Last active
April 17, 2023 19:21
-
-
Save firmai/44fe3b381f82abdbe0420b6c7a27ee3a to your computer and use it in GitHub Desktop.
BERT Word Embeddings.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/firmai/44fe3b381f82abdbe0420b6c7a27ee3a/bert-word-embeddings.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "R7RkTtfLAiEh" | |
}, | |
"source": [ | |
"# BERT Word Embeddings\n", | |
"\n", | |
"Three ways to obtain word embeddings from BERT:\n", | |
"- context-free\n", | |
"- context-based\n", | |
"- context-averaged\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"id": "Laz0oC4qAiEk", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "31c8e7d8-6f81-4f59-a157-d1a915fc4201" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Requirement already satisfied: torch in /usr/local/lib/python3.9/dist-packages (2.0.0+cu118)\n", | |
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from torch) (4.5.0)\n", | |
"Requirement already satisfied: sympy in /usr/local/lib/python3.9/dist-packages (from torch) (1.11.1)\n", | |
"Requirement already satisfied: networkx in /usr/local/lib/python3.9/dist-packages (from torch) (3.1)\n", | |
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.9/dist-packages (from torch) (3.1.2)\n", | |
"Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from torch) (3.11.0)\n", | |
"Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.9/dist-packages (from torch) (2.0.0)\n", | |
"Requirement already satisfied: lit in /usr/local/lib/python3.9/dist-packages (from triton==2.0.0->torch) (16.0.1)\n", | |
"Requirement already satisfied: cmake in /usr/local/lib/python3.9/dist-packages (from triton==2.0.0->torch) (3.25.2)\n", | |
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.9/dist-packages (from jinja2->torch) (2.1.2)\n", | |
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.9/dist-packages (from sympy->torch) (1.3.0)\n", | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Collecting transformers\n", | |
" Downloading transformers-4.28.1-py3-none-any.whl (7.0 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.0/7.0 MB\u001b[0m \u001b[31m27.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting tokenizers!=0.11.3,<0.14,>=0.11.1\n", | |
" Downloading tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m9.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (1.22.4)\n", | |
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers) (4.65.0)\n", | |
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (6.0)\n", | |
"Collecting huggingface-hub<1.0,>=0.11.0\n", | |
" Downloading huggingface_hub-0.13.4-py3-none-any.whl (200 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m200.1/200.1 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers) (3.11.0)\n", | |
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (23.0)\n", | |
"Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers) (2.27.1)\n", | |
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (2022.10.31)\n", | |
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.5.0)\n", | |
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2.0.12)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2022.12.7)\n", | |
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (1.26.15)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (3.4)\n", | |
"Installing collected packages: tokenizers, huggingface-hub, transformers\n", | |
"Successfully installed huggingface-hub-0.13.4 tokenizers-0.13.3 transformers-4.28.1\n" | |
] | |
} | |
], | |
"source": [ | |
"!pip install torch\n", | |
"!pip install transformers" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"id": "A_UT8pFuAiEl" | |
}, | |
"outputs": [], | |
"source": [ | |
"from transformers import BertTokenizer, BertModel\n", | |
"from transformers import AutoTokenizer, AutoModelForSequenceClassification\n", | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import nltk\n", | |
"import torch" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"# You can use finbert, but in my opinion, it doesn't pperform that great (if used change hidden_states = outputs[2][1:] to hidden_states = outputs[1][1:] )\n", | |
"# tokenizer = AutoTokenizer.from_pretrained(\"ProsusAI/finbert\")\n", | |
"# model = AutoModelForSequenceClassification.from_pretrained(\"ProsusAI/finbert\",output_hidden_states = True)" | |
], | |
"metadata": { | |
"id": "1pCZxhw-DcOR" | |
}, | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"colab": { | |
"referenced_widgets": [ | |
"603f391aad42446980c41f1a34ce3481", | |
"e805150389f546c7ada90adf1cfc8006", | |
"688dcd76bd434b29a17ca62eabdbc2c0", | |
"52b76b32261f4766b22c733f4a0f3abe", | |
"e90987d9d8864ac9a52b14a9076d4121", | |
"8d09cb09150b4802bcb22668636bce1b", | |
"7ddd3144dfaf4c8ea5838d4767581088", | |
"684e1618fde84e58b9546cfceaa54bc6", | |
"d7239dcd186d4aa7b7b893233ef75624", | |
"8a0716c071ea402dbf375a65b1a2f2bd", | |
"97810075215742c69afcd77d0651d40a", | |
"8540b0a6159e4d6eb64e18aa0504233a", | |
"28ae02c0458640f0a1491c97faaa5715", | |
"93f20db69e2b449aaef50fd108ea8578", | |
"8792c1eb666b46748fbdb0baaedcb2b1", | |
"718b9ca932af473e8ce793bea0197f10", | |
"4fdcfd3da5c44a289c218aa0942a1c5a", | |
"8871cb97f963455ab328489da803d0e9", | |
"0aad6377798f466283bba6af0c367d46", | |
"193855bc315b4922b232db772dec7452", | |
"42389b2495cf44a29f833aed7114d0f0", | |
"98aadd6045694768a25814f629ffda89", | |
"bd0a9fa92d4442c0bb21cae97e5b1538", | |
"d976b5f1e2034b5ea2bda4dc877e1d3d", | |
"f3ded921ee124b02920419695181173d", | |
"dd329ca3ac8a411793c1a6b863f751ed", | |
"7aa436546c4e4bf2b270f7fec6e91590", | |
"2defd2a76be94f84ba957b21477909c1", | |
"80f82c5f6cfe494fa56eef70dfcdd05c", | |
"e4a2612024dd45a981ed7392a7513470", | |
"8e1f8f179f6e40f7978b005419b2929e", | |
"800b1520c0ac4bc3b43074ab21e8a5f4", | |
"3580f7c0b9b04ac7b9e32e5c2a9989a6", | |
"65c4004f46f74db38d53e9c611e33879", | |
"4829b7f750314cff996cb820e559dc2c", | |
"fc4b069dc76a46f9ab0ea6fc6656c2ea", | |
"8d3bdcd379ef43f181e1814d41b4d95f", | |
"384c4c1f7752480cae2af7c28c854dab", | |
"8bed55b4fea84dcf92a6401d34cb0d67", | |
"08999f81dc6446ae9adba574dd7ee444", | |
"f5aa090da8fd4e0ab0dcd6cd6de1f512", | |
"1aebcc0db0a1491b94f64a34fa62fc68", | |
"67fe0f157fec443693c94a40e78515c2", | |
"f5bdbc4307414c71956af3baa51a0261" | |
], | |
"base_uri": "https://localhost:8080/", | |
"height": 246 | |
}, | |
"id": "CxICRSJeAiEm", | |
"outputId": "5fb7b5b0-c3cb-4db1-e8c7-b499ee2fdd15" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)lve/main/config.json: 0%| | 0.00/570 [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "603f391aad42446980c41f1a34ce3481" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading pytorch_model.bin: 0%| | 0.00/440M [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "8540b0a6159e4d6eb64e18aa0504233a" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias']\n", | |
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", | |
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)solve/main/vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "bd0a9fa92d4442c0bb21cae97e5b1538" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)okenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "65c4004f46f74db38d53e9c611e33879" | |
} | |
}, | |
"metadata": {} | |
} | |
], | |
"source": [ | |
"# Loading the pre-trained BERT model\n", | |
"###################################\n", | |
"# Embeddings will be derived from\n", | |
"# the outputs of this model\n", | |
"model = BertModel.from_pretrained('bert-base-uncased',\n", | |
" output_hidden_states = True,\n", | |
" )\n", | |
"\n", | |
"# Setting up the tokenizer\n", | |
"###################################\n", | |
"# This is the same tokenizer that\n", | |
"# was used in the model to generate \n", | |
"# embeddings to ensure consistency\n", | |
"tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Extracting word embeddings: We are going to generate embeddings for the following texts" | |
], | |
"metadata": { | |
"id": "Tz5K35GRGWR9" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"id": "ejn8K57zAiEn" | |
}, | |
"outputs": [], | |
"source": [ | |
"# Text corpus\n", | |
"##############\n", | |
"# These sentences show the different\n", | |
"# forms of the word 'bank' to show the\n", | |
"# value of contextualized embeddings\n", | |
"\n", | |
"texts = [\"bank\",\n", | |
" \"The river bank was flooded.\",\n", | |
" \"The bank vault was robust.\",\n", | |
" \"He had to bank on her for support.\",\n", | |
" \"The bank was out of money.\",\n", | |
" \"The bank teller was a man.\"]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"We also need some functions to massage the input into the right form" | |
], | |
"metadata": { | |
"id": "HsTAuFDRGM2f" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"id": "xG4vdR38AiEo" | |
}, | |
"outputs": [], | |
"source": [ | |
"def bert_text_preparation(text, tokenizer):\n", | |
" \"\"\"Preparing the input for BERT\n", | |
" \n", | |
" Takes a string argument and performs\n", | |
" pre-processing like adding special tokens,\n", | |
" tokenization, tokens to ids, and tokens to\n", | |
" segment ids. All tokens are mapped to seg-\n", | |
" ment id = 1.\n", | |
" \n", | |
" Args:\n", | |
" text (str): Text to be converted\n", | |
" tokenizer (obj): Tokenizer object\n", | |
" to convert text into BERT-re-\n", | |
" adable tokens and ids\n", | |
" \n", | |
" Returns:\n", | |
" list: List of BERT-readable tokens\n", | |
" obj: Torch tensor with token ids\n", | |
" obj: Torch tensor segment ids\n", | |
" \n", | |
" \n", | |
" \"\"\"\n", | |
" marked_text = \"[CLS] \" + text + \" [SEP]\"\n", | |
" tokenized_text = tokenizer.tokenize(marked_text)\n", | |
" indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)\n", | |
" segments_ids = [1]*len(indexed_tokens)\n", | |
"\n", | |
" # Convert inputs to PyTorch tensors\n", | |
" tokens_tensor = torch.tensor([indexed_tokens])\n", | |
" segments_tensors = torch.tensor([segments_ids])\n", | |
"\n", | |
" return tokenized_text, tokens_tensor, segments_tensors\n", | |
" \n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"And another function to convert the input into embeddings" | |
], | |
"metadata": { | |
"id": "ggAavnmdGPpm" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"def get_bert_embeddings(tokens_tensor, segments_tensors, model):\n", | |
" \"\"\"Get embeddings from an embedding model\n", | |
" \n", | |
" Args:\n", | |
" tokens_tensor (obj): Torch tensor size [n_tokens]\n", | |
" with token ids for each token in text\n", | |
" segments_tensors (obj): Torch tensor size [n_tokens]\n", | |
" with segment ids for each token in text\n", | |
" model (obj): Embedding model to generate embeddings\n", | |
" from token and segment ids\n", | |
" \n", | |
" Returns:\n", | |
" list: List of list of floats of size\n", | |
" [n_tokens, n_embedding_dimensions]\n", | |
" containing embeddings for each token\n", | |
" \n", | |
" \"\"\"\n", | |
" \n", | |
" # Gradient calculation id disabled\n", | |
" # Model is in inference mode\n", | |
" with torch.no_grad():\n", | |
" outputs = model(tokens_tensor, segments_tensors)\n", | |
" # Removing the first hidden state\n", | |
" # The first state is the input state\n", | |
" hidden_states = outputs[2][1:]\n", | |
"\n", | |
" # Getting embeddings from the final BERT layer\n", | |
" token_embeddings = hidden_states[-1]\n", | |
" # Collapsing the tensor into 1-dimension\n", | |
" token_embeddings = torch.squeeze(token_embeddings, dim=0)\n", | |
" # Converting torchtensors to lists\n", | |
" list_token_embeddings = [token_embed.tolist() for token_embed in token_embeddings]\n", | |
"\n", | |
" return list_token_embeddings" | |
], | |
"metadata": { | |
"id": "Cw0T1OW8GQcd" | |
}, | |
"execution_count": 7, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Embeddings are generated in the following manner" | |
], | |
"metadata": { | |
"id": "PyZ-TNtYGaUS" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"id": "M4x1IHYcAiEo" | |
}, | |
"outputs": [], | |
"source": [ | |
"# Getting embeddings for the target\n", | |
"# word in all given contexts\n", | |
"target_word_embeddings = []\n", | |
"\n", | |
"for text in texts:\n", | |
" tokenized_text, tokens_tensor, segments_tensors = bert_text_preparation(text, tokenizer)\n", | |
" list_token_embeddings = get_bert_embeddings(tokens_tensor, segments_tensors, model)\n", | |
" \n", | |
" # Find the position 'bank' in list of tokens\n", | |
" word_index = tokenized_text.index('bank')\n", | |
" # Get the embedding for bank\n", | |
" word_embedding = list_token_embeddings[word_index]\n", | |
"\n", | |
" target_word_embeddings.append(word_embedding)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Finally, distances between the embeddings for the word bank in different contexts are calculated using this code, we create a Pandas DataFrame to store all the distances." | |
], | |
"metadata": { | |
"id": "LazQhpYrGeIg" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"id": "4A7jHL0RAiEp" | |
}, | |
"outputs": [], | |
"source": [ | |
"from scipy.spatial.distance import cosine\n", | |
"\n", | |
"# Calculating the distance between the\n", | |
"# embeddings of 'bank' in all the\n", | |
"# given contexts of the word\n", | |
"\n", | |
"list_of_distances = []\n", | |
"for text1, embed1 in zip(texts, target_word_embeddings):\n", | |
" for text2, embed2 in zip(texts, target_word_embeddings):\n", | |
" cos_dist = 1 - cosine(embed1, embed2)\n", | |
" list_of_distances.append([text1, text2, cos_dist])\n", | |
"\n", | |
"distances_df = pd.DataFrame(list_of_distances, columns=['text1', 'text2', 'similarity'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"### “Context-free” pre-trained embeddings\n", | |
"\n", | |
"The first text (\"bank\") generates a context-free text embedding. This is context-free since there are no accompanying words to provide context to the meaning of \"bank\". In a way, this is the average across all embeddings of the word \"bank\".\n", | |
"Understandably, this context-free embedding does not look like one usage of the word \"bank\". This is evident in the cosine distance between the context-free embedding and all other versions of the word." | |
], | |
"metadata": { | |
"id": "MZjDG_03G0A7" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"embed2" | |
], | |
"metadata": { | |
"id": "nFEDztPNqQ4q", | |
"outputId": "d8890aa4-91b4-42ca-b42b-cc237d5fc979", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
} | |
}, | |
"execution_count": 12, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"[0.7716087698936462,\n", | |
" -0.40309032797813416,\n", | |
" -0.29921749234199524,\n", | |
" 0.052665021270513535,\n", | |
" 0.36171749234199524,\n", | |
" 0.7383619546890259,\n", | |
" -0.32540130615234375,\n", | |
" 0.5796908736228943,\n", | |
" 0.1448058933019638,\n", | |
" -0.783697783946991,\n", | |
" 0.32631152868270874,\n", | |
" -0.033591244369745255,\n", | |
" 0.07557772099971771,\n", | |
" -0.18161912262439728,\n", | |
" -0.4847656786441803,\n", | |
" 0.1046987771987915,\n", | |
" 0.5212904810905457,\n", | |
" 0.4489266574382782,\n", | |
" 0.40076857805252075,\n", | |
" 0.023557813838124275,\n", | |
" -1.0827289819717407,\n", | |
" -0.189421609044075,\n", | |
" 0.46014147996902466,\n", | |
" 0.22436052560806274,\n", | |
" 0.08412308990955353,\n", | |
" 0.3808949291706085,\n", | |
" 0.40088602900505066,\n", | |
" 0.34641796350479126,\n", | |
" -0.10983875393867493,\n", | |
" -0.05407490208745003,\n", | |
" 0.4438695013523102,\n", | |
" 0.5756655335426331,\n", | |
" 0.448840469121933,\n", | |
" 0.3600899875164032,\n", | |
" -0.20543277263641357,\n", | |
" 0.07272572815418243,\n", | |
" -0.283610463142395,\n", | |
" 0.11001996695995331,\n", | |
" -0.9104434251785278,\n", | |
" 0.029562612995505333,\n", | |
" -0.24418990314006805,\n", | |
" -0.7000628709793091,\n", | |
" -0.06389942020177841,\n", | |
" 0.04888778552412987,\n", | |
" -0.3355029821395874,\n", | |
" 0.22565120458602905,\n", | |
" -0.18307848274707794,\n", | |
" 0.34762096405029297,\n", | |
" -0.9771680235862732,\n", | |
" -0.25422683358192444,\n", | |
" -0.30704328417778015,\n", | |
" 0.8428120613098145,\n", | |
" -0.09705250710248947,\n", | |
" -0.47677671909332275,\n", | |
" 0.19244298338890076,\n", | |
" 0.7679344415664673,\n", | |
" -0.7784724235534668,\n", | |
" -0.4639985263347626,\n", | |
" 0.30759912729263306,\n", | |
" -0.5025826096534729,\n", | |
" 0.7814780473709106,\n", | |
" 0.34427663683891296,\n", | |
" 0.5240030288696289,\n", | |
" -0.9884239435195923,\n", | |
" -0.09247169643640518,\n", | |
" -0.24887126684188843,\n", | |
" 0.5101141333580017,\n", | |
" -0.2979409396648407,\n", | |
" 0.1586844027042389,\n", | |
" 0.09471500664949417,\n", | |
" -0.25339508056640625,\n", | |
" 1.1324656009674072,\n", | |
" -0.5025771856307983,\n", | |
" -1.0372943878173828,\n", | |
" -0.061141062527894974,\n", | |
" 0.13247205317020416,\n", | |
" 0.12954936921596527,\n", | |
" 0.07911813259124756,\n", | |
" 0.30207428336143494,\n", | |
" -0.23245571553707123,\n", | |
" -0.11368819326162338,\n", | |
" -0.4897908568382263,\n", | |
" 0.26160672307014465,\n", | |
" 0.26042604446411133,\n", | |
" 0.3771438002586365,\n", | |
" -0.2295927107334137,\n", | |
" -0.3804225027561188,\n", | |
" 0.06993488222360611,\n", | |
" 0.3466036319732666,\n", | |
" 0.45849958062171936,\n", | |
" -0.7176180481910706,\n", | |
" 0.4275922179222107,\n", | |
" -0.45328569412231445,\n", | |
" 0.2647191882133484,\n", | |
" -0.8459752202033997,\n", | |
" 0.1247115358710289,\n", | |
" -0.13423427939414978,\n", | |
" 0.0916450098156929,\n", | |
" 0.09430268406867981,\n", | |
" 0.14447656273841858,\n", | |
" 0.17516019940376282,\n", | |
" -0.8052711486816406,\n", | |
" 0.3388497531414032,\n", | |
" 0.12579400837421417,\n", | |
" -0.3774828314781189,\n", | |
" -0.253370463848114,\n", | |
" -0.5764696598052979,\n", | |
" -0.5694563984870911,\n", | |
" -0.026075035333633423,\n", | |
" 0.10481689125299454,\n", | |
" 0.5834141373634338,\n", | |
" -0.3299909234046936,\n", | |
" 0.45716893672943115,\n", | |
" -0.44311976432800293,\n", | |
" -0.07554926723241806,\n", | |
" 0.22576038539409637,\n", | |
" 0.1947816014289856,\n", | |
" -0.8227598667144775,\n", | |
" -0.3799953758716583,\n", | |
" -0.468389630317688,\n", | |
" 0.29161933064460754,\n", | |
" 0.9331499338150024,\n", | |
" 0.41290804743766785,\n", | |
" 0.8080536127090454,\n", | |
" 0.4097137153148651,\n", | |
" 0.1095564141869545,\n", | |
" -0.2816024124622345,\n", | |
" 0.7313909530639648,\n", | |
" -0.4790996015071869,\n", | |
" -0.331728458404541,\n", | |
" 0.3227800130844116,\n", | |
" 0.6442036628723145,\n", | |
" -0.17978370189666748,\n", | |
" -0.6313384771347046,\n", | |
" 0.7451621890068054,\n", | |
" -0.44734707474708557,\n", | |
" -0.3652609884738922,\n", | |
" -0.5225532650947571,\n", | |
" -0.1918911635875702,\n", | |
" 0.6922026872634888,\n", | |
" 0.4960022568702698,\n", | |
" 0.7192777395248413,\n", | |
" 0.14021727442741394,\n", | |
" 0.8468748331069946,\n", | |
" 0.16828672587871552,\n", | |
" 0.6877663731575012,\n", | |
" -0.14881286025047302,\n", | |
" -0.07684887200593948,\n", | |
" -0.2665281593799591,\n", | |
" 0.008550762198865414,\n", | |
" 0.1127418652176857,\n", | |
" -0.04604152962565422,\n", | |
" -0.2569620907306671,\n", | |
" -0.4100417196750641,\n", | |
" 0.44537854194641113,\n", | |
" -0.2697429358959198,\n", | |
" 0.0026064058765769005,\n", | |
" -0.06810358166694641,\n", | |
" -0.6113461852073669,\n", | |
" -0.05183754861354828,\n", | |
" 0.29507970809936523,\n", | |
" 0.0995282381772995,\n", | |
" 0.046957310289144516,\n", | |
" 0.02385854348540306,\n", | |
" -0.7850028276443481,\n", | |
" -0.7532016038894653,\n", | |
" 0.17616990208625793,\n", | |
" 0.23652206361293793,\n", | |
" -0.19257915019989014,\n", | |
" -0.18799301981925964,\n", | |
" -0.7664093971252441,\n", | |
" -0.3840271532535553,\n", | |
" 0.6072332859039307,\n", | |
" 0.014171562157571316,\n", | |
" 0.9538608193397522,\n", | |
" 0.27736467123031616,\n", | |
" -0.7593997716903687,\n", | |
" -0.5560435652732849,\n", | |
" 0.10334096848964691,\n", | |
" 0.04470081254839897,\n", | |
" 0.0264885313808918,\n", | |
" 0.6660721898078918,\n", | |
" 0.822999119758606,\n", | |
" 1.214438796043396,\n", | |
" 0.5543962121009827,\n", | |
" -0.2892921566963196,\n", | |
" 1.112549066543579,\n", | |
" 0.2684617340564728,\n", | |
" 0.3573964238166809,\n", | |
" 0.24116159975528717,\n", | |
" 0.007226062938570976,\n", | |
" -0.7152822613716125,\n", | |
" -0.21177706122398376,\n", | |
" -0.057168446481227875,\n", | |
" -0.49640005826950073,\n", | |
" -0.39642542600631714,\n", | |
" -0.251030296087265,\n", | |
" -0.13356545567512512,\n", | |
" -0.7973623871803284,\n", | |
" -0.2325553447008133,\n", | |
" -0.2782469689846039,\n", | |
" -0.01265036966651678,\n", | |
" 0.4257214665412903,\n", | |
" 0.24585239589214325,\n", | |
" -0.07413879781961441,\n", | |
" 0.5921086072921753,\n", | |
" -0.09990530461072922,\n", | |
" -0.18087804317474365,\n", | |
" 0.853805422782898,\n", | |
" 0.1372002214193344,\n", | |
" -0.16952551901340485,\n", | |
" 0.047132302075624466,\n", | |
" 0.020439857617020607,\n", | |
" 0.26597633957862854,\n", | |
" -0.38421332836151123,\n", | |
" 0.5102985501289368,\n", | |
" 0.13281658291816711,\n", | |
" -0.4930082857608795,\n", | |
" -0.10949187725782394,\n", | |
" -0.15832382440567017,\n", | |
" -0.054362453520298004,\n", | |
" -0.19130302965641022,\n", | |
" -0.15511615574359894,\n", | |
" 0.4509924650192261,\n", | |
" -0.056046925485134125,\n", | |
" 0.6325150728225708,\n", | |
" 0.13101376593112946,\n", | |
" 0.4033447206020355,\n", | |
" -0.2099778801202774,\n", | |
" 0.7262519001960754,\n", | |
" -0.07032998651266098,\n", | |
" 0.7645426988601685,\n", | |
" 0.9938344359397888,\n", | |
" 0.02033957652747631,\n", | |
" 0.17447638511657715,\n", | |
" -0.4468141496181488,\n", | |
" -1.3276547193527222,\n", | |
" -0.2648731768131256,\n", | |
" -0.10976336151361465,\n", | |
" 0.7415199279785156,\n", | |
" -0.45961979031562805,\n", | |
" 0.1897536814212799,\n", | |
" 0.0638318881392479,\n", | |
" 0.06149629130959511,\n", | |
" -0.09967007488012314,\n", | |
" 0.7336502075195312,\n", | |
" -0.06413761526346207,\n", | |
" -0.1891217827796936,\n", | |
" -0.24445687234401703,\n", | |
" -0.47432395815849304,\n", | |
" -0.14405199885368347,\n", | |
" -0.6774606704711914,\n", | |
" -0.7467966675758362,\n", | |
" -0.861438512802124,\n", | |
" 0.5196214318275452,\n", | |
" 0.14422382414340973,\n", | |
" -0.15533946454524994,\n", | |
" -0.06327539682388306,\n", | |
" -0.4872450530529022,\n", | |
" 0.5644462704658508,\n", | |
" 1.032560110092163,\n", | |
" 0.1374681442975998,\n", | |
" 0.2468148171901703,\n", | |
" 0.4823891520500183,\n", | |
" -0.16289877891540527,\n", | |
" -0.8474594950675964,\n", | |
" 0.22677911818027496,\n", | |
" 0.5296151041984558,\n", | |
" 0.12557700276374817,\n", | |
" 0.6889568567276001,\n", | |
" 0.4285523295402527,\n", | |
" 0.7264259457588196,\n", | |
" 0.052278000861406326,\n", | |
" 1.2548617124557495,\n", | |
" 0.4824894666671753,\n", | |
" -0.5780812501907349,\n", | |
" 0.44263482093811035,\n", | |
" -0.11004526168107986,\n", | |
" 0.5798296928405762,\n", | |
" 0.6913082003593445,\n", | |
" 0.12917852401733398,\n", | |
" 0.45097988843917847,\n", | |
" 0.1443747580051422,\n", | |
" -0.48323410749435425,\n", | |
" 0.262681782245636,\n", | |
" -0.5373804569244385,\n", | |
" 0.2612181007862091,\n", | |
" 1.5332109928131104,\n", | |
" -0.33497849106788635,\n", | |
" -0.8584234714508057,\n", | |
" -0.12099424004554749,\n", | |
" 0.46975940465927124,\n", | |
" -0.41704556345939636,\n", | |
" -0.3023562729358673,\n", | |
" 0.006729298736900091,\n", | |
" 0.3722342848777771,\n", | |
" 0.20629166066646576,\n", | |
" 0.9229329824447632,\n", | |
" 0.8477144837379456,\n", | |
" -0.1284029334783554,\n", | |
" 0.38408347964286804,\n", | |
" 0.21458560228347778,\n", | |
" 0.38401395082473755,\n", | |
" -0.15797626972198486,\n", | |
" -0.6881616115570068,\n", | |
" -0.05344204604625702,\n", | |
" -0.15576277673244476,\n", | |
" -0.27485764026641846,\n", | |
" -4.7138190269470215,\n", | |
" 1.1472502946853638,\n", | |
" -0.19710806012153625,\n", | |
" 0.21146346628665924,\n", | |
" 0.39871957898139954,\n", | |
" -0.0359017550945282,\n", | |
" -0.2910023331642151,\n", | |
" -0.17233806848526,\n", | |
" -0.8590866327285767,\n", | |
" -0.29207897186279297,\n", | |
" -0.5198802351951599,\n", | |
" -0.5867406129837036,\n", | |
" 0.6297305226325989,\n", | |
" 0.305519700050354,\n", | |
" 0.1401572823524475,\n", | |
" -0.4748603105545044,\n", | |
" -0.5593133568763733,\n", | |
" 0.2906792461872101,\n", | |
" -0.42561012506484985,\n", | |
" 0.1727612465620041,\n", | |
" -0.20777764916419983,\n", | |
" -0.891983687877655,\n", | |
" -0.2907566726207733,\n", | |
" -0.12844185531139374,\n", | |
" 0.22982512414455414,\n", | |
" 0.7961352467536926,\n", | |
" -0.5275991559028625,\n", | |
" 0.48746681213378906,\n", | |
" 0.0015168666141107678,\n", | |
" 0.10057108849287033,\n", | |
" -0.19485290348529816,\n", | |
" 0.02856256812810898,\n", | |
" 0.17053651809692383,\n", | |
" -0.05285726115107536,\n", | |
" 0.0569426491856575,\n", | |
" -0.27377134561538696,\n", | |
" -0.5230890512466431,\n", | |
" -0.16032929718494415,\n", | |
" -0.29630082845687866,\n", | |
" -0.27530553936958313,\n", | |
" 0.11373618245124817,\n", | |
" 0.9082897901535034,\n", | |
" 0.24302715063095093,\n", | |
" 0.6416208148002625,\n", | |
" 0.5646347999572754,\n", | |
" -0.25327402353286743,\n", | |
" -0.6521884799003601,\n", | |
" -0.1521545946598053,\n", | |
" -0.06550370901823044,\n", | |
" 0.5766035914421082,\n", | |
" 0.4209102392196655,\n", | |
" -0.06473656743764877,\n", | |
" 0.05876297503709793,\n", | |
" -0.45727553963661194,\n", | |
" 0.06108767166733742,\n", | |
" 0.8958364725112915,\n", | |
" -0.36628636717796326,\n", | |
" 0.14007686078548431,\n", | |
" 0.577181875705719,\n", | |
" 0.14006316661834717,\n", | |
" -0.5008761882781982,\n", | |
" -0.18387305736541748,\n", | |
" 0.4621230363845825,\n", | |
" -0.3555099070072174,\n", | |
" -0.42098698019981384,\n", | |
" 0.028004685416817665,\n", | |
" -1.13774836063385,\n", | |
" -0.441902220249176,\n", | |
" 0.0426567867398262,\n", | |
" -0.07604004442691803,\n", | |
" -0.20999887585639954,\n", | |
" 0.1861838549375534,\n", | |
" -0.09547577053308487,\n", | |
" -1.3291467428207397,\n", | |
" -0.706694483757019,\n", | |
" -0.8307603001594543,\n", | |
" 0.813284695148468,\n", | |
" -0.07158366590738297,\n", | |
" -0.09794814139604568,\n", | |
" 0.24557414650917053,\n", | |
" -0.12810871005058289,\n", | |
" -0.06548894196748734,\n", | |
" 0.1978825181722641,\n", | |
" -0.13173913955688477,\n", | |
" 0.07436143606901169,\n", | |
" -0.007578194607049227,\n", | |
" -0.10148505121469498,\n", | |
" -0.06617563217878342,\n", | |
" -1.1840711832046509,\n", | |
" -0.3190862536430359,\n", | |
" 0.6173363924026489,\n", | |
" 1.2081345319747925,\n", | |
" 0.24463960528373718,\n", | |
" -0.6548506617546082,\n", | |
" -0.40628817677497864,\n", | |
" 0.13262231647968292,\n", | |
" -0.5336574912071228,\n", | |
" -0.39227309823036194,\n", | |
" -0.24157367646694183,\n", | |
" -0.07457894831895828,\n", | |
" 0.3337547481060028,\n", | |
" 0.2539590299129486,\n", | |
" 0.7726778984069824,\n", | |
" -0.23592643439769745,\n", | |
" -0.4134071469306946,\n", | |
" 0.08823780715465546,\n", | |
" -0.14087975025177002,\n", | |
" -0.2525143325328827,\n", | |
" -1.2587977647781372,\n", | |
" 1.0611134767532349,\n", | |
" 0.6497206687927246,\n", | |
" -0.775536298751831,\n", | |
" 0.9615662097930908,\n", | |
" -0.6649736166000366,\n", | |
" -0.27312833070755005,\n", | |
" 0.35859930515289307,\n", | |
" 0.1480875164270401,\n", | |
" -0.4409973919391632,\n", | |
" 0.30519962310791016,\n", | |
" -0.3179708421230316,\n", | |
" -0.30346181988716125,\n", | |
" -0.386663556098938,\n", | |
" -0.8119008541107178,\n", | |
" -0.9003256559371948,\n", | |
" -0.15210579335689545,\n", | |
" -0.2330915480852127,\n", | |
" -0.1044941395521164,\n", | |
" -0.378468781709671,\n", | |
" -0.4813416600227356,\n", | |
" -0.08389631658792496,\n", | |
" 0.3126143217086792,\n", | |
" -0.20463210344314575,\n", | |
" -0.27104493975639343,\n", | |
" 0.15639257431030273,\n", | |
" 0.7142956256866455,\n", | |
" 0.09514512866735458,\n", | |
" 0.24290503561496735,\n", | |
" 0.1158050000667572,\n", | |
" 0.38275912404060364,\n", | |
" 0.011625804007053375,\n", | |
" 0.39521437883377075,\n", | |
" 0.7633675336837769,\n", | |
" -0.11670338362455368,\n", | |
" -0.06850308179855347,\n", | |
" -0.19494585692882538,\n", | |
" -0.014844810590147972,\n", | |
" -0.5725080966949463,\n", | |
" 0.17233353853225708,\n", | |
" 0.12623582780361176,\n", | |
" -0.22925788164138794,\n", | |
" -0.18757054209709167,\n", | |
" -0.07410996407270432,\n", | |
" 0.304327130317688,\n", | |
" -0.0402066707611084,\n", | |
" 0.4221647083759308,\n", | |
" 0.5043947100639343,\n", | |
" 1.0071957111358643,\n", | |
" -0.5886744260787964,\n", | |
" -1.1333577632904053,\n", | |
" -0.5394506454467773,\n", | |
" 0.31415751576423645,\n", | |
" -0.5191509127616882,\n", | |
" 1.2066231966018677,\n", | |
" 0.40418216586112976,\n", | |
" -1.21492600440979,\n", | |
" 0.6267555952072144,\n", | |
" -1.0506728887557983,\n", | |
" -0.18643181025981903,\n", | |
" -0.32334092259407043,\n", | |
" 0.9154725074768066,\n", | |
" -0.08705080300569534,\n", | |
" -0.44664081931114197,\n", | |
" -0.008301863446831703,\n", | |
" 0.7900857329368591,\n", | |
" 0.16304919123649597,\n", | |
" 0.18622243404388428,\n", | |
" -0.2365952730178833,\n", | |
" -0.6985001564025879,\n", | |
" -0.001590969506651163,\n", | |
" -0.17388904094696045,\n", | |
" -0.09208416193723679,\n", | |
" 0.7112207412719727,\n", | |
" -0.07118416577577591,\n", | |
" -0.3705156445503235,\n", | |
" 0.7322559356689453,\n", | |
" 0.8640187382698059,\n", | |
" 0.08718504756689072,\n", | |
" 0.3734130561351776,\n", | |
" -0.07659972459077835,\n", | |
" -0.3103960156440735,\n", | |
" -0.48530325293540955,\n", | |
" 0.5871528387069702,\n", | |
" -0.07122574001550674,\n", | |
" -0.3300064504146576,\n", | |
" -0.8168904185295105,\n", | |
" -1.267369270324707,\n", | |
" 0.21823756396770477,\n", | |
" 0.8372991681098938,\n", | |
" -0.34404438734054565,\n", | |
" 0.506047785282135,\n", | |
" -0.40105727314949036,\n", | |
" 0.44113385677337646,\n", | |
" -0.04780484363436699,\n", | |
" -0.3000093102455139,\n", | |
" -0.3327059745788574,\n", | |
" -0.06588700413703918,\n", | |
" 0.5178906917572021,\n", | |
" -0.12201234698295593,\n", | |
" -0.4831218421459198,\n", | |
" 0.5817102193832397,\n", | |
" -0.677533745765686,\n", | |
" -0.5163298845291138,\n", | |
" -0.8505939245223999,\n", | |
" -0.415616899728775,\n", | |
" 0.5328510403633118,\n", | |
" -0.024158023297786713,\n", | |
" 0.16554933786392212,\n", | |
" -0.2434290200471878,\n", | |
" -0.16339756548404694,\n", | |
" -0.05579959601163864,\n", | |
" 0.587302565574646,\n", | |
" -0.1521962285041809,\n", | |
" -0.3015564978122711,\n", | |
" -0.1310032606124878,\n", | |
" -0.7162836790084839,\n", | |
" 0.03477039560675621,\n", | |
" 0.5628183484077454,\n", | |
" 0.6787298917770386,\n", | |
" -0.11239756643772125,\n", | |
" 0.6112292408943176,\n", | |
" -0.5384969115257263,\n", | |
" -0.6988146901130676,\n", | |
" 0.1996585577726364,\n", | |
" -0.1166294515132904,\n", | |
" 0.3823789358139038,\n", | |
" -0.12600558996200562,\n", | |
" -0.40558451414108276,\n", | |
" -1.673316240310669,\n", | |
" 0.17436443269252777,\n", | |
" -0.20716780424118042,\n", | |
" -0.42602336406707764,\n", | |
" -0.27807143330574036,\n", | |
" 0.1268894225358963,\n", | |
" -0.2489089071750641,\n", | |
" -0.3094348609447479,\n", | |
" 0.3368987441062927,\n", | |
" 0.2447870522737503,\n", | |
" 0.6193271279335022,\n", | |
" -0.10677080601453781,\n", | |
" 0.8617886900901794,\n", | |
" 0.695437490940094,\n", | |
" -0.22224445641040802,\n", | |
" 0.23771314322948456,\n", | |
" -0.14912015199661255,\n", | |
" -0.7788679599761963,\n", | |
" 0.7271231412887573,\n", | |
" 0.2481394112110138,\n", | |
" -0.15596002340316772,\n", | |
" -0.056470271199941635,\n", | |
" 0.9509419798851013,\n", | |
" 0.4458785355091095,\n", | |
" -0.43869224190711975,\n", | |
" -0.5324495434761047,\n", | |
" 0.17995904386043549,\n", | |
" 0.2273031622171402,\n", | |
" 0.351583331823349,\n", | |
" -0.17859810590744019,\n", | |
" -0.07232295721769333,\n", | |
" 0.3719618320465088,\n", | |
" 0.032527655363082886,\n", | |
" 0.7535582184791565,\n", | |
" -1.1114518642425537,\n", | |
" 0.6748034954071045,\n", | |
" -0.45491692423820496,\n", | |
" 0.2891286313533783,\n", | |
" 0.4296434819698334,\n", | |
" -0.7953675985336304,\n", | |
" -0.7722455263137817,\n", | |
" -0.13839304447174072,\n", | |
" -0.6837830543518066,\n", | |
" -0.2842646837234497,\n", | |
" 0.5935693979263306,\n", | |
" 0.05722421035170555,\n", | |
" 0.30562958121299744,\n", | |
" -0.5616167187690735,\n", | |
" -0.01245768740773201,\n", | |
" -0.6375252604484558,\n", | |
" 0.0212950948625803,\n", | |
" -0.7530996203422546,\n", | |
" -0.2635849714279175,\n", | |
" 0.3037218749523163,\n", | |
" 0.5297483205795288,\n", | |
" 0.35371431708335876,\n", | |
" -0.0007970120059326291,\n", | |
" -0.7254049181938171,\n", | |
" 0.6826987862586975,\n", | |
" 0.48837336897850037,\n", | |
" 0.2993488609790802,\n", | |
" -0.1622321903705597,\n", | |
" 0.35202497243881226,\n", | |
" 0.06913198530673981,\n", | |
" 0.09527890384197235,\n", | |
" 0.5691472887992859,\n", | |
" -0.07212528586387634,\n", | |
" 0.32986709475517273,\n", | |
" 0.42591169476509094,\n", | |
" -0.05814375728368759,\n", | |
" -0.17143839597702026,\n", | |
" -0.2911953032016754,\n", | |
" -0.27910423278808594,\n", | |
" -0.35036420822143555,\n", | |
" -0.7579910755157471,\n", | |
" 0.7991662621498108,\n", | |
" 0.696576714515686,\n", | |
" -1.0417869091033936,\n", | |
" -0.1664784848690033,\n", | |
" -0.2974942624568939,\n", | |
" -0.32885390520095825,\n", | |
" -0.9601884484291077,\n", | |
" 0.3063417077064514,\n", | |
" -0.3888414800167084,\n", | |
" 0.6851862072944641,\n", | |
" 0.28863611817359924,\n", | |
" 0.25603893399238586,\n", | |
" -0.020979171618819237,\n", | |
" 0.18187777698040009,\n", | |
" -0.26445284485816956,\n", | |
" -0.26006659865379333,\n", | |
" 0.07117189466953278,\n", | |
" 0.3774837851524353,\n", | |
" -0.34883975982666016,\n", | |
" 1.03910493850708,\n", | |
" -0.2111617922782898,\n", | |
" -0.047962091863155365,\n", | |
" 0.1769087314605713,\n", | |
" 0.07101418077945709,\n", | |
" -0.1716872900724411,\n", | |
" -0.35795095562934875,\n", | |
" 0.035832107067108154,\n", | |
" -0.37248045206069946,\n", | |
" -0.23937898874282837,\n", | |
" -0.32870492339134216,\n", | |
" -0.44711193442344666,\n", | |
" 1.3990776538848877,\n", | |
" -0.2053092122077942,\n", | |
" -0.0026570947375148535,\n", | |
" -0.15521860122680664,\n", | |
" -0.455158531665802,\n", | |
" 1.0217094421386719,\n", | |
" 0.6216564178466797,\n", | |
" -0.02036772482097149,\n", | |
" -0.20303137600421906,\n", | |
" -0.6808188557624817,\n", | |
" -0.8990669250488281,\n", | |
" 0.3390315771102905,\n", | |
" 0.19623315334320068,\n", | |
" 0.11986949294805527,\n", | |
" 0.27159613370895386,\n", | |
" -0.23358164727687836,\n", | |
" 0.5599480271339417,\n", | |
" -0.03280773386359215,\n", | |
" 0.5225099325180054,\n", | |
" 0.14646805822849274,\n", | |
" -0.6493239402770996,\n", | |
" -0.18646183609962463,\n", | |
" 0.3930899202823639,\n", | |
" -0.10762464255094528,\n", | |
" -0.34765201807022095,\n", | |
" 0.22150973975658417,\n", | |
" 0.39177846908569336,\n", | |
" -0.3285598158836365,\n", | |
" -0.08709894865751266,\n", | |
" 0.7550487518310547,\n", | |
" 0.4633721113204956,\n", | |
" 0.11735256016254425,\n", | |
" -0.2671813368797302,\n", | |
" -0.7986522316932678,\n", | |
" 0.253805935382843,\n", | |
" 0.5352625250816345,\n", | |
" -0.38075530529022217,\n", | |
" 0.2531590461730957,\n", | |
" -0.4009472131729126,\n", | |
" -0.595918595790863,\n", | |
" -0.5231034755706787,\n", | |
" -0.17871297895908356,\n", | |
" -0.2358800768852234,\n", | |
" 0.7695401906967163,\n", | |
" -0.4261331558227539,\n", | |
" -0.24519596993923187,\n", | |
" -0.17721153795719147,\n", | |
" 0.5465059876441956,\n", | |
" -0.1219465583562851,\n", | |
" -0.14527784287929535,\n", | |
" 0.28052663803100586,\n", | |
" 0.2531508207321167,\n", | |
" -0.777701735496521,\n", | |
" -0.10963913798332214,\n", | |
" 0.12396340817213058,\n", | |
" 0.49316245317459106,\n", | |
" -0.1473105102777481,\n", | |
" 0.45992955565452576,\n", | |
" 0.05691026523709297,\n", | |
" 0.02377658151090145,\n", | |
" -0.04355780407786369,\n", | |
" 0.481990784406662,\n", | |
" 0.17863714694976807,\n", | |
" 0.6581028699874878,\n", | |
" -0.18780489265918732,\n", | |
" -0.4666840136051178,\n", | |
" 0.1186894103884697,\n", | |
" -0.007880287244915962,\n", | |
" -0.009187684394419193,\n", | |
" -0.4598256051540375,\n", | |
" 0.918662428855896,\n", | |
" -0.5285695791244507,\n", | |
" -0.9275496602058411,\n", | |
" 0.03892984986305237,\n", | |
" -0.08570718765258789,\n", | |
" 0.0033996650017797947,\n", | |
" 0.2208450585603714,\n", | |
" -0.2444385439157486,\n", | |
" 0.15943770110607147,\n", | |
" 0.3823903501033783,\n", | |
" 0.4675595760345459,\n", | |
" -0.6928361058235168,\n", | |
" -0.19188463687896729,\n", | |
" -0.5813184976577759,\n", | |
" -0.32433605194091797,\n", | |
" 0.2817934453487396,\n", | |
" 0.6133005023002625,\n", | |
" -1.1182153224945068,\n", | |
" 0.10771692544221878,\n", | |
" 0.9229233860969543,\n", | |
" 0.7619935274124146,\n", | |
" -0.3032039701938629,\n", | |
" -0.24838566780090332,\n", | |
" 0.41018038988113403,\n", | |
" -0.18323729932308197,\n", | |
" -0.3770483136177063,\n", | |
" 0.06304383277893066,\n", | |
" 0.41856250166893005,\n", | |
" -0.3283161520957947,\n", | |
" -0.42119327187538147,\n", | |
" 0.40439513325691223,\n", | |
" 0.5936760306358337,\n", | |
" -0.4278385639190674,\n", | |
" -0.2759457230567932,\n", | |
" -0.5448020100593567,\n", | |
" -0.34559497237205505,\n", | |
" -0.019203322008252144,\n", | |
" -0.24057364463806152,\n", | |
" -0.47151950001716614,\n", | |
" -0.24612969160079956,\n", | |
" -0.3914054036140442,\n", | |
" -0.4090040326118469,\n", | |
" -0.12923091650009155,\n", | |
" -0.4485046863555908,\n", | |
" -0.39662888646125793,\n", | |
" -0.2992093861103058,\n", | |
" -0.2091265320777893]" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 12 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"## Original Bert\n", | |
"distances_df[distances_df.text1 == 'The bank vault was robust.']" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 238 | |
}, | |
"id": "JcYgRD59FDQB", | |
"outputId": "ad652c9d-8ec6-4960-d509-6d59d1175b9b" | |
}, | |
"execution_count": 13, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" text1 text2 distance\n", | |
"12 The bank vault was robust. bank 0.494099\n", | |
"13 The bank vault was robust. The river bank was flooded. 0.523325\n", | |
"14 The bank vault was robust. The bank vault was robust. 1.000000\n", | |
"15 The bank vault was robust. He had to bank on her for support. 0.416074\n", | |
"16 The bank vault was robust. The bank was out of money. 0.759213\n", | |
"17 The bank vault was robust. The bank teller was a man. 0.867661" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-8805308a-beb0-4cd6-9a9a-c264f7fd05da\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>text1</th>\n", | |
" <th>text2</th>\n", | |
" <th>distance</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>bank</td>\n", | |
" <td>0.494099</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>The river bank was flooded.</td>\n", | |
" <td>0.523325</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>He had to bank on her for support.</td>\n", | |
" <td>0.416074</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>The bank was out of money.</td>\n", | |
" <td>0.759213</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>The bank teller was a man.</td>\n", | |
" <td>0.867661</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-8805308a-beb0-4cd6-9a9a-c264f7fd05da')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-8805308a-beb0-4cd6-9a9a-c264f7fd05da button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-8805308a-beb0-4cd6-9a9a-c264f7fd05da');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 13 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"## FinBert\n", | |
"## distances_df[distances_df.text1 == 'bank']" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 237 | |
}, | |
"id": "3bSeJ7keEDmV", | |
"outputId": "08ae628c-36e1-410f-d286-c5ff11077c9c" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" text1 text2 distance\n", | |
"0 bank bank 1.000000\n", | |
"1 bank The river bank was flooded. 0.207995\n", | |
"2 bank The bank vault was robust. 0.230087\n", | |
"3 bank He had to bank on her for support. 0.194959\n", | |
"4 bank The bank was out of money. 0.243639\n", | |
"5 bank The bank teller was a man. 0.343444" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-59c59b2b-f0ca-4a20-af60-8d658920fb3f\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>text1</th>\n", | |
" <th>text2</th>\n", | |
" <th>distance</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>bank</td>\n", | |
" <td>bank</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>bank</td>\n", | |
" <td>The river bank was flooded.</td>\n", | |
" <td>0.207995</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>bank</td>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>0.230087</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>bank</td>\n", | |
" <td>He had to bank on her for support.</td>\n", | |
" <td>0.194959</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>bank</td>\n", | |
" <td>The bank was out of money.</td>\n", | |
" <td>0.243639</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>bank</td>\n", | |
" <td>The bank teller was a man.</td>\n", | |
" <td>0.343444</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-59c59b2b-f0ca-4a20-af60-8d658920fb3f')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-59c59b2b-f0ca-4a20-af60-8d658920fb3f button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-59c59b2b-f0ca-4a20-af60-8d658920fb3f');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 10 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"### “Context-based” pre-trained embeddings\n", | |
"Embeddings generated for the word \"bank\" from each sentence with the word create a context-based embedding. These embeddings are the most common form of transfer learning and show the true power of the method.\n", | |
"In this example, the embeddings for the word \"bank\" when it means a financial institution are far from the embeddings for it when it means a riverbank or the verb form of the word." | |
], | |
"metadata": { | |
"id": "31N3Y-36G8f8" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "KbHOcY4_AiEq", | |
"outputId": "f62f09ad-98f4-4620-f0ee-d98629d4dfb5", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 237 | |
} | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" text1 text2 distance\n", | |
"12 The bank vault was robust. bank 0.494098\n", | |
"13 The bank vault was robust. The river bank was flooded. 0.523326\n", | |
"14 The bank vault was robust. The bank vault was robust. 1.000000\n", | |
"15 The bank vault was robust. He had to bank on her for support. 0.416074\n", | |
"16 The bank vault was robust. The bank was out of money. 0.759213\n", | |
"17 The bank vault was robust. The bank teller was a man. 0.867661" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-decaabf2-9eac-4051-98ee-577941f542a6\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>text1</th>\n", | |
" <th>text2</th>\n", | |
" <th>distance</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>bank</td>\n", | |
" <td>0.494098</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>The river bank was flooded.</td>\n", | |
" <td>0.523326</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>He had to bank on her for support.</td>\n", | |
" <td>0.416074</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>The bank was out of money.</td>\n", | |
" <td>0.759213</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>The bank vault was robust.</td>\n", | |
" <td>The bank teller was a man.</td>\n", | |
" <td>0.867661</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-decaabf2-9eac-4051-98ee-577941f542a6')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-decaabf2-9eac-4051-98ee-577941f542a6 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-decaabf2-9eac-4051-98ee-577941f542a6');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 22 | |
} | |
], | |
"source": [ | |
"distances_df[distances_df.text1 == 'The bank vault was robust.']" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"### \"Context-averaged\" pre-trained embeddings\n", | |
"When all the embeddings are averaged together, they create a context-averaged embedding. This style of embedding might be useful in some applications where one needs to get the average meaning of the word.\n", | |
"\n", | |
"Surprisingly, the context-free and context-averaged versions of the word are not the same as shown by the cosine distance of $0.65$ between them." | |
], | |
"metadata": { | |
"id": "vz2X86-hHAy6" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "eWQ_2Da7AiEr", | |
"outputId": "5b8037b0-9ca8-4aaa-f71e-2459bfcaab71", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
} | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Distance between context-free and context-averaged = 0.6590345238888202\n" | |
] | |
} | |
], | |
"source": [ | |
"cos_dist = 1 - cosine(target_word_embeddings[0], np.sum(target_word_embeddings, axis=0))\n", | |
"print(f'Distance between context-free and context-averaged = {cos_dist}')" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.3" | |
}, | |
"colab": { | |
"name": "BERT Word Embeddings.ipynb", | |
"provenance": [], | |
"include_colab_link": true | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"603f391aad42446980c41f1a34ce3481": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_e805150389f546c7ada90adf1cfc8006", | |
"IPY_MODEL_688dcd76bd434b29a17ca62eabdbc2c0", | |
"IPY_MODEL_52b76b32261f4766b22c733f4a0f3abe" | |
], | |
"layout": "IPY_MODEL_e90987d9d8864ac9a52b14a9076d4121" | |
} | |
}, | |
"e805150389f546c7ada90adf1cfc8006": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_8d09cb09150b4802bcb22668636bce1b", | |
"placeholder": "", | |
"style": "IPY_MODEL_7ddd3144dfaf4c8ea5838d4767581088", | |
"value": "Downloading (…)lve/main/config.json: 100%" | |
} | |
}, | |
"688dcd76bd434b29a17ca62eabdbc2c0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_684e1618fde84e58b9546cfceaa54bc6", | |
"max": 570, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_d7239dcd186d4aa7b7b893233ef75624", | |
"value": 570 | |
} | |
}, | |
"52b76b32261f4766b22c733f4a0f3abe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_8a0716c071ea402dbf375a65b1a2f2bd", | |
"placeholder": "", | |
"style": "IPY_MODEL_97810075215742c69afcd77d0651d40a", | |
"value": " 570/570 [00:00<00:00, 9.72kB/s]" | |
} | |
}, | |
"e90987d9d8864ac9a52b14a9076d4121": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"8d09cb09150b4802bcb22668636bce1b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"7ddd3144dfaf4c8ea5838d4767581088": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"684e1618fde84e58b9546cfceaa54bc6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d7239dcd186d4aa7b7b893233ef75624": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"8a0716c071ea402dbf375a65b1a2f2bd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"97810075215742c69afcd77d0651d40a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"8540b0a6159e4d6eb64e18aa0504233a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_28ae02c0458640f0a1491c97faaa5715", | |
"IPY_MODEL_93f20db69e2b449aaef50fd108ea8578", | |
"IPY_MODEL_8792c1eb666b46748fbdb0baaedcb2b1" | |
], | |
"layout": "IPY_MODEL_718b9ca932af473e8ce793bea0197f10" | |
} | |
}, | |
"28ae02c0458640f0a1491c97faaa5715": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_4fdcfd3da5c44a289c218aa0942a1c5a", | |
"placeholder": "", | |
"style": "IPY_MODEL_8871cb97f963455ab328489da803d0e9", | |
"value": "Downloading pytorch_model.bin: 100%" | |
} | |
}, | |
"93f20db69e2b449aaef50fd108ea8578": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_0aad6377798f466283bba6af0c367d46", | |
"max": 440473133, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_193855bc315b4922b232db772dec7452", | |
"value": 440473133 | |
} | |
}, | |
"8792c1eb666b46748fbdb0baaedcb2b1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_42389b2495cf44a29f833aed7114d0f0", | |
"placeholder": "", | |
"style": "IPY_MODEL_98aadd6045694768a25814f629ffda89", | |
"value": " 440M/440M [00:03<00:00, 123MB/s]" | |
} | |
}, | |
"718b9ca932af473e8ce793bea0197f10": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"4fdcfd3da5c44a289c218aa0942a1c5a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"8871cb97f963455ab328489da803d0e9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"0aad6377798f466283bba6af0c367d46": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"193855bc315b4922b232db772dec7452": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"42389b2495cf44a29f833aed7114d0f0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"98aadd6045694768a25814f629ffda89": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"bd0a9fa92d4442c0bb21cae97e5b1538": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_d976b5f1e2034b5ea2bda4dc877e1d3d", | |
"IPY_MODEL_f3ded921ee124b02920419695181173d", | |
"IPY_MODEL_dd329ca3ac8a411793c1a6b863f751ed" | |
], | |
"layout": "IPY_MODEL_7aa436546c4e4bf2b270f7fec6e91590" | |
} | |
}, | |
"d976b5f1e2034b5ea2bda4dc877e1d3d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_2defd2a76be94f84ba957b21477909c1", | |
"placeholder": "", | |
"style": "IPY_MODEL_80f82c5f6cfe494fa56eef70dfcdd05c", | |
"value": "Downloading (…)solve/main/vocab.txt: 100%" | |
} | |
}, | |
"f3ded921ee124b02920419695181173d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e4a2612024dd45a981ed7392a7513470", | |
"max": 231508, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_8e1f8f179f6e40f7978b005419b2929e", | |
"value": 231508 | |
} | |
}, | |
"dd329ca3ac8a411793c1a6b863f751ed": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_800b1520c0ac4bc3b43074ab21e8a5f4", | |
"placeholder": "", | |
"style": "IPY_MODEL_3580f7c0b9b04ac7b9e32e5c2a9989a6", | |
"value": " 232k/232k [00:00<00:00, 1.99MB/s]" | |
} | |
}, | |
"7aa436546c4e4bf2b270f7fec6e91590": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"2defd2a76be94f84ba957b21477909c1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"80f82c5f6cfe494fa56eef70dfcdd05c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e4a2612024dd45a981ed7392a7513470": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"8e1f8f179f6e40f7978b005419b2929e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"800b1520c0ac4bc3b43074ab21e8a5f4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"3580f7c0b9b04ac7b9e32e5c2a9989a6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"65c4004f46f74db38d53e9c611e33879": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_4829b7f750314cff996cb820e559dc2c", | |
"IPY_MODEL_fc4b069dc76a46f9ab0ea6fc6656c2ea", | |
"IPY_MODEL_8d3bdcd379ef43f181e1814d41b4d95f" | |
], | |
"layout": "IPY_MODEL_384c4c1f7752480cae2af7c28c854dab" | |
} | |
}, | |
"4829b7f750314cff996cb820e559dc2c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_8bed55b4fea84dcf92a6401d34cb0d67", | |
"placeholder": "", | |
"style": "IPY_MODEL_08999f81dc6446ae9adba574dd7ee444", | |
"value": "Downloading (…)okenizer_config.json: 100%" | |
} | |
}, | |
"fc4b069dc76a46f9ab0ea6fc6656c2ea": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_f5aa090da8fd4e0ab0dcd6cd6de1f512", | |
"max": 28, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_1aebcc0db0a1491b94f64a34fa62fc68", | |
"value": 28 | |
} | |
}, | |
"8d3bdcd379ef43f181e1814d41b4d95f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_67fe0f157fec443693c94a40e78515c2", | |
"placeholder": "", | |
"style": "IPY_MODEL_f5bdbc4307414c71956af3baa51a0261", | |
"value": " 28.0/28.0 [00:00<00:00, 461B/s]" | |
} | |
}, | |
"384c4c1f7752480cae2af7c28c854dab": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"8bed55b4fea84dcf92a6401d34cb0d67": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"08999f81dc6446ae9adba574dd7ee444": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"f5aa090da8fd4e0ab0dcd6cd6de1f512": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"1aebcc0db0a1491b94f64a34fa62fc68": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"67fe0f157fec443693c94a40e78515c2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"f5bdbc4307414c71956af3baa51a0261": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
} | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment