Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save fomightez/d0b5df5ea73eb0e1be743c61deda7251 to your computer and use it in GitHub Desktop.
Save fomightez/d0b5df5ea73eb0e1be743c61deda7251 to your computer and use it in GitHub Desktop.
Plotting to recall a plot based on SO https://stackoverflow.com/q/76842073/8508004
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "8233f50a-ca0f-4c15-b113-9f6f99f50fcb",
"metadata": {},
"source": [
"## Plotting to recall a plot based on SO https://stackoverflow.com/q/76842073/8508004"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3b283582-6246-48f4-a1f6-a9f129c67f3d",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9c93c5f5-33a4-4a8d-8a11-da645e70b36e",
"metadata": {},
"outputs": [],
"source": [
"a = range(10)\n",
"b = [2**x + 5 for x in a]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "22cb5802-2fbf-49b3-85c6-144ce98f657d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Figure size 200x200 with 0 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(2,2))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d4399d42-5894-4994-93b5-04f7de1fbb5a",
"metadata": {},
"outputs": [],
"source": [
"ax = fig.add_axes([.1,.1,.8,.8])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "560b6134-c37a-4aed-a0ad-d8cc079cbcc8",
"metadata": {},
"outputs": [],
"source": [
"ax.plot(a,b, label='b');"
]
},
{
"cell_type": "markdown",
"id": "2b34c2c2-f24b-4c56-a44b-1a5d7b568756",
"metadata": {},
"source": [
"I didn't think for the next line `plt.show()` would be necessary in modern Jupyter to show the plot as in the demo , but it was needed! Oddd."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "73264a92-c6f4-48b5-b4dc-cf32ed21d9d5",
"metadata": {},
"outputs": [],
"source": [
"plt.figure(fig);"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "acae3664-4aa9-430a-8e65-ab7c37a32a06",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANcAAADLCAYAAAD9aQZVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAV80lEQVR4nO3dfXAT550H8K/e/YJe8Jtk4zdIAce8BjDGJRyZQnGpL3dpSC9lcpQQN+2khpLQcInnOEh603FKO0kmCYH0kgBpkyahvTaFplw9TmIgyMW1SSCGGAgvlpFl2QZJxi96fe4PeYVlbPwirVZa/T4zO5Z2V6tHHn1ntc/v2V0JY4yBEBJ2UqEbQIhYUbgI4QmFixCeULgI4QmFixCeULgI4QmFixCeyIVuwET4fD6YzWao1WpIJBKhm0PiDGMM3d3dyMrKglQ68v4pJsNlNpuRk5MjdDNInDOZTMjOzh5xeUyGS61WA/B/OI1GI3BrSLxxOBzIyckJfA9HEpPh4n4KajQaChcRzGiHJNShQQhPKFyE8ITCRQhPKFyEDNF6vRfPHmzCX0+3hbQdChchQ5y4dA17P72MXx+9GNJ2KFyEDHGyxQYAWJA7OaTtULgIGaKx5ToAChchYdXr8uBLSzcAYEGeLqRtUbgIGeRzkx1eH4NBk4BMbWJI26JwETLISdPAT8IQ91oAhYuQII1XbABCP94CKFyEBDDGcHKgM+MuChch4dNyrRddPS4oZBLMygp9QDiFi5ABXH1rVpYWCQpZyNujcBEyIFz1LQ6Fi5ABgXCFoacQoHARAsBfPD7bNlA8pj0XIeFzqtVfPNZrVMjUJoRlmxQuQhA8WDdcVxSjcBGC8HdmABQuQoKKx+HqzAAoXITAdK0PnTe44rE2bNulcJG4xw3WLQxT8ZhD4SJxr/EKd7ylC+t2KVwk7jWG6bT+oShcJK71ubw42+YAACzIo3AREjanWm3w+Bgy1Cpkhal4zKFwkbh20mQDEN7iMYfCReJaoDMjjPUtDoWLxC3GGG+dGQCFi8Sx1ut96LzhhFwqwewp4SsecyhcJG5x4wlnZWnCWjzmULhI3OJGwofjYjTDoXCRuHXzzOMoDNdzzz0HiUSCxx9/PDCvv78fFRUVSE1NxaRJk7BmzRq0t7cHva6lpQVlZWVISkpCRkYGtm7dCo/HE0pTCBmXfrcXZ8wDxeMwD3viTDhc9fX1eO211zB37tyg+U888QQOHjyIAwcOoLa2FmazGffff39gudfrRVlZGVwuF44fP479+/dj37592L59+8Q/BSHjdPqqHR4fQ7pahSm60C5bPSI2Ad3d3Wz69OmsurqaLV++nG3evJkxxpjNZmMKhYIdOHAgsO7Zs2cZAGY0GhljjH344YdMKpUyi8USWGf37t1Mo9Ewp9M5pve32+0MALPb7RNpPiFszycXWN5Th9gP36of92vH+v2b0J6roqICZWVlWLlyZdD8hoYGuN3uoPkFBQXIzc2F0WgEABiNRsyZMwd6vT6wTmlpKRwOB5qamoZ9P6fTCYfDETQREgo+zjweSj7eF7z77rtobGxEfX39LcssFguUSiV0Ol3QfL1eD4vFElhncLC45dyy4VRVVeHZZ58db1MJGRYbXDzmqTMDGOcxl8lkwubNm/H2228jISG8gxxvp7KyEna7PTCZTKaIvTcRn9brfejo9heP5/BQPOaMK1wNDQ2wWq1YsGAB5HI55HI5amtr8dJLL0Eul0Ov18PlcsFmswW9rr29HQaDAQBgMBhu6T3knnPrDKVSqaDRaIImQiaKG6xbyFPxmDOucK1YsQKnT5/GZ599FpgWLVqEhx56KPBYoVCgpqYm8Jrm5ma0tLSgpKQEAFBSUoLTp0/DarUG1qmuroZGo0FhYWGYPhYhI7t55jF/PwmBcR5zqdVqzJ49O2hecnIyUlNTA/PLy8uxZcsWpKSkQKPRYNOmTSgpKcGSJUsAAKtWrUJhYSHWrVuHnTt3wmKxYNu2baioqIBKpQrTxyJkZDdvE6Tj9X3G3aExmhdeeAFSqRRr1qyB0+lEaWkpXn311cBymUyGQ4cO4bHHHkNJSQmSk5Oxfv16/OxnPwt3Uwi5Rb/bi6ZA8ZjfPZeEMcZ4fQceOBwOaLVa2O12Ov4i4/KPy9fwwB4j0iapUP+fKyZ0guRYv380tpDElZv1LV3YzzweisJF4krgnsc81rc4FC4SN/zF48j0FAIULhJHrtr6YI1A8ZhD4SJxgzs58s5MDRKV/BWPORQuEjcGd2ZEAoWLxI1IDNYdjMJF4oL/zGM7gMh0ZgAULhInmsx2uL0MaZOUyJ7M05nHQ1C4SFzg6lt38XDZ6pFQuEhciGR9i0PhIqIXXDzWRex9KVxE9Nrs/Wh3OCGTSjAnm//iMYfCRUSP22vdmalGkjLsZ1mNiMJFRC8wWDeCx1sAhYvEASE6MwAKFxE5/5nH/uIx36f1D0XhIqLWZHbA7WVITVYiNyUpou9N4SKidvNiNJErHnMoXETUbt4mSBfx96ZwEVETqqcQoHAREWuz98Hi6IdMKsHcCBaPORQuIlrcXqvAENniMYfCRURLqPoWh8JFREvIzgyAwkVEyunxoumq/7LVd+XQnouQsGkyO+Dy+pCSrEReamSLxxwKFxGlm7cJ4v+y1SOhcBFR4q5ReJdAnRkAhYuIlNA9hQCFi4hQm70PbfZ+SCUQpHjMoXAR0eF+EhYYNEhWRb54zKFwEdH5W5MFALAoX7ifhACFi4iMxd6PQ6faAADfXZgjaFsoXERU9hsvw+NjWDw1JaJXehoOhYuIRq/Lg3f+3gIA+MHdUwVuDYWLiMgfGlph73MjLzUJK+7UC90cChcRB5+P4c1PLwMAHlk6FTKpMKMyBqNwEVH46EsrLnX2QJMgxwMLs4VuDgAKFxGJ149dBACsLc4VtLY1GIWLxLwvrtpRd/Ea5FIJHv56vtDNCaBwkZj35rFLAIBvz8lEpjYyN7YbCwoXiWntjn4cPGUGAPxgmfDd74NRuEhMe8t4GW4vQ1H+ZMzN1gndnCAULhKz+lxevD1QNC6/e5rArbkVhYvErD80tsLW60ZuShK+WSh80XiocYWrqqoKRUVFUKvVyMjIwH333Yfm5uagdfr7+1FRUYHU1FRMmjQJa9asQXt7e9A6LS0tKCsrQ1JSEjIyMrB161Z4PJ7QPw2JGz4fC3RkbFiaHxVF46HGFa7a2lpUVFSgrq4O1dXVcLvdWLVqFXp6egLrPPHEEzh48CAOHDiA2tpamM1m3H///YHlXq8XZWVlcLlcOH78OPbv3499+/Zh+/bt4ftURPQ+OWfFxc4eqFVyfHeRsKPfR8RCYLVaGQBWW1vLGGPMZrMxhULBDhw4EFjn7NmzDAAzGo2MMcY+/PBDJpVKmcViCayze/duptFomNPpHNP72u12BoDZ7fZQmk9i2NpfG1neU4fYz/9yJuLvPdbvX0jHXHa7/6ZiKSkpAICGhga43W6sXLkysE5BQQFyc3NhNBoBAEajEXPmzIFef/M3cmlpKRwOB5qamoZ9H6fTCYfDETSR+HXG7MDxr7ogk0qwPoqKxkNNOFw+nw+PP/44li5ditmzZwMALBYLlEoldDpd0Lp6vR4WiyWwzuBgccu5ZcOpqqqCVqsNTDk5UfozgETEGwPHWqtnGzBFFz1F46EmHK6Kigp88cUXePfdd8PZnmFVVlbCbrcHJpPJxPt7kuhkdfTjz59fBQD8YFn0db8PNqERjhs3bsShQ4dw5MgRZGffHIFsMBjgcrlgs9mC9l7t7e0wGAyBdU6cOBG0Pa43kVtnKJVKBZVKNZGmEpH5Td0VuL0MC/MmY36OTujm3Na49lyMMWzcuBF//OMf8dFHH2Hq1ODhJgsXLoRCoUBNTU1gXnNzM1paWlBSUgIAKCkpwenTp2G1WgPrVFdXQ6PRoLCwMJTPQkSu3+3Fb+uuAIiOM41HM649V0VFBd555x188MEHUKvVgWMkrVaLxMREaLValJeXY8uWLUhJSYFGo8GmTZtQUlKCJUuWAABWrVqFwsJCrFu3Djt37oTFYsG2bdtQUVFBeydyW//beBXXe93InpyIVbOG/5UTVcbTBQlg2Gnv3r2Bdfr6+tiPf/xjNnnyZJaUlMS+853vsLa2tqDtXL58ma1evZolJiaytLQ09tOf/pS53e6wd4US8fB6fewbv/qY5T11iL1+9KKgbRnr90/CGGPCRXtiHA4HtFot7HY7NBqN0M0hEfBxsxUb9tZjkkoOY+U3oE5QCNaWsX7/aGwhiQlvHPV3v3+vKEfQYI0HhYtEvS8tDhy70AmpBHh4ab7QzRkzCheJetxea/XsTGRPFuZGdhNB4SJRzdrdjw8+859pXB5lZxqPhsJFotpv61rg8vpwV65O0HttTQSFi0St4KJxdA91Gg6Fi0StP528ims9LkzRJaJ0VvSdaTwaCheJSoyxwOj3DUvzIZfF3lc19lpM4sKR8504b72BZKUM/1YUm6cYUbhIVHr9qP/y1A8W5UITI0XjoShcJOo0W7px9Ly/aLwhhorGQ1G4SFTxeH2o+utZAEDpLANyUmKnaDwUhYtEDcYYtv+5CZ80d0Apl2LjN74mdJNCQuEiUWPXxxfwzt9bIJEAL31vPmZlCXtP41BRuEhU+H1DK371t3MAgGfunYVvzc4UuEWho3ARwR0514Gn/3AKAPCj5dOi+nJp40HhIoL64qodj/22AR4fw33zs/BUaYHQTQobChcRjOlaLzbsq0ePy4uv35GKnQ/MgzQKr/k+URQuIojrPS6s33sCHd1OFBjU2LNuIZRycX0dxfVpSEzod3tRvr8eFzt6kKVNwP5HFsfsKIzboXCRiPL6GH7yu5NobLFBkyDH/kcWQ69JELpZvKBwkYhhjOHZg03425l2KGVS/M/3F2G6Xi10s3hD4SIRs6f2It4yXoFEArzw4HwUT0sVukm8onCRiPjTyav4xeEvAQDbygpRNjf2i8SjoXAR3n16oRNbf/85AODRZVNRHgPXeQ8HChfh1RmzAz/6TQPcXoZ752WhcvWdQjcpYihchDet13vx8N4TuOH0YMm0FPzqu3NFVSQeDYWL8MLW68LDe+th7XZipl6N19YtgkouE7pZEUXhImHX7/bih2814IL1BgyaBOzdUARtoviKxKOhcJGw+tLiwPo3T+DE5WtQq+TY90gRsqL4vsV8mtBtWwkZqqPbieerz+G9+hb4GKCSS/Ha9xeiwBC/t3iicJGQ9Lu9eOPYJbz68QX0uLwAgG/PMeCpbxUgLzVZ4NYJi8JFJoQxhoOn2vCLv36Jq7Y+AMDcbC3+658LUZSfInDrogOFi4xbY8t1/PehMzjZYgMAZGoT8B/fmol/nTclrrraR0PhImNmutaLnf/XjIOf+2/pk6iQ4bF77sCjy6YhURlf3exjQeEio+rud+PVT77CG8cuweXxQSIBHliQjSdLZ4r2dJFwoHCREXm8Prz/j1Y8X92MzhsuAMCSaSnYVlaI2VNi+7JnkUDhIsM6cq4DP//LWTS3dwMApqYlo3J1Ab5ZqIdEQsdVY0HhIgD8vX9n2hyoPdeBmrNWNFy5DgDQJiqwecV0/PuSPNFd44JvFK44Zut14ej5TtSe60DtuQ50dDsDy+RSCb5fko+frPgadElKAVsZuyhcccTrYzh91Y5Pmq2oPdeBz002+NjN5YkKGb5+RyqWz0zHijv1mBKnw5bChcIlch3dThwZ2DMdPd+B673uoOUz9JNwz8wMLJ+RjkX5k+Nu5DqfKFwi4vUxtNn7cKmzB3UXu/BJcweazI6gddQqOe6enoblM9LxTzPS43ZQbSRQuGKMx+vDVVsfLnf14kpXDy53Dvzt6oHpWh9cXt8tr5k9RYN7ZmRg+cx0zM/RQRGD9xeORRSuKOTy+NB6vRdXunpxuasHV7p6camzB1e6etB6vQ+ewQdKQyhlUuSkJGJWlhb3zEzHsunpSFerIth6wqFw8ajf7YW9zw1brxu2XhdsfW7Ye92w9bn884Y+73XD3ufGDafntttVyaXIS01CXmoypqYlIy81Cfmp/r+Z2kTIaHxfVBAsXLt27cIvf/lLWCwWzJs3Dy+//DIWL14c8nZdHh/cXh88PgaP1wevj8HtY/B6Gdw+/3OPl8Hj49YZeOxl/nUHXtvv9qLf7fP/9fgfO93ewPw+7rHHv46TW9/jRZ/LC0e/G/3uW3+ijVWiQoa81KSB8CQjfyBM+WlJ0KsTaIBsDBAkXO+99x62bNmCPXv2oLi4GC+++CJKS0vR3NyMjIyMkLZ9365PcabNMfqKESKVALokJXSJCmiTFNAlKqBLUkKbqIBu8PNBj3UDy2gkRGyTMMZG/gHPk+LiYhQVFeGVV14BAPh8PuTk5GDTpk14+umnR329w+GAVquF3W6HRhN8puu/vHIMp1rtgedSCSCXSiGXSSCTSqCQSf1/pRLIZBIopP7ncpkUcqkE8oF5KoUUCQqZf5Jzj2/OU8kHLVdIkSCXBa2jHQjTJKWc9jIic7vv32AR33O5XC40NDSgsrIyME8qlWLlypUwGo3DvsbpdMLpvDl6wOEYec/0u0eXQMIFSiqhLzYRTMT7ZDs7O+H1eqHX64Pm6/V6WCyWYV9TVVUFrVYbmHJyckbcfrJKjiSlHEq5lIJFBBUTBY/KykrY7fbAZDKZhG4SIaOK+M/CtLQ0yGQytLe3B81vb2+HwWAY9jUqlQoqFdVqSGyJ+J5LqVRi4cKFqKmpCczz+XyoqalBSUlJpJtDCG8E6YrfsmUL1q9fj0WLFmHx4sV48cUX0dPTgw0bNozp9VwH5+06NgjhC/e9G7WjnQnk5ZdfZrm5uUypVLLFixezurq6Mb/WZDIxADTRJOhkMplu+z0VpM4VKp/PB7PZDLVafUuh1eFwICcnByaT6bY1CDIy+h/eHmMM3d3dyMrKglQ68pFVTI4tlEqlyM7Ovu06Go2Gvhghov/hyLRa7ajrxERXPCGxiMJFCE9EFy6VSoUdO3ZQXSwE9D8Mj5js0CAkFohuz0VItKBwEcITChchPKFwEcITChchPBFduHbt2oX8/HwkJCSguLgYJ06cELpJMeOZZ56BRCIJmgoKCoRuVswSVbi4C9/s2LEDjY2NmDdvHkpLS2G1WoVuWsyYNWsW2traAtOxY8eEblLMElW4nn/+eTz66KPYsGEDCgsLsWfPHiQlJeHNN98UumkxQy6Xw2AwBKa0tDShmxSzRBMu7sI3K1euDMwb7cI35Fbnz59HVlYWpk2bhoceeggtLS1CNylmiSZcE7nwDQlWXFyMffv24fDhw9i9ezcuXbqEZcuWobu7W+imxaSYPOWE8GP16tWBx3PnzkVxcTHy8vLw/vvvo7y8XMCWxSbR7LkmcuEbcns6nQ4zZszAhQsXhG5KTBJNuOjCN+F348YNfPXVV8jMzBS6KTFJVD8LQ73wTbx78sknce+99yIvLw9msxk7duyATCbD2rVrhW5aTBJVuB588EF0dHRg+/btsFgsmD9/Pg4fPnxLJwcZXmtrK9auXYuuri6kp6fj7rvvRl1dHdLT04VuWkyi87kI4YlojrkIiTYULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCf/D4T6KteoSrVvAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 200x200 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(fig); plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7b307213-1c99-4109-85f9-8e8e58d58816",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANcAAADLCAYAAAD9aQZVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAV80lEQVR4nO3dfXAT550H8K/e/YJe8Jtk4zdIAce8BjDGJRyZQnGpL3dpSC9lcpQQN+2khpLQcInnOEh603FKO0kmCYH0kgBpkyahvTaFplw9TmIgyMW1SSCGGAgvlpFl2QZJxi96fe4PeYVlbPwirVZa/T4zO5Z2V6tHHn1ntc/v2V0JY4yBEBJ2UqEbQIhYUbgI4QmFixCeULgI4QmFixCeULgI4QmFixCeyIVuwET4fD6YzWao1WpIJBKhm0PiDGMM3d3dyMrKglQ68v4pJsNlNpuRk5MjdDNInDOZTMjOzh5xeUyGS61WA/B/OI1GI3BrSLxxOBzIyckJfA9HEpPh4n4KajQaChcRzGiHJNShQQhPKFyE8ITCRQhPKFyEDNF6vRfPHmzCX0+3hbQdChchQ5y4dA17P72MXx+9GNJ2KFyEDHGyxQYAWJA7OaTtULgIGaKx5ToAChchYdXr8uBLSzcAYEGeLqRtUbgIGeRzkx1eH4NBk4BMbWJI26JwETLISdPAT8IQ91oAhYuQII1XbABCP94CKFyEBDDGcHKgM+MuChch4dNyrRddPS4oZBLMygp9QDiFi5ABXH1rVpYWCQpZyNujcBEyIFz1LQ6Fi5ABgXCFoacQoHARAsBfPD7bNlA8pj0XIeFzqtVfPNZrVMjUJoRlmxQuQhA8WDdcVxSjcBGC8HdmABQuQoKKx+HqzAAoXITAdK0PnTe44rE2bNulcJG4xw3WLQxT8ZhD4SJxr/EKd7ylC+t2KVwk7jWG6bT+oShcJK71ubw42+YAACzIo3AREjanWm3w+Bgy1Cpkhal4zKFwkbh20mQDEN7iMYfCReJaoDMjjPUtDoWLxC3GGG+dGQCFi8Sx1ut96LzhhFwqwewp4SsecyhcJG5x4wlnZWnCWjzmULhI3OJGwofjYjTDoXCRuHXzzOMoDNdzzz0HiUSCxx9/PDCvv78fFRUVSE1NxaRJk7BmzRq0t7cHva6lpQVlZWVISkpCRkYGtm7dCo/HE0pTCBmXfrcXZ8wDxeMwD3viTDhc9fX1eO211zB37tyg+U888QQOHjyIAwcOoLa2FmazGffff39gudfrRVlZGVwuF44fP479+/dj37592L59+8Q/BSHjdPqqHR4fQ7pahSm60C5bPSI2Ad3d3Wz69OmsurqaLV++nG3evJkxxpjNZmMKhYIdOHAgsO7Zs2cZAGY0GhljjH344YdMKpUyi8USWGf37t1Mo9Ewp9M5pve32+0MALPb7RNpPiFszycXWN5Th9gP36of92vH+v2b0J6roqICZWVlWLlyZdD8hoYGuN3uoPkFBQXIzc2F0WgEABiNRsyZMwd6vT6wTmlpKRwOB5qamoZ9P6fTCYfDETQREgo+zjweSj7eF7z77rtobGxEfX39LcssFguUSiV0Ol3QfL1eD4vFElhncLC45dyy4VRVVeHZZ58db1MJGRYbXDzmqTMDGOcxl8lkwubNm/H2228jISG8gxxvp7KyEna7PTCZTKaIvTcRn9brfejo9heP5/BQPOaMK1wNDQ2wWq1YsGAB5HI55HI5amtr8dJLL0Eul0Ov18PlcsFmswW9rr29HQaDAQBgMBhu6T3knnPrDKVSqaDRaIImQiaKG6xbyFPxmDOucK1YsQKnT5/GZ599FpgWLVqEhx56KPBYoVCgpqYm8Jrm5ma0tLSgpKQEAFBSUoLTp0/DarUG1qmuroZGo0FhYWGYPhYhI7t55jF/PwmBcR5zqdVqzJ49O2hecnIyUlNTA/PLy8uxZcsWpKSkQKPRYNOmTSgpKcGSJUsAAKtWrUJhYSHWrVuHnTt3wmKxYNu2baioqIBKpQrTxyJkZDdvE6Tj9X3G3aExmhdeeAFSqRRr1qyB0+lEaWkpXn311cBymUyGQ4cO4bHHHkNJSQmSk5Oxfv16/OxnPwt3Uwi5Rb/bi6ZA8ZjfPZeEMcZ4fQceOBwOaLVa2O12Ov4i4/KPy9fwwB4j0iapUP+fKyZ0guRYv380tpDElZv1LV3YzzweisJF4krgnsc81rc4FC4SN/zF48j0FAIULhJHrtr6YI1A8ZhD4SJxgzs58s5MDRKV/BWPORQuEjcGd2ZEAoWLxI1IDNYdjMJF4oL/zGM7gMh0ZgAULhInmsx2uL0MaZOUyJ7M05nHQ1C4SFzg6lt38XDZ6pFQuEhciGR9i0PhIqIXXDzWRex9KVxE9Nrs/Wh3OCGTSjAnm//iMYfCRUSP22vdmalGkjLsZ1mNiMJFRC8wWDeCx1sAhYvEASE6MwAKFxE5/5nH/uIx36f1D0XhIqLWZHbA7WVITVYiNyUpou9N4SKidvNiNJErHnMoXETUbt4mSBfx96ZwEVETqqcQoHAREWuz98Hi6IdMKsHcCBaPORQuIlrcXqvAENniMYfCRURLqPoWh8JFREvIzgyAwkVEyunxoumq/7LVd+XQnouQsGkyO+Dy+pCSrEReamSLxxwKFxGlm7cJ4v+y1SOhcBFR4q5ReJdAnRkAhYuIlNA9hQCFi4hQm70PbfZ+SCUQpHjMoXAR0eF+EhYYNEhWRb54zKFwEdH5W5MFALAoX7ifhACFi4iMxd6PQ6faAADfXZgjaFsoXERU9hsvw+NjWDw1JaJXehoOhYuIRq/Lg3f+3gIA+MHdUwVuDYWLiMgfGlph73MjLzUJK+7UC90cChcRB5+P4c1PLwMAHlk6FTKpMKMyBqNwEVH46EsrLnX2QJMgxwMLs4VuDgAKFxGJ149dBACsLc4VtLY1GIWLxLwvrtpRd/Ea5FIJHv56vtDNCaBwkZj35rFLAIBvz8lEpjYyN7YbCwoXiWntjn4cPGUGAPxgmfDd74NRuEhMe8t4GW4vQ1H+ZMzN1gndnCAULhKz+lxevD1QNC6/e5rArbkVhYvErD80tsLW60ZuShK+WSh80XiocYWrqqoKRUVFUKvVyMjIwH333Yfm5uagdfr7+1FRUYHU1FRMmjQJa9asQXt7e9A6LS0tKCsrQ1JSEjIyMrB161Z4PJ7QPw2JGz4fC3RkbFiaHxVF46HGFa7a2lpUVFSgrq4O1dXVcLvdWLVqFXp6egLrPPHEEzh48CAOHDiA2tpamM1m3H///YHlXq8XZWVlcLlcOH78OPbv3499+/Zh+/bt4ftURPQ+OWfFxc4eqFVyfHeRsKPfR8RCYLVaGQBWW1vLGGPMZrMxhULBDhw4EFjn7NmzDAAzGo2MMcY+/PBDJpVKmcViCayze/duptFomNPpHNP72u12BoDZ7fZQmk9i2NpfG1neU4fYz/9yJuLvPdbvX0jHXHa7/6ZiKSkpAICGhga43W6sXLkysE5BQQFyc3NhNBoBAEajEXPmzIFef/M3cmlpKRwOB5qamoZ9H6fTCYfDETSR+HXG7MDxr7ogk0qwPoqKxkNNOFw+nw+PP/44li5ditmzZwMALBYLlEoldDpd0Lp6vR4WiyWwzuBgccu5ZcOpqqqCVqsNTDk5UfozgETEGwPHWqtnGzBFFz1F46EmHK6Kigp88cUXePfdd8PZnmFVVlbCbrcHJpPJxPt7kuhkdfTjz59fBQD8YFn0db8PNqERjhs3bsShQ4dw5MgRZGffHIFsMBjgcrlgs9mC9l7t7e0wGAyBdU6cOBG0Pa43kVtnKJVKBZVKNZGmEpH5Td0VuL0MC/MmY36OTujm3Na49lyMMWzcuBF//OMf8dFHH2Hq1ODhJgsXLoRCoUBNTU1gXnNzM1paWlBSUgIAKCkpwenTp2G1WgPrVFdXQ6PRoLCwMJTPQkSu3+3Fb+uuAIiOM41HM649V0VFBd555x188MEHUKvVgWMkrVaLxMREaLValJeXY8uWLUhJSYFGo8GmTZtQUlKCJUuWAABWrVqFwsJCrFu3Djt37oTFYsG2bdtQUVFBeydyW//beBXXe93InpyIVbOG/5UTVcbTBQlg2Gnv3r2Bdfr6+tiPf/xjNnnyZJaUlMS+853vsLa2tqDtXL58ma1evZolJiaytLQ09tOf/pS53e6wd4US8fB6fewbv/qY5T11iL1+9KKgbRnr90/CGGPCRXtiHA4HtFot7HY7NBqN0M0hEfBxsxUb9tZjkkoOY+U3oE5QCNaWsX7/aGwhiQlvHPV3v3+vKEfQYI0HhYtEvS8tDhy70AmpBHh4ab7QzRkzCheJetxea/XsTGRPFuZGdhNB4SJRzdrdjw8+859pXB5lZxqPhsJFotpv61rg8vpwV65O0HttTQSFi0St4KJxdA91Gg6Fi0StP528ims9LkzRJaJ0VvSdaTwaCheJSoyxwOj3DUvzIZfF3lc19lpM4sKR8504b72BZKUM/1YUm6cYUbhIVHr9qP/y1A8W5UITI0XjoShcJOo0W7px9Ly/aLwhhorGQ1G4SFTxeH2o+utZAEDpLANyUmKnaDwUhYtEDcYYtv+5CZ80d0Apl2LjN74mdJNCQuEiUWPXxxfwzt9bIJEAL31vPmZlCXtP41BRuEhU+H1DK371t3MAgGfunYVvzc4UuEWho3ARwR0514Gn/3AKAPCj5dOi+nJp40HhIoL64qodj/22AR4fw33zs/BUaYHQTQobChcRjOlaLzbsq0ePy4uv35GKnQ/MgzQKr/k+URQuIojrPS6s33sCHd1OFBjU2LNuIZRycX0dxfVpSEzod3tRvr8eFzt6kKVNwP5HFsfsKIzboXCRiPL6GH7yu5NobLFBkyDH/kcWQ69JELpZvKBwkYhhjOHZg03425l2KGVS/M/3F2G6Xi10s3hD4SIRs6f2It4yXoFEArzw4HwUT0sVukm8onCRiPjTyav4xeEvAQDbygpRNjf2i8SjoXAR3n16oRNbf/85AODRZVNRHgPXeQ8HChfh1RmzAz/6TQPcXoZ752WhcvWdQjcpYihchDet13vx8N4TuOH0YMm0FPzqu3NFVSQeDYWL8MLW68LDe+th7XZipl6N19YtgkouE7pZEUXhImHX7/bih2814IL1BgyaBOzdUARtoviKxKOhcJGw+tLiwPo3T+DE5WtQq+TY90gRsqL4vsV8mtBtWwkZqqPbieerz+G9+hb4GKCSS/Ha9xeiwBC/t3iicJGQ9Lu9eOPYJbz68QX0uLwAgG/PMeCpbxUgLzVZ4NYJi8JFJoQxhoOn2vCLv36Jq7Y+AMDcbC3+658LUZSfInDrogOFi4xbY8t1/PehMzjZYgMAZGoT8B/fmol/nTclrrraR0PhImNmutaLnf/XjIOf+2/pk6iQ4bF77sCjy6YhURlf3exjQeEio+rud+PVT77CG8cuweXxQSIBHliQjSdLZ4r2dJFwoHCREXm8Prz/j1Y8X92MzhsuAMCSaSnYVlaI2VNi+7JnkUDhIsM6cq4DP//LWTS3dwMApqYlo3J1Ab5ZqIdEQsdVY0HhIgD8vX9n2hyoPdeBmrNWNFy5DgDQJiqwecV0/PuSPNFd44JvFK44Zut14ej5TtSe60DtuQ50dDsDy+RSCb5fko+frPgadElKAVsZuyhcccTrYzh91Y5Pmq2oPdeBz002+NjN5YkKGb5+RyqWz0zHijv1mBKnw5bChcIlch3dThwZ2DMdPd+B673uoOUz9JNwz8wMLJ+RjkX5k+Nu5DqfKFwi4vUxtNn7cKmzB3UXu/BJcweazI6gddQqOe6enoblM9LxTzPS43ZQbSRQuGKMx+vDVVsfLnf14kpXDy53Dvzt6oHpWh9cXt8tr5k9RYN7ZmRg+cx0zM/RQRGD9xeORRSuKOTy+NB6vRdXunpxuasHV7p6camzB1e6etB6vQ+ewQdKQyhlUuSkJGJWlhb3zEzHsunpSFerIth6wqFw8ajf7YW9zw1brxu2XhdsfW7Ye92w9bn884Y+73XD3ufGDafntttVyaXIS01CXmoypqYlIy81Cfmp/r+Z2kTIaHxfVBAsXLt27cIvf/lLWCwWzJs3Dy+//DIWL14c8nZdHh/cXh88PgaP1wevj8HtY/B6Gdw+/3OPl8Hj49YZeOxl/nUHXtvv9qLf7fP/9fgfO93ewPw+7rHHv46TW9/jRZ/LC0e/G/3uW3+ijVWiQoa81KSB8CQjfyBM+WlJ0KsTaIBsDBAkXO+99x62bNmCPXv2oLi4GC+++CJKS0vR3NyMjIyMkLZ9365PcabNMfqKESKVALokJXSJCmiTFNAlKqBLUkKbqIBu8PNBj3UDy2gkRGyTMMZG/gHPk+LiYhQVFeGVV14BAPh8PuTk5GDTpk14+umnR329w+GAVquF3W6HRhN8puu/vHIMp1rtgedSCSCXSiGXSSCTSqCQSf1/pRLIZBIopP7ncpkUcqkE8oF5KoUUCQqZf5Jzj2/OU8kHLVdIkSCXBa2jHQjTJKWc9jIic7vv32AR33O5XC40NDSgsrIyME8qlWLlypUwGo3DvsbpdMLpvDl6wOEYec/0u0eXQMIFSiqhLzYRTMT7ZDs7O+H1eqHX64Pm6/V6WCyWYV9TVVUFrVYbmHJyckbcfrJKjiSlHEq5lIJFBBUTBY/KykrY7fbAZDKZhG4SIaOK+M/CtLQ0yGQytLe3B81vb2+HwWAY9jUqlQoqFdVqSGyJ+J5LqVRi4cKFqKmpCczz+XyoqalBSUlJpJtDCG8E6YrfsmUL1q9fj0WLFmHx4sV48cUX0dPTgw0bNozp9VwH5+06NgjhC/e9G7WjnQnk5ZdfZrm5uUypVLLFixezurq6Mb/WZDIxADTRJOhkMplu+z0VpM4VKp/PB7PZDLVafUuh1eFwICcnByaT6bY1CDIy+h/eHmMM3d3dyMrKglQ68pFVTI4tlEqlyM7Ovu06Go2Gvhghov/hyLRa7ajrxERXPCGxiMJFCE9EFy6VSoUdO3ZQXSwE9D8Mj5js0CAkFohuz0VItKBwEcITChchPKFwEcITChchPBFduHbt2oX8/HwkJCSguLgYJ06cELpJMeOZZ56BRCIJmgoKCoRuVswSVbi4C9/s2LEDjY2NmDdvHkpLS2G1WoVuWsyYNWsW2traAtOxY8eEblLMElW4nn/+eTz66KPYsGEDCgsLsWfPHiQlJeHNN98UumkxQy6Xw2AwBKa0tDShmxSzRBMu7sI3K1euDMwb7cI35Fbnz59HVlYWpk2bhoceeggtLS1CNylmiSZcE7nwDQlWXFyMffv24fDhw9i9ezcuXbqEZcuWobu7W+imxaSYPOWE8GP16tWBx3PnzkVxcTHy8vLw/vvvo7y8XMCWxSbR7LkmcuEbcns6nQ4zZszAhQsXhG5KTBJNuOjCN+F348YNfPXVV8jMzBS6KTFJVD8LQ73wTbx78sknce+99yIvLw9msxk7duyATCbD2rVrhW5aTBJVuB588EF0dHRg+/btsFgsmD9/Pg4fPnxLJwcZXmtrK9auXYuuri6kp6fj7rvvRl1dHdLT04VuWkyi87kI4YlojrkIiTYULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCf/D4T6KteoSrVvAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 200x200 with 1 Axes>"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig"
]
},
{
"cell_type": "markdown",
"id": "40cf3e87-4dcc-45c9-8909-f79d1a718f6c",
"metadata": {},
"source": [
"I suggest addition of the following two options based on using the `.figure` attribure, see [here](https://stackoverflow.com/a/76707536/8508004) and [here](https://stackoverflow.com/a/70707556/8508004) and [here](https://stackoverflow.com/a/73326297/8508004) for more information and examples of `.figure` use (or also the third paragraph [here](https://stackoverflow.com/a/60269307/8508004) where sometimes seaborn, which is built on matplotlib, a bit confusingly, uses `.fig` or `.figure` at times):"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1c8168be-e3a1-46d9-8ea6-fad64f9ae884",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANcAAADLCAYAAAD9aQZVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAV80lEQVR4nO3dfXAT550H8K/e/YJe8Jtk4zdIAce8BjDGJRyZQnGpL3dpSC9lcpQQN+2khpLQcInnOEh603FKO0kmCYH0kgBpkyahvTaFplw9TmIgyMW1SSCGGAgvlpFl2QZJxi96fe4PeYVlbPwirVZa/T4zO5Z2V6tHHn1ntc/v2V0JY4yBEBJ2UqEbQIhYUbgI4QmFixCeULgI4QmFixCeULgI4QmFixCeyIVuwET4fD6YzWao1WpIJBKhm0PiDGMM3d3dyMrKglQ68v4pJsNlNpuRk5MjdDNInDOZTMjOzh5xeUyGS61WA/B/OI1GI3BrSLxxOBzIyckJfA9HEpPh4n4KajQaChcRzGiHJNShQQhPKFyE8ITCRQhPKFyEDNF6vRfPHmzCX0+3hbQdChchQ5y4dA17P72MXx+9GNJ2KFyEDHGyxQYAWJA7OaTtULgIGaKx5ToAChchYdXr8uBLSzcAYEGeLqRtUbgIGeRzkx1eH4NBk4BMbWJI26JwETLISdPAT8IQ91oAhYuQII1XbABCP94CKFyEBDDGcHKgM+MuChch4dNyrRddPS4oZBLMygp9QDiFi5ABXH1rVpYWCQpZyNujcBEyIFz1LQ6Fi5ABgXCFoacQoHARAsBfPD7bNlA8pj0XIeFzqtVfPNZrVMjUJoRlmxQuQhA8WDdcVxSjcBGC8HdmABQuQoKKx+HqzAAoXITAdK0PnTe44rE2bNulcJG4xw3WLQxT8ZhD4SJxr/EKd7ylC+t2KVwk7jWG6bT+oShcJK71ubw42+YAACzIo3AREjanWm3w+Bgy1Cpkhal4zKFwkbh20mQDEN7iMYfCReJaoDMjjPUtDoWLxC3GGG+dGQCFi8Sx1ut96LzhhFwqwewp4SsecyhcJG5x4wlnZWnCWjzmULhI3OJGwofjYjTDoXCRuHXzzOMoDNdzzz0HiUSCxx9/PDCvv78fFRUVSE1NxaRJk7BmzRq0t7cHva6lpQVlZWVISkpCRkYGtm7dCo/HE0pTCBmXfrcXZ8wDxeMwD3viTDhc9fX1eO211zB37tyg+U888QQOHjyIAwcOoLa2FmazGffff39gudfrRVlZGVwuF44fP479+/dj37592L59+8Q/BSHjdPqqHR4fQ7pahSm60C5bPSI2Ad3d3Wz69OmsurqaLV++nG3evJkxxpjNZmMKhYIdOHAgsO7Zs2cZAGY0GhljjH344YdMKpUyi8USWGf37t1Mo9Ewp9M5pve32+0MALPb7RNpPiFszycXWN5Th9gP36of92vH+v2b0J6roqICZWVlWLlyZdD8hoYGuN3uoPkFBQXIzc2F0WgEABiNRsyZMwd6vT6wTmlpKRwOB5qamoZ9P6fTCYfDETQREgo+zjweSj7eF7z77rtobGxEfX39LcssFguUSiV0Ol3QfL1eD4vFElhncLC45dyy4VRVVeHZZ58db1MJGRYbXDzmqTMDGOcxl8lkwubNm/H2228jISG8gxxvp7KyEna7PTCZTKaIvTcRn9brfejo9heP5/BQPOaMK1wNDQ2wWq1YsGAB5HI55HI5amtr8dJLL0Eul0Ov18PlcsFmswW9rr29HQaDAQBgMBhu6T3knnPrDKVSqaDRaIImQiaKG6xbyFPxmDOucK1YsQKnT5/GZ599FpgWLVqEhx56KPBYoVCgpqYm8Jrm5ma0tLSgpKQEAFBSUoLTp0/DarUG1qmuroZGo0FhYWGYPhYhI7t55jF/PwmBcR5zqdVqzJ49O2hecnIyUlNTA/PLy8uxZcsWpKSkQKPRYNOmTSgpKcGSJUsAAKtWrUJhYSHWrVuHnTt3wmKxYNu2baioqIBKpQrTxyJkZDdvE6Tj9X3G3aExmhdeeAFSqRRr1qyB0+lEaWkpXn311cBymUyGQ4cO4bHHHkNJSQmSk5Oxfv16/OxnPwt3Uwi5Rb/bi6ZA8ZjfPZeEMcZ4fQceOBwOaLVa2O12Ov4i4/KPy9fwwB4j0iapUP+fKyZ0guRYv380tpDElZv1LV3YzzweisJF4krgnsc81rc4FC4SN/zF48j0FAIULhJHrtr6YI1A8ZhD4SJxgzs58s5MDRKV/BWPORQuEjcGd2ZEAoWLxI1IDNYdjMJF4oL/zGM7gMh0ZgAULhInmsx2uL0MaZOUyJ7M05nHQ1C4SFzg6lt38XDZ6pFQuEhciGR9i0PhIqIXXDzWRex9KVxE9Nrs/Wh3OCGTSjAnm//iMYfCRUSP22vdmalGkjLsZ1mNiMJFRC8wWDeCx1sAhYvEASE6MwAKFxE5/5nH/uIx36f1D0XhIqLWZHbA7WVITVYiNyUpou9N4SKidvNiNJErHnMoXETUbt4mSBfx96ZwEVETqqcQoHAREWuz98Hi6IdMKsHcCBaPORQuIlrcXqvAENniMYfCRURLqPoWh8JFREvIzgyAwkVEyunxoumq/7LVd+XQnouQsGkyO+Dy+pCSrEReamSLxxwKFxGlm7cJ4v+y1SOhcBFR4q5ReJdAnRkAhYuIlNA9hQCFi4hQm70PbfZ+SCUQpHjMoXAR0eF+EhYYNEhWRb54zKFwEdH5W5MFALAoX7ifhACFi4iMxd6PQ6faAADfXZgjaFsoXERU9hsvw+NjWDw1JaJXehoOhYuIRq/Lg3f+3gIA+MHdUwVuDYWLiMgfGlph73MjLzUJK+7UC90cChcRB5+P4c1PLwMAHlk6FTKpMKMyBqNwEVH46EsrLnX2QJMgxwMLs4VuDgAKFxGJ149dBACsLc4VtLY1GIWLxLwvrtpRd/Ea5FIJHv56vtDNCaBwkZj35rFLAIBvz8lEpjYyN7YbCwoXiWntjn4cPGUGAPxgmfDd74NRuEhMe8t4GW4vQ1H+ZMzN1gndnCAULhKz+lxevD1QNC6/e5rArbkVhYvErD80tsLW60ZuShK+WSh80XiocYWrqqoKRUVFUKvVyMjIwH333Yfm5uagdfr7+1FRUYHU1FRMmjQJa9asQXt7e9A6LS0tKCsrQ1JSEjIyMrB161Z4PJ7QPw2JGz4fC3RkbFiaHxVF46HGFa7a2lpUVFSgrq4O1dXVcLvdWLVqFXp6egLrPPHEEzh48CAOHDiA2tpamM1m3H///YHlXq8XZWVlcLlcOH78OPbv3499+/Zh+/bt4ftURPQ+OWfFxc4eqFVyfHeRsKPfR8RCYLVaGQBWW1vLGGPMZrMxhULBDhw4EFjn7NmzDAAzGo2MMcY+/PBDJpVKmcViCayze/duptFomNPpHNP72u12BoDZ7fZQmk9i2NpfG1neU4fYz/9yJuLvPdbvX0jHXHa7/6ZiKSkpAICGhga43W6sXLkysE5BQQFyc3NhNBoBAEajEXPmzIFef/M3cmlpKRwOB5qamoZ9H6fTCYfDETSR+HXG7MDxr7ogk0qwPoqKxkNNOFw+nw+PP/44li5ditmzZwMALBYLlEoldDpd0Lp6vR4WiyWwzuBgccu5ZcOpqqqCVqsNTDk5UfozgETEGwPHWqtnGzBFFz1F46EmHK6Kigp88cUXePfdd8PZnmFVVlbCbrcHJpPJxPt7kuhkdfTjz59fBQD8YFn0db8PNqERjhs3bsShQ4dw5MgRZGffHIFsMBjgcrlgs9mC9l7t7e0wGAyBdU6cOBG0Pa43kVtnKJVKBZVKNZGmEpH5Td0VuL0MC/MmY36OTujm3Na49lyMMWzcuBF//OMf8dFHH2Hq1ODhJgsXLoRCoUBNTU1gXnNzM1paWlBSUgIAKCkpwenTp2G1WgPrVFdXQ6PRoLCwMJTPQkSu3+3Fb+uuAIiOM41HM649V0VFBd555x188MEHUKvVgWMkrVaLxMREaLValJeXY8uWLUhJSYFGo8GmTZtQUlKCJUuWAABWrVqFwsJCrFu3Djt37oTFYsG2bdtQUVFBeydyW//beBXXe93InpyIVbOG/5UTVcbTBQlg2Gnv3r2Bdfr6+tiPf/xjNnnyZJaUlMS+853vsLa2tqDtXL58ma1evZolJiaytLQ09tOf/pS53e6wd4US8fB6fewbv/qY5T11iL1+9KKgbRnr90/CGGPCRXtiHA4HtFot7HY7NBqN0M0hEfBxsxUb9tZjkkoOY+U3oE5QCNaWsX7/aGwhiQlvHPV3v3+vKEfQYI0HhYtEvS8tDhy70AmpBHh4ab7QzRkzCheJetxea/XsTGRPFuZGdhNB4SJRzdrdjw8+859pXB5lZxqPhsJFotpv61rg8vpwV65O0HttTQSFi0St4KJxdA91Gg6Fi0StP528ims9LkzRJaJ0VvSdaTwaCheJSoyxwOj3DUvzIZfF3lc19lpM4sKR8504b72BZKUM/1YUm6cYUbhIVHr9qP/y1A8W5UITI0XjoShcJOo0W7px9Ly/aLwhhorGQ1G4SFTxeH2o+utZAEDpLANyUmKnaDwUhYtEDcYYtv+5CZ80d0Apl2LjN74mdJNCQuEiUWPXxxfwzt9bIJEAL31vPmZlCXtP41BRuEhU+H1DK371t3MAgGfunYVvzc4UuEWho3ARwR0514Gn/3AKAPCj5dOi+nJp40HhIoL64qodj/22AR4fw33zs/BUaYHQTQobChcRjOlaLzbsq0ePy4uv35GKnQ/MgzQKr/k+URQuIojrPS6s33sCHd1OFBjU2LNuIZRycX0dxfVpSEzod3tRvr8eFzt6kKVNwP5HFsfsKIzboXCRiPL6GH7yu5NobLFBkyDH/kcWQ69JELpZvKBwkYhhjOHZg03425l2KGVS/M/3F2G6Xi10s3hD4SIRs6f2It4yXoFEArzw4HwUT0sVukm8onCRiPjTyav4xeEvAQDbygpRNjf2i8SjoXAR3n16oRNbf/85AODRZVNRHgPXeQ8HChfh1RmzAz/6TQPcXoZ752WhcvWdQjcpYihchDet13vx8N4TuOH0YMm0FPzqu3NFVSQeDYWL8MLW68LDe+th7XZipl6N19YtgkouE7pZEUXhImHX7/bih2814IL1BgyaBOzdUARtoviKxKOhcJGw+tLiwPo3T+DE5WtQq+TY90gRsqL4vsV8mtBtWwkZqqPbieerz+G9+hb4GKCSS/Ha9xeiwBC/t3iicJGQ9Lu9eOPYJbz68QX0uLwAgG/PMeCpbxUgLzVZ4NYJi8JFJoQxhoOn2vCLv36Jq7Y+AMDcbC3+658LUZSfInDrogOFi4xbY8t1/PehMzjZYgMAZGoT8B/fmol/nTclrrraR0PhImNmutaLnf/XjIOf+2/pk6iQ4bF77sCjy6YhURlf3exjQeEio+rud+PVT77CG8cuweXxQSIBHliQjSdLZ4r2dJFwoHCREXm8Prz/j1Y8X92MzhsuAMCSaSnYVlaI2VNi+7JnkUDhIsM6cq4DP//LWTS3dwMApqYlo3J1Ab5ZqIdEQsdVY0HhIgD8vX9n2hyoPdeBmrNWNFy5DgDQJiqwecV0/PuSPNFd44JvFK44Zut14ej5TtSe60DtuQ50dDsDy+RSCb5fko+frPgadElKAVsZuyhcccTrYzh91Y5Pmq2oPdeBz002+NjN5YkKGb5+RyqWz0zHijv1mBKnw5bChcIlch3dThwZ2DMdPd+B673uoOUz9JNwz8wMLJ+RjkX5k+Nu5DqfKFwi4vUxtNn7cKmzB3UXu/BJcweazI6gddQqOe6enoblM9LxTzPS43ZQbSRQuGKMx+vDVVsfLnf14kpXDy53Dvzt6oHpWh9cXt8tr5k9RYN7ZmRg+cx0zM/RQRGD9xeORRSuKOTy+NB6vRdXunpxuasHV7p6camzB1e6etB6vQ+ewQdKQyhlUuSkJGJWlhb3zEzHsunpSFerIth6wqFw8ajf7YW9zw1brxu2XhdsfW7Ye92w9bn884Y+73XD3ufGDafntttVyaXIS01CXmoypqYlIy81Cfmp/r+Z2kTIaHxfVBAsXLt27cIvf/lLWCwWzJs3Dy+//DIWL14c8nZdHh/cXh88PgaP1wevj8HtY/B6Gdw+/3OPl8Hj49YZeOxl/nUHXtvv9qLf7fP/9fgfO93ewPw+7rHHv46TW9/jRZ/LC0e/G/3uW3+ijVWiQoa81KSB8CQjfyBM+WlJ0KsTaIBsDBAkXO+99x62bNmCPXv2oLi4GC+++CJKS0vR3NyMjIyMkLZ9365PcabNMfqKESKVALokJXSJCmiTFNAlKqBLUkKbqIBu8PNBj3UDy2gkRGyTMMZG/gHPk+LiYhQVFeGVV14BAPh8PuTk5GDTpk14+umnR329w+GAVquF3W6HRhN8puu/vHIMp1rtgedSCSCXSiGXSSCTSqCQSf1/pRLIZBIopP7ncpkUcqkE8oF5KoUUCQqZf5Jzj2/OU8kHLVdIkSCXBa2jHQjTJKWc9jIic7vv32AR33O5XC40NDSgsrIyME8qlWLlypUwGo3DvsbpdMLpvDl6wOEYec/0u0eXQMIFSiqhLzYRTMT7ZDs7O+H1eqHX64Pm6/V6WCyWYV9TVVUFrVYbmHJyckbcfrJKjiSlHEq5lIJFBBUTBY/KykrY7fbAZDKZhG4SIaOK+M/CtLQ0yGQytLe3B81vb2+HwWAY9jUqlQoqFdVqSGyJ+J5LqVRi4cKFqKmpCczz+XyoqalBSUlJpJtDCG8E6YrfsmUL1q9fj0WLFmHx4sV48cUX0dPTgw0bNozp9VwH5+06NgjhC/e9G7WjnQnk5ZdfZrm5uUypVLLFixezurq6Mb/WZDIxADTRJOhkMplu+z0VpM4VKp/PB7PZDLVafUuh1eFwICcnByaT6bY1CDIy+h/eHmMM3d3dyMrKglQ68pFVTI4tlEqlyM7Ovu06Go2Gvhghov/hyLRa7ajrxERXPCGxiMJFCE9EFy6VSoUdO3ZQXSwE9D8Mj5js0CAkFohuz0VItKBwEcITChchPKFwEcITChchPBFduHbt2oX8/HwkJCSguLgYJ06cELpJMeOZZ56BRCIJmgoKCoRuVswSVbi4C9/s2LEDjY2NmDdvHkpLS2G1WoVuWsyYNWsW2traAtOxY8eEblLMElW4nn/+eTz66KPYsGEDCgsLsWfPHiQlJeHNN98UumkxQy6Xw2AwBKa0tDShmxSzRBMu7sI3K1euDMwb7cI35Fbnz59HVlYWpk2bhoceeggtLS1CNylmiSZcE7nwDQlWXFyMffv24fDhw9i9ezcuXbqEZcuWobu7W+imxaSYPOWE8GP16tWBx3PnzkVxcTHy8vLw/vvvo7y8XMCWxSbR7LkmcuEbcns6nQ4zZszAhQsXhG5KTBJNuOjCN+F348YNfPXVV8jMzBS6KTFJVD8LQ73wTbx78sknce+99yIvLw9msxk7duyATCbD2rVrhW5aTBJVuB588EF0dHRg+/btsFgsmD9/Pg4fPnxLJwcZXmtrK9auXYuuri6kp6fj7rvvRl1dHdLT04VuWkyi87kI4YlojrkIiTYULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCf/D4T6KteoSrVvAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 200x200 with 1 Axes>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig.figure"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "57eaab34-9968-4727-8160-668f9b40c0a4",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANcAAADLCAYAAAD9aQZVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAV80lEQVR4nO3dfXAT550H8K/e/YJe8Jtk4zdIAce8BjDGJRyZQnGpL3dpSC9lcpQQN+2khpLQcInnOEh603FKO0kmCYH0kgBpkyahvTaFplw9TmIgyMW1SSCGGAgvlpFl2QZJxi96fe4PeYVlbPwirVZa/T4zO5Z2V6tHHn1ntc/v2V0JY4yBEBJ2UqEbQIhYUbgI4QmFixCeULgI4QmFixCeULgI4QmFixCeyIVuwET4fD6YzWao1WpIJBKhm0PiDGMM3d3dyMrKglQ68v4pJsNlNpuRk5MjdDNInDOZTMjOzh5xeUyGS61WA/B/OI1GI3BrSLxxOBzIyckJfA9HEpPh4n4KajQaChcRzGiHJNShQQhPKFyE8ITCRQhPKFyEDNF6vRfPHmzCX0+3hbQdChchQ5y4dA17P72MXx+9GNJ2KFyEDHGyxQYAWJA7OaTtULgIGaKx5ToAChchYdXr8uBLSzcAYEGeLqRtUbgIGeRzkx1eH4NBk4BMbWJI26JwETLISdPAT8IQ91oAhYuQII1XbABCP94CKFyEBDDGcHKgM+MuChch4dNyrRddPS4oZBLMygp9QDiFi5ABXH1rVpYWCQpZyNujcBEyIFz1LQ6Fi5ABgXCFoacQoHARAsBfPD7bNlA8pj0XIeFzqtVfPNZrVMjUJoRlmxQuQhA8WDdcVxSjcBGC8HdmABQuQoKKx+HqzAAoXITAdK0PnTe44rE2bNulcJG4xw3WLQxT8ZhD4SJxr/EKd7ylC+t2KVwk7jWG6bT+oShcJK71ubw42+YAACzIo3AREjanWm3w+Bgy1Cpkhal4zKFwkbh20mQDEN7iMYfCReJaoDMjjPUtDoWLxC3GGG+dGQCFi8Sx1ut96LzhhFwqwewp4SsecyhcJG5x4wlnZWnCWjzmULhI3OJGwofjYjTDoXCRuHXzzOMoDNdzzz0HiUSCxx9/PDCvv78fFRUVSE1NxaRJk7BmzRq0t7cHva6lpQVlZWVISkpCRkYGtm7dCo/HE0pTCBmXfrcXZ8wDxeMwD3viTDhc9fX1eO211zB37tyg+U888QQOHjyIAwcOoLa2FmazGffff39gudfrRVlZGVwuF44fP479+/dj37592L59+8Q/BSHjdPqqHR4fQ7pahSm60C5bPSI2Ad3d3Wz69OmsurqaLV++nG3evJkxxpjNZmMKhYIdOHAgsO7Zs2cZAGY0GhljjH344YdMKpUyi8USWGf37t1Mo9Ewp9M5pve32+0MALPb7RNpPiFszycXWN5Th9gP36of92vH+v2b0J6roqICZWVlWLlyZdD8hoYGuN3uoPkFBQXIzc2F0WgEABiNRsyZMwd6vT6wTmlpKRwOB5qamoZ9P6fTCYfDETQREgo+zjweSj7eF7z77rtobGxEfX39LcssFguUSiV0Ol3QfL1eD4vFElhncLC45dyy4VRVVeHZZ58db1MJGRYbXDzmqTMDGOcxl8lkwubNm/H2228jISG8gxxvp7KyEna7PTCZTKaIvTcRn9brfejo9heP5/BQPOaMK1wNDQ2wWq1YsGAB5HI55HI5amtr8dJLL0Eul0Ov18PlcsFmswW9rr29HQaDAQBgMBhu6T3knnPrDKVSqaDRaIImQiaKG6xbyFPxmDOucK1YsQKnT5/GZ599FpgWLVqEhx56KPBYoVCgpqYm8Jrm5ma0tLSgpKQEAFBSUoLTp0/DarUG1qmuroZGo0FhYWGYPhYhI7t55jF/PwmBcR5zqdVqzJ49O2hecnIyUlNTA/PLy8uxZcsWpKSkQKPRYNOmTSgpKcGSJUsAAKtWrUJhYSHWrVuHnTt3wmKxYNu2baioqIBKpQrTxyJkZDdvE6Tj9X3G3aExmhdeeAFSqRRr1qyB0+lEaWkpXn311cBymUyGQ4cO4bHHHkNJSQmSk5Oxfv16/OxnPwt3Uwi5Rb/bi6ZA8ZjfPZeEMcZ4fQceOBwOaLVa2O12Ov4i4/KPy9fwwB4j0iapUP+fKyZ0guRYv380tpDElZv1LV3YzzweisJF4krgnsc81rc4FC4SN/zF48j0FAIULhJHrtr6YI1A8ZhD4SJxgzs58s5MDRKV/BWPORQuEjcGd2ZEAoWLxI1IDNYdjMJF4oL/zGM7gMh0ZgAULhInmsx2uL0MaZOUyJ7M05nHQ1C4SFzg6lt38XDZ6pFQuEhciGR9i0PhIqIXXDzWRex9KVxE9Nrs/Wh3OCGTSjAnm//iMYfCRUSP22vdmalGkjLsZ1mNiMJFRC8wWDeCx1sAhYvEASE6MwAKFxE5/5nH/uIx36f1D0XhIqLWZHbA7WVITVYiNyUpou9N4SKidvNiNJErHnMoXETUbt4mSBfx96ZwEVETqqcQoHAREWuz98Hi6IdMKsHcCBaPORQuIlrcXqvAENniMYfCRURLqPoWh8JFREvIzgyAwkVEyunxoumq/7LVd+XQnouQsGkyO+Dy+pCSrEReamSLxxwKFxGlm7cJ4v+y1SOhcBFR4q5ReJdAnRkAhYuIlNA9hQCFi4hQm70PbfZ+SCUQpHjMoXAR0eF+EhYYNEhWRb54zKFwEdH5W5MFALAoX7ifhACFi4iMxd6PQ6faAADfXZgjaFsoXERU9hsvw+NjWDw1JaJXehoOhYuIRq/Lg3f+3gIA+MHdUwVuDYWLiMgfGlph73MjLzUJK+7UC90cChcRB5+P4c1PLwMAHlk6FTKpMKMyBqNwEVH46EsrLnX2QJMgxwMLs4VuDgAKFxGJ149dBACsLc4VtLY1GIWLxLwvrtpRd/Ea5FIJHv56vtDNCaBwkZj35rFLAIBvz8lEpjYyN7YbCwoXiWntjn4cPGUGAPxgmfDd74NRuEhMe8t4GW4vQ1H+ZMzN1gndnCAULhKz+lxevD1QNC6/e5rArbkVhYvErD80tsLW60ZuShK+WSh80XiocYWrqqoKRUVFUKvVyMjIwH333Yfm5uagdfr7+1FRUYHU1FRMmjQJa9asQXt7e9A6LS0tKCsrQ1JSEjIyMrB161Z4PJ7QPw2JGz4fC3RkbFiaHxVF46HGFa7a2lpUVFSgrq4O1dXVcLvdWLVqFXp6egLrPPHEEzh48CAOHDiA2tpamM1m3H///YHlXq8XZWVlcLlcOH78OPbv3499+/Zh+/bt4ftURPQ+OWfFxc4eqFVyfHeRsKPfR8RCYLVaGQBWW1vLGGPMZrMxhULBDhw4EFjn7NmzDAAzGo2MMcY+/PBDJpVKmcViCayze/duptFomNPpHNP72u12BoDZ7fZQmk9i2NpfG1neU4fYz/9yJuLvPdbvX0jHXHa7/6ZiKSkpAICGhga43W6sXLkysE5BQQFyc3NhNBoBAEajEXPmzIFef/M3cmlpKRwOB5qamoZ9H6fTCYfDETSR+HXG7MDxr7ogk0qwPoqKxkNNOFw+nw+PP/44li5ditmzZwMALBYLlEoldDpd0Lp6vR4WiyWwzuBgccu5ZcOpqqqCVqsNTDk5UfozgETEGwPHWqtnGzBFFz1F46EmHK6Kigp88cUXePfdd8PZnmFVVlbCbrcHJpPJxPt7kuhkdfTjz59fBQD8YFn0db8PNqERjhs3bsShQ4dw5MgRZGffHIFsMBjgcrlgs9mC9l7t7e0wGAyBdU6cOBG0Pa43kVtnKJVKBZVKNZGmEpH5Td0VuL0MC/MmY36OTujm3Na49lyMMWzcuBF//OMf8dFHH2Hq1ODhJgsXLoRCoUBNTU1gXnNzM1paWlBSUgIAKCkpwenTp2G1WgPrVFdXQ6PRoLCwMJTPQkSu3+3Fb+uuAIiOM41HM649V0VFBd555x188MEHUKvVgWMkrVaLxMREaLValJeXY8uWLUhJSYFGo8GmTZtQUlKCJUuWAABWrVqFwsJCrFu3Djt37oTFYsG2bdtQUVFBeydyW//beBXXe93InpyIVbOG/5UTVcbTBQlg2Gnv3r2Bdfr6+tiPf/xjNnnyZJaUlMS+853vsLa2tqDtXL58ma1evZolJiaytLQ09tOf/pS53e6wd4US8fB6fewbv/qY5T11iL1+9KKgbRnr90/CGGPCRXtiHA4HtFot7HY7NBqN0M0hEfBxsxUb9tZjkkoOY+U3oE5QCNaWsX7/aGwhiQlvHPV3v3+vKEfQYI0HhYtEvS8tDhy70AmpBHh4ab7QzRkzCheJetxea/XsTGRPFuZGdhNB4SJRzdrdjw8+859pXB5lZxqPhsJFotpv61rg8vpwV65O0HttTQSFi0St4KJxdA91Gg6Fi0StP528ims9LkzRJaJ0VvSdaTwaCheJSoyxwOj3DUvzIZfF3lc19lpM4sKR8504b72BZKUM/1YUm6cYUbhIVHr9qP/y1A8W5UITI0XjoShcJOo0W7px9Ly/aLwhhorGQ1G4SFTxeH2o+utZAEDpLANyUmKnaDwUhYtEDcYYtv+5CZ80d0Apl2LjN74mdJNCQuEiUWPXxxfwzt9bIJEAL31vPmZlCXtP41BRuEhU+H1DK371t3MAgGfunYVvzc4UuEWho3ARwR0514Gn/3AKAPCj5dOi+nJp40HhIoL64qodj/22AR4fw33zs/BUaYHQTQobChcRjOlaLzbsq0ePy4uv35GKnQ/MgzQKr/k+URQuIojrPS6s33sCHd1OFBjU2LNuIZRycX0dxfVpSEzod3tRvr8eFzt6kKVNwP5HFsfsKIzboXCRiPL6GH7yu5NobLFBkyDH/kcWQ69JELpZvKBwkYhhjOHZg03425l2KGVS/M/3F2G6Xi10s3hD4SIRs6f2It4yXoFEArzw4HwUT0sVukm8onCRiPjTyav4xeEvAQDbygpRNjf2i8SjoXAR3n16oRNbf/85AODRZVNRHgPXeQ8HChfh1RmzAz/6TQPcXoZ752WhcvWdQjcpYihchDet13vx8N4TuOH0YMm0FPzqu3NFVSQeDYWL8MLW68LDe+th7XZipl6N19YtgkouE7pZEUXhImHX7/bih2814IL1BgyaBOzdUARtoviKxKOhcJGw+tLiwPo3T+DE5WtQq+TY90gRsqL4vsV8mtBtWwkZqqPbieerz+G9+hb4GKCSS/Ha9xeiwBC/t3iicJGQ9Lu9eOPYJbz68QX0uLwAgG/PMeCpbxUgLzVZ4NYJi8JFJoQxhoOn2vCLv36Jq7Y+AMDcbC3+658LUZSfInDrogOFi4xbY8t1/PehMzjZYgMAZGoT8B/fmol/nTclrrraR0PhImNmutaLnf/XjIOf+2/pk6iQ4bF77sCjy6YhURlf3exjQeEio+rud+PVT77CG8cuweXxQSIBHliQjSdLZ4r2dJFwoHCREXm8Prz/j1Y8X92MzhsuAMCSaSnYVlaI2VNi+7JnkUDhIsM6cq4DP//LWTS3dwMApqYlo3J1Ab5ZqIdEQsdVY0HhIgD8vX9n2hyoPdeBmrNWNFy5DgDQJiqwecV0/PuSPNFd44JvFK44Zut14ej5TtSe60DtuQ50dDsDy+RSCb5fko+frPgadElKAVsZuyhcccTrYzh91Y5Pmq2oPdeBz002+NjN5YkKGb5+RyqWz0zHijv1mBKnw5bChcIlch3dThwZ2DMdPd+B673uoOUz9JNwz8wMLJ+RjkX5k+Nu5DqfKFwi4vUxtNn7cKmzB3UXu/BJcweazI6gddQqOe6enoblM9LxTzPS43ZQbSRQuGKMx+vDVVsfLnf14kpXDy53Dvzt6oHpWh9cXt8tr5k9RYN7ZmRg+cx0zM/RQRGD9xeORRSuKOTy+NB6vRdXunpxuasHV7p6camzB1e6etB6vQ+ewQdKQyhlUuSkJGJWlhb3zEzHsunpSFerIth6wqFw8ajf7YW9zw1brxu2XhdsfW7Ye92w9bn884Y+73XD3ufGDafntttVyaXIS01CXmoypqYlIy81Cfmp/r+Z2kTIaHxfVBAsXLt27cIvf/lLWCwWzJs3Dy+//DIWL14c8nZdHh/cXh88PgaP1wevj8HtY/B6Gdw+/3OPl8Hj49YZeOxl/nUHXtvv9qLf7fP/9fgfO93ewPw+7rHHv46TW9/jRZ/LC0e/G/3uW3+ijVWiQoa81KSB8CQjfyBM+WlJ0KsTaIBsDBAkXO+99x62bNmCPXv2oLi4GC+++CJKS0vR3NyMjIyMkLZ9365PcabNMfqKESKVALokJXSJCmiTFNAlKqBLUkKbqIBu8PNBj3UDy2gkRGyTMMZG/gHPk+LiYhQVFeGVV14BAPh8PuTk5GDTpk14+umnR329w+GAVquF3W6HRhN8puu/vHIMp1rtgedSCSCXSiGXSSCTSqCQSf1/pRLIZBIopP7ncpkUcqkE8oF5KoUUCQqZf5Jzj2/OU8kHLVdIkSCXBa2jHQjTJKWc9jIic7vv32AR33O5XC40NDSgsrIyME8qlWLlypUwGo3DvsbpdMLpvDl6wOEYec/0u0eXQMIFSiqhLzYRTMT7ZDs7O+H1eqHX64Pm6/V6WCyWYV9TVVUFrVYbmHJyckbcfrJKjiSlHEq5lIJFBBUTBY/KykrY7fbAZDKZhG4SIaOK+M/CtLQ0yGQytLe3B81vb2+HwWAY9jUqlQoqFdVqSGyJ+J5LqVRi4cKFqKmpCczz+XyoqalBSUlJpJtDCG8E6YrfsmUL1q9fj0WLFmHx4sV48cUX0dPTgw0bNozp9VwH5+06NgjhC/e9G7WjnQnk5ZdfZrm5uUypVLLFixezurq6Mb/WZDIxADTRJOhkMplu+z0VpM4VKp/PB7PZDLVafUuh1eFwICcnByaT6bY1CDIy+h/eHmMM3d3dyMrKglQ68pFVTI4tlEqlyM7Ovu06Go2Gvhghov/hyLRa7ajrxERXPCGxiMJFCE9EFy6VSoUdO3ZQXSwE9D8Mj5js0CAkFohuz0VItKBwEcITChchPKFwEcITChchPBFduHbt2oX8/HwkJCSguLgYJ06cELpJMeOZZ56BRCIJmgoKCoRuVswSVbi4C9/s2LEDjY2NmDdvHkpLS2G1WoVuWsyYNWsW2traAtOxY8eEblLMElW4nn/+eTz66KPYsGEDCgsLsWfPHiQlJeHNN98UumkxQy6Xw2AwBKa0tDShmxSzRBMu7sI3K1euDMwb7cI35Fbnz59HVlYWpk2bhoceeggtLS1CNylmiSZcE7nwDQlWXFyMffv24fDhw9i9ezcuXbqEZcuWobu7W+imxaSYPOWE8GP16tWBx3PnzkVxcTHy8vLw/vvvo7y8XMCWxSbR7LkmcuEbcns6nQ4zZszAhQsXhG5KTBJNuOjCN+F348YNfPXVV8jMzBS6KTFJVD8LQ73wTbx78sknce+99yIvLw9msxk7duyATCbD2rVrhW5aTBJVuB588EF0dHRg+/btsFgsmD9/Pg4fPnxLJwcZXmtrK9auXYuuri6kp6fj7rvvRl1dHdLT04VuWkyi87kI4YlojrkIiTYULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCcULkJ4QuEihCf/D4T6KteoSrVvAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 200x200 with 1 Axes>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ax.figure"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "03f3df4d-37b9-4ef4-8b23-b1f75b9ef163",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment