This gist shows how to create a GIF screencast using only free OS X tools: QuickTime, ffmpeg, and gifsicle.
To capture the video (filesize: 19MB), using the free "QuickTime Player" application:
distinct column
-> For each row returned, return only the unique members of a set.
Think of it as for each row in a projection, concatenate all the column values and return only the strings that are unique.
test_db=# SELECT DISTINCT parent_id, child_id, id FROM test.foo_table ORDER BY parent_id, child_id, id LIMIT 10;
parent_id | child_id | id
-----------+------------+-----------------------------
1000040 | 103 | 1000040|2645405726|0001|103
graph = tf.Graph() | |
with graph.as_default(): | |
with graph.device('/gpu:0'): | |
# input data | |
train_dataset = tf.placeholder(tf.int32, shape=[batch_size]) | |
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) | |
valid_dataset = tf.constant(valid_examples, dtype=tf.int32) | |
# variables |
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats |
### Tensorflow | |
# cuda | |
# download cuda 8.0 and cd to the dir | |
sudo dpkg -i cuda-repo-ubuntu1604_8.0.44-1_amd64.deb | |
sudo apt-get update | |
sudo apt-get install cuda | |
# cuda toolkit (optional?) | |
sudo apt install nvidia-cuda-toolkit | |
nvcc --version | |
# cudnn |
sudo apt-get install htop | |
sudo apt-get install git | |
sudo apt-get install ntfs-3g | |
sudo apt-get install python-gpgme | |
sudo apt-get install vlc browser-plugin-vlc | |
# printer | |
sudo ln -s /etc/init.d/cupsys /etc/init.d/lpd |
""" | |
Example TensorFlow script for finetuning a VGG model on your own data. | |
Uses tf.contrib.data module which is in release v1.2 | |
Based on PyTorch example from Justin Johnson | |
(https://gist.github.com/jcjohnson/6e41e8512c17eae5da50aebef3378a4c) | |
Required packages: tensorflow (v1.2) | |
Download the weights trained on ImageNet for VGG: | |
``` | |
wget http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz |