ubTLp+nPTi8Nkb8uyJJciEAggkUggFAohHo9jcHAQPT09iEQi6O7uRjweR6vVQjQaRaPRQD6fR6FQkHLDzWYT+XweCwsLGB0dRSaTkfLEBEC2bcPj8aDRaIgByj7q5HFt3GkgtRoFfCGA8kZbasvJ7mrHqpOXQ39veoNWU8adIW1+vx8ApPCB1+uVvB6Px4NIJIJUKoVEIgHbtlGtVtvKbjPHyLZtCYdjaGehUEA2m0Uul0O1WoXP58Pg4CCCwSBs20atVkO1WpX7MK8onU4jEong7bffxszMDBYWFiSPiMeSOKjVajIOJiHAcaAXlo0eJv7daZw1yONcWc5oWK0RZBohN9qNdqNdmnY55tRy5InTcZcCCJlElyZf6aXns9q2jTzyiNgRCSPrpNecPnfSaU7PZ/a107GdwBj7D7QXrwGAgB1ABRX44V92LJzGqpPNovuy2nY5dbJld65weLnaDTD0e9Iu1HDUbbmwMCfDh7+dDE2zP9rzo/MzaCBaloXNmzfjM5/5DFqtFvL5PJrNJgKBgBwTCoWEgQ8EAsKWh8Nh5PN5JJNJVCoVZLNZFAoFSVgn6AoEAmg0GrJhq84r0n3nD/M8zPAi/YwmMDLH/ndREpfqOtdD6zSG5uLhtFg4hWo5LTxcWFaSYb05ML/3+XyIRqPw+XwC6P1+P2KxmAB0XpsyC0DkjQUUuM8QvZ3NZhOFQgEvvvgi5ufnpfgBFym3240TJ07g9ttvR1dXFyqVCqrVquQsEQwFAgGsWbMGqVQK8/PzeOmll3Dy5EnJUSIAIgjjc9q23eY1pdFQrVbPAznsG3AOMC43lsvt9aUX3OV0lflOncJBbrQb7Wo0J33TST6vdVm1LKtz0vwlap0Mb7Mfq4m8MHU2v+NvEwg5ggHb2XPTqS9OZEwn3eVkN5k/2hNP4sjct80p0kZ/H7ADqKIKWEDQCjqOsb7ncjbecq3Te1tubf5d2tWcLzfA0O9Bu5Ssi3kNJ2UBnB9ao9lj0xjVigmAhMLF43H8yZ/8CR566CFkMhm0Wi0MDg5K7lChUGjbVDIUCmFgYACWtbR3y4YNG2BZFnK5HI4cOYJCodDGwmvGfn5+HpVKRfqnk9d1PzUgcnJ9OymB5cDLhSgip/d2OdmXq9mWA+9OoNpJKTt9p9k0/jhd34lB4/GUP7fbLZ4ehqr5/X709fVhYGAA0WgUtm1LFTi/3496vY58Po833ngDmUwGAKRAQrVaRTKZxLZt21AsFjE6OopqtYpoNIpwOIxisSgeoWKxiLm5Ofz2t79Fb28vBgYGpJ+VSkUqwTWbTXi9XqRSKaRSKQBLHqEzZ85genpaqsppjw8BG8em1WrJ8zqVD+f8ZRie0zzg+HUyBM0S3iuBIvPdaqPhaja9l8rFMJdXMgb+Rlt9M9e7TmSg+Zlm2nXY0oV6QFeSpcshNwxFYqnmK9FWS4B0+r6TTjdLZXcCHflWHiE71HY/J/IMgKN3W//fLL5jkkBOJJxT//U+ccuBGl6bfwet/wuFRhlBBM+TWaey4foZlguzM/txoXbMcjJ/rUbG3ABDv0fNCbQs1zoJrKlMnIx9c5EwmRsmgGtQwe/j8ThCoRB27tyJBx98UMLj6JEJBoOIRqMol8uYnJyE1+vF7t27AQCzs7MolUqSt8HwugMHDmBxcRHZbFbyh8jKx+NxbNq0CXv27JGwJBq8zKXQiov9NfeZ0aWFnfYzchqfS9F+3wBRJ/B+IeebRrh5LXMhcvJQcoHk5/T6EKx7vV709PQgGo2KjPT29mLbtm0iC7a9FA7HzVBrtRoWFhaQyWTknslkElNTUyiVSigWizh79iyCwSDq9Tq8Xi+eeOIJdHd347XXXkOj0UAgEEA2mwUAOWdychJdXV3w+Xwol8uSs0Rgz77fcsstSKVSeOWVVxAMBpHJZFAoFMQjypA/7lPE+cBxYJiebduORU1IIDgZe9qzZgIhp9Leyy3GTuBXL6JXcz4QCF2MgWpuOnmjXZ7WiczrFJLkRPqt5Kng75XCi5bT38ttVGoecznalazadTFromlXmAa+eazTe6TOydt5hBHueI6+n+6vExDRfdGfmdsZ6Fwl4FwekKnLuC6ZJCyP0euNCWbMcD99XqexdPJ2mc+/3GfLtVWB/2vQnrkBhq7z1kkxrCRsK00cPdHNBUIblp3YA32+acjQa1OpVFCr1eDxeFAoFFCtVhEIBOByuZBKpVAulzEzM4OhoSG5x2uvvQbbttHb2wuXy4WFhQWcPHkSxWIR5XIZuVxOAJFt2wiFQujp6cHIyAh27twJ27bx5ptvYu/evTh79qzkGrGRfWbfTfe1+Uym8tLsuMmSr1apdFJI5jWvx2bKi/mdli8uEub4678109bJkNYLil6cCL6Bc/LKCm4saR0IBCS8LR6PY/fu3fD5fBK21mw2Ua/XBVRUKhXkcjl0dXUhnU5j69atWLt2LSYnJ/Gtb30L2WxWqr95vV4MDQ1h8+bNCIVCCIfDGB0dxcLCAprNJmKxGFKplITUZTIZJBIJ8d8VUjgAACAASURBVHA2Gg0p8c2QuVarhXg8jt7eXtTrdYTDYQFEzWZTwvU0KGKuXb1eh8fjQT6fR6VSEWKCm8TyeSnLvC+NAL4/hggyTFWPu674yHd2vXhCNQC6WCDD8650PPz10EzDV+th7cXksU5rj5N+YNM6m/9n08TfatdOc20zf5vHn3edK1wta7XtYufg5WL7lwNC+v+m10W/74JdOA8I6fO0PGlyVMuFGXrHv6n/AYg9ob93AlCmDgTOAR6z0ig/cxpf27YRaUZQbpbhh79tTFZrazgdu9p3uRywuph2Ne2cG2DoOm4rAaHlBNxkPUxhNpkPrfidgJTJWnDy6tAWTnAWL5ifn8ehQ4ewfv16vP7661hYWEAikcDQ0BBeffVVZDIZCUWamZmB1+sVb8/MzAwAiIHH0CHey+PxIBgMSnUv5kx4PB709/cjGAxKxTnt5aFi04rMCQwBcHzGlZRIJ6Vxocrnem+msdDpuVZiXJ1CAdj0e9QFPMz5oa+hq7FFIhHEYjFs3boVmzdvRiAQEGOfska5KZVKWFxcFJDwN3/zN2g0GiiVSvB6vRgZGcGhQ4fws5/9TDws/f39+PM//3P09PRIH1KpFObm5tpCODlXWD2uv78fLpdLCovQK2RZFubm5nD06FGcOnVKwvK6urrEw8NwPcosF/je3l5Uq1VMTU3B6/VKyGkqlYLf70e5XMbs7KyU/mYxCI4vvUsaYGqjwnzvTsB3OUbSiTG9nueBDrO7Fg3iy900E875RvIhnU5jYGBAcuuazabI3/z8vHhhSURoNh44P0wJaC+OshxQcVo7nQw0DdpMneKk2/j3xXgGr7SsXMi8uhwAyBxDfR8nwou60wQPbTrDah87U0a0x0YDEeZmct832i+WZcn+b9VqVYgi09PO/ul70Wao1+uOoEgXo9FEk/ncPL7gLgA2YNnOYGm5cb6Qz0xbz9Tll1InW5Z12XPZzHYDDF2nbSVlwc8u1ph0Sj7kJNVKRu9von90wrW5ULC6VTqdxvHjxzExMSEV4VgEgYaWZkuApURwKhLNyDDkzefzIRaLtYEistqVSgWlUglHjhxBLpcTdl6PRbValf4tF8PL8TALKzixg+b4mMd2ejed3t31agg6KXS2TmPhtPhpI8SUUfMapjw7Gd362EajgWKxKLlBmzZtwvr166VoAcMvufhxAczlcqhUKgiHw3jqqadQLpfFG2JZloR6Pvfcc1KNzu/3o7+/H6FQSIy66elpvPLKK5iZmUEkEkFXVxfK5TKmpqbQarVkryOPx4NSqYR8Po9sNotkMolqtYrZ2VmcPXsW5XIZgUAAsVgM8XhcqtIBQLVaxeTkJLLZrGwaS+9XKpVCtVrF+Pg4crmceJASiQSSySQmJiZQKBQAQBZzDTi1J4jzxzRMzPyhTkCnEzi6HIvv1WgXm3d0LTU9B0k4UJZoGFLWa7UaarUaLMtCLBYTkO3z+ZBMJqVITjwely0TOIeCwSCSyaQQaQsLC1hYWEChUBA5ZG6eLgpihhexT50Iw5We1Ukf6e/ZzOOaVhNoORusq7r3dSwrpo52AppmM9dP8zzzXL5brVtoA5SsEiKIOJ5LGXMKX+NWCZTJdDqNZDKJeDwu5BP1dr1eR7FYlBD9arWKTCaDxcVFsVMokyTlGBlj2k6aZHMaR5OcTbQSaLlbqKCCYCvoKNPmeGrQ2KldDqB7LbcbYOg6aSsp39Wc52REmgwJPzPDBszvTTbODCdzMvw1A5NKpdDf3496vY7FxUUpQ2xZS5tI6v1XFhcX0Ww2xSCrVqs4e/YsZmdn0Wq1EAwGUavVkMvlZB+YSqWCer0OAG0AZ3FxEW63uy0PJJlMSg7S3NwcarUa5ufnZeEmM2OOm2Zv+Iz87WSg61Ai3cxxW027ngzB1SrV5cCfKX963Plbl1EFzsmkzhPS19TGufZeNJtN9Pf3495775VFj0YbS7cvLi7KtVni3bZtPPbYY2i1Wti/f78U/QiHw+jr60OpVJJcIQAol8s4dOgQtm3bhmq1il/96lf43ve+J8AnFFpK9OVCS0NOe3ay2Szm5ubQ1dWFTZs24emnn0ahUMD/+3//T4zOZDIp5eR1HpDf7xfvqNfrhdfrRX9/P/x+P7Zs2YIDBw5gcnISzWYTwWAQw8PDuP322wEAb7zxBo4ePSoGqPbCcezNXDxzrmiQ5MSod5KFqyH312pI06VundYZGo2WZYkn0uPxIJVKCUng8/kQiUTg8XhQq9UkV43X8Pv9AkQikQiCwSDi8bjck0CGhIMmzvRGxNTZsVhMiIlSqYRCoSDGKM+hfHKualkz95wziwCtpI/MzzoZ+XXU4bE9sC37d2K7f6dcNWN+tdC6bPlCTuOw0rxdDmg6radtz6JCyEwgUUIJITskm692Il2op4BzWykkk0ls3boVw8PDEk4MoE2H1ut1kX2/349AICDgvK+vD7a9VGDn7NmzyOVybTYA70lPEok1bV+RVHAay/PWQtfSxqxOgMgEep0IpdWu1Z3k/3qyS8xm2ddrz69Suxpo2TT6zO+clEen4/S1tGfDTCw3E6z1MQBkEdFVrczEapYaNuNob7nlFtx+++1wuVyygHGRZY5GMBhEsVjEf/3Xf8m9y+UyarUa1q1bh+3btyMUCslGrY1GA+VyWZQK2etoNIpUKiV9KZfLKJfL8Hq9EgalQ56y2azkHo2NjWF+fh6FQkHKcgNoc4WzyhirdmmF1glAObE/FzMNr4ep66Q0O/3fSSlT5vhjglCyelpetVLWhg6PJdCmvNLI4jEjIyP46Ec/img0imq1ilqthomJCezduxddXV2IxWIyJ+r1OnK5HGZnZ9FsNhEOh5HL5drC2VgZbm5uTu7j9/sRjUaxadMmfPrTn8a+ffvwj//4j22hQ4FAAH19fXC5XJLf5vf7cdNNN8miWywW4Xa70dPTg0984hMYGBgQDyvnw+LiohQXYbntTCaDfD4P27alaAQLmXi9XpmPbrcb09PTmJubQyqVQjKZhM/nQzabxdGjRzE6OoqxsTFUKhVZtM8LUfm/8adhynmi58pqZVnPIVNmrrd2JQCWBvk6LNKcd5a15L3kZr3ValVkPBAIyOcMEQ2Hw6J7tfFGUF0ul9s2wqZMcL3hZsScD5old7vdSCQS4u3X1RC9Xi9CoVAbk1+v14X84jpD2W02myiVSrJW5fN5WW94TeoBHfmgx8aUT9M41587tZpdgxfeC5Z1p/a7yMzlAEMr2R5aj/P71YIl/Z0T+aWPc3ofRbuIEEKO5Jn+0d5M6uaBgQHs2LED27ZtQ71el0I2lC+v1wufz4dmsynbEQQCAViWJcRsPp8HAFlvMpmMVAy1bRvj4+MoFAool8ttOlHnoXLMnMhAPZ7apijYBYTskCM5rcevky51AqXmOU7tUuvklt1aUdYvpf6/4Rm6xpuTAliOJTHPMRWJbtrI5KJE4YrFYsJa6M0jeTwXKJ6jjRsNivSCyfN3794tRiKrbjFpnSV89+7di8OHD0tOkJ644+PjmJ+fx3333YdUKoVIJIJWa2mPInp0ms2mgCtu6qrjgMnak/mvVCpSftvn86GnpwebN2+W6l1zc3M4cOCAVArLZrOy3xELP9RqNQFspvuZykwb86YSc3qHgLNyut6MwJVAkfkZ5Y2eCyb727YtzDGANpnUgJ4LEGXTspaY6WQyiWg0Co/Hg8HBwTaDil7GnTt3CrvN7w8dOiQV2QqFgnhV6vU6yuWyAObp6Wnk83l4vV4pRKDlgTlJXPDeeust/Omf/ilKpdJ5seuVSgXT09MCfIAl9nxubg5r164VEE/j8e2335aNWJknl8vlYNs2yuUyAIh8ulxL+3QRDGpvkS6w0NPTgwceeAC2bePMmTMYGxtDrVZDd3c3ent78e53vxu5XA6/+tWvsGfPHinUYOodlgD3eDxivOrF0wRQyxk+bNfbHNDtUgIhU99Tv7jdbmzcuBHr1q1rK8SxuLiIhYWFNvkEIJ4dHYrM3EvqORp+BO0sK0+Pji6/br5XAg56KSm7BP763EKhIPO92WyKIcr1iPOI4EtviuxyueT/Pp8PfX194snKZrMYHx9HsVgUsOekr7We1p/p8dbjbzL1573v1vWvw52a03xdyVhezl4xmynbTvfQIMG2bRRRBAABQvr+mkQjQNOe60AggKGhITzwwANYs2ZNG1A3+2SG0ZMQ1f1ic7vdSCaTUiCKMjs2NiY5cdrGMe0C7SHqNLbsRwQRlOwSYC2NgSlzTqDH6Z11AkXLHbtcWwk4X+12Awxdw83Js+D0vdnMhEIzDIiNBg8XDR5TqVSQSCQQCARkwo+MjKC3t1cWLbfbLcba2bNnxRhkvGyj0RAWj9cPh8OIRCIIBAKoVCpS5YphOlyAJyYmcPjwYWEhyaIDwNTUFKrVKvL5PEZHRzE8PCzPyLwIvVBy0ePz0BDTYUIApFpXpVKRfBEm9Q4ODuK+++7DJz7xCUxNTcHlcuHAgQN47rnncOrUKWGTWBaZ96SRrY0AMpI6jlizLp3kYLnPrjWlwmbK50qASC9WNHJ0HgK9kOaeOFTwbrdb8g5onPE979q1C+9617uQTCalBDQ9JmfPnpUwNIbecN8ry7JQLBbR19cHAMjn88jlcrCspZw3FklYXFxEqVQSIM7+6Qps+jm52DGEk/0niOO9OZd04m0+n5fnppeyWCxiYWEB5XIZoVBI9hzq6uoSYDQxMYGzZ8+KkavZdrL53FBWj3E+n0coFMLatWvR39+PVquFmZkZzM/PAwB6enqwbds2bNy4Ef/yL/8iHif9jvU74rPw2TUDajKYpnF5IYz8pWqX2oNzMddzYsa1txOAkAcEuBs3bsT27dvbvNfMWWDiN99Jq9VqA8R8T9RZAORvkhGlUklkt83roEJ+nLwhBDfaGLVtW0AYr0GgxcqN2pPDY/ib84UFcTQ5p8csHo9j586dqFQqOHHihFQdNfu6EkEl79JBVk197oMPDTTghvu8869Uc+r7lWwXsrYtd74JiPR4F7AUDcKqcU6ksUnSaEDt8XgwMjKCD3/4w2KnUL4JnDnfdGEOzkPKqt6rTfeVz0CiNpVKIRgMYnp6GkeOHEGxWJRn7WTbdRobPb6WZSHiisC2bZRQOm88nPSsOabmuOumbdGVvtefmX2+1toNMHSNNqeJu1pDgMa3BkLa68PFkNV7tJGZTqcljI2LZKVSkTAE/nBBZJI3w3Cy2awcS+9LKBSSkDQam2RDCKB06Nno6CgajQZ8Ph82bdqEeDyOSCQiE/XMmTOwbRunTp3C6Ogo+vr6xFDUXgQu7gCQzWaRyWTaGElW+mJeEkEMPyObyLh2y7LQ09ODRqOBu+++G+985ztRqVTwve99D7/+9a/Fq5RMJuW5isUiKpWKjLs2dNmXlRbglRTHSmDqSreVwJv5f75X7bnT4Bw451EB2svrak9QIpEQjyYN7c2bN+OOO+5AOp1GLBaDz+eT64VCIRSLRYTDYYTDYakwCJwDPQRUNLQsyxIwwbkwNTUleW18hwTDTouayZrrMFQ+Gw1RXfrdsiwBWDrHjgaiz+dDPB5HIBBou5/L5UK9XpcFl/fjWHo8HslPYgXHrq4uJJNJlEolzM3NAQBuvvlmqe4YjUbRaDTaQP0DDzyATZs24Z/+6Z9w+vRp0UN8Zs2k0gjRY6U9p06s5WrmwrXeCIRWAnj6c6ecK8ojCQOCmmQyiQ0bNmBoaKjNw7OwsICZmRnZyJpGHkutAxAywe/3nxc2rUN46Ali+BmNQepb27YFvHTSa4VCAZVKBYFAANFoVPrA+a/zhyivmtXn3wQ/nDs6OkFHNfBYv9+P3t5exGIx3Hrrrcjn8+L11aHeTh6eToYff/+uRuTvSzON6pU8CxeyxpmfWZaFPPKAveQRadmt8+YJf8xQPf5o3XnfffedF/oPQOSb4Ac4v8KltrM0Aa3TEaivKftutxsDAwOIRCLYt28fMplMW9SN7jv/1uuH7ocjKEIERXsJZAXt4LLvgM28Bj9baT44HXuxXqSr0W6AoWusmQrESTDNz/X3TopAH08jKxAISH5OOBzG9u3bZVJGIpE2Zs80PvVPIBCQ8rvMOyDI0QnbVAgEUgQb2sBjlaBWq4VwOIxNmzZJDgMX2UQiISy+2+3GiRMnZAHndQC0JdsC54oocJHUe64wfES7wlnBiyFQmUwGwWBQFvnBwUFJAP7iF7+IT37yk/jnf/5njI6OCijic9DNTqPPZJO0UjUV7HKG4LVoHHZaAM3m1G/KCgGsHhOCb20IaSA0MDAghQIsaync4a677pKcMIa9MdxGM3lk0gl+dX+5MOrvOX+q1arsa6VD6gCIHPJcbazpRUu/X73Q8dkAiPHKsbCspbBOhn+Wy2Xx+hw/fhwf+9jHsHXrVti2jRMnTuCFF17AL3/5SzGEGc5J0sKyLPGSrlu3rs04iEajiMfjmJycxHPPPYdGo4Hbb79dwkJpnPL9bdu2Df/wD/+Av/qrv8LU1JTMVfbdBEQEvZx7mlF1khlT5q81IqBTk2dyAR7Ls+wz8vhOBh3HnHOFHqFIJCJAiIB4dnYWc3NzyGQy4snhj5lfowsjsFGn6kpZBCcaxGqdBpwfuqSfSxMG9NTTC88IAcopPZe6qiivy1BPhscR2HMcdTU5NpaPDwaDSKfTSKfTuOeee/D2229jbm5OwlV1GGend+T0jnXYeNu7d6GtktyVllcnY/ZStdWQX/ozDZYupE9Ox1uWhYgdaZMvp8gYUw61LqF+Gh4eRq1WE0KXUTOWtRSpQFKT9oP2+Jt7BLHpcG8Asqeijhqg/h0ZGUGz2WyLStA2l/nsBFucc5qM0/1g/lAZZdAhHXQF2+y61cqjCbj0e9B/m3bL5ZS/S9VugKFrqK20QDodYy6YOofCiVXQBmcsFsPGjRvFsLdtWzY/DYVCbbvc6zACExCZC7RWQsA5I4gLjC6SwOpaXABZEjiRSMC2lwoa0CvUbDaxuLgIl2tpjxWXyyV7sKRSKQFWiURCWH8yoCyK0Gg02saL1Y+Y/+H1epFIJNDb24uenh6k02n09/fjpptuwm9+8xvMzMygXC5j//79ohCHhoawbt06/Nmf/RlcLhc+8YlPyEJMA8P0rvE9sUoNjQsdN38x8nGttdUoQG3sUXlqQw1oB0YcV4Y3dHd3o7+/XxavdDqN4eFhyekyGUG+N5bDJjiiFzCZTGLjxo2IRqOYmpqSRO6pqSm89NJLOH36tFSxovdIe3RMb4eef5r1oxHJxYvAhHNHJ4brd0yPLQBZrAuFAgqFAnK5HH76058inU6j1VqqNnf48GFkMhnkcjlUq1UpR6znNImBUqmEaDSKoaEhuFwubNq0Ce9617uErf/a176GX//614hEIkgkEkgkEojH4+KJ9fv9SKVS+MY3voFnnnkGL7/8MjKZTFtInA4P5Q+LNvC963e+Whm7FueBfsaG1YAXXkeSyuk8/Rs4RxbQ+005CYVCGBkZQXd3t4CDer2O2dlZvPzyy235Wtr40/ON1+f9SEBQpgjutWybBXPq9brkF+kwNadcB57Ha1AmWByBoIs5S1yf9Ga+yWQSiURCQLXH40EkEkE0Gm3LJbJtW4qazM3NCfG1uLgoIaQ333wzcrkc3nrrLdlwmN4i85108u7od0Y9wM8CrQDqraWqclejXUkg5PT9SkTuStcwiV7mBcFeCosz9QmP0/pfh1jqzyh7Xq9XKr4xIiAWi4lsVyoVFAoFzM3NYWZmBrVaDZFIREC8DjclAeZ2n9vEWxNqmUxGCtxQ/r1er0Se5HI5GSsTxJk6VHtHOS+5ZuixDiIo4bkERgEEZIyX8xat1LQecHp/10O7AYau8WYKUqdJz0nBSWgqHw2WfD4f0uk0du/eLaEqDCdguII5obmvSb1eR29vL7Zt24ZAICAek0wmg1deeQWHDh0ShcNQt1gsJsx+pVKRPKJwOIze3l4xLOfm5sRQbDQaUvmHAIHGEp/JtpeSzI8ePYq+vj5EIhGkUin09PRIiFGlUmkzLnkeDYrh4WFJpJ+YmEA+n5cFlWwlF8z7779fxvTkyZN49tlnUSgUcOLECZw5cwYjIyO49dZb8eMf/xjPPPMMnn/++TYXtq6qZypsGuT0WOhcitXIhxNrfq22TvKrQzmB9kWTyp7GEcF6JBLBli1bkEqlJNyrq6sLiURCDCSCbFYEqlQqKJfLUuiAcu71erFlyxasWbMGgUAArVZLqrMVCgWcOnVKgAOZdV3tSjfN0tXrdZlXTrkJPJdzUHuRTGOMwIHX4rwPBAIS6rlnzx4MDAxgzZo1Mmenp6cFuNGY1KwdPTOVSgXZbBazs7OYmprCvn378JOf/ASf+cxnkM1m4fP5ZM8u7kPEKkoAxIB1u934yEc+gmAwiJdffllYdz6H+eymDHRiEk1i6GrL+0oLPce5jjp8lk+MkU5y7vSZln1uHcDPEokEtmzZ0lbJqlAoYGZmBqdPn5ZQNu7BxnM1ccUcUDLMBEIEEGaBAe3dNIEB99eivuukw8xxY+gQAAnZ5DPqvVkImmOxGIaHhwXs6FwpHstzmXM6MjKCQCCAl156CYuLiwAgOiASiSAej+PWW2/F22+/jVqtBo/Hc1455OWAkJZbEwyt9L6vx7ac7F+oAew0TuY6YVkWitYSCIpa0XPrRdPxkm1EsOlxNUlkyghBOEPtGe5fLBYxOzuLEydOIJPJSOVDhhWTnKDc8DNGz6TTaQFMgUAAoVBItmPQkQ88hnaAHhenNYPkhCahCcpIYmsChC1khWDDXtqbCM57E63mnZnnXQ8eoE7tBhj6PWicAAwh0ky4bj6fD6lUCu94xztw8803i9HNcyKRCPr7+xEOhxGPx4XZ1hs9RqNRxGIxJBIJAEuuZba77roLAPDyyy9jfHxcEspnZmZw8uRJ2ZtFb/JIrw2T0FmtyFyAOKlpIM7OzrYxIaVSSXJCCGgAiDKjwtALajweR3d3t2wAWKlUkEwm0d3djWazKQtkLBY7b8yHh4fx9NNPAwCKxSJ++MMf4tSpUzh58iQee+wxfO5zn8MXvvAFPPXUU5icnGzzeGg2lIqDi7reD8Y0QpyAsf7uagIi3TeTDTRZI71IOX2m+09PEMFKMBiUUM6+vj5s27ZN2Ll4PI7+/v42Y4z7j5w4cQIzMzPiGclms1LQo6urC6FQSHJxduzYIQUFKpUK5ubm8Morrwj4IbOsc3449mbOEJ+Bz6HZeCej0pQTk8XXYIgkAf/W7fjx4xIi9Zvf/KbNqNX94zXNmPZms4nx8XEpGf7P//zP6OnpkYpjfJZSqYRsNgvbthEMBqUf1Ce7d+9GOBzGq6++ivn5eXkmviPTU6G9Xp1A0XLz4Eq1C2HE61YdPvgu6rqcFyQBOPYulwvpdBojIyOyz9r8/DwWFxdl+wC9GSnZbepzhjUDEI89vZME/9lstq1wgQaxTv3l35RrJ6+Kk9HLRqOQz0pizO/3o7u7G6lUCl1dXUJQcWPWXC6HXC6HUqkkGw+Tdff5fOju7hZdDwCPPPIILMvCyy+/jMnJSQGQsVgMqVQKt9xyC44dOyah1zrUcyX2XJNd+nuXy4WAHUDDbsBtuR2vdbWbSaBeiut0micmied0PMFwySqBVcCjiMpxWpfqPtv2uRBJ2kI8x4xmAZY29N28ebMQYNTxtHcsa2l/wrGxMSwsLEhhD5JItC109MvAwIDkr5bL5bZ5x7mkyT8dThcMBqX6pybOOhGH1OfaC6af3bQ72sbd/r+9iaxg2xqk22o8Rp3IgYtpV8uGuQGGrsFmKqVOCsX8TitsU8F4vV7E43Hce++9WLdunYRnhUIhBAIBKU/dbDZx+vRpPPvss2g0GgiHwxI2tmnTJgwNDWFqagqzs7OwbRsf/OAHz+sX8xXm5+eRy+XgcrkwMDCAcDiMEydOYGFhQZRJuVzGzMwMjh8/jnK5LIqF35vhHRpI6D0suB9MJBKB1+tFb28vbNuW2PlKpdJWUvmxxx6TYyzLQnd3txiZF9rC4TCefPJJ7N27F3v27MFPfvITrFu3DiMjI/jqV7+KH/zgB3jxxRcxOzsrYS4myDMZK75HjoNpLOu/TeVxNRnz5RbUTqwqz3Na4Kj4vV6vyOng4CAeeOAB8dp4PB6sWbOmzctZLpcxPz+Po0ePYmxsTDwjDAMFzi1AXPQGBgZkD5JEIoFWa6ly269//Wsx4AmI6vV6mxfEyVjiWOjwDIII0ztkjgH/bwJDzgldapvfkR1MJpMoFotYXFzE22+/LftY6PE3ZUpfQwMigiJukEzmkjLMGPdarYZQKCRzkOF7wWAQIyMjKJfLOHr0qORX8d4sVsJn41ia4M6UI6e5cqXaagx7fk8g5NRfp/NMo4cAkcSMLnkej8cBALlcDtPT0yKTNLZ0ziTfJ71AJLo4vzj+9J7qLQJMOTXHgX9r2VktiaM/4xyp1WpSPdTv9+POO+/Ehg0b2nKIPB6PGK1TU1OSE8VcI110JJvNigc4GAzikUcegdfrxZ133olKpYJf/vKX4jGOxWIYGBiA3+/HqVOnEAgEMDU1hXw+Lx7VTu/bJLjMYy3rXO7QtQaEgEvL6i9ns+hjnIzoKqpL4McDwALiVvzcsa3z8+q0N1nnrmmCmMfzO/6ORqPo7+/Hxo0bhcyhjmJUCYC2tUOHsrdaLclD1eRXoVBAPB6XyozValW2MuD8IBnBNYzeKF0GX89pc53QeUFO81OPKfW2jjawbRsha8kLW7bLCLqC560NTtdajoRdSSeuton8XMFpcmPT1Qtsl0pZdLr2aq6vla2e8PpH5wYFg0E89dRTUgHL5/PhoYcegmUthYbNz88jk8lgYWEBi4uLyGQyOHz4sDDjVPDBYBCxWAw9PT1S2MDj8aCnpwef//znJTaWnphMJoOT0a9YHgAAIABJREFUJ0/iyJEj6O7uxiOPPIKnnnqqjX1kaeNSqdSWS8FniEaX3OGLi4vCuvA7bTjzh+MRi8Vw8803I5FISClur9eLkZERjIyMYGZmBolEAjt37sTOnTslROQ3v/mNhObNzMxgYWFBkmpvu+02dHd3y/Mxpvyhhx5yfE/j4+PYt28fms0mtm7dimg0ii9/+cs4dOiQlCDXmwVqpcK4Xxox2igxZcGJGbuabPlyRqpTPptmtLQMM8TS5/MhEAjg1ltvxRNPPCGfkWU7deoUKpWKLDbFYhHf//73sX///raKhTQAabRxnDj+wBJLuHXrVqxfv17O6+7uhtvtxu |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment