Skip to content

Instantly share code, notes, and snippets.

View fivejjs's full-sized avatar
🏠
Working from home

vfive fivejjs

🏠
Working from home
  • Data scientist and engineer
  • Sydney Australia
View GitHub Profile
@fivejjs
fivejjs / docker-cheat-sheat.md
Created May 9, 2019 02:00 — forked from dwilkie/docker-cheat-sheat.md
Docker Cheat Sheet

Build docker image

$ cd /path/to/Dockerfile
$ sudo docker build .

View running processes

Keybase proof

I hereby claim:

  • I am fivejjs on github.
  • I am jinjunsun (https://keybase.io/jinjunsun) on keybase.
  • I have a public key ASBIkHDrGNWV9gLbFeUfFBGomvnPI2ivtyEgj_TmeW50Tgo

To claim this, I am signing this object:

Keybase proof

I hereby claim:

  • I am fivejjs on github.
  • I am jinjunsun (https://keybase.io/jinjunsun) on keybase.
  • I have a public key ASBIkHDrGNWV9gLbFeUfFBGomvnPI2ivtyEgj_TmeW50Tgo

To claim this, I am signing this object:

@fivejjs
fivejjs / tmux-cheatsheet.markdown
Created January 6, 2018 01:36 — forked from MohamedAlaa/tmux-cheatsheet.markdown
tmux shortcuts & cheatsheet

tmux shortcuts & cheatsheet

start new:

tmux

start new with session name:

tmux new -s myname
@fivejjs
fivejjs / truffle-material.md
Created January 4, 2018 06:00 — forked from smarr/truffle-material.md
Truffle: Languages and Material
@fivejjs
fivejjs / min-char-rnn.py
Created October 18, 2017 13:47 — forked from karpathy/min-char-rnn.py
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@fivejjs
fivejjs / howto.md
Created February 2, 2017 09:07 — forked from persiyanov/howto.md
How-to get Amazon EC2 instance and do machine learning on it. Jupyter 4.0.6 server and Python 2.7.

Goal

Want to move computation on machine with much power. We will set up Anaconda 4.0.0 and XGBoost 0.4 (it is tricky installable).

Preliminaries

Let's start

AWS Console and launching EC2 Instance.

@fivejjs
fivejjs / stuns
Created October 22, 2016 03:39 — forked from zziuni/stuns
STUN server list
# source : http://code.google.com/p/natvpn/source/browse/trunk/stun_server_list
# A list of available STUN server.
stun.l.google.com:19302
stun1.l.google.com:19302
stun2.l.google.com:19302
stun3.l.google.com:19302
stun4.l.google.com:19302
stun01.sipphone.com
stun.ekiga.net
- word2vec https://arxiv.org/abs/1310.4546
- sentenc2vec, paragraph2vec, doc2vec https://cs.stanford.edu/~quocle/paragraph_vector.pdf
- tweet2vec http://arxiv.org/abs/1605.03481
- tweet2vec http://socialmachines.media.mit.edu/wp-content/uploads/sites/27/2016/05/tweet2vec_vvr.pdf
- author2vec http://dl.acm.org/citation.cfm?id=2889382
- item2vec http://arxiv.org/abs/1603.04259
- lda2vec https://arxiv.org/abs/1605.02019
- illustration2vec http://dl.acm.org/citation.cfm?id=2820907
- tag2vec http://ktsaurabh.weebly.com/uploads/3/1/7/8/31783965/distributed_representations_for_content-based_and_personalized_tag_recommendation.pdf
- category2vec http://www.anlp.jp/proceedings/annual_meeting/2015/pdf_dir/C4-3.pdf