Created
January 23, 2023 14:53
-
-
Save firmai/fa9e1ab2b85bd2bd66ed16c3650cee4d to your computer and use it in GitHub Desktop.
Normal Equations and Analytical Solution for Linear Regression Models.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"authorship_tag": "ABX9TyOJUIlseDL7+3VQDRL/K0Di", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/firmai/fa9e1ab2b85bd2bd66ed16c3650cee4d/normal-equations-and-analytical-solution-for-linear-regression-models.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"id": "uu9hYdyAHUNl" | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"\n", | |
"beta_zero = np.array([1, 1, 1, 1, 1, 1])\n", | |
"sqr_feet = np.array([ 1000, 1500, 2000, 3000, 3800, 4500])\n", | |
"bedrooms = np.array([ 1, 2, 2, 3, 4, 5])\n", | |
"bathrooms = np.array([ 1, 1, 1, 2, 2, 2])\n", | |
"house_age = np.array([ 20, 24, 12, 8, 13, 14])\n", | |
"\n", | |
"X = np.array([beta_zero, sqr_feet, bedrooms, bathrooms, house_age]).T\n", | |
"y = np.array([ 100, 230, 150, 300, 390, 300]).reshape(X.shape[0],1)\n", | |
"B = np.linalg.inv(X.T @ X) @ (X.T @ y)\n", | |
"B = np.round(B,2)\n", | |
"preds = X @ B\n", | |
"preds = np.round(preds,2)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"## Print Statements\n", | |
"feats = [\"Beta Zero\",\"Sqr Feet\",\"Bedrooms\",\"Bathrooms\",\"House Age\"]\n", | |
"print(pd.DataFrame(np.c_[X, y, preds], columns=[\"Beta Zero\",\"Sqr Feet\",\"Bedrooms\",\"Bathrooms\",\"House Age\",\"Target\",\"Predictions\"]))\n", | |
"print(\"\\nThetas: {} \\n\".format(B.T))\n", | |
"formula = \"Prediction =\" + \"\".join([\"{} x {} +\".format(\" Beta_{}\".format(str(en)), feat) for en, feat in enumerate(feats)])[:-2] \n", | |
"print(\"Formula: \" + formula +\" \\n\" )\n", | |
"print(\"\\n\".join([\"{} = \".format(pred[0]) + \"\".join([\"{} x {} + \".format(the[0], feat) for the, feat in zip(B, X[en,:])])[:-3] for en, pred in enumerate(preds)]))" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "bcUJcOHcHdZa", | |
"outputId": "cc5f5b9c-f5fe-42a3-eae5-3311b0a52573" | |
}, | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
" Beta Zero Sqr Feet Bedrooms Bathrooms House Age Target Predictions\n", | |
"0 1.0 1000.0 1.0 1.0 20.0 100.0 139.30\n", | |
"1 1.0 1500.0 2.0 1.0 24.0 230.0 197.15\n", | |
"2 1.0 2000.0 2.0 1.0 12.0 150.0 128.79\n", | |
"3 1.0 3000.0 3.0 2.0 8.0 300.0 302.10\n", | |
"4 1.0 3800.0 4.0 2.0 13.0 390.0 310.98\n", | |
"5 1.0 4500.0 5.0 2.0 14.0 300.0 339.74\n", | |
"\n", | |
"Thetas: [[-1.0730e+01 -1.6000e-01 1.4173e+02 1.8770e+02 -9.7000e-01]] \n", | |
"\n", | |
"Formula: Prediction = Beta_0 x Beta Zero + Beta_1 x Sqr Feet + Beta_2 x Bedrooms + Beta_3 x Bathrooms + Beta_4 x House Age \n", | |
"\n", | |
"139.3 = -10.73 x 1 + -0.16 x 1000 + 141.73 x 1 + 187.7 x 1 + -0.97 x 20\n", | |
"197.15 = -10.73 x 1 + -0.16 x 1500 + 141.73 x 2 + 187.7 x 1 + -0.97 x 24\n", | |
"128.79 = -10.73 x 1 + -0.16 x 2000 + 141.73 x 2 + 187.7 x 1 + -0.97 x 12\n", | |
"302.1 = -10.73 x 1 + -0.16 x 3000 + 141.73 x 3 + 187.7 x 2 + -0.97 x 8\n", | |
"310.98 = -10.73 x 1 + -0.16 x 3800 + 141.73 x 4 + 187.7 x 2 + -0.97 x 13\n", | |
"339.74 = -10.73 x 1 + -0.16 x 4500 + 141.73 x 5 + 187.7 x 2 + -0.97 x 14\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [], | |
"metadata": { | |
"id": "VF4u8XnMHfsK" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment