Last active
May 15, 2025 22:20
-
-
Save filipeandre/748c602889309de302ce26dfbafa4de4 to your computer and use it in GitHub Desktop.
Excel Table Data Extractor
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import boto3 | |
| import tempfile | |
| import os | |
| import sys | |
| from urllib.parse import urlparse | |
| import openpyxl | |
| def parse_s3_uri(s3_uri): | |
| parsed = urlparse(s3_uri) | |
| bucket = parsed.netloc | |
| key = parsed.path.lstrip("/") | |
| return bucket, key | |
| def download_from_s3(s3_uri): | |
| s3 = boto3.client("s3") | |
| bucket, key = parse_s3_uri(s3_uri) | |
| tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") | |
| s3.download_file(bucket, key, tmp_file.name) | |
| return tmp_file.name | |
| def get_cell_type_name(cell): | |
| type_map = { | |
| 'n': 'number', | |
| 's': 'string', | |
| 'b': 'boolean', | |
| 'f': 'formula', | |
| 'e': 'error', | |
| 'd': 'date', | |
| 'inlineStr': 'richtext', | |
| 'str': 'cached_string' | |
| } | |
| return type_map.get(cell.data_type, 'unknown') | |
| def extract_tables_with_types(sheet): | |
| tables = [] | |
| visited_headers = set() | |
| rows = list(sheet.iter_rows(min_row=1)) | |
| i = 0 | |
| while i < len(rows): | |
| row = rows[i] | |
| if any(cell.value is not None for cell in row): | |
| # Treat as potential table header | |
| header = tuple( | |
| f"{cell.value} ({get_cell_type_name(cell)})" | |
| for cell in row if cell.value is not None | |
| ) | |
| if header and header not in visited_headers: | |
| visited_headers.add(header) | |
| table_data_types = [] | |
| # Check next rows until we hit an empty row | |
| j = i + 1 | |
| while j < len(rows): | |
| data_row = rows[j] | |
| if all(cell.value is None for cell in data_row): | |
| break # end of table | |
| row_types = [ | |
| get_cell_type_name(cell) for cell in data_row[:len(row)] | |
| ] | |
| table_data_types.append(row_types) | |
| j += 1 | |
| tables.append((header, table_data_types)) | |
| i = j | |
| continue | |
| i += 1 | |
| return tables | |
| def analyze_excel(file_path): | |
| wb = openpyxl.load_workbook(file_path, data_only=True) | |
| result = {} | |
| for sheet_name in wb.sheetnames: | |
| sheet = wb[sheet_name] | |
| tables = extract_tables_with_types(sheet) | |
| result[sheet_name] = tables | |
| return result | |
| def main(): | |
| if len(sys.argv) < 2: | |
| print("Usage: python extract_excel_info.py s3://your-bucket/path/to/file.xlsx") | |
| sys.exit(1) | |
| s3_uri = sys.argv[1] | |
| if not s3_uri.startswith("s3://"): | |
| print("Error: Argument must be an S3 URI starting with s3://") | |
| sys.exit(1) | |
| local_file = download_from_s3(s3_uri) | |
| try: | |
| analysis = analyze_excel(local_file) | |
| for sheet, tables in analysis.items(): | |
| print(f"\nSheet: {sheet}") | |
| for idx, (headers, data_types) in enumerate(tables, 1): | |
| print(f" Table {idx} headers: {headers}") | |
| print(f" Data type rows (max 5 shown):") | |
| for row in data_types[:5]: | |
| print(f" {row}") | |
| if len(data_types) > 5: | |
| print(f" ... ({len(data_types)} rows total)") | |
| finally: | |
| os.remove(local_file) | |
| if __name__ == "__main__": | |
| main() |
Author
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
curl -s https://gist.githubusercontent.com/filipeandre/748c602889309de302ce26dfbafa4de4/raw/385838832f65080bc22a82e72bd548ab638b4ba2/extract_excel_info.py | python3 - s3://your-bucket/path/to/file.xlsx