Created
September 11, 2012 19:03
-
-
Save fonnesbeck/3700963 to your computer and use it in GitHub Desktop.
Power analysis iPython notebook
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "Power Analysis" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Power Analysis: Psychological Predictors of Poor ACLR Outcomes\n", | |
"\n", | |
"This analysis caclulates the power of detecting a non-zero effect of fear of movement/reinjury (TSK) or self efficacy (GSES) on recovery from ACLR. For Aim 1, we are estimating the power in predicting:\n", | |
"\n", | |
"- IKDC at year 2\n", | |
"- KOOS quality of life at year 2\n", | |
"\n", | |
"For Aim 2, we are estimating power for predicting:\n", | |
"\n", | |
"- Single hop score\n", | |
"- Crossover hop score\n", | |
"\n", | |
"For Aim 3, we are estimating power for predicting:\n", | |
"\n", | |
"- KOOS Sports and Rec\n", | |
"- Marx score\n", | |
"\n", | |
"Power is estimated by generating simulated data from a model with hypothesized parameter values and standard errors, then using the simulated data to try to estimate the original model parameters. We are interested in determining whether the model can estimate the effects of the two risk factors with adequate precision. \n", | |
"\n", | |
"Model parameters for risk factors were estimated from a literature review, whereby extracted correlation coefficients ($\\rho$) were converted to linear model parameters ($\\beta$) via:\n", | |
"\n", | |
"$$\\beta = \\rho \\frac{\\sigma_y}{\\sigma_x}$$\n", | |
"\n", | |
"where $\\\\sigma_y$ and $sigma_x$ are the standard deviations of the response variable and the risk factor variable, respectively. Model parameters for covariates were estimated using pilot data (155 observations) to estimate linear models for each response variable. The estimated covariate parameters and risk factor parameters were combined in a single generative model to produce simulated data.\n", | |
"\n", | |
"Power was estimated by fitting Bayesian models to each of k simulated datasets for each response variable, and recording the proportion of calculated 95% Bayesian credible intervals for both risk factors excluded zero:\n", | |
"\n", | |
"$$ \\text{power} = \\frac{\\text{# intervals excluding zero}}{k} $$\n", | |
"\n", | |
"The implementation details of the power analysis are provided below." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# Correlations estimated from literature\n", | |
"r_tsk_ikdc = r_tsk_qol = -0.22\n", | |
"r_gses_ikdc = r_gses_qol = 0.25\n", | |
"r_tsk_pcs = -0.3\n", | |
"r_gses_pcs = 0.3\n", | |
"r_tsk_mcs = -0.1\n", | |
"r_gses_mcs = 0.2\n", | |
"r_catas_ikdc = r_catas_qol = r_catas_pcs = r_catas_mcs = -0.2\n", | |
"r_dep_ikdc = r_dep_qol = r_dep_pcs = -0.14\n", | |
"r_dep_mcs = -0.3\n", | |
"\n", | |
"r_tsk_hop = -0.3\n", | |
"r_gses_hop = 0.4\n", | |
"r_catas_hop = r_dep_hop = -0.09\n", | |
"\n", | |
"r_tsk_sprec = r_tsk_marx = r_tsk_sport = -0.45\n", | |
"r_gses_sprec = r_gses_marx = r_gses_sport = 0.6\n", | |
"r_catas_sprec = r_catas_marx = r_catas_sport = -0.2\n", | |
"r_dep_sprec = r_dep_marx = r_dep_sport = -0.14" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 90 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"'''\n", | |
"Model-based covariate parameter estimates, along with correlations and standard errors. Each model includes:\n", | |
"\n", | |
"mu: parameter means\n", | |
"se: parameter standard errors\n", | |
"corr: correlation matrix\n", | |
"sigma: standard deviation of response and observations, respectively\n", | |
"r: correlations between risk factors and response\n", | |
"\n", | |
"'''\n", | |
"\n", | |
"# IKDC.raw.t2 ~ SEX + AGE + BMI.t0 + SMOKEc + KOOS.Pain.t2 + IKDC.raw.t0\n", | |
"ikdc = {\n", | |
" 'mu':[-1.584, 1.1385, 0.1513, -0.0341, -2.0032, 0.9421, 0.0158],\n", | |
" 'se':[8.879, 1.195, 0.126, 0.173, 2.076, 0.075, 0.035],\n", | |
" 'corr':[[1, 0.214, -0.086, -0.486, -0.033, -0.896, -0.193],\n", | |
" [0.214, 1, -0.035, -0.361, -0.158, -0.096, -0.193],\n", | |
" [-0.086, -0.035, 1, -0.407, -0.293, -0.015, 0.079],\n", | |
" [-0.486, -0.361, -0.407, 1, 0.128, 0.175, 0.123],\n", | |
" [-0.033, -0.158, -0.293, 0.128, 1, 0.065, -0.02],\n", | |
" [-0.896, -0.096, -0.015, 0.175, 0.065, 1, 0.028],\n", | |
" [-0.193, -0.193, 0.079, 0.123, -0.02, 0.028, 1]],\n", | |
" 'sigma':[17,6.47],\n", | |
" 'r':[r_tsk_ikdc, r_gses_ikdc]\n", | |
"}\n", | |
"\n", | |
"# KOOS.KRQOL.t2 ~ SEX + AGE + BMI.t0 + SMOKEc + KOOS.Pain.t2 + KOOS.KRQOL.t0\n", | |
"qol = {\n", | |
" 'mu':[-54.96, -0.69, -0.33, 0.59, 1.51, 1.33, 0.08],\n", | |
" 'se':[16.233, 2.231, 0.248, 0.323, 3.987, 0.144, 0.051],\n", | |
" 'corr':[[1, 0.206, -0.118, -0.466, -0.097, -0.879, -0.159],\n", | |
" [0.206, 1, -0.007, -0.369, -0.139, -0.095, -0.104],\n", | |
" [-0.118, -0.007, 1, -0.387, -0.354, -0.015, 0.185],\n", | |
" [-0.466, -0.369, -0.387, 1, 0.194, 0.139, 0.109],\n", | |
" [-0.097, -0.139, -0.354, 0.194, 1, 0.113, 0.037],\n", | |
" [-0.879, -0.095, -0.015, 0.139, 0.113, 1, -0.087],\n", | |
" [-0.159, -0.104, 0.185, 0.109, 0.037, -0.087, 1]],\n", | |
" 'sigma':[24,12.57],\n", | |
" 'r':[r_tsk_qol, r_gses_qol]\n", | |
"}\n", | |
"\n", | |
"# single_adj_geoavg_ratio ~ MTREAT1c + BMI.t0 + KOOS.Pain.t2 + MARX.t0\n", | |
"hop = {\n", | |
" 'mu':[1.0019, -0.0195, -0.0195, 0.0014, -0.0011, 0.004],\n", | |
" 'se':[0.10299, 0.02151, 0.02525, 0.00177, 0.0009, 0.00155],\n", | |
" 'corr':[[1, -0.172, -0.087, -0.544, -0.845, -0.193],\n", | |
" [-0.172, 1, 0.747, 0.052, -0.017, -0.078],\n", | |
" [-0.087, 0.747, 1, -0.08, -0.009, -0.136],\n", | |
" [-0.544, 0.052, -0.08, 1, 0.104, 0.231],\n", | |
" [-0.845, -0.017, -0.009, 0.104, 1, -0.101],\n", | |
" [-0.193, -0.078, -0.136, 0.231, -0.101, 1]],\n", | |
" 'sigma':[0.18,0.07952],\n", | |
" 'r':[r_tsk_hop, r_gses_hop]\n", | |
"}\n", | |
"\n", | |
"# crossover_adj_geoavg_ratio ~ MTREAT1c + BMI.t0 + KOOS.Pain.t2 + MARX.t0\n", | |
"hopc = {\n", | |
" 'mu':[0.9274, -0.0117, -0.0497, 0.0021, -0.0002, 0.0041],\n", | |
" 'se':[0.10646, 0.02226, 0.02612, 0.00184, 0.00093, 0.0016],\n", | |
" 'corr':[[1, -0.173, -0.088, -0.545, -0.846, -0.192],\n", | |
" [-0.173, 1, 0.747, 0.052, -0.017, -0.077],\n", | |
" [-0.088, 0.747, 1, -0.08, -0.008, -0.136],\n", | |
" [-0.545, 0.052, -0.08, 1, 0.105, 0.231],\n", | |
" [-0.846, -0.017, -0.008, 0.105, 1, -0.102],\n", | |
" [-0.192, -0.077, -0.136, 0.231, -0.102, 1]],\n", | |
" 'sigma':[0.09,0.08233],\n", | |
" 'r':[r_tsk_hop, r_gses_hop]\n", | |
"}\n", | |
" \n", | |
"# KOOS.Sports_Rec.t2 ~ SEX + AGE + BMI.t0 + SMOKEc + KOOS.Pain.t2 + KOOS.Sports_Rec.t0\n", | |
"sprec = {\n", | |
" 'mu':[-16.916, 3.055, 0.024, -0.36, 3.611, 1.179, 0.038],\n", | |
" 'se':[13.431, 1.868, 0.202, 0.266, 3.391, 0.117, 0.03],\n", | |
" 'corr':[[1, 0.214, -0.086, -0.486, -0.033, -0.896, -0.193],\n", | |
" [0.214, 1, -0.035, -0.361, -0.158, -0.096, -0.193],\n", | |
" [-0.086, -0.035, 1, -0.407, -0.293, -0.015, 0.079],\n", | |
" [-0.486, -0.361, -0.407, 1, 0.128, 0.175, 0.123],\n", | |
" [-0.033, -0.158, -0.293, 0.128, 1, 0.065, -0.02],\n", | |
" [-0.896, -0.096, -0.015, 0.175, 0.065, 1, 0.028],\n", | |
" [-0.193, -0.193, 0.079, 0.123, -0.02, 0.028, 1]],\n", | |
" 'sigma':[7.5,10.09],\n", | |
" 'r':[r_tsk_sprec, r_gses_sprec]\n", | |
"}\n", | |
" \n", | |
"# MARX.t2 ~ SEX + AGE + BMI.t0 + SMOKEc + KOOS.Pain.t2 + MARX.t0\n", | |
"marx = {\n", | |
" 'mu':[6.727, 1.379, -0.141, -0.15, -0.462, 0.071, 0.258],\n", | |
" 'se':[5.545, 0.738, 0.086, 0.107, 1.337, 0.048, 0.086],\n", | |
" 'corr':[[1, 0.171, -0.161, -0.448, -0.087, -0.844, -0.248],\n", | |
" [0.171, 1, 0.037, -0.359, -0.134, -0.113, 0.059],\n", | |
" [-0.161, 0.037, 1, -0.381, -0.336, -0.036, 0.327],\n", | |
" [-0.448, -0.359, -0.381, 1, 0.191, 0.146, 0.038],\n", | |
" [-0.087, -0.134, -0.336, 0.191, 1, 0.108, 0.029],\n", | |
" [-0.844, -0.113, -0.036, 0.146, 0.108, 1, -0.097],\n", | |
" [-0.248, 0.059, 0.327, 0.038, 0.029, -0.097, 1]],\n", | |
" 'sigma':[6,4.17],\n", | |
" 'r':[r_tsk_marx, r_gses_marx]\n", | |
"}\n", | |
"\n", | |
"models = {'ikdc':ikdc, 'qol':qol, 'hop':hop, 'hopc':hopc, 'sprec':sprec, 'marx':marx}\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 96 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The function `simulate_dataset` simulates data for a given model and sample size:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import numpy as np\n", | |
"\n", | |
"def alphabeta(mu, sig):\n", | |
" # Calculates parameters of beta distribution from mean and sd\n", | |
" a = - mu * (sig**2 + mu**2 - mu) / sig**2\n", | |
" b = (sig**2 + mu**2 - mu) * (mu - 1) / sig**2\n", | |
" \n", | |
" return a,b\n", | |
"\n", | |
"def simulate_dataset(model, n=330, p_followup=0.85, rf_se=0.0001):\n", | |
" '''\n", | |
" Simulate a data for given model and sample size.\n", | |
" \n", | |
" '''\n", | |
" \n", | |
" # Fear of movement/re-injury\n", | |
" x_tsk0 = rnormal(43.3, 4.8**-2, n)\n", | |
" # y_tsk2 = rnormal(37.6, 6.8**-2, n)\n", | |
" \n", | |
" # Self-efficacy\n", | |
" x_gses = rnormal(30.64, 4.45**-2, n)\n", | |
" \n", | |
" # Covariates\n", | |
" x_age = rnormal(27, 11**-2, n).round(0)\n", | |
" x_male = pm.rbernoulli(0.56, n).astype(int)\n", | |
" x_smoker = pm.rbernoulli(0.22, n).astype(int)\n", | |
" x_bmi = rnormal(25.5, 4.5**-2, n)\n", | |
" x_pain_koos = pm.rtruncated_normal(75, 19**-2, 0, 100, n)\n", | |
" x_qol0 = rnormal(36, 20**-2, n)\n", | |
" mtreat = pm.rcategorical([1./3]*3, n)\n", | |
" x_mtreat_notrt = mtreat==1\n", | |
" x_mtreat_crepair = mtreat==2\n", | |
" x_marx0 = rnormal(16, 6**-1, n)\n", | |
" x_sprec0 = rnormal(45, 29.7**-1, n)\n", | |
" x_pain_cat = rnormal(14.4, 1.2**-2, n)\n", | |
" x_dep0 = pm.rtruncated_normal(12.5, 6.6**-2, 0, 27, n)\n", | |
" x_dep2 = pm.rtruncated_normal(7.2, 4.6**-2, 0, 27, n)\n", | |
" a,b = alphabeta(0.52,0.18)\n", | |
" x_ikdc0 = pm.rbeta(a,b,n)*100\n", | |
" \n", | |
" # Sample parameters\n", | |
" beta = pm.rmv_normal_cov(model['mu'], (np.array(model['corr'])*model['se']).T*model['se'])\n", | |
" \n", | |
" # Calculate betas for risk factors\n", | |
" beta_tsk = pm.rnormal(model['r'][0], rf_se**-2) * model['sigma'][0] / 4.8\n", | |
" beta_gses = pm.rnormal(model['r'][1], rf_se**-2) * model['sigma'][0] / 4.45\n", | |
" \n", | |
" # Build data matrix\n", | |
" if model == ikdc:\n", | |
" X = np.array([np.ones(n), x_male, x_age, x_bmi, x_smoker, x_pain_koos, x_ikdc0, x_tsk0, x_gses])\n", | |
" elif model == qol:\n", | |
" X = np.array([np.ones(n), x_male, x_age, x_bmi, x_smoker, x_pain_koos, x_qol0, x_tsk0, x_gses])\n", | |
" elif model == hop:\n", | |
" X = np.array([np.ones(n), x_mtreat_notrt, x_mtreat_crepair, x_bmi, x_pain_koos, x_marx0, x_tsk0, x_gses])\n", | |
" elif model == hopc:\n", | |
" X = np.array([np.ones(n), x_mtreat_notrt, x_mtreat_crepair, x_bmi, x_pain_koos, x_marx0, x_tsk0, x_gses])\n", | |
" elif model == sprec:\n", | |
" X = np.array([np.ones(n), x_male, x_age, x_bmi, x_smoker, x_pain_koos, x_sprec0, x_tsk0, x_gses])\n", | |
" elif model == marx:\n", | |
" X = np.array([np.ones(n), x_male, x_age, x_bmi, x_smoker, x_pain_koos, x_marx0, x_tsk0, x_gses])\n", | |
" else:\n", | |
" raise ValueError, \"Invalid model value\"\n", | |
" \n", | |
" # Build parameter array\n", | |
" B = np.r_[beta, beta_tsk, beta_gses]\n", | |
" \n", | |
" # Add noise\n", | |
" y = B.dot(X) + rnormal(0, model['sigma'][1]**-2, n)\n", | |
" # Random loss to followup, at rate p_followup\n", | |
" y[pm.rbernoulli(1-p_followup, n)] = -999\n", | |
" \n", | |
" return y, X" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 98 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The function `generate_model` specifies the model structure for given simulated data. Here, we use a simplified fixed effects model, with no group random effect, as these were estimated to be very small based on the pilot data, and there were only three sites in the dataset." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import pymc as pm\n", | |
"from pymc import rnormal\n", | |
"\n", | |
"def generate_model(y,X):\n", | |
" '''\n", | |
" Build a Bayesian model for estimating model parameters from simulated data.\n", | |
" '''\n", | |
" \n", | |
" # Model parameters\n", | |
" beta = pm.Normal(\"beta\", np.zeros(len(X)), np.ones(len(X))*0.001, value=np.zeros(len(X)))\n", | |
" # Extract risk factor parameters for later use\n", | |
" tsk = pm.Lambda(\"tsk\", lambda b=beta: b[-2])\n", | |
" gses = pm.Lambda(\"gses\", lambda b=beta: b[-1])\n", | |
" \n", | |
" # Calculate predicted values\n", | |
" mu = pm.Lambda(\"mu\", lambda b=beta: b.dot(X))\n", | |
" \n", | |
" # Residual variance\n", | |
" sigma = pm.Uniform(\"sigma\", 0, 100, value=10)\n", | |
" # Convert to precision scale\n", | |
" tau = sigma**-2\n", | |
" \n", | |
" # Create a masked for loss to followup\n", | |
" masked_values = np.ma.masked_equal(y, value=-999)\n", | |
" \n", | |
" # Likelihood\n", | |
" obs = pm.Normal(\"obs\", mu=mu, tau=tau, value=masked_values, observed=True)\n", | |
" \n", | |
" return locals()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 100 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Finally, `calc_power` runs the power analysis, simulating `k` datasets, each of which are fit using Markov chain Monte Carlo (MCMC) with a given number of iterations." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def calc_power(k=100, iterations=10000, burn=9000, verbose=0):\n", | |
" '''\n", | |
" Calculate power over k replicates for all models.\n", | |
" '''\n", | |
" \n", | |
" # Dict to hold risk factor nodes\n", | |
" nodes = {m:[] for m in models}\n", | |
" \n", | |
" # Loop over models\n", | |
" for model in models:\n", | |
" \n", | |
" # Initialize number of times an effect is not detected\n", | |
" fail = np.zeros(2, dtype=float)\n", | |
" \n", | |
" # Loop over datasets\n", | |
" for i in range(k):\n", | |
" \n", | |
" if not i%20: print 'Completed dataset', i\n", | |
" \n", | |
" # Generate simulated dataset\n", | |
" y, X = simulate_dataset(models[model])\n", | |
" \n", | |
" # Initialize model\n", | |
" M = pm.MCMC(generate_model(y, X))\n", | |
" \n", | |
" # Run model\n", | |
" M.sample(iterations, burn, verbose=verbose)\n", | |
" \n", | |
" # Get intervals\n", | |
" intervals = M.beta.stats()['95% HPD interval'][-2:]\n", | |
" \n", | |
" # Check for failure to reject\n", | |
" fail += [_[0]<0<_[1] for _ in intervals]\n", | |
" \n", | |
" # Calculate power\n", | |
" power = (k-fail)/k\n", | |
" \n", | |
" # Append nodes for risk factors\n", | |
" nodes[model] += [[M.tsk, M.gses]]\n", | |
" \n", | |
" print 'Power for model %s is tsk=%f and gses=%f' % (model, power[0], power[1])\n", | |
" \n", | |
" return nodes" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 99 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"results = calc_power(100, 10000, 9000, verbose=-1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Completed dataset 0\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 20\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 40\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 60\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 80\n", | |
"Power for model ikdc is tsk=1.000000 and gses=1.000000" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n", | |
"Completed dataset 0\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 20\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 40\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 60\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 80\n", | |
"Power for model marx is tsk=1.000000 and gses=1.000000" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n", | |
"Completed dataset 0\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 20\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 40\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 60\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 80\n", | |
"Power for model hop is tsk=0.660000 and gses=1.000000" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n", | |
"Completed dataset 0\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 20\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 40\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 60\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 80\n", | |
"Power for model hopc is tsk=0.530000 and gses=1.000000" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n", | |
"Completed dataset 0\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 20\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 40\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 60\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 80\n", | |
"Power for model qol is tsk=1.000000 and gses=1.000000" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n", | |
"Completed dataset 0\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 20\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 40\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 60\n", | |
"Completed dataset" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 80\n", | |
"Power for model sprec is tsk=1.000000 and gses=1.000000" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n" | |
] | |
} | |
], | |
"prompt_number": 95 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here are the 95% Bayesian credible intervals for IKDC, where we had 100% power:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"pm.Matplot.summary_plot([_[0] for _ in results['ikdc']], \n", | |
" custom_labels=[''], xlab=\"Fear of Movement/Injury (TSK)\", x_range=[-1.2, 0.1])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEyCAYAAACvT0TlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVVXeBvDnHEBBlJuAoA2iKYo3ULEJS8HrNNr4qq/j\n6y3xWmqammmmJWhi6Tg1TTmZt3QsnEYnSRtLTQYxxyuR1xRRBDVRFEEFQYH1/kHsOHKAA+eyL+f5\nfj7zB+e6NmPr4bf2b6+tE0IIEBERKYxe7gEQEREZw4AiIiJFYkAREZEiMaCIiEiRGFBERKRIDCgi\nIlIkBhShuLgYK1aswNNPP43IyEj07t0be/fuNXjN5cuX4efnh169ehn8Lz4+XnpNRkYGevbsieDg\nYAwePBi5ubkGn7F06VJMmzbN5HFlZGRg7Nix6N27N7p164Y2bdpg+PDh2LJlCwoKCsw7aCPu3r2L\nyMhIuLi4YNOmTdLjq1evRkREBAAgOzvb6GseN3r0aPj7+2P8+PFmjWnChAlo0aIFnJ2d0bt3b6Sm\nppr83h9//BEffPCBWd9vaXPmzEGLFi3Qq1cvuYdCaiDI7r3++uvC399f3Lp1SwghRHJysqhXr544\nePCg9JrLly+LcePGVfs5s2bNEosWLRJCCDF69Ggxc+ZMg/c3b95c5ObmmjSmb7/9Vvj5+Yl//etf\n0mNXr14Vb7zxhtDpdCI+Pt7k46utwMBAsWnTJunnL7/8UkycOLHa1xgzbtw4MX78eLPHExMTI1q0\naFHr93366aciMDDQ7O+3tJiYGBEZGSn3MEgFWEHZOSEEPvroI/Tv3x+NGzcGAHTp0gUtW7bE8uXL\nDV5Xk507d2LgwIEAgOeffx5JSUnSc7Nnz8aiRYvg7u5e4+fcv38fkyZNwtSpUzF06FDp8WbNmmHZ\nsmUIDw+HTqcz+RjNNWTIEKxbt67W7xNCmPR7s9XnKIWWjoWsiwFl527duoWCggJ06tTJ4PEuXbpg\n3759tfosFxcXFBYWAgAKCwvxxBNPAAD27NmD69evY8KECSZ9zqZNm3Dt2rUqX//xxx8jLCwMANCn\nTx94enoiOjoab775JgYOHAgHBwdp+e3o0aPo0aMHOnfujPbt2+Ptt99GSUmJ9Fl5eXkYOXIkOnTo\ngJEjR+LLL7+sNJbQ0FDo9ZX/U7l//z6mTJmC5557DiEhIdiwYYPB88ZCdNeuXejWrRu6dOmCjh07\n4uOPPzbpd1LRZ599Jo3p4MGDiIqKgr+/P8aOHYtHjx4BADZs2IDly5cjKytLWo7dvXs3AODhw4eY\nN28eOnTogE6dOqFfv344efIkgLJ/D+VLmKtXr8Yrr7yCXr16Qa/Xo23btqhfvz5atGiBd955BwAQ\nFxeHoKAgtG7dGgcOHMDVq1cxcuRItGvXDiEhIXj22Wdx5MiRao8nMzMTL7/8Mvr06YPQ0FAMGjQI\nR48erfXvhTRIxuqNFKC0tFQ0atRIDB8+3ODxoKAgodfrpSW59PR0ER4eLgYPHix69uwp+vXrJz75\n5BNRWloqvWfBggXixRdfFHfv3hUDBw4Ua9euFUVFRaJdu3YiOTnZ5DG99NJLwtnZ2eTXR0ZGCn9/\nf5Geni6EEOLNN98UcXFx4vz586JevXriyy+/FEKULRE++eST4q233pLeO2DAANGnTx9RXFwshBAi\nNjZWuLi4GCzfJSYmCp1OZ/CdzZs3F61atRJZWVlCCCFOnDgh6tevL7766ivpNePGjTNYFk1ISBBO\nTk7i6NGjQgghUlNThZubm1i/fn21xxcdHV1pqa58TEuXLhVCCJGVlSWaNm1qMO6NGzcaXeKLiooS\nkZGR4s6dO0IIIVasWCE8PT3F7du3pdcEBgaK9u3bS8u+UVFR4vvvvxcjRowQ/fr1M/i80aNHi2PH\njgkhhNi7d6945plnRElJiRBCiM8++0z4+PgYLO1GR0cbLPENHDhQvPLKK9LPL774oli8eHG1vxOy\nDwwoEm+99Zbw8vISqampQggh9uzZI5ydnYVer5cm4KysLDFy5Ehx48YNIYQQ586dE35+fgYTS05O\njnjhhRdE165dxfTp00VBQYF45513xJQpU0RpaamIjo4WTz31lBg8eLDIyMiocjwDBgwQzZo1M3n8\nERERIiIiotLj48aNE23atDF4bNasWcLd3V0IIcT58+crnc9KTU0VOp3OYKL/z3/+YzSgRo0aZfDY\nH/7wB9GjRw+D768YUJGRkaJ///4G7xk8eLAICQmp9viMBVT5mCqeJxwyZIiYNWuW9LOxc1Dp6elC\nr9eLuLg46bHbt28LR0dH8f7770uPBQYGiqioqEpj2b17t3BwcBCZmZlCCCHy8vJEt27dpOfz8/Ol\nUBNCiOLiYtG4cWOxe/dug+OpGFA9e/YUw4YNEw8ePBBCCHHz5k2RlpZW7e+E7IOj3BUcyW/x4sXw\n9fXF5MmT4eTkhI4dO2LRokWIiYlBkyZNAABNmjRBXFyc9J42bdpg6NCh+Oijj7BkyRK4u7vD09MT\nf//736XXXL16FatXr0ZKSgr27t2LXbt2Yffu3fjwww+xYMECfPbZZ0bH07x581otL+p0Ojz99NOV\nHj958iRyc3MNOsbu378PLy8v5Obm4qeffgIAtGzZUnq+devW8Pb2Nuk7n332WYPHWrZsic2bN1f5\nnpMnT6JRo0YG48nNzTVYcqyt8qVOAHBzc0NeXl61rz916hSEEPjggw+wZs0a6fEWLVpUem94eHil\n9/ft2xf+/v7YtGkT3nzzTfzjH//AiBEjpOf1ej1WrVqFb7/9FgBQv3595Ofn48aNG1WO6a233sK4\ncePQvHlzjBgxAlOnTkXbtm2rP3CyCwwogk6nw/Tp0zF9+nTpsQULFhhM3Mb07NkTH3/8MS5evIgu\nXbpUev7VV1/FwoUL4enpiR07dmDQoEHw9PTECy+8gLCwMJSWlho9txMSEoKHDx/i6tWr0nmsmri4\nuBg9rvDwcGzfvt2kz7A2nU6HIUOG4P3337fYZ9arV8/gZ2FiA8Inn3yCkJCQal9j7Heq1+sxduxY\nKaA+//xzbNu2TXp+7ty52LBhAw4fPoyOHTsCKAu/6sbVt29fXLhwAV988QU2btyIjh074t1338Wc\nOXNMOhbSLjZJEE6fPl3pL9w9e/Zg0qRJ0s9/+ctf8N133xm85tixYwDKKp7HJSQkICMjA5MnTwZQ\n1jTh5OQEoGziu3PnDvLz842OZ+zYsWjZsiU+/fTTSs/duHED3t7e2LJlS43HFRISIlVJ5TIzM/Hq\nq68CAIKDgwEAFy9elJ6/cOECbt26VeNnA8CBAwcMfr548SI6dOhg8FjFRglj4zl+/LjUcGAunU5n\n8H0Vw7+0tBRFRUXo2LEjdDpdpXGsXLkShw4dMul7xo0bh4sXL2Lt2rXw8PCAj4+P9FxiYiKeffZZ\nKZxKS0tx//79aj9vy5YtcHFxwbhx45CYmIhJkybhvffeM2kspG0MKMK6devwxhtvSD9/+umnePDg\nAV566SXpsRMnTiA2NhZ3794FUNbttX37dowcOVJqTy/36NEjzJw5Ex999JH02KBBg7B3714UFxdj\n165dCAkJQaNGjYyOx8XFBRs3bsTq1asNLgS+du0aJk2ahJCQEPzf//2f9Lioog17/vz5uHz5shRm\nhYWFeP3116VlsaCgIAwYMAAffvghiouLAQBffPEFHB0da6xEhBD4/vvvpWA/ceIE9u7di9dee63K\ncS1atAgJCQn4/vvvAQD37t3Da6+9Jl0EbK7Hv69JkybSxdKbNm3C66+/jsDAQERFReHPf/6zFBzH\njx/H5s2b8dvf/rbKz6qodevW6N69O2bOnFmp07JDhw44dOiQ9HuJj4/H7du3q/19LliwwGBJNz8/\n3+TKmTROjhNfpCxxcXGiffv2olWrVqJfv35i0qRJIi8vz+A1hw8fFqNGjRKtWrUSzzzzjAgLCxNv\nvfWWKCgoqPR5K1euFJMnTzZ4rKioSERFRYng4GDRtWtXcfLkyRrHlZmZKcaOHSt69OghunXrJoKD\ng8XixYsNvnPIkCHCw8NDBAYGil69ekndY+WOHTsmevXqJcLDw0W7du3EggULDJ7Pzc0VI0aMEO3b\ntxfDhg0TmzZtEoGBgSI4OFj86U9/Ehs3bhShoaFCr9eLXr16if3794uIiAjh4uIi3nvvPTF27FjR\nr18/0bFjR4NuvFGjRgk/Pz/h7+9v0Gzw7bffiu7du4vu3buL9u3biw8++KDa38H48eNFYGCgcHFx\nEb169RLnz58XO3bsMBhTVlaWmDlzpvR9L7/8shBCiEePHomBAweKzp07iwEDBogzZ84IIYR4+PCh\neOONN0RYWJh46qmnRM+ePcUPP/wgPVd+fG3btq3U3Vlu3bp1wtfXV+p+LHf9+nUxa9Ys8eSTT4qI\niAgxffp04e/vL4KDg8WaNWvEnDlzRGBgoPDw8BC/+93vhBBCfPjhhyIsLEyEhYWJiIgIMWPGDHHx\n4sVqfy9kH3RC8Ko5IiJSHi7xERGRIjGgiIhIkRhQRESkSFVeB1XbfdiIiIjqok+fPkYfr7ZJ4s6d\nO1YbkC15eXnKPQRZ5eRo4/9HIrI8Ly8v5OTkyPb9np5Vz892sZOELSdoW4WhFkNnxYo4HDhwHT16\n+GPevFFyD4eIZGYXFZSS2NMkzLAmUj4lV1AMKA2wduhpZYmUQUZUmZIDyi6W+LRsxYo4bNmSi4yM\npbh6NRZAnMVDyhYT+6/HsRDNm8di5EgPzVeYRErw+uuvyz2EKrGCsjKtVB/GWDq47Gn5k4jKcIlP\npawTbhvwzDOXGAJEpAgMKI2rqvIwN+B4zoaIrI0BpSG1D50NADIBBACYUMNrrYuBR0SPY0DZqccb\nD37zmyu4cuU3bEQgIsVgQCmAlpslqpOTc4fND0QKtnz5clk7+RhQGiJH0JmzNMf2cSJlU/J1UAwo\njTO1etF6hcfzX0TGMaBUhMtRtSNnsDF0iMzHgLIxtS2DaR1Dn0i5GFAWovVlqHJKCzsGDJF2KTmg\nVLUXn7Unbp7Qr8wWe/0RkXy4F5+KaLVaUEL1qbTKkIjkp5klPrIOJW+JpNU/GIioDAOKzKKW+02x\nQiNSHwYU1VpdQ0kJS4nmYMgR2ZZmmiTINsxpjLDkBM+mFSL7xgpKJdRemVgLKx4i83AvPpKN7YOt\n7PYe8+f7sNohUgElXwfFgCKjHj8HZY2gY/VDJD8GFCmCGm92yBAjsi4lBxSbJOxIbSb7XxsUYn5p\nUFhV45IdmxqIyJJYQamYFhonWCERyYsVFNWaKdch1WVyt1aoMWiI1Il78REA9YUDtxkiImtjk4QF\nqXFZTWnVDYOPiMpxic+CbDHZa7nZgLfvICJTsYJSKGtWGWqsAo21vCutMiSi2uMSH9mcOSH4ePBo\nuaIksncMKLI6dVZldcfqjbSCe/GRYiipQUGOUGOwEBlS8nVQDCgNq0sAKHUCV1KwEmkJA4qqpKyl\nMe69R2RvlBxQbDOXmS0n5OqaDeqy9x4RkTWxglI5ZVVghlgNESkfKyiymtqGgKUCrbbfy3NIRMrE\nvfhIFUwNETmrNlZlRNrCJgmVsXa1oeRlQVtj4BHJi0t8KmKLvepsPSlzJwgiqgtWUCayt6rD0iHG\nc1BEZAyX+BTAVgHHJavaYXASyYsBpTKcNC3D0n8UMPxJi7gXHymCloPP3pZga4PBStXhdVAkO63f\nKLAukzCbN4iUjRWUiqm1alDSX/RariqJTKHkCooBpWHmBpixIOGETqQtDChSBGPhIlcVpqQqisie\nMaBIFmpdAqxKdaHGyo6obtjFR5qg1KYCpY6LiGrGgCKLqalS0VrVVhGXJYksjwFFqufltR2WvNsv\nw4ZIGXgdFKlC9dWXeaHEQCJSHwYUWUTtlvY2wJLVkClqMz6GGZEycImPLMZae9+xCYLIetjFZ2e0\n0PKspmYHVjxEdafk66C4xGdhWtnzzlqTPqshIjKVXVZQaqoO6krJVYUWKkwirVByBWWXAWUuawSc\nNSsWhgERVYUBZWesFQq2qPyUXHkRkeUxoOyUfEuJ1m3jZogRaQe7+MhmKjYhuLsvAPAz8vI2siGB\niBSJAaUCSm3cYLVERNbENnMVMCcIKoeb6Ut8DCAiUipWUCphqwqLgUVEtsQKykaUukxXG2XHYJ0m\nC4YfEdUGKyiNMXenBu70QGRf2MVHVqOFqg1gdUUkFyVfB8UlPpV7fGKvzUXCdQ03hgkR2QIrKBUx\nt1oyNVi4PRKR/VByBcWAqiNrTOJKXa5jxUSkXUoOKC7x1YG1bqlhbhCwwYGItETxFZRSqwqlMOcc\nFBERu/hkpoaQU9oyGoOOiGzB7gPKGtQ4gashqCtSWmgTkeUxoFTEMESse9sMMo7BSGQ7DCgVkrPh\ngc0WRGQrDCgzqG1ZzBJycu7UeglTjUueRCQ/BpSC2DLwbLVUxYqLSL3YxUd1YmpVYo9VXnV4DonI\ndEq+UJcBRRIlBB23YyKyLQYUaZ65gcEbMhLJgwFFimXLSkQJFVpdMNRIy5QcUNyLz45Za0/Bqlhq\nomdTBpF9YAWlIGqtMExh6SqE56CILINdfGQ1tg612gYNg4SIqsOAoirJeV8rntshIgaURtmqOpFj\n6ZHhRWQf2CShQbZscKhrWLCZgYjMwQrKQrTc4FCdmsKL56CIqDqsoGzAkktSSm98MBXDiUj55O7i\nqw4rKBWTIwC44wORtij5Ql0GlB2wTaho7+aKDEmyB0oOKC7x2QFrT7S/NkPE/NIMsQoA2CBBRGZh\nBWXn1NzcwQqHyHysoEixajvJWyvQKo6DzRVEBLCCIguR6+aKrKKIzCN3Fx+bJFROzu2I7AWDjkge\nXOJTMWvtGKHUCZm7TxBROVZQtWTZykNZrdlKCS2egyKyH1ziU6AVK+Lw7rv3AMwH8C4AX1g6pJQS\nOEREVWFA/YLnXSpjiBGRnHgO6he2mIytHYIMFNviciNpndxdfNWxqwpKaTj5yccaf0jwjwdSI16o\nSwYqBtPOnXPkHo7myLWUa+73MuCIDDGgbMyWNxq0V5aa6NnyTiQvLvHVgVKbLfgXuOVxGZa0TslL\nfAwoK7FUiDF0fsWwILI8BhQZ4ERryJYVKQOfyJDcXXwMKBVTW5gpdfnTHAw1IuthF59KqbGhwlqT\nORsWiOwPKygTaLEqeJwaqgS1VZNEVDMu8cmsLOBsszGsGoKGiKgcl/ispHaVVc2hZCxcWDUQkb1i\nBVWB2pbybFktMSiJtIldfHZO7Sf41T5+Iqoar4OiOlcgaqvqTMHzZETKwYAiWdQu3Mxv4mDwEKmP\nkgOKTRIaZiwwqg6t2ocSA4mIrIkBpQFqvL1EdeHGhgwiAhhQmmBuJaOkJgg17p5BpGZKvZsuwHNQ\n9AtzqhY1NHJwOZJImdgk8RguIcmHt1onoorsLqA4Caob/4Agsh+qDyg1LCGVY5DZDoOMSP1UH1CW\npKSGADKONzAksh8MqMfwL2/zlP/+Dh5sCWvuzK4EDDDSOu7FR5qhlApUKeMgUjsl7yTBgFIpNZ2X\ns5b581exEiYyEwOKFM0WYcelsjJcXialYUCRpnCSrZ65gc8wJ1tiQBHVklJCUOlLqQwzMpeSA4p7\n8ZHiKGk/PksGABs7SIm4Fx/ZLTkqECVXFUqpDImUgkt8VCO5Js66BJiSA4iIaocBZYdsVblYKyxY\naRDZBwaUFSn9JLpybcAzz1xiABHZOTZJWJEWlptsffK+/PsOHpS/CYKIlIsVlJ2yh8pPC388EFkb\n9+LTEJ4bqZq1Qo9BQ2Q9Sr4OigFVjdpOuJxITcegJ1IGBpRCKXWZSylBxxAh0j4lB5RdN0nUNgjs\naScAJe3mQET2ya4rqLpQS1Wh1OrQVEqpIom0TskVlN0ElFqCxdpsHVwMGiJls+suPjX/JW/vkytD\nnYiszeoBpeYQsr4NADIxf74PJ3kiosfY/RKfLZobeJM6IqLas/uAAiyzXGWZSrGsogICAEww65MY\nakSkdgwomTxeuf3mN1dw5cpv7KJNnYjIFAwo8DzZ41h9ERFg5118aqeUYJM7UNjRR6RNvA6KJEqa\n6G0ZvnIHLBEZx4Aii7J8sFiucaOuGGBE8lByQNn1XnxqZcnJ/NdGjphfGjdWVars7GkPQiJSDlZQ\nKqWUc2PWwoqKyDZYQZFR5pyPqu0Ebu1AY6AQqZOcHXw1YQVlYdYMAmuFgJIaN4jIvrBJoo7Utoxm\nSoAxjIhISbjEV0fWXLaSo/GANyEkIjVhBSWj6qoZtVVvtcHzVURUjhWUwlQMpp075xh9TV0ncUsH\nG8OEiORilxWU2qsTc0KD56CIqCLuxWcCtYeGErH6KcNQJqoar4Mygb1MptyVwbbYGEKkXoqpoOyJ\nPf5Fr+UK2V7+uCJtUnIFxYBSGXsMt3K2CDmGDdkbBhTViLe+sB57DnWimjCg7Ix2lrOM34bD3gKO\nSMvYxUcWYcsGCzZzEJEtMKA0pOJyFQC8+2425LzRoK2xeiPSFgaUBtW1wpF7+ZEBQ0QVMaAUQu5w\nMEXFAGFzARFZGwNKhcwJMzVWKQxDIvvEgNIopU/q1qgY1Ri+RErGLj4ym63CSA3LkNbEACR7o+Tr\noBSzFx9VzZb7yckxQbOlnYiMYQVlI2qoTOSsHpS+XEmkVUquoBhQCmSpMJMrcBg2ROrBgCKzKWHS\nZ9MDkfYoOaB4DkrBHg+lefMs+/lKWHY0NgaGFpHtyNnBVxNWUAql1sYBtY6biOShmSU+JfzFT9bD\nyonI/mhmiU/NE1j14Wr8thbmUvPvi4hIVRWU2lmiAmToEJGWaKaCsiWlLidaelxKDTwldC0SkbwY\nUFWw1cTNpoLKbLlzBpG9k3svvupwiU8B1FItKLWqNIVSK0UiuSn5OigGFNVZXYLVmiHHECKqPQYU\nKY4c1VBtAkQtVSWR2jGgSDbKW5arXUs9qyIi61JyQLFJQuOsNcHXpbnj1/fE/PKeVayOiKhKrKBk\nprwKR71YbRHVntxdfFziUzmlNSPYGoOHSLsYUCphbqioYSJn8wMRVcSAsiLlVCpVNx+oIbiIyD4x\noFTMWDPCu+++bLXvY5gRkS0xoCzAGktTyqm+LI9BR0SmYJu5may1N5ylJnHu50dEdSV3F191VF9B\nabkKMaaqUGPzARHVhZIv1FV9QJmLe8PVHsOQSDsYUBqg1klZyRWmVgOcSE0YUHbEUkGm5GBRMoYe\nUe0oOaDYJGFBlmymUOpEy4YMIrIVxVVQrBwsz9Jhp9blTiKqTO4uPi7xVUOJgVjbQGFgEJFaMaBs\nyFphYQ/79BGR/WFAqYBpAVS7m/3VFcOMiGyFAaUBVTUnsGmBiNSMAWUjSjyfZQ5WUkRkbWwztxFT\nJ3S5gszY+NhgQWTf5O7iqw4rKBWpKkxsFXisqIi0R8kX6jKgFExrS4bVkSP8WD0SKTuguMSnYNae\ntO25wcJat1AhIsthBWXn1FBFKLWS5JInaYGSKygGlMKpIUCUxFphxjAirWJAkQFOosrA8CeSv4uP\nAWVlSl2CqomSA43hQWQfGFAqZQ9NDNxjkMi+MaBUzNRKQu6KQ01VJEONSDkYUBqntUpLa8dDRFVj\nQMlETVWFtfEeV0RkDANKxZQUcrwzL5H2sIuPrE7OyV7uEOU5JaK643VQJLvaBJjcgWNrDDiyZ0oO\nKO7FZwdqu++cLSZsNkIQUU1YQSmU2qsYU0KO56CI5KfkCooBpXLGJnlLhRuXvoi0jwFFNZKzYmIQ\nEdkvdvFplNqX4X61AUAmgAAAE2p8NQONiCyFAaVRlmg0YLMCEcmJAaUA2qm2TMdKi4hqwjZzBVDC\nZG3JkOTWRURkbaygqM7hYY2qUAlBTkS2wyU+O2M8OGrXCKFmDDki07GLj2QldyOE3N9PRFXjdVBk\nMjU2U3DXCCL1YkCR1Vk62NS8TMYwJDIdA4pkp6VJm80ZRJbDgCKqQI3LmBUxzEhLVBlQ+/bts9qA\niIiIyvXp08fo49VWUERERHLRyz0AIiIiYxhQRESkSAwoIiJSJAYUEREpEgOKiIgUibfb+IUQAt99\n9x3++c9/Ijo6Gk888YTR1yUlJSEjIwN6vR5NmjRB3759bTxSy7t//z7i4uLg6+uLrKwsjBw5Eu7u\n7pVeFx8fj6KiIgCAs7Mz/ud//sfWQ7U4U489NTUVe/fuRZMmTXDmzBlMnz4djRs3lmHElmPqsQNA\nXl4e5s2bhyFDhuC5556z8Ugtz5RjT0tLw86dO/HEE0+gsLAQrVu3xtNPPy3TiM138uRJHDt2DG5u\nbtDpdBg2bJjB8w8fPsTmzZvRuHFjXL9+HYMHD4a/v79Mo/2FICGEEOnp6SI9PV1MmzZNXLlyxehr\nbt26JebOnSv9PH/+fHH9+nVbDdFq1qxZIw4dOiSEEOL48ePiww8/rPSarKwsMWPGDOnn6dOni5s3\nb9psjNZiyrHn5+eLxYsXSz9fv35dFBYW2myM1mLKsQshRElJiVi9erVYsWKF+Oabb2w5RKsx5diP\nHTsmTp06JYQo+zcwZcoUUVRUZNNxWkphYaGYMWOGePTokRBCiJUrV0rHVm779u3iq6++EkIIkZGR\nIRYtWmTzcT6OS3y/CAwMRGBgYLWvOXHiBFq2bCn9HBQUhJSUFCuPzPp++OEHBAUFAQDatGmDH374\nodJrXFxcUFRUhOLiYjx69AhFRUVwcXGx9VAtzpRjT0lJgaurK/75z39i27ZtyMvLQ/369W09VIsz\n5dgBYMeOHejTpw9cXV2h0+lsOUSrMeXYw8LC0KFDBwCAXq/Hw4cPoderc8pMTU2Fj48PHB3LFs2M\nHXNKSor0OwkICMDly5dRWFho87FWZFdLfLGxscjLy6v0+PDhwxEWFlbj++/evWswKTdo0AB37961\n6Bitpbpjv3v3LpydnQGUBVF+fj5KS0sN/mN0c3PD+PHjERMTAwcHB4wfPx4NGza02fjNYe6xZ2dn\n48cff8TUqVNRr149LFy4EHPmzIGvr6/NjqGuzD3206dPo169emjVqhV2794NoaLr+s099op27dqF\nkSNHShObNWnMAAAQXElEQVS82uTl5UnHC5TNXenp6ZVe8/j89vj7bE2dv+06WrhwoVnvd3NzQ1ZW\nlvRzQUGB/Gu0Jqru2N3c3FBYWIgGDRrgwYMHcHV1rfQf6vnz57Fz507ExsYCAJYsWYKGDRuiY8eO\nVh23JZh77A0aNECLFi3QoEEDAEBwcDAOHz6MQYMGWXXclmDusScnJ8Pd3R3x8fG4cuUKCgoK4Ozs\njMjISCuP3HzmHnu5AwcOAICqzzd7eHgYVEMFBQXw8PAweI27uzsePHhg8JqqzknaijrrVSur+Fei\nEAK3bt0CAISGhuLSpUvSc6mpqQgNDbX5+CytS5cuOH/+PADg3Llz6Nq1KwDDY8/LyzP4B+3p6Ync\n3FzbD9bCTDn29u3b4+eff5be8/PPP6u+QQIw7dijoqIwePBgDB48GAEBAejYsaMqwqkmphw7ULYn\n6b179zB06FBkZmbi+vXrsozXXK1bt0Z2djaKi4sBlP3B2blzZ9y/f18Kpc6dOyM1NRUAkJmZicDA\nQFmrJwBwiImJiZF1BAqRn5+PnTt34uzZsygtLYWrqysaN26MjIwMvPfee+jfvz9cXFzg7OyMxMRE\nnDp1Cp06dUKnTp3kHrrZ2rRpg++++w6ZmZlITU3FmDFjUL9+fYNjb9q0KdLS0nDhwgWcPXsWAPCH\nP/xB9eckTDl2Nzc3ODs74+uvv8aVK1fQtGlT9OvXT+6hm82UYy+XkJCA5ORk3Lt3D66urvDz85Nx\n5OYz5diPHTuGdevWoaCgAPv378eBAwcQHBwMHx8fuYdfa46OjmjWrBm+/vprpKWlwdPTE5GRkdi6\ndSsyMzPRtm1btGzZEocOHcLly5fxww8/YOzYsbIv43OzWCIiUiQu8RERkSIxoIiISJEYUEREpEgM\nKCIiUiS7ug7KXpw8eRKbN29GZmYmgoODK3XaRUdHyzSyMjdu3MDmzZtx584duLi44M0335SeS01N\nxaZNm5CWloYRI0ZgyJAhBu8tLS3FzJkzUVhYiKeeegqTJ0+29fBt5vPPP0eTJk3w008/ITk5Ga6u\nrujfv79JeyCuX78ePj4+Nr1Wq6CgAFu3bsWAAQOwYMECaT/L8l0MPD098fDhQzRr1gzTpk3DmTNn\nEBcXh5KSEhQVFcHf3x/PPfccOnXqhKSkJHz55Ze4efMm2rRpg+joaKSmpuKvf/0rAKB///5o06YN\nrl27ht69e9vsGMnGZNtkiazqzJkzYvjw4aKkpMTg8ZiYGJlG9Ku4uDgRFxcnhBBiz549lZ6/efOm\nGDNmjJgyZUql8R8/flyMGTOmyn3j1Gj48OEiOzu70uNz586VHo+JiRH/+Mc/TP7MoqIiad81Wygt\nLRVvv/22SEhIEDdv3hR/+9vfpOemTZsm9u3bJ4QQ0nMFBQUiKipK2g+uuLhYrF27Vqxfv15633/+\n8x8xZcoU6efLly+LZcuWifz8fOmxmJgYkZSUZO3DI5lwiU+jRBVXD4wePdrGI6ksNTVV2oGjquuJ\nunTpgsLCQhw5csTg8aSkJHTp0kVVW+6Y4vHjycnJQUlJCby9vev0efXq1bPptjyHDx9GSUkJevXq\nBXd3dwwYMMDo68qfy8rKQmlpqbTXnYODAwYNGmSw12VFGRkZ+PzzzzFz5kxpRw8AmDp1KjZu3Chd\ngErawiU+O3Hz5k1s27YN06ZNAwDs378fX331FfR6PQICAjB58mS4uLigsLAQa9euRXZ2NgoLCxEU\nFIQJEyZAr9dj27Zt2LNnD3r27Ilbt27h0qVLaNu2rfSZFe3YsQNHjhyBg4MD/P39MX78eDg7O2Pd\nunW4fPkycnNzsX//fsydO9dgwilXv3599O7dG9988w3Cw8MBANeuXYOvry/y8vJQUlIivba4uBhb\ntmyRroIPCgrCqFGjkJKSgtWrV8PZ2RmjR49GeHg4Fi9ejGvXruHll19Ghw4dEBcXh5SUFOh0OoSH\nh2PYsGEoLi7G0qVL8dNPP+Gll17CgQMHcO/ePUyZMgWnTp3CsWPH0KxZM4wdOxaNGjUCAFy6dAnr\n1q3Dw4cP4erqipdeeglNmzbFd999h+3btyM4OBj169dHamoq2rVrhzFjxsDJyQnLli0DAPzlL39B\nvXr18Morr8DT0xM//vhjlbuUpKWl4ZNPPkFBQQEGDhyIgwcPwsvLC2PGjEGTJk2QkJCAf/3rX2jf\nvj2mTZuGjz76CIcOHcLChQvRrl07rFixAsnJyVi1ahW8vb2xcuVKpKSkICoqCsnJyTh//jxcXV2R\nk5ODgIAAzJ49Gw8fPsT7778PoGybq/LjLnfo0CGEhIQAKAvH5s2bGx17+XPFxcXQ6XTYtWsXfv/7\n30On08HX19fo/oaXL1/Gli1bMGvWrEr/Vnx9feHm5oYTJ05Iu0GQdrCC0rglS5Zg8eLF+OCDD6TH\nzp07h/Xr12P+/PlYvnw5nJyc8Pe//x1A2WTfrl07LFmyBCtWrEBeXh4SExMBAMOGDUNoaCiOHTuG\n8ePHY+nSpUZ3FEhKSsL+/fsRHR2NJUuWQK/XY+PGjQCASZMmITAwEIMHD0Z0dLTRcCqvJn73u98h\nNTVV2tRy7969BrsblIuPj0dGRoZ0rJmZmYiPj0dYWBj+93//F/7+/lLIDRw4ECNGjEBISAi++uor\nnDt3DrGxsVi8eDGOHDmCAwcOwNHREeUbrGRnZyM6Ohq//e1vsXLlSjRv3hyxsbHIzs7Gvn37AJSd\ne4mNjcXzzz+PlStXIiIiAitWrABQtn9bZGQkUlJSMHToUCxbtgynT5/G0aNHAQALFiwAAMyePRvR\n0dHw9PQEULZzfvmE/7hWrVph/PjxyM3NhY+PD2JjY9GwYUPs2LEDANC7d2+D7YimT59usE3VvHnz\nDD7vtddeg4eHB86cOYO5c+fi1VdfxcSJE9G5c2eEh4fDz88PAQEB6NSpE954441K4QQA6enpaNKk\nidHxGuPo6Ig//vGP2Lx5M6ZPn47PP//cYJ/LcgUFBVi2bBkmT55s9N8KAPj5+VXa+JS0gQGlcYsW\nLUJ0dDRmzZolNUvs378fHTt2hK+vLxwcHBAeHi5tiNmwYUM4ODhgxYoViImJwaVLlwz+4xdCICgo\nCO7u7nBzc8PQoUMrfef+/fvRvXt31KtXDwAQGRmJpKSkWi/L+fr6omvXrvjmm2/w4MED3L9/Hz4+\nPpU+JykpCT179oROp4Ner0dERIQUqs888wzOnj2LO3fuACj7S788rBITE9G9e3e4uLigYcOGCA0N\nRVJSksFnl29l9eSTT+LevXsICQmBTqdDq1atcPPmTQBlG6oKIaSb2XXv3h03btzAhQsXpM8JCAhA\n48aN4eTkhICAAOm9xpSWlkqVVlXKfwedO3cGALRs2bLazzRFaGgoHB0d0alTJ3Tp0gU9e/bE/v37\nAZT94XLr1q0qd3B/fCdsUzz//PNYtWoV+vbti+TkZMyePRv//e9/DV7j6OgINzc3/O1vf6tyGc/Z\n2dnoruWkflzisxM+Pj6YOnUqAOD27du4du0aFi9eDAAoKSmBh4cH7t27h+TkZGzatAl/+tOf4O3t\nja1btyI7O1v6nPKlmOrk5OTA1dVV+tnV1RUlJSWVNpw1xe9//3u888478PLyQq9evar8vop7hjVo\n0AC3b98GULZrdUhICJKSktC3b1/o9XppIr19+zYSExNx/PhxAEBhYaHBuAFI+67Vr18fHh4ecHBw\nkH4uv9XK7du3UVpairffflt6n6+vL+7du1fpcwDAycmp2nMmqampaN68eY3nkDw8PKTX1PSZpni8\nAuratSvWrFmDtLQ03LlzRwpDY+p6TtDLywtDhgzBkCFDsGXLFvz73/9G9+7dpefr1auH+fPnY+HC\nhfj4448xY8aMSp+h0+k0d06SyjCg7JC3tzdcXFwwe/Zs6bF79+6hUaNGSE9PR1BQkHRyvi43LPP2\n9kZmZqb0c2ZmJhwcHEzeur9iW3yHDh3g5+eH5ORkjBgxQnq+4mvKN/Xt0qWL9H0Vdxvv2bMntm7d\nigYNGhhMft7e3ujXr5+0bCiEQH5+vsnHWT4Gb29vODk5GbTvP3jwAE5OTiYd4+NOnDhh8V3yHR0d\npQAztpRmjJOTE8LDw5GUlIT79+9j4sSJVb7W3d29Vv9WcnJysHPnTkRFRUmPhYWFYc+ePZVe6+3t\njfnz5yM6OhpxcXEYNWqUwfMPHjxQzW1vqHa4xGeHIiMjcfr0aakySktLw9q1awGUBcKlS5dQWFiI\noqKiSnfdFELU+NdqREQEzpw5g4cPHwIou1NnRESENCnX9BmPPzdx4kRMmDChyjFERkbixIkTKC0t\nRWlpKU6ePGlQbYWFheHOnTvYt2+fwXmdyMhIHD58WLrdwL///e9KS3ymjLO8qzA5ORnAr+dNKjZy\nPP6+ip/r7e2N/Px8/Pe//8VPP/2EH3/8sVK1Ym6F4OvrK90qpvz/U1M+MyIiAgcPHgSAStVlRc2b\nN6/VEmNxcTESExOl95T/HBwcbPT1LVq0wKxZs7Bz585KIZadnV1lUwapG2+3oUHlF+rm5eXh7Nmz\n8PLyMli+ady4Mby8vLBmzRocOXIEP//8M1544QW4uLigSZMmyMvLw+bNm3Hy5El4enri7Nmz0Ol0\nSE1NRVJSEq5evYo7d+5UeauRgIAAFBcXIy4uDomJiXB3d8e4cePg6OiIdevW4dSpU8jIyEB2dnal\nRoDMzEysWrUK6enpyM3NRUhICHx8fKQlss8++wxHjx7FzZs3kZOTg9DQUAQFBeH69evYtm0bEhMT\n0bp1a/zxj3+UAlGv1yM7Oxt+fn4GlUn5+zZt2oSUlBQ4Ojpi2LBh0Ol0WLp0KW7evIkLFy6gbdu2\n+OSTT3Dr1i3cvn0bQgjEx8fj+vXr0Ov1aN++PTp06IAtW7Zg7969OHPmDIYOHQp/f398//33+Prr\nr3H9+nXUr18f6enpSEhIwNWrV+Hu7o6AgAAAZfcdunHjBsLDw7Fv3z4MGzZMGudf//pXnDt3Dj//\n/DOKi4vRsGFDrFmzRhqPu7s7Nm/ejKysLOTn56NTp044e/YsCgoK0K1bNwBAs2bNsG/fPiQkJKBD\nhw44cuQILly4gNDQUKxfvx5paWlIT0+Hi4uLNKbyfysJCQkYOHAgmjVrVuW/uZKSEiQnJ6NHjx4G\njy9duhTXrl3D1atX0ahRI+mznZyc8OjRI2zduhUJCQn4+uuv0ahRI0ycOBHOzs5ISkpCfHw8cnJy\ncPr0aURGRsLf3x/u7u749NNPcebMGYSHh+Pu3buIj4/H5MmTpeVX0g7eboNIQQ4cOIC0tDSMHz/e\nrM/54osvkJeXhxdffNHsMb3zzjuYN29etQFQWlqK6OhoDBw4UGoWsYXly5ejc+fORrs7Sf24xEek\nID169KhzON26dUu6XCA9PV26CLYusrKykJqaisuXL8PPz6/G6kSv12POnDlISUmp83fW1vnz59G2\nbVuGk4axgiLSiPz8fMTGxkIIgZYtWyIqKkpq9a+tS5cu4c9//jOaNm2KGTNmwM3NzcKjJaoZA4qI\niBSJS3xERKRIDCgiIlIkBhQRESkSA4qIiBSJAUVERIrEgCIiIkX6fzSnIsnaM+8mAAAAAElFTkSu\nQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x1ca804950>" | |
] | |
} | |
], | |
"prompt_number": 106 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"pm.Matplot.summary_plot([_[1] for _ in results['ikdc']], \n", | |
" custom_labels=[''], xlab=\"Self Efficacy (GSES)\", x_range=[-0.1,1.4])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEyCAYAAACvT0TlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4TVfeB/BvgkgoEpdKKEkQhKRBo0WRhGrfR1oTyggt\nCdXqlJnevFWmbjO0mOlt6FtVEzIqtGZUta+6jNYtpagpb7UVNBIhrpFkchdZ7x+ZbI7czm3vs9Y+\n38/zzPNMznXt03Z9z2/t317HQwghQEREJBlPVw+AiIioJgwoIiKSEgOKiIikxIAiIiIpMaCIiEhK\nDCgiIpISA4pQXl6OpUuXol+/foiOjsaQIUOwc+dOi8ecPXsW/v7+iImJsfjf5s2btcdkZGRg8ODB\nCA0NRVxcHHJzcy1eY+HChXjuueesHldGRgYmTpyIIUOGoG/fvujWrRt+/etfY/369SgqKnLsoGuQ\nn5+P6Oho+Pj4IDk5Wbt9xYoViIqKAgBcuXKlxsfc6YknnkBAQAAmTZrk0JgmT56M4OBgeHt7Y8iQ\nIUhLS7P6ud9//z3effddh97f2V5++WUEBwcjJibG1UMhFQhyezNnzhQBAQHi6tWrQgghvvvuO+Hl\n5SVSU1O1x5w9e1YkJibW+TovvPCCmDt3rhBCiCeeeEI8//zzFs8PDAwUubm5Vo1p27Ztwt/fX/zj\nH//QbsvKyhKzZs0SHh4eYvPmzVYfn62CgoJEcnKy9vemTZvEU089VedjapKYmCgmTZrk8Hjmz58v\ngoODbX7e6tWrRVBQkMPv72zz588X0dHRrh4GKYAVlJsTQmD58uV4+OGH0apVKwBAnz590KlTJyxZ\nssTicfX5/PPPERsbCwB49NFHsXfvXu2+F198EXPnzkWLFi3qfZ2CggJMmTIFv/nNbzBq1Cjt9vbt\n2+P1119H//794eHhYfUxOmrkyJFYtWqVzc8TQlj1uRn1OrIw07GQvhhQbu7q1asoKirCvffea3F7\nnz59sGvXLptey8fHByUlJQCAkpIS3HPPPQCAHTt2IDs7G5MnT7bqdZKTk3H+/PlaH//+++8jMjIS\nADB06FD4+flh3rx5eO211xAbG4sGDRpoy2+HDh3CoEGD0Lt3b/Ts2RN//OMfcfPmTe218vLyMG7c\nOISFhWHcuHHYtGlTtbH06tULnp7V/1MpKCjAs88+i//6r/9CREQEkpKSLO6vKUS3bt2Kvn37ok+f\nPggPD8f7779v1Wdyu48++kgbU2pqKhISEhAQEICJEyfixo0bAICkpCQsWbIEFy9e1JZjt2/fDgAo\nKyvDK6+8grCwMNx7770YNmwYjh8/DqDy34eqJcwVK1bgd7/7HWJiYuDp6Ynu3bujcePGCA4Oxhtv\nvAEASElJQdeuXRESEoJ9+/YhKysL48aNQ48ePRAREYGBAwfi22+/rfN4MjMzMW3aNAwdOhS9evXC\niBEjcOjQIZs/FzIhF1ZvJIGKigrRrFkz8etf/9ri9q5duwpPT09tSS49PV30799fxMXFicGDB4th\nw4aJDz74QFRUVGjPmT17tnjmmWdEfn6+iI2NFR9++KEoLS0VPXr0EN99953VY5o6darw9va2+vHR\n0dEiICBApKenCyGEeO2110RKSoo4efKk8PLyEps2bRJCVC4Rdu7cWcyZM0d77vDhw8XQoUNFeXm5\nEEKIRYsWCR8fH4vlu927dwsPDw+L9wwMDBRdunQRFy9eFEIIcezYMdG4cWPx2WefaY9JTEy0WBb9\n6quvRKNGjcShQ4eEEEKkpaWJ5s2bi7/+9a91Ht+8efOqLdVVjWnhwoVCCCEuXrwo2rVrZzHuNWvW\n1LjEl5CQIKKjo8X169eFEEIsXbpU+Pn5iWvXrmmPCQoKEj179tSWfRMSEsT+/ftFfHy8GDZsmMXr\nPfHEE+Lw4cNCCCF27twpHnzwQXHz5k0hhBAfffSRaNOmjcXS7rx58yyW+GJjY8Xvfvc77e9nnnlG\nLFiwoM7PhNwDA4rEnDlzRMuWLUVaWpoQQogdO3YIb29v4enpqU3AFy9eFOPGjROXLl0SQgjx888/\nC39/f4uJJScnR0yYMEHcd999Yvr06aKoqEi88cYb4tlnnxUVFRVi3rx54v777xdxcXEiIyOj1vEM\nHz5ctG/f3urxR0VFiaioqGq3JyYmim7dulnc9sILL4gWLVoIIYQ4efJktfNZaWlpwsPDw2Ki//rr\nr2sMqPHjx1vc9thjj4lBgwZZvP/tARUdHS0efvhhi+fExcWJiIiIOo+vpoCqGtPt5wlHjhwpXnjh\nBe3vms5BpaenC09PT5GSkqLddu3aNdGwYUPx9ttva7cFBQWJhISEamPZvn27aNCggcjMzBRCCJGX\nlyf69u2r3V9YWKiFmhBClJeXi1atWont27dbHM/tATV48GAxevRoUVxcLIQQ4vLly+L06dN1fibk\nHhq6uoIj11uwYAHuvvtuPP3002jUqBHCw8Mxd+5czJ8/H23btgUAtG3bFikpKdpzunXrhlGjRmH5\n8uX4wx/+gBYtWsDPzw9/+9vftMdkZWVhxYoV+Ne//oWdO3di69at2L59O5YtW4bZs2fjo48+qnE8\ngYGBNi0venh4oF+/ftVuP378OHJzcy06xgoKCtCyZUvk5ubip59+AgB06tRJuz8kJAStW7e26j0H\nDhxocVunTp2wdu3aWp9z/PhxNGvWzGI8ubm5FkuOtqpa6gSA5s2bIy8vr87H/9///R+EEHj33Xex\ncuVK7fbg4OBqz+3fv3+15z/00EMICAhAcnIyXnvtNWzYsAHx8fHa/Z6ennjvvfewbds2AEDjxo1R\nWFiIS5cu1TqmOXPmIDExEYGBgYiPj8dvfvMbdO/eve4DJ7fAgCJ4eHhg+vTpmD59unbb7NmzLSbu\nmgwePBjvv/8+zpw5gz59+lS7/6WXXsLvf/97+Pn5YcuWLRgxYgT8/PwwYcIEREZGoqKiosZzOxER\nESgrK0NWVpZ2Hqs+Pj4+NR5X//798emnn1r1Gnrz8PDAyJEj8fbbbzvtNb28vCz+FlY2IHzwwQeI\niIio8zE1faaenp6YOHGiFlDr1q3D3//+d+3+//7v/0ZSUhIOHjyI8PBwAJXhV9e4HnroIZw6dQof\nf/wx1qxZg/DwcCxevBgvv/yyVcdC5sUmCcIPP/xQ7Rvujh07MGXKFO3vd955B//85z8tHnP48GEA\nlRXPnb766itkZGTg6aefBlDZNNGoUSMAlRPf9evXUVhYWON4Jk6ciE6dOmH16tXV7rt06RJat26N\n9evX13tcERERWpVUJTMzEy+99BIAIDQ0FABw5swZ7f5Tp07h6tWr9b42AOzbt8/i7zNnziAsLMzi\nttsbJWoaz5EjR7SGA0d5eHhYvN/t4V9RUYHS0lKEh4fDw8Oj2jj+/Oc/48CBA1a9T2JiIs6cOYMP\nP/wQvr6+aNOmjXbf7t27MXDgQC2cKioqUFBQUOfrrV+/Hj4+PkhMTMTu3bsxZcoUvPXWW1aNhcyN\nAUVYtWoVZs2apf29evVqFBcXY+rUqdptx44dw6JFi5Cfnw+gstvr008/xbhx47T29Co3btzA888/\nj+XLl2u3jRgxAjt37kR5eTm2bt2KiIgINGvWrMbx+Pj4YM2aNVixYoXFhcDnz5/HlClTEBERgbFj\nx2q3i1rasF999VWcPXtWC7OSkhLMnDlTWxbr2rUrhg8fjmXLlqG8vBwA8PHHH6Nhw4b1ViJCCOzf\nv18L9mPHjmHnzp2YMWNGreOaO3cuvvrqK+zfvx8A8O9//xszZszQLgJ21J3v17ZtW+1i6eTkZMyc\nORNBQUFISEjAm2++qQXHkSNHsHbtWjzwwAO1vtbtQkJCMGDAADz//PPVOi3DwsJw4MAB7XPZvHkz\nrl27VufnOXv2bIsl3cLCQqsrZzI5V5z4IrmkpKSInj17ii5duohhw4aJKVOmiLy8PIvHHDx4UIwf\nP1506dJFPPjggyIyMlLMmTNHFBUVVXu9P//5z+Lpp5+2uK20tFQkJCSI0NBQcd9994njx4/XO67M\nzEwxceJEMWjQING3b18RGhoqFixYYPGeI0eOFL6+viIoKEjExMRo3WNVDh8+LGJiYkT//v1Fjx49\nxOzZsy3uz83NFfHx8aJnz55i9OjRIjk5WQQFBYnQ0FDxpz/9SaxZs0b06tVLeHp6ipiYGLFnzx4R\nFRUlfHx8xFtvvSUmTpwohg0bJsLDwy268caPHy/8/f1FQECARbPBtm3bxIABA8SAAQNEz549xbvv\nvlvnZzBp0iQRFBQkfHx8RExMjDh58qTYsmWLxZguXrwonn/+ee39pk2bJoQQ4saNGyI2Nlb07t1b\nDB8+XJw4cUIIIURZWZmYNWuWiIyMFPfff78YPHiwOHr0qHZf1fF17969WndnlVWrVom7775b636s\nkp2dLV544QXRuXNnERUVJaZPny4CAgJEaGioWLlypXj55ZdFUFCQ8PX1FY888ogQQohly5aJyMhI\nERkZKaKiosRvf/tbcebMmTo/F3IPHkLwqjkiIpIPl/iIiEhKDCgiIpISA4qIiKRU63VQtu7DRkRE\nZI+hQ4fWeHudTRLXr1/XbUB3atmyJXJycgx7PyJXatnSz9VDcDs5OcbNZ2Q9P7/a/1vgThJELuCs\nyVLVoJM5LJYuTcG+fdkYNCgAr7wy3tXDcWusoIjcCCdfY0Jd5gCWTV0VFAOKiKRTFaSpqZ0AWPc7\nYipikCmyxDdz5kxXD4GIJLB0aQrWr89FRsZCBAYuwrhx7xlW7d1679//57193bbSlIE0FRQRqUvV\nc2H2YNXjXEpUUESkrtom7frOebkq2BgyamAFRUQ2c1aw2BtsZB5KNEkQketVD54kAJkAOsJVzQqs\ndsyNAUVENnO0YYANB2QNJQJqyZIl7OQjcpA6zQrGVWaswOSmREDxOigiYxgVYnWdX2JlRVUYUERk\nF1ubFWSq4Fg5qYEBRUSGc0ZYyRAy7CjUFwOKiKRi9KTP/ffkxYAiIinoHxSub4u3BUNNkZ0k2MFH\nZH56Tsi3mi/mO20PPzZ0uJY0FRQRmYtMDRN6YQXkOCUqKCKShzPOEek1eesVfAwb+bCCIjIpmSoY\noyZ/dtypR4kmCSKqm0yBYxS9go1BJg8u8RGZgJFViJkbA27/QcSsrEUAUkx1fGYiTQXFvfiI5CFL\nhaFa1cjzWLZTYomP10ER0Z2cEZSOhBwDR38MKCJyGdWqoCoMJ2PwHBQRWc34QJFz9wdrPgeGmL4Y\nUERkwchJt67dH8zerEH14xIfETlMxWU8Vj9yUGKJjx18ROqyZbK3PcxuLQHm5Iy08bmkMmkqKCJy\nT1WdeqmpC53+2qyS5KdEFx8RmYNrl/vsa7hgkLkOA4qIlGRLowSbKtTEgCIip3OsUpKztVxvrNSq\nY0ARkTSsrXRk6QxkqOhLiYDiXnxE8pMlNG53e4DIsocgWU+JgOJ1UETm4Ywgc0blwsCSHwOKiKSi\nV3AYWeFx6c85GFBE5HIyLg/ax7YGDwZZ3ZTYSYKIzM3oiVqPtvO69g4k52MFRUSmdftS4uLF01w9\nHKu4W8WlxBIfu/iIyB6yn89yt8CxlRIBRURUF6POYdUXKOwMdC4GFBFJR7/AMXaXClZIjmFAEZEp\n3dkI0aHDOZw714H78SmEAUVEhjNPW3n9WEXZj23mRGS4uiZta87j6BlwDBQ1SFNBsYuPyHwcCRl7\nQ4RNDGpRYomP10ER1c6Vk64qS3WsitTEJT4ihd1qBFiIrKxFAFIMDSlnT/z8YUGyFisoIiupUkk4\nk15VCZfhqAqX+IgkIFvA8RwPyYABRaQ4Z4SCqwKS54aoLkoEFLv4iGonW/VVN312cmDQmZMSAUVE\n8quvwYENEGQrBhQR2UStis15WKUZj23mRGSTuiZqV+wqzsYM98QKioicypYwcWbYsfpRE5f4iEzM\nNctxxv6khZEYdMZSIqDYxUfkOFnPHTky6bPxwtyUCCheB0Uq0fOciKwhY4TagoznoMyLAUXkRO7+\njd7dj5+ciwFFSmEFIT9WNOQsDCgiO+gRlKoEkF4YbHQnBhSRk7nrROvK6tbdw92slAgodvERGcsc\nS6nOa3dnALqGEgFFRObm7OYKNmuYAwOKiKRQtTSamrrQZWNgpSQXBhQRKcd5S5BJePDBX9zufKEq\nGFBEZErOPo/G6sp43M2ciHSjV0ejK5o4antPBpdrSBNQ7OIjUs+tRoWFyMpaBCDFaSHljFBgI4Xa\npFni43VQ5I7M0eptLFuDy12vWVMFl/iIJGX00pFMgaj3sd8eTJ9//rKu70X6YAVFRA4xukIxMmR5\n7kl/SnTxMaCI3JNMVZ3eqgKPy463cImPiKSlR5Uic3OEno0lZiNNBcUuPiL34E4Vk+qMWOJUYomP\nyB1wacd47hyIKpxDY0ARGcCoiVCFSYfqxi8qtzCgiJzAzN/E7Q09TrTkKDZJEDmBo5WLzCfu7cGT\n/aQ3VlBEBtK74nBdlccfDiT7KLHExy4+IvlYF3hJAC4DeBXAYgB34/aQYuBQXZQIKF6oS+7EzOez\n9MbAMxeegyKSjEyTrKvC8s7PgA0XdCdWUETksJrCRc/gkyngyTFc4iMim9weOIsXT3P1cJyCoSYn\nLvERkdXubB9/9dX3dF9yM1sLPjmHNBUUu/iIbKdis0VtlQzPQbknJZb4iMh4zgo4Zy2fMaTcDwOK\niGyiZ1DYE4o8f2ReDCgicpjMy4lsWVcXmySIyGF6VzHOapTgHoHmwQqKiOwic0VlNC5B2k+JCopd\nfERqMXJSVu23trjE6BzSVFC8UJeInEWPgJCtYjRL1aZEkwQDiqh+7vrNXLZwkJlqwaXEEh8R1c2d\nT/6rNOlyVwznYQVFZCV3+xavUijIxl0rXXtwiY/IhWQLNgaP9Rg0+lMioNjFR1Q/TpjOpfeXB34Z\nqJ8SAUVE5Ch9AycJQCaAjrj9J+2dyR0DjQFFRGSj25sdWrRIBNAOeXmvs/HByRhQRIoy05KebOfi\nVGW2Kott5kQKMltbuRl3nnCE2YJGD6ygiJxAhQnxTpwgbWOmalYmSizxsYuP3I2jocaA0QeDyFhK\nBBSvgyKqjpOlfWSvaPnl4hYGFBEpofZg0b/FW0VmCDo2SRCREmqacG81i8z/T4v3e7pVk9xHTy6s\noIhIVzIut9VVeXBZ1Vhc4iMiqanaMMIwc5wSAcUuPiKqjV5BIEN1Z4bzSI5QIqCISH6uqhhkCBKj\nuUtwsUmCiBzmyp0tZJys2VChP1ZQRAoyW0UhYwBZg+egHMclPiKqVd1hZ//1R6qGDhmLS3xEVKP6\nKzGGErmONAHFLj4i28i4zKfXmOwNPi7BqU2aJT5eB0UkF9WbAFQfv7tQ4hwUA4pIPjJUIDJWis7C\nJVEGFBEpwtZANCq8GCT6YUARkUs5M0hsCQsZKkCqGwOKiHSn3lJczS30rJaMpUSbOTv4iNTm6MRu\nZFODkT/hQfaTpoIiIqptSU696sxx7lLJKbHER0R0O0fOHxkdaO4SJnpgQBGRS6hW+TBojKfEOSgi\nkoPcoWL/3oDWkPvYrWOmkGUFRUQuIUsYmGlCV5ESFRT34iNynCuu+5ElaOxly/gZZsaSpoLidVBE\njjH73nNmPz53pUSTBAOKXEH1b/+y0qvS4M4Q5sOAInIRVQLQ2YHCICFrMaCI3ISrgsHWIOa5HKrC\ngCKiet0KGX1buZ2JQac+Jbr42MFH5Fo5OdedskcdmxnIWaSpoIjMTpXzUUZg5UNVlKigiFRX3/kf\nGSZlPUNShuMjc2EFRVQLd53M2YFHRlKiSYJIT2ZdXpM56MyCga0vLvGR29N7ImdjgDnd+ue6EFlZ\niwCk8J+rgaSpoLgXH6mO37TlIGu1zGq3Zkos8fE6KCK5mTGAnRlmDCD7MKCIqFauqDhUmszNGMwy\nYUARmZysy1quIHv4MfAssUmCyOTYBKIGNl3YhhUUEVnF7N/8Va5CZa8a66LEEh+7+IjoTqqHoqOh\np3LwWEuJgCIi96BXpaLKZK566DobA4qIdFFz2Mj/cx2qhJk7YJMEETlN/RWQ9aFUV1CwMYNYQREp\nQuWT+LaqCi5nL4dxeU0+XOIjIkPIXPXIPDZ3pkRAsYuPyBycXaWoVDny3JbtlAgoXgdFZCyzLndx\nfz21MKCITE7vKsMsE7VZQ1llDCgixai0rHWnO8OMoUB1YZs5kWLMsrce954jR7CCIjIxlSsxe5hl\nKdKdKFFBsYOPyPlsnbBdH2iVu1C8+mobVlokTwVFROZUdQ4qNXWhYe/JSkodSjRJEJGcXF9VOd+r\nr77Hxg1JKLHER0RyMqoaYeMG3YkVFBFJ486WdNWqNy4t2o5LfETkEq68BsqRcGPQGEeJgOJefETq\nclalY+RyIs9ByUGJgOJ1UER102NSVW0JzVlYIcmDTRJEitPrxL6eEzV/3oIcxQqKyAHuWoFUqS/g\nuJRG9eESH5HEjAo5LmtZj8FqHAYUkQlw0nSMs78IMPCdQ4mAYhcfEdnL/vCp3PsP6AhgsvMGpAOz\nBqISAUVEZKTamjjY3GEsBhQR1Um25UPVm0/MWu3ogW3mRFQrGfems2WCd2WYMYj0xQqKSHEyVxuy\nT+CyVY7uiEt8RG5MzwCTKYAYNmpSIqDYxUfkOqpM7s4IW5lClRQJKF4HRaQ+W4JO5qVJgEFmFDZJ\nEJHubG22cGYAsDXcnFhBEbk52SuZ+lQFnSrLlGSJS3xE5BSOh9mtnRtyckY6YUSkOi7xEZHDnFNp\n3dpOqGVL257Jc0LuR5qAYgcfkXFqDhu596WzJyAZamqTZomPiFzHiCYDNjJQTZQ4B0Xk7lRvVlAZ\nKy3X4TkoIgXoNUnKHnzOOm528ZkPKygiAqDWBM8dJcyDS3xEJBV9qzp9mz0YbM6lREBxLz4istet\nBowANGiQhps3F7MRQxFKBBQv1CVyD7KfE3MEqyvbsUmCiOzm7HNT1k7i/CFCYgVFZHKumOhdOcGr\n1OxBXOIjkp6Zl71qI0OVwjBzPS7xEUlOhsm6Jmbe/cHWnwch40lTQbGLj0hOKlQZ7lSByvplxl5K\nLPERkRxUCCR7OBJiZgsFmTCgiEjjzGpD9YnbrGGsEgYUkcLcYfnq9qBjaLgXBhQRWUWvpgi9Qlb1\nCo4YUERkJXeo1oDag43Vm/GUaDNnFx+R67m6InFlWzvbzuUjTQXFC3WJCLC+ilG12nP1lwDZKLHE\nx4Aicg8yLKPx96TkwYAiIofIUK0YEQgyhKe7YUAREQBXBY2+PyBYG1Y4alCiSYKI9Gf0pH2r8WA+\nAgMXoUOHZ3HuXAdT7u1HzidNBcUuPiL9yLBE50ysjsxDiSU+IlKTsxoOeP7HPTGgiMhlbg+exYun\nOeU1WUGZBwOKiJzGucuF+jdQMMzkxoAiIuncvmtEixazAVxAXt4aNk+4GQYUEdnEbE0VVVhNyUeJ\nNnN28RHJw5kTuX1hZ/3SH0PHvKSpoHihLpH7qWqgSE1daNfzGU7qU6KCIiL12V4tOdbVZ8v7OSvM\n2A5vHAYUETmNM0LAlT+5UR/+JIexuMRHRNKxt0oxa3OHrVRa+lSii48BRUTOVl/QGRloKoWGkZQI\nKHbxEZG97A0ae0KD56CcS4mAIiL3U9tkL9NSHSsffTGgiEh3eoeKrUEhc7MF3cKAIiIL1cPENT8q\n6Kj6QovLcfJjQBFRrVxVabDCIYABRWRKMp2ncdSrr77HcHJTSgQUu/iI9OXMQJO1cYBLeupRIqB4\nHRSR66g0sTvrF3xJDgwoIpKefkuWtjWAMLyMxc1iiUh6jgZDTU0XAP5z2/z/3MZzXSphBUVE0jBT\n48edWJnVjBUUESnh9kncmvNiegUaw0QO0lRQ7OIjMjeZqiMGkDyUaJIgMhOVuuLqI1OwqIDhZxsu\n8REZyGw/aueKCZe7TBDACorcjFmqAXf4lm6mKpRqxyU+IidzdtCpHjgME7IXA4rIYGaesB0JZ9WD\nmJxPiYBiFx+RPJxbIVq/kwMDzP0oEVC8UJdITXU1NLDZgerDgCIim8nSUMKqytzYZk5ENrMnGGwJ\nNZmDx8znEFXCCoqIdOWKyd6V1Z/MwSsjLvERkZJkWWY0ijuGm10BtWvXLt0GREREVGXo0KE13l5n\nBUVEROQqnq4eABERUU0YUEREJCUGFBERSYkBRUREUmJAERGRlAzfSeL48eM4fPgwmjdvDg8PD4we\nPdri/rKyMqxduxatWrVCdnY24uLiEBAQYPQw7VLfsW3evBnZ2dlo27Yt8vLy8Nhjj6F169YuGq31\n6juuKvv27cPy5cvxt7/9DY0bNzZ4lPax5tg2b96MvLw8eHp6Ij8/H9OmTXPBSG1X37Hl5eVh48aN\naNmyJXJzczFw4EB07drVRaO1Xm5uLjZs2ICMjAy88cYb1e5XeQ6p79hUnUPsZWgFVVpailWrViEh\nIQFjxoxBRkYGfvjhB4vHbN26FW3atEFcXBxiY2OxYsUKI4doN2uOraCgAFOnTsWoUaPQoUMHbN68\n2UWjtZ41xwUAWVlZOH/+vAtGaD9rjm3v3r3w8vJCQkICJkyYgNjYWBeN1jbWHNuOHTvg6+uLUaNG\noV+/fli/fr2LRmubn3/+GX379q31flXnEKD+Y1NxDnGEoQGVlpaGNm3aoGHDysKtW7duOHr0qMVj\n/vWvf2nf4jp27IizZ8+ipKTEyGHaxZpje/LJJ+Hpeesjr6ioMHSM9rDmuEpLS/H555/XWlnJyppj\n27dvH0pKSrBx40Z88cUX8PX1dcVQbWbNsTVt2hR5eXkAKqupu+66y/Bx2qNfv37w9vau9X5V5xCg\n/mNTcQ5xhKEBlZeXZ/HhN2nSRPsP5PbH+Pj41PkYGVlzbFVKSkpw6NAhjBo1yqjh2c2a49qwYQNG\njx6tTYaqXPttzbFdvXoVFy5cwJgxYxAaGop33nnH6GHaxZpjGzZsGIqKivDOO+/gyy+/RGJiosGj\n1Ieqc4gtVJpDHGHoOShfX1+LbzJFRUXVvpG2aNECxcXFFo9p0aKFYWO0lzXHBgDl5eVYvXo1xo8f\nr8TacX32deZSAAAMsUlEQVTHde3aNRQWFiI1NVW77X//93/Ru3dvdOrUydCx2sqaf2ZNmjRBjx49\nAACdO3dGRkYG8vPz0bx5c0PHaitrji0pKQndunXDww8/jMuXL2PevHlYtmwZPDw8jB6uU6k6h1hL\ntTnEEYZWUCEhIbhy5QrKy8sBACdPnkTv3r1RUFCg/QvVu3dvpKWlAQAyMzMRFBRUZ8krC2uOrbS0\nFCtXrsRjjz2GoKAgHDx40JVDtkp9x9WqVSs899xziIuLQ1xcHADg0UcflT6cAOv+mYWFhSErKwtA\n5QlsIQSaNGnisjFby5pjy8/P10LrrrvuQllZGUpLS102ZkeYYQ6pjepziCMazJ8/f75Rb9awYUO0\nb98eX3zxBU6fPg0/Pz9ER0dj48aNyMzMRPfu3dGpUyccOHAAZ8+exdGjRzFx4kQl1sbrOrZz586h\ne/fueOedd5Ceno6ffvoJe/bswY8//ljrJomysOafGVA52X3xxRc4ceIEGjRogICAAItlFhlZc2yd\nO3fGt99+i5MnT+L06dN4/PHH4e/v7+qh18uaY+vQoQO++eYbpKen4/vvv0d0dDQ6d+7s6qHX68cf\nf8S+ffuQkZGBsrIydO7cGZs2bVJ+DgFqPzaV5xBHcLNYIiKSEi/UJSIiKTGgiIhISgwoIiKSEgOK\niIikZPhefOQ+rly5gqSkJFy+fBmenp5o0qQJBgwYgEceeaTO5x05cgQfffQR/Pz8MG/ePO329evX\n48SJEygtLcXUqVPRpUsX7b6//OUvOHr0KJo2bYq7775bu/3y5cuYNm2adi3T1q1bceDAARQXFyM+\nPh4dOnTA2rVrcf36dfj4+CAsLAw3b97E448/7uRPwz4VFRXYsmUL+vXrp3UPnjt3Dhs2bEBxcTGu\nX7+OJk2a4IEHHsDQoUPRtGlTAMDBgwfxj3/8Aw0bNkRJSQkCAwMxYsQIdOrUCVu2bMH27dtRWFiI\n4OBg7b0KCwvRt29fjBkzBkDlVkhffvklfHx8UFxcjJCQEIwaNQr+/v7YtWsXOnTooMTefaQwQaST\n+fPni48//lj7e+/eveKll16y6rlff/21mD9/vvb3+fPnxdSpU4UQQqSlpYn09PQa32/Dhg0Wt33y\nySfixIkTQgghioqKxIQJE0RpaanIzs4Wx48fFykpKSIlJUUIIcSOHTvEjRs3RFlZmU3Hqae///3v\nYvny5drfJ06cEM8995zF8Z84cULEx8eL7777TgghRHZ2tnjiiSfE+fPnhRBClJaWisWLF4stW7Zo\nz/nkk0/E3LlzLd7rxIkT4pNPPtH+f2JiosjPzxdCVH52r7zyijh48KAQQoi8vDzx3HPPiQsXLjj/\noIn+g0t8pJv09HT06dNH+3vgwIHo37+/Xa916tQprYIICQlBUFCQVc8bNGgQOnbsqI2nWbNm8PLy\ngr+/P8LDw5GWlqbtdD1s2DA0bNgQjRo1smuMzpaTk4Nt27Zh0qRJACqrqdWrV2P48OEWx9+jRw8M\nHTpU22oqMzMTbdq0Qbt27QAAXl5eePzxx9G+fXuL1xd3XGHSsWNHDBo0CADwyy+/oGvXrmjWrBkA\nwMfHB2PHjkWrVq0AAM2bN8eYMWOQnJzs/AMn+g8u8ZFuQkJC8OWXX+KZZ55B48aNq/3kQ15eHlau\nXImLFy/Cw8MDY8eOrXEn5yNHjmDz5s3Izc3FggULMGzYMAwYMKDe958/fz6qrkM/ffo01qxZo71G\n3759kZ2djbNnzyI3Nxd79uxBbGxstaXFixcvIikpCSUlJSgsLES/fv0wZswYlJSU4MMPP8SVK1dQ\nUlKCrl27YvLkydpGnr/88gvWrl2L8vJylJaW4qGHHoKvry8++OAD+Pj4YMKECXjggQcwd+5cXLp0\nCdOnT0d4eLjF+A8dOoTg4GBt54rs7GxkZmbivvvuq3asU6ZM0f5/ly5dcOHCBRw6dAj333+/dltd\nNm7ciJ49e2pLoV27dsXHH3+MkydPolu3bgBg8WUDAHr16oWVK1eisLBQW1okciYGFOkmLi4Ob731\nFp599lncf//9iIqK0iZAoPK8Ufv27TFjxgxkZ2fjlVdewdtvv402bdpYvE5kZCQKCgqwZ88ei3NS\ndxJCYO/evfj5558BABkZGdp9Xbp0QWJiIt577z2L18jKykJ0dDSioqIAQHsfoLJiWbJkCUaOHInB\ngwcjPz8fv/3tbzFmzBiUl5drlQsAvPnmm9i9ezeGDBmCoqIiLFq0CDNmzEBoaCiysrKwZMkSLFu2\nDJcvX8axY8fwwAMPAABiY2NRXFxcLZyAyoqvbdu22t/Z2dkAAD8/vzo/95YtW2L48OF488030b59\newwYMABDhw6t9rzMzEwsWLAAQOW5up49e2r3hYSEoHfv3pg7dy46d+6MAQMGICYmxiKIfH190bBh\nQ2RmZiI0NLTOMRHZgwFFuunZsyf+53/+B6mpqdi3bx8WLFiARx55BJMnT0ZOTg5++OEHPPnkk/Dw\n8EC7du0QGBiI1NRUbU8/W3l4eGDw4MEYO3YsAGiTb5U7l7Tquz0tLQ2XLl3CwIEDAVQua82aNQtA\n5d51DRo0wNKlS1FUVIQrV65o+9p99913aNKkiTZp33PPPdqPHA4cOBDr169Hbm4ufH19cfDgQUyd\nOrXG98/Pz8c999xT5zFXVWr5+fno1asXJkyYAABISEjAww8/jN27d+Prr7/GZ599htmzZ1sESWBg\noBbWGzdutHhdDw8PvPTSS0hPT8fevXvx2WefYfPmzfjDH/6gLR0ClUt/ZtspnOTBgCJdNW7cGEOG\nDMGQIUNw7NgxLF26FOPHj8e1a9cAAMnJydru2aWlpU7drLSuaut2te3enZOTg6ZNm1r8/k7V3oO7\nd+9GcnIy/vSnP6F169bYuHEjrly5AqByh/c7dzuvep6vry/CwsKwd+9exMTEoEGDBrVuZCqEsBhb\n1Tm4nJwc7bxZp06dtF3ICwoKLJ4fEBCAcePGIT4+HsuXL8eOHTssAur2YK7q3LtTcHAwgoODMX78\neLz++uvYvXs3xo8fb/EYs/8mEbkOA4p08/bbb+PFF1/U/g4PD0eDBg1w6dIl7WT7lClTtCrhxo0b\nuHnzplPHkJWVhebNm9v18xitWrVCYWEhKioqtJA6d+4c/P39kZ6ejq5du2o/d1BSUqKFSevWrZGf\nn2/xWunp6VpLd1RUFDZt2gQvLy88+OCDtb7/nT8b0b59e3Ts2BGHDx/GiBEjqj2+KnBOnTqFkydP\n4tFHHwVQGcD33Xdfvb++mp+fr1Vt3377LW7evKmd62vUqBEiIiJw6tQpi+eUlJQo8yOOpB528ZFu\nTp8+jcOHD2t/p6amwtvbG+3atUPLli1x7733Ys+ePaioqIAQAn/5y19w8eJFu9+vpqW6AwcOaD+X\nUdtzalviCwkJgb+/P/bv3w+g8uc2Vq1ahUaNGiEsLAy//PILSkpKUFpaiqNHj2qv06dPHxQXF+On\nn34CUHkubNOmTdrr9u3bF1evXsXXX3+NiIiIWsfWsWNHrSoDKoNm0qRJ2LZtG06fPq3dnpOTg+zs\nbC1Ey8rK8M9//hO5ubna3/v27av3PNG5c+dw4MABAEBxcTF27tyJwsJCAJW/qXTw4EGL1/j3v/+N\nsrKyepchiezF3cxJN7t27cKePXtQWFgIIQSaN2+OJ598Uusoy8/Px6pVq3D+/Hm0adMGkZGReOih\nh3DkyBGsW7cOubm5GDx4MMLDw7W/g4KC8OKLL1ariJKSkvDNN9+gefPmFhPm+fPn8dRTT8HLywsr\nV67EhQsXEBISgkmTJmHHjh1ITU2Fr68v+vTpg4iICKxevVp730mTJuHSpUtISkpCaWkp7rrrLowc\nORKdO3dGeXk51q1bh6NHj6Jt27bw8vJCWloafvWrXyE2NlY7NwRULuuNHTvW4mc6PvjgA3h7eyMh\nIaHWz+/q1auYNWsWli9fjsaNG2u3Z2ZmahfqVlRUoKKiApGRkXjkkUfg7e2N/Px8fPrpp/j+++/h\n7e2NgoIC3HvvvZgwYQK8vb2xc+dOfPnll8jPz7doWsnPz0dYWBhGjx6Ny5cv49NPP8WPP/6Ipk2b\noqCgAP369UN8fLwWhN988w127dqFOXPmOPBvCVHtGFBELrBu3Tr079+/3h92XLduHUpLSzF58mSD\nRmadoqIizJw5EzNmzEBgYKCrh0MmxSU+IgPt2bMHZWVlOHv2rFW/OhwfH49GjRo5tPSph/379+Op\np55iOJGuWEERGWjatGlo06YNxowZY3HdERFVx4AiIiIpcYmPiIikxIAiIiIpMaCIiEhKDCgiIpIS\nA4qIiKTEgCIiIin9P7PuX7K9RlN+AAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x1ca8040d0>" | |
] | |
} | |
], | |
"prompt_number": 107 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here are the intervals for crossover hop, where power for TSK was not as high:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"pm.Matplot.summary_plot([_[0] for _ in results['hopc']], custom_labels=[''], xlab=\"Fear of Movement/Injury (TSK)\")" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEyCAYAAACvT0TlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVGX+B/DPDKDihZuIkAVoiuINRG3DEvC6u9r6U9f1\n56XEa5lZamWapaCJhWvbtmmat2RN3H653tqt1NVVrMwLkRameEFYTRREUEBU4Pn9wXJ0nAHmeuac\nM5/36+UfnDkzc2aQ5zPf73nOMzohhAAREZHC6J19AERERKYwoIiISJEYUEREpEgMKCIiUiQGFBER\nKRIDioiIFIkBRaioqMDSpUvx+OOPIy4uDn379sWePXsM9rlw4QICAwPRp08fg3/bt2+X9snJyUFM\nTAzCw8MxdOhQFBUVGTzG4sWLMW3aNLOPKycnB+PGjUPfvn3Rs2dPtG/fHiNHjsTmzZtRVlZm24s2\n4caNG4iLi4OnpydSUlKk7atWrUJsbCwAID8/3+Q+Dxo7diyCgoIwYcIEm45p4sSJaN26NRo1aoS+\nffsiKyvL7Pv+8MMPeP/99216fnt75ZVX0Lp1a/Tp08fZh0JqIMjlzZkzRwQFBYmCggIhhBDp6emi\nQYMG4ptvvpH2uXDhghg/fnydjzNz5kyxYMECIYQQY8eOFTNmzDC4f0hIiCgqKjLrmL766isRGBgo\n/v73v0vbLl68KF5//XWh0+nE9u3bzX59lgoNDRUpKSnSz1u3bhWTJk2qcx9Txo8fLyZMmGDz8SQm\nJorWrVtbfL+PP/5YhIaG2vz89paYmCji4uKcfRikAqygXJwQAsuXL8fAgQPRvHlzAEBUVBTatGmD\n5ORkg/3q8/nnn2Pw4MEAgKeeegppaWnSbbNmzcKCBQvg7e1d7+OUlJRg8uTJeP755zF8+HBpe6tW\nrbBkyRJER0dDp9OZ/RptNWzYMKxdu9bi+wkhzHrf5HocpdDSayHHYkC5uIKCApSVlaFr164G26Oi\norB3716LHsvT0xPl5eUAgPLycjz88MMAgN27d+Py5cuYOHGiWY+TkpKCS5cu1br/ypUr0aNHDwBA\nv3794Ovri4SEBLz55psYPHgw3NzcpPbbkSNH0Lt3b3Tr1g2dOnXCW2+9hcrKSumxiouLMXr0aHTu\n3BmjR4/G1q1bjY4lMjISer3xn0pJSQmmTp2K3/zmN4iIiMD69esNbjcVol988QV69uyJqKgodOnS\nBStXrjTrPbnfJ598Ih3TN998g/j4eAQFBWHcuHG4e/cuAGD9+vVITk5GXl6e1I7dtWsXAODOnTt4\n7bXX0LlzZ3Tt2hUDBgzAiRMnAFT/f6hpYa5atQovvfQS+vTpA71ejw4dOqBhw4Zo3bo13n77bQBA\namoqwsLC0K5dOxw8eBAXL17E6NGj0bFjR0RERODJJ5/E4cOH63w9ubm5eOGFF9CvXz9ERkZiyJAh\nOHLkiMXvC2mQE6s3UoCqqirRrFkzMXLkSIPtYWFhQq/XSy257OxsER0dLYYOHSpiYmLEgAEDxEcf\nfSSqqqqk+8ybN088++yz4saNG2Lw4MFizZo14vbt26Jjx44iPT3d7GN67rnnRKNGjczePy4uTgQF\nBYns7GwhhBBvvvmmSE1NFadPnxYNGjQQW7duFUJUtwgfffRRMX/+fOm+gwYNEv369RMVFRVCCCGS\nkpKEp6enQftu//79QqfTGTxnSEiIaNu2rcjLyxNCCHH8+HHRsGFDsWPHDmmf8ePHG7RF9+3bJzw8\nPMSRI0eEEEJkZWUJLy8vsW7dujpfX0JCglGrruaYFi9eLIQQIi8vTzz00EMGx71hwwaTLb74+HgR\nFxcnrl+/LoQQYunSpcLX11dcu3ZN2ic0NFR06tRJavvGx8eLr7/+WowaNUoMGDDA4PHGjh0rjh49\nKoQQYs+ePeKJJ54QlZWVQgghPvnkE9GiRQuD1m5CQoJBi2/w4MHipZdekn5+9tlnxcKFC+t8T8g1\nMKBIzJ8/X/j5+YmsrCwhhBC7d+8WjRo1Enq9XhqA8/LyxOjRo8WVK1eEEEKcOnVKBAYGGgwshYWF\n4plnnhHdu3cX06dPF2VlZeLtt98WU6dOFVVVVSIhIUE89thjYujQoSInJ6fW4xk0aJBo1aqV2ccf\nGxsrYmNjjbaPHz9etG/f3mDbzJkzhbe3txBCiNOnTxudz8rKyhI6nc5goP/3v/9tMqDGjBljsO13\nv/ud6N27t8Hz3x9QcXFxYuDAgQb3GTp0qIiIiKjz9ZkKqJpjuv884bBhw8TMmTOln02dg8rOzhZ6\nvV6kpqZK265duybc3d3Fe++9J20LDQ0V8fHxRseya9cu4ebmJnJzc4UQQhQXF4uePXtKt5eWlkqh\nJoQQFRUVonnz5mLXrl0Gr+f+gIqJiREjRowQt27dEkIIcfXqVXH27Nk63xNyDe7OruDI+RYuXIiA\ngABMmTIFHh4e6NKlCxYsWIDExES0bNkSANCyZUukpqZK92nfvj2GDx+O5cuXY9GiRfD29oavry/+\n+te/SvtcvHgRq1atQkZGBvbs2YMvvvgCu3btwgcffIB58+bhk08+MXk8ISEhFrUXdTodHn/8caPt\nJ06cQFFRkcGMsZKSEvj5+aGoqAg///wzAKBNmzbS7e3atYO/v79Zz/nkk08abGvTpg02btxY631O\nnDiBZs2aGRxPUVGRQcvRUjWtTgDw8vJCcXFxnfv/+OOPEELg/fffx+rVq6XtrVu3NrpvdHS00f37\n9++PoKAgpKSk4M0338Tf/vY3jBo1Srpdr9djxYoV+OqrrwAADRs2RGlpKa5cuVLrMc2fPx/jx49H\nSEgIRo0aheeffx4dOnSo+4WTS2BAEXQ6HaZPn47p06dL2+bNm2cwcJsSExODlStX4ty5c4iKijK6\n/eWXX8Ybb7wBX19f7Ny5E0OGDIGvry+eeeYZ9OjRA1VVVSbP7URERODOnTu4ePGidB6rPp6eniZf\nV3R0NLZt22bWYziaTqfDsGHD8N5779ntMRs0aGDwszBzAsJHH32EiIiIOvcx9Z7q9XqMGzdOCqhN\nmzZhy5Yt0u2zZ8/G+vXr8d1336FLly4AqsOvruPq378/zpw5g08//RQbNmxAly5d8M477+CVV14x\n67WQdnGSBOGnn34y+oS7e/duTJ48Wfr5z3/+M/71r38Z7HP06FEA1RXPg/bt24ecnBxMmTIFQPWk\nCQ8PDwDVA9/169dRWlpq8njGjRuHNm3a4OOPPza67cqVK/D398fmzZvrfV0RERFSlVQjNzcXL7/8\nMgAgPDwcAHDu3Dnp9jNnzqCgoKDexwaAgwcPGvx87tw5dO7c2WDb/RMlTB3PsWPHpAkHttLpdAbP\nd3/4V1VV4fbt2+jSpQt0Op3RcSxbtgyHDh0y63nGjx+Pc+fOYc2aNfDx8UGLFi2k2/bv348nn3xS\nCqeqqiqUlJTU+XibN2+Gp6cnxo8fj/3792Py5Mn405/+ZNaxkLYxoAhr167F66+/Lv388ccf49at\nW3juueekbcePH0dSUhJu3LgBoHq217Zt2zB69GhpenqNu3fvYsaMGVi+fLm0bciQIdizZw8qKirw\nxRdfICIiAs2aNTN5PJ6entiwYQNWrVplcCHwpUuXMHnyZEREROB///d/pe2ilmnYc+fOxYULF6Qw\nKy8vx5w5c6S2WFhYGAYNGoQPPvgAFRUVAIBPP/0U7u7u9VYiQgh8/fXXUrAfP34ce/bswauvvlrr\ncS1YsAD79u3D119/DQC4efMmXn31VekiYFs9+HwtW7aULpZOSUnBnDlzEBoaivj4eLz77rtScBw7\ndgwbN27Er371q1of637t2rVDr169MGPGDKOZlp07d8ahQ4ek92X79u24du1ane/nvHnzDFq6paWl\nZlfOpHHOOPFFypKamio6deok2rZtKwYMGCAmT54siouLDfb57rvvxJgxY0Tbtm3FE088IXr06CHm\nz58vysrKjB5v2bJlYsqUKQbbbt++LeLj40V4eLjo3r27OHHiRL3HlZubK8aNGyd69+4tevbsKcLD\nw8XChQsNnnPYsGHCx8dHhIaGij59+kizx2ocPXpU9OnTR0RHR4uOHTuKefPmGdxeVFQkRo0aJTp1\n6iRGjBghUlJSRGhoqAgPDxd//OMfxYYNG0RkZKTQ6/WiT58+4sCBAyI2NlZ4enqKP/3pT2LcuHFi\nwIABokuXLgaz8caMGSMCAwNFUFCQwWSDr776SvTq1Uv06tVLdOrUSbz//vt1vgcTJkwQoaGhwtPT\nU/Tp00ecPn1a7Ny50+CY8vLyxIwZM6Tne+GFF4QQQty9e1cMHjxYdOvWTQwaNEhkZmYKIYS4c+eO\neP3110WPHj3EY489JmJiYsT3338v3Vbz+jp06GA0u7PG2rVrRUBAgDT7scbly5fFzJkzxaOPPipi\nY2PF9OnTRVBQkAgPDxerV68Wr7zyiggNDRU+Pj7i17/+tRBCiA8++ED06NFD9OjRQ8TGxooXX3xR\nnDt3rs73hVyDTgheNUdERMrDFh8RESkSA4qIiBSJAUVERIpU63VQlq7DRkREZI1+/fqZ3F7nJInr\n16877IAI8PPzdfYhOIgOQP1zbwoL+f+LyNX5+tY+DnIlCScyd4BWWpDVd9x+fgwfAFi6NBUHD15G\n795BeO21Mc4+HCLVYQXlAuQeKP38/FBYWOjw55GLEj4gMPBJq+qqoBhQZHdKCSglBIs81gPIBRAM\nwLzv3KoLw5DkxBYfyWrOnDnOPgQAzh1oly5NxebNRcjJeQMhIUkYPdrHIdXrvedJ/O/zrGA7kTSD\nFRSRg9TVWnWd6q52rNQIYIuPVMpVJxnIEV4MB1IKBhQpjj0HYVcfbF01yEkbGFBUK1dpNckRYgwK\nIstxkgTVSqnVh1yTDOzl3vEuxsWLSQBSFX28RGrACorsLjk52S4z+WytSLRXHdp3OrkzKfWDEcmP\nLT6SlVKug7KV3AFX16CttoqSyFwMKJKVWgJKexWWc7AaIlvwHBSRCUoYWOUPyeo24dy5LViBkeKx\ngiK7U0sFJRctVGpKCHPSJlZQZDVOndZGwNjKlveA4UbWYkBRraydOq2UtfjsRSsDLCdakNqwxady\navx0r5UBX41YEZPScBafC7FmALI15Bg4RGQtBpSKOftaHH7iJiJHYkA5iXPab/KvNsAKioisxYBy\nEUOGvI5Dh3xQWfkO3NzmIjq6CDt3vu3swyIiqhUDSkHUOKmhhrmVkr3W4iMi7WNAaZRSr02R40Jd\nnhsj0gYGlAtRwsBtaUApparkuTQi+TGgyGFMh4sOQK3/ragOaghJJXwIIu3gUkfkMKYGVD8/xw60\nXBHBefjFjCQnVlBkdzwH5XxKaZs6ihoqTTIPW3wkK87icxxHBLOcYcZgoQcxoIgUSo5wsHcosHol\ne2JAEf2XIwdXLbTVWOGQ3DhJggiOP8Hv6MGdk0PI1bCCIqdSe9Vhr1Ayt7Jje420hi0+cin2DD05\nWl6sjMiVMaBIVkqdxaf2ak1peL6K7IEBRXZXV6tJjuugnE0NYccAITVgQJHFbBuAzV/qiINoNZ5b\nIlfFgHIRyvlUb/+1+Fw9yBhgpFWcZu4i5BrE6zup7+i1+FwN178jV8UKiqziKueglFOVyosfMEgu\nbPGRzSxpMSl1Fp8SqXGpIyJ7YkCRSY4YHDkYOgbPQZFWMaA0RottJ2uDjQM3kbpxkoTGyF2lKHWl\nA04eINI2VlBkFntXKmqsAtm+JLI/tvjIrpzRVlPb+npEZB4GlAtRRmWS+N9/lrM0PHgOikjdGFBO\noIygcBb7ryRRt/UAcgEEA5gobWWlRKR8DCiyG3MmTMh5oa5SJ3AQkXkYUBqk7ApN7gqKHsTqkdSC\n08w1SMkDUM1afI4JUdPtPEdQ8ntM5AoYUOQw1gzw9Yea/UKJAUSkbAwocoCE+4JGvorHUtZWeAw2\nInnwHBQ5jL0nMHBCBJH2cJIE1UrZky3UgRUVkfU4SYJqVVh43S4Xuzoz6BgQRNrECsoFODo86goI\nrvRARHVhi0+j2J6rxoAkUi8GFNXKERMP5PpGXUcGNNuGRPJgQFGd7P9VGrUvdWSfUFHu1HVzMQCJ\nqjGgSFaOXIvPkoqP09KJlI8BRbKqL6CUdu6M1QyR83CaOVnNEZMMLAkEe4QZA4hInVhBuRh5qhfj\n1cztGRKcmUekHWzxaZTSWmX3JMLab9Q1h5YqIoYtuTq2+DTK0QO19ZMMZgDQTog4yr33dzEuXkwC\nkMqQIroPKyiqkxI+4Su3UtQOLVWlpC5s8RHVw15B7OwwZdCQ2jCgyGXZKzAcNfAroUIlciYGFKmW\n4yoSx69GwWqGqH4MKJKVXGvxWevByR+PPPIf/Oc/j3DFCSInYECRrKxZ6sjZ527kwIqKyBinmZMi\n3X/+pbDQ8orFWaHGoCGSBysoMpv5gWC8koRSzZ27gu08Iidii0+DlN0SkyOglPGVG6ymiGzDgCJZ\nmXMOypavwuDXaBBpBwOK6mXfiiwRjlyLT8lYURFZhgFFiqTUNqWpkOEFtUSOwYAizbFHYDgiIFlB\nEVmGAUVmUUKVoNSqyl4YYESGeB0U1UspX/2gxAGckzKInIMVVC20/kleC+oLM3tWhEqoLom0iC0+\nBdJ2ACaiZhafsyoiVj1E6sCAIrPYUiUYBq56VpKwlhJbkURqxIAiWVmzWGztjyVfpamU0GE7kVwJ\nA4pkZc+AsoWSB3o5glcpgUtUFwYU2VV9A79SAsoetH2u0LEYkGQOTjMnu1HKdHS5yD3IcnIH0T2s\noJxE25/ME2HrWnyu/Olbya1JIntji89FKDH0zA0aDspErokBRXZlaZg4MjhdudIi0gIGFJlNiVWY\nkjk7IFl5ktpxkgSZzRkDLicGWMfVJqyQ62EFRYqg9kqAladpzq4wSfnY4iNZJScnY86cOVbdV+1B\nZS9yBR4DhJyNAUWy8vPzgxLW4nOFwZeBTmrHgHJBxp/A1wPIBRAMYKKDn119i8W6QpgRKREDysXJ\nPQnB2qWOOFmCyPUwoBRI2yfVa6+g5PySQSJSPgaUxjgq3OzV5tLSYrGWYsASWYYBRbIOnLbM4lMi\nzqgjchwGFKmWucGq7ZapaQw00gKuJEGqZMlKCUoYrDnJg8i+WEGRXdhWwcg5Bd6QvYON56CILMMW\nHylSdaitB3AVwFwA7wAIgKUhpYTqiYisw4BSOVc8v6JWDEsiy/AclMop7dqh+gMzEbZ+o649MTSI\n1IkVlMIoqVqydmC39Doonrchcl0u3+JT0qDvGkyvJOHsSoZBSKQ8Lt/ic/bA6EhKnNrs56e895xf\n7kekPi5RQWmdUiqDe5Wq+lYzVzulfSAgMpfLt/hIXs44B6W0Ni4Dg8g8DCiSTXVQJMKZs/hqCwel\nVJpEdA8DykUpraqQl2NXp2CFRGQfDChSLEdM8lDixBEiMo0BRYri2pXdPazCiDjNnBTGloFZjnDj\nArJEysAKijTJ0aHg7CqQ1RdpBVt8JCtnfqOus4NDDRhu9scq2XoMKJKVpddBaRknbGgff8e2YUCR\nrBhQhvjpun6sfNXHXpU4A4pkVV9AccAmpdFCQKq1dcuAIrur+w/a/mvxqfWPj1wDP3RZjwHlQkwH\nh2NXVTCm3sViGYRE8uJ1UC7kwQH23gncxP+ewF3h8E94yclzMGdO7evh8YQyEZnDZSooLfSYtWbu\nXMeHJREpG1t8Cqa24JSrBcaePpFrYEC5OGcP9mpcnoiI5MGAIgDqq9Ycoa4gc3aQE7kiBhSpiiMn\nUsgZ0qzqiOrHgCJZ2WMtvvqqGVaD9y4dKCwc5uyDIbIaA4pkpcaljtQ0/V1Nx0pUHwYUyUqNAQXY\n7xwUqzvT2PIkUxhQJCulBJQaJj04K8wYFqQUDCiSlTUBpaaqQwmDuxrCl8gcDChyiNpDRb1r8TnO\nejzxxHkGCtEDuBYfOURtlURda/HJRUkTCWqO5ZtvFuPixSQAqQwpIjOwgiLNUlPb0BUooTVKysMK\nihTPEedU7DEgKj3kOOiTlrGCIrtyxoCuhkGakxqITOMkCTKb0isGR7A14Bg+RNZji4/M5oxqREkT\nGix179g5AYLI3lhBkd1ZsxafPasQLVWBamhfEtmCLb46sD1jf0pZScJe7Bl4DBwiQ5oOKC4Vozxa\nC6j68EMOkfWcHlBaarnYmxaDTgkBxdAgUgenT5JQ6iCs5pPzVDtOXCDSBtW3+GzFT9r2VV0tcy0+\ne1DqBzsie3J6i49ciz2+Ufd+1reI733rLDDRpmNgWBA5BgOKVI+TYYi0yennoIhqI2/wWF5ROer4\nGHxE9WMFRarjyFBjcBDJixUU2cR1LhNYDz8/y89ZMdSIHIMVFLmE+i4p4CUHRM7BSRIkK3vM4nOd\nqs2xWN2R0rHFR7JZujQVycnJ0OkesakCceTAKmf4MSCIrMcKisxi2aDuuAt1HTng86JtIvmxxedC\n5G+NmZq6ra6VJFjlEDkPW3wuRM7B9t7EgkSEhCThkUem4j//eQQ5OeBEAyKyGSsolVHH5AFlV1Cs\nmIiUgxWUhjh6cLVPACbY4THqfq08X0SkfaygyCaODAquGEGkfZwkQXZjSyCpoz1pPoYcke3Y4iO7\nsPWLAO01oHPVByLXwArKBWihcnkw3HgOikgb2OIjq9k73JTcFmPoEcmPAUV2Y84gbu9v1LWG3FWj\nkoOXSMkYUCQrPz8/FBYWWrD//f9B7fc17WrDkCNXxEkSpGg1A/ODK1OMHr1CtlYbJ14QKQ8rKJLY\nry2mzJUk6qtQeA6KSH5s8ZGs/Pz8IEdAuVpLjAFKWsSAIllZeg7qfq4+CFtbxbpaWJN2MKBIVkqY\nxedsxkGjnMkfDDNSEgYUkRPZYwIGJ3GQVjGgSLOsbQlqYXUNpWBFRrbgNHPSJFvWBrR1UNVawDFk\nSIlYQZFNtDZQOwPDgVwZKyhyGDkH19rD0LYJCAwIImViBUV2Z2oWn5oqLQYWkXw4SYKsYn2oKGEl\nCfmmdTPQiKzHgCJZ2XKhrqVMTb8GwCnZRCrBgCLZVFddSqig7I+VEpH9cZKExih5OaDCwuvw85Nn\nMLfHeS2GDpFysYJSICVNKLBmAJezxVcbJYc4Ed3DFp/MlBQwzpH433/mU2olw6Ajciy2+GTmyMFW\nHWuyzQCgzMCxhC0rVRCR7VhBqZArfarXSjWq1AqRyNnY4iMyg61hWFh43aU+PBDZAwOKyEr3B847\n77wgy3Oy2iJXwoAih1Nj5aDW9iEDjLSEAUUO9eDEjUce+RY7d37i7MOSnTomsBApCwOKDDi+ctDW\nShKWVCxqrCSJnIkBRWZ7cIC1LsysCyi2rohcDwPKhTm6WqoJFcPJBNOdvpIEEakDA0qB1HqC3jzm\nVVDWVExsoRFpC1eSUCAltrPsdZLfUYvFcmUHItfCCooM2KNC8fN7H5auxacUSvzgQKRlbPGR4sjZ\n4lRL6LB9Sa6IAUWaoaZBXAnnGdUSzuS6GFCkOY4MKiUEi5owBMkWDChSJXss3qoWXIWCXBUDipxK\nuRXJegC5AIIBTDS4xRnhpqb2JZG9MKBIVsnJyZgzZ47DHt8e1QYrFiJlYEARADkrGW2txScnNbUl\nieyBF+oSANsHP3NbUJZcqKvc9l/dGCREjscKigDYOygMKyilDuY850PkfGzxqYBaKwnT5G3xyVUZ\nEpH9scWnAkqtMmpYMqnAUWvxOQLX9yNSLlZQZDZzKw1HzuLTVqVpTC3BTmQvbPGRy3FGkCk1XNjC\nJCVjQBHVQYkDuJIqRaUGL2kDA4rIAuZPp1dOiNA9DFR14SQJIjNZMmlCDQMhV8wgNWMFRZqi9KqG\na/wRGWKLj2Tl6LX47MUeYaaGKkpuDESyBAOKZOXn54fCwkJnH4bVOMAaU0Jlyg8D2sSAIlmpLaBc\nPZCUED5yY9gpBydJENWCK0nYd7DmpAyyJ1ZQZHfWVFCu+Cm+htY+zbt6RUqWYYuPZOXoFp9Sw8yW\noOGgTq6KAUWyUsssvhrWhoNSg/JBWqvQSFsYUOTSLAuS9QByAQQDmOiYA1IBhhrJhQFFZII9KyBb\n23ucWECuigFFLsu2EHJ8NVUTbDwHRa6KAUVkhvsrGW/v8QAeQnHxElY1RA7EgCLVUstEBFvwfA+5\nMl6oS7Ky5yw+Rw7etoRffcfFlh2R7VhBkd2pbamj2ixdmop33nlB1udkNUWuhhUUuSTDCsmaCQ/y\nhhMgX0uTQUhqwIAizbp/hlz15IfE/054WOHQthunjRPZB1t8ZHemWnyuMNnBnljhkKtgi4+czpoB\nt+5QU+6KDwwXIvtgQJHdWTuDz7Iqy7xQ4oWwROrFFp9G2WtAZmvOcqygiMzHFp+LseeX8ClxsOUk\nBCLXwArKQVy18pAr0NiyI9IGLnWkco4OOyVWSbZigBGpAwPKBWl1gJa7MtVieBMpCQOKZJWcnIzk\n5HecfRgWUMaUdYYhuSIGFMnK2WvxWTKJghMuiJyLAUWysmdAaWGyCSsjotpxmjkpgjXnxawd3O0d\nbAwZIvmxgiK7uRcKOgC1/reymqNCQqsTSojUgC0+sphtFYhjAspRWB0ROY9VAbV3716HHRAREVGN\nfv36mdxeZwVFRETkLHpnHwAREZEpDCgiIlIkBhQRESkSA4qIiBSJAUVERIqkqpUkSkpKkJqaioCA\nAOTl5WH06NHw9vY22i8tLQ05OTnQ6/Vo2bIl+vfvDwC4evUqtm7disDAQOTn5+OZZ55Bo0aNkJmZ\niZSUFDRp0gQA0K1bNwwZMkTW16ZkJ06cwNGjR+Hl5QWdTocRI0YY3H7nzh1s3LgRzZs3x+XLlzF0\n6FAEBQUBsPx3QaY54newZs0a/PLLL9JjTJgwAcHBwfK9KBWx5f3Py8vDxo0b4ebmhpdfflm6D/8G\nzCBUZPXq1eLQoUNCCCGOHTsmPvjgA6N9CgoKxOzZs6Wf586dKy5fviyEEGLx4sXi7NmzQgghvvzy\nS/G3v/1NCCFEZmamyMzMdPThq1J5ebl48cUXxd27d4UQQixbtkz8+OOPBvts27ZN7NixQwghRE5O\njliwYIHmXEt/AAARVElEQVQQwrrfBRlz1O/g//7v/+Q4fNWz5f0XQoiDBw+KPXv2iHfffdfgPvwb\nqJ+qWnzff/89wsLCAADt27fH999/b7TP8ePH0aZNG+nnsLAwZGRkoKKiAidPnsSjjz5q8v5paWnY\nsWMHdu/ejRs3bjj4lahHVlYWWrRoAXf36mLb1PuekZEh/V6Cg4Nx4cIF3Lp1y+rfBRlyxO8AAMrL\ny7F161Zs27YN33//PaqqqmR6Repi7ftfXl4OAHjyySel+9bg34B5FNfiS0pKQnFxsdH2kSNH4saN\nG1IJ7OnpidLSUlRVVUGvv5ezN27cgKenp/Rz48aNcePGDZSUlKBBgwbSdk9PTymIHn74YYwYMQL+\n/v44efIk5s+fj/fff99RL1FViouLDdoOjRs3RnZ2ttE+D77nxcXFVv0uyJgjfgdA9cAZEhICvV6P\nlStXIjs7G7///e8d/GrUx5b3v7aW3c2bN/k3YAbFBdQbb7xR621eXl4oLy9H48aNcevWLTRp0sQg\nnGr2ycvLk34uKytDUFAQmjVrhjt37hhs9/Lyku5TIzw8HEVFRSgoKIC/v7+9XpZq+fj4SJ8Eger3\nzcfHx2Afb29v3Lp1y2gfa34XZMwRvwMAaN26tbS9W7du2LVrFwPKBGvff1Pnx2vwb8A8qmrxRUVF\n4fTp0wCAU6dOoXv37gAAIQQKCgoAAJGRkTh//rx0n6ysLERGRsLNzQ2dOnXC2bNnAQCnT5+W7r99\n+3bk5+cDAK5cuQIARv8BXVW7du2Qn5+PiooKANXvW7du3VBSUiL9QXbr1g1ZWVkAgNzcXISGhqJR\no0aIiIiw+HdBxhzxOwCA1atXS9tzcnIQGBgo10tSFVve/9q4u7vzb8AMqlqLr6SkBJs2bUKLFi1w\n5coVjB07Fl5eXrhw4QKWL1+OZcuWAQAOHjyI8+fPQ6/XIygoSJq1lJ+fjy1btqBly5a4du0axo0b\nh4YNG+Lbb7/FoUOH8Mgjj6C8vBxRUVHo3LmzM1+qopw4cQKHDx+Gl5cX3NzcMGLECGzatAlNmjTB\n0KFDpRlMvr6+yMvLw/Dhw6XBztLfBZnmiN/Bhx9+CA8PD/j4+ODu3bt46qmn+Cm+Fra8/8eOHcOB\nAwdw+fJlxMTESDOE+TdQP1UFFBERuQ5VtfiIiMh1MKCIiEiRGFBERKRIDCgiIlIkxV0HRbY7ceIE\nNm7ciNzcXISHh0On0xncnpCQ4KQjq3blyhVs3LgR169fh6enJ958803ptqysLKSkpODs2bMYNWoU\nhg0bZnDfqqoqzJgxA+Xl5XjssccwZcoUuQ9fNps2bULLli3x888/Iz09HU2aNMHAgQPxP//zP/Xe\nd926dWjRooWsa0qWlZXhs88+w6BBgzBv3jw8/PDDAO6txODr64s7d+6gVatWmDZtGjIzM5GamorK\nykrcvn0bQUFB+M1vfoOuXbsiLS0NW7duxdWrV9G+fXskJCQgKysLf/nLXwAAAwcORPv27XHp0iX0\n7dtXttdIMnPqQkvkMJmZmWLkyJGisrLSYHtiYqKTjuie1NRUkZqaKoQQYvfu3Ua3X716VTz99NNi\n6tSpRsd/7Ngx8fTTT5tch1GtRo4cKfLz8422z549W9qemJho0Vptt2/fltaOk0NVVZV46623xL59\n+8TVq1fFhx9+KN02bdo0sXfvXiGEkG4rKysT8fHx0pp2FRUVYs2aNWLdunXS/f7973+LqVOnSj9f\nuHBBLFmyRJSWlkrbEhMTRVpamqNfHjkJW3waJWq5emDs2LEyH4mxrKwsaTWDAQMGmNwnKioK5eXl\nOHz4sMH2tLQ0REVF1fr61OrB11NYWIjKykqrVzNp0KCB0fpvjvTdd9+hsrISffr0gbe3NwYNGmRy\nv5rb8vLyUFVVJV1v6ObmhiFDhhisG3i/nJwcbNq0CTNmzEDjxo2l7c8//zw2bNggXURL2sIWn4u4\nevUqtmzZgmnTpgEADhw4gB07dkCv1yM4OBhTpkyBp6cnysvLsWbNGuTn56O8vBxhYWGYOHEi9Ho9\ntmzZgt27dyMmJgYFBQU4f/48OnToID3m/Xbu3InDhw/Dzc0NQUFBmDBhAho1aoS1a9fiwoULKCoq\nwoEDBzB79myDAadGw4YN0bdvX3z55ZeIjo4GAFy6dAkBAQEoLi5GZWWltG9FRQU2b94sXckfFhaG\nMWPGICMjA6tWrUKjRo0wduxYREdHY+HChbh06RJeeOEFdO7cGampqcjIyIBOp0N0dDRGjBiBiooK\nLF68GD///DOee+45HDx4EDdv3sTUqVPx448/4ujRo2jVqhXGjRuHZs2aAQDOnz+PtWvX4s6dO2jS\npAmee+45PPTQQ/jXv/6Fbdu2ITw8HA0bNkRWVhY6duyIp59+Gh4eHliyZAkA4M9//jMaNGiAl156\nCb6+vvjhhx+kFR8edPbsWXz00UcoKyvD4MGD8c0338DPzw9PP/00WrZsiX379uHvf/87OnXqhGnT\npmH58uU4dOgQ3njjDXTs2BFLly5Feno6VqxYAX9/fyxbtgwZGRmIj49Heno6Tp8+jSZNmqCwsBDB\nwcGYNWsW7ty5g/feew8AsGjRIul11zh06BAiIiIAVIdjSEiIyWOvua2iogI6nQ5ffPEFfvvb30Kn\n0yEgIAABAQFG97lw4QI2b96MmTNnGv1fCQgIgJeXF44fP86VGDSIFZTGLVq0CAsXLjRY/PbUqVNY\nt24d5s6di+TkZHh4eOCvf/0rgOrBvmPHjli0aBGWLl2K4uJi7N+/HwAwYsQIREZG4ujRo5gwYQIW\nL15scnmctLQ0HDhwAAkJCVi0aBH0ej02bNgAAJg8eTJCQ0MxdOhQJCQkmAynmmri17/+NbKysqSF\nOffs2YOBAwca7b99+3bk5ORIrzU3Nxfbt29Hjx498Pvf/x5BQUFSyA0ePBijRo1CREQEduzYgVOn\nTiEpKQkLFy7E4cOHcfDgQbi7uyMxMRFA9dX+CQkJ+NWvfoVly5YhJCQESUlJyM/Px969ewFUn3tJ\nSkrCU089hWXLliE2NhZLly4FAPTv3x9xcXHIyMjA8OHDsWTJEvz00084cuQIAGDevHkAgFmzZiEh\nIQG+vr4AqlflrxnwH9S2bVtMmDABRUVFaNGiBZKSktC0aVPs3LkTANC3b1/ExcVJ+0+fPt1g6a7X\nXnvN4PFeffVV+Pj4IDMzE7Nnz8bLL7+MSZMmoVu3boiOjkZgYCCCg4PRtWtXvP7660bhBADZ2dlo\n2bKlyeM1xd3dHX/4wx+wceNGTJ8+HZs2bTJYM7BGWVkZlixZgilTppj8vwIAgYGBRou3kjYwoDRu\nwYIFSEhIwMyZM6XJEgcOHECXLl0QEBAANzc3REdH4+DBgwCApk2bws3NDUuXLkViYiLOnz9v8Mcv\nhEBYWBi8vb3h5eWF4cOHGz3ngQMH0KtXL2m15ri4OKSlpVnclgsICED37t3x5Zdf4tatWygpKUGL\nFi2MHictLQ0xMTHQ6XTQ6/WIjY2VQvWJJ57AyZMncf36dQDVn/Rrwmr//v3o1asXPD090bRpU0RG\nRiItLc3gsbt27QoAePTRR3Hz5k1ERERAp9Ohbdu2uHr1KgAgPT0dQgg8/vjjAIBevXrhypUrOHPm\njPQ4wcHBaN68OTw8PBAcHCzd15Sqqiqp0qpNzXvQrVs3AECbNm3qfExzREZGwt3dHV27dkVUVBRi\nYmJw4MABANUfXAoKCkxWOIDxat7meOqpp7BixQr0798f6enpmDVrFr799luDfdzd3eHl5YUPP/yw\n1jZeo0aNTH4DAqkfW3wuokWLFnj++ecBANeuXcOlS5ewcOFCAEBlZSV8fHxw8+ZNpKenIyUlBX/8\n4x/h7++Pzz77TFpIF4DUiqlLYWGh9O3EANCkSRNUVlaiuLjY4kV4f/vb3+Ltt9+Gn58f+vTpU+vz\nNW3aVPq5cePGuHbtGoDqleojIiKQlpaG/v37Q6/XSwPptWvXsH//fhw7dgxA9fcj3X/cQPX7BlS3\nHH18fODm5ib9XPP1CNeuXUNVVRXeeust6X4BAQG4efOm0eMAgIeHR53nTLKyshASElLvOSQfHx9p\nn/oe0xwPVkDdu3fH6tWrcfbsWVy/fl0KQ1OsPSfo5+eHYcOGYdiwYdi8eTP++c9/olevXtLtDRo0\nwNy5c/HGG29g5cqVePHFF40eQ6fTae6cJFVjQLkgf39/eHp6YtasWdK2mzdvolmzZsjOzkZYWJh0\ncv7+rxmw5PFzc3Oln3Nzc+Hm5lbn1w/c7/5p8Z07d0ZgYCDS09MxatQo6fb792nevDlycnIQFRUl\nPV/z5s2l22NiYvDZZ5+hcePGBoOfv78/BgwYILUNhRAoLS01+3XWHIO/vz88PDwMpu/funULHh4e\nZr3GBx0/frzW80/Wcnd3lwLMVCvNFA8PD0RHRyMtLQ0lJSWYNGlSrft6e3tb9H+lsLAQn3/+OeLj\n46VtPXr0wO7du4329ff3x9y5c5GQkIDU1FSMGTPG4PZbt25Jk25IW9jic0FxcXH46aefpMro7Nmz\nWLNmDYDqQDh//jzKy8tx+/Zto2/5FELU+2k1NjYWmZmZ0vfdZGRkIDY2VhqU63uMB2+bNGkSJk6c\nWOsxxMXF4fjx46iqqkJVVRVOnDhhUG316NED169fx969ew3O68TFxeG7776TvjLhn//8p1GLz5zj\nrJlVmJ6eDuDeeZP7J3I8eL/7H9ff3x+lpaX49ttv8fPPP+OHH34wqlZsrRACAgKkr92o+Z2a85ix\nsbH45ptvAMCourxfSEiIRS3GiooK7N+/X7pPzc/h4eEm92/dujVmzpyJzz//3CjE8vPza52UQerm\nllhzNpg0o+ZC3eLiYpw8eRJ+fn4G7ZvmzZvDz88Pq1evxuHDh/HLL7/gmWeegaenJ1q2bIni4mJs\n3LgRJ06cgK+vL06ePAmdToesrCykpaXh4sWLuH79unR+5kHBwcGoqKhAamoq9u/fD29vb4wfPx7u\n7u5Yu3YtfvzxR+Tk5CA/P99oIkBubi5WrFiB7OxsFBUVISIiAi1atJBaZJ988gmOHDmCq1evorCw\nEJGRkQgLC8Ply5exZcsW7N+/H+3atcMf/vAHKRD1ej3y8/MRGBhoUJnU3C8lJQUZGRlwd3fHiBEj\noNPpsHjxYly9ehVnzpxBhw4d8NFHH6GgoADXrl2DEALbt2/H5cuXodfr0alTJ3Tu3BmbN2/Gnj17\nkJmZieHDhyMoKAhff/01/vGPf+Dy5cto2LAhsrOzsW/fPly8eBHe3t4IDg4GAOzduxdXrlxBdHQ0\n9u7dixEjRkjH+Ze//AWnTp3CL7/8goqKCjRt2hSrV6+Wjsfb2xsbN25EXl4eSktL0bVrV5w8eRJl\nZWXo2bMnAKBVq1bYu3cv9u3bh86dO+Pw4cM4c+YMIiMjsW7dOpw9exbZ2dnw9PSUjqnm/8q+ffsw\nePBgtGrVqtb/c5WVlUhPT0fv3r0Nti9evBiXLl3CxYsX0axZM+mxPTw8cPfuXXz22WfYt28f/vGP\nf6BZs2aYNGkSGjVqhLS0NGzfvh2FhYX46aefEBcXh6CgIHh7e+Pjjz9GZmYmoqOjcePGDWzfvh1T\npkyR2q+kHfy6DSIFOXjwIM6ePYsJEybY9DiffvopiouL8eyzz9p8TG+//TZee+21OgOgqqoKCQkJ\nGDx4sDRZRA7Jycno1q2bydmdpH5s8REpSO/eva0Op4KCAulygezsbJu+dDMvLw9ZWVm4cOECAgMD\n661O9Ho9XnnlFWRkZFj9nJY6ffo0OnTowHDSMFZQRBpRWlqKpKQkCCHQpk0bxMfHS1P9LXX+/Hm8\n++67eOihh/Diiy/ym3bJKRhQRESkSGzxERGRIjGgiIhIkRhQRESkSAwoIiJSJAYUEREpEgOKiIgU\n6f8BYKD8NMrUwsgAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x1d113e250>" | |
] | |
} | |
], | |
"prompt_number": 103 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"pm.Matplot.summary_plot([_[1] for _ in results['hopc']], \n", | |
" custom_labels=[''], xlab=\"Self Efficacy (GSES)\", x_range=[-0.005,0.025])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAEyCAYAAACPoxsYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHXeB/APoAi6InhJSBNQwRAIJSw1BfFSz0t7fLTV\nRF0VzbLStjI3003FfbTU7fK06lrmo/KY2G3V3NervKzlNU3NVndtEy8oYYBXQO4i3+cPlqMzwDCX\nM2fOmfm8X699vXaGuZw5TvOZ7/d8z2+8RERARERECm9XbwAREZHeMByJiIjMMByJiIjMMByJiIjM\nMByJiIjMMByJiIjMMBxJNVVVVVi2bBl69+6NAQMGYODAgdi1a5fJbS5cuIDg4GAkJyeb/G/r1q3K\nbS5evIjExERERUVhxIgRKCgoMHmMRYsW4fnnn7d6uy5evIiJEydi4MCB6NWrF7p164Ynn3wSmzZt\nQmlpqWMvuh5FRUUYMGAA/P39kZ6erlz//vvvIykpCQBw5cqVem9jbvz48QgJCcHkyZMd2qYpU6Yg\nPDwcfn5+GDhwIDIzM62+79///ne89957Dj2/2l555RWEh4cjOTnZ1ZtC7kqIVDJ79mwJCQmRq1ev\niojI999/L76+vnLw4EHlNhcuXJDU1FSLj/PSSy/J/PnzRURk/Pjx8uKLL5rcPzQ0VAoKCqzapu3b\nt0twcLD85S9/Ua7LycmROXPmiJeXl2zdutXq12ersLAwSU9PVy5v3rxZnnrqKYu3qU9qaqpMnjzZ\n4e1JS0uT8PBwm++3bt06CQsLc/j51ZaWliYDBgxw9WaQm2LlSKoQEaxYsQKPPvoo2rRpAwCIj49H\n586dsXTpUpPbNeavf/0rhg0bBgB4/PHHsW/fPuVvL7/8MubPn49WrVo1+jjFxcWYOnUqnnvuOTzx\nxBPK9R06dMAbb7yBPn36wMvLy+rX6KiRI0dizZo1Nt9PRKzab1o9jl6402sh/WE4kiquXr2K0tJS\nPPDAAybXx8fHY/fu3TY9lr+/P8rLywEA5eXl6NixIwBg586dyM3NxZQpU6x6nPT0dFy6dKnB269a\ntQoJCQkAgEGDBiEoKAgLFizA66+/jmHDhsHHx0dpeR45cgT9+/dHz549ER0djf/+7//G7du3lccq\nLCzE2LFjERMTg7Fjx2Lz5s11tqVHjx7w9q77n1xxcTGeffZZ/Md//Afi4uKwdu1ak7/XF+Bffvkl\nevXqhfj4eMTGxmLVqlVW7ZO7ffTRR8o2HTx4EJMmTUJISAgmTpyIW7duAQDWrl2LpUuXIi8vT2mB\n79ixAwBQWVmJV199FTExMXjggQcwZMgQnDx5EkDN+6G2bfz+++/jt7/9LZKTk+Ht7Y37778fzZo1\nQ3h4ON58800AQEZGBiIjIxEREYH9+/cjJycHY8eORffu3REXF4d+/frhu+++s/h6srOzMX36dAwa\nNAg9evTA8OHDceTIEZv3CxEAtlVJHdXV1dKyZUt58sknTa6PjIwUb29vpQ2alZUlffr0kREjRkhi\nYqIMGTJEPvjgA6murlbuM3fuXHnmmWekqKhIhg0bJh9++KFUVFRI9+7d5fvvv7d6m6ZNmyZ+fn5W\n337AgAESEhIiWVlZIiLy+uuvS0ZGhpw+fVp8fX1l8+bNIlLTlu3SpYvMmzdPue/QoUNl0KBBUlVV\nJSIiixcvFn9/f5OW6Z49e8TLy8vkOUNDQ6Vr166Sl5cnIiInTpyQZs2ayRdffKHcJjU11aQV/fXX\nX0vTpk3lyJEjIiKSmZkpAQEB8r//+78WX9+CBQvqtEdrt2nRokUiIpKXlyf33nuvyXavX7++3rbq\npEmTZMCAAXLjxg0REVm2bJkEBQXJtWvXlNuEhYVJdHS00mqfNGmSHDhwQFJSUmTIkCEmjzd+/Hg5\nevSoiIjs2rVLHnnkEbl9+7aIiHz00UfSrl07k3b6ggULTNqqw4YNk9/+9rfK5WeeeUYWLlxocZ8Q\nNYThSKqZN2+etG7dWjIzM0VEZOfOneLn5yfe3t7Kh39eXp6MHTtW8vPzRUTkp59+kuDgYJMPtevX\nr8uECRPkwQcflBkzZkhpaam8+eab8uyzz0p1dbUsWLBAHnroIRkxYoRcvHixwe0ZOnSodOjQwert\nT0pKkqSkpDrXp6amSrdu3Uyue+mll6RVq1YiInL69Ok6xy8zMzPFy8vLJGS++eabesNx3LhxJtf9\n53/+p/Tv39/k+e8OxwEDBsijjz5qcp8RI0ZIXFycxddXXzjWbtPdx4VHjhwpL730knK5vmOOWVlZ\n4u3tLRkZGcp1165dkyZNmsi7776rXBcWFiaTJk2qsy07duwQHx8fyc7OFhGRwsJC6dWrl/L3kpIS\nJVBFRKqqqqRNmzayY8cOk9dzdzgmJibKqFGjpKysTERELl++LGfPnrW4T4ga0sTVlSu5j4ULF+Ke\ne+7B008/jaZNmyI2Nhbz589HWloa2rdvDwBo3749MjIylPt069YNTzzxBFasWIE//OEPaNWqFYKC\ngvB///d/ym1ycnLw/vvv44cffsCuXbvw5ZdfYseOHVi+fDnmzp2Ljz76qN7tCQ0Ntaml6+Xlhd69\ne9e5/uTJkygoKDCZjCwuLkbr1q1RUFCAf/3rXwCAzp07K3+PiIhA27ZtrXrOfv36mVzXuXNnbNiw\nocH7nDx5Ei1btjTZnoKCApM2r61q28sAEBAQgMLCQou3/8c//gERwXvvvYfVq1cr14eHh9e5b58+\nfercf/DgwQgJCUF6ejpef/11fPzxx0hJSVH+7u3tjZUrV2L79u0AgGbNmqGkpAT5+fkNbtO8efOQ\nmpqK0NBQpKSk4LnnnsP9999v+YUTNYDhSKrx8vLCjBkzMGPGDOW6uXPnmoRGfRITE7Fq1SqcO3cO\n8fHxdf4+c+ZM/P73v0dQUBC2bduG4cOHIygoCBMmTEBCQgKqq6vrPZYXFxeHyspK5OTkKMctG+Pv\n71/v6+rTpw+2bNli1WM4m5eXF0aOHIl3331Xtcf09fU1uSxWDrt88MEHiIuLs3ib+vapt7c3Jk6c\nqITjxo0b8fnnnyt//93vfoe1a9fi8OHDiI2NBVATvJa2a/DgwThz5gw++eQTrF+/HrGxsViyZAle\neeUVq14L0d04kEOq+ec//1nnm/3OnTsxdepU5fL//M//4G9/+5vJbY4ePQqgptIz9/XXX+PixYt4\n+umnAdQM6DRt2hRAzYfujRs3UFJSUu/2TJw4EZ07d8a6devq/C0/Px9t27bFpk2bGn1dcXFxSnVY\nKzs7GzNnzgQAREVFAQDOnTun/P3MmTO4evVqo48NAPv37ze5fO7cOcTExJhcd/dQTn3bc+zYMWW4\nxVFeXl4mz3f3F4/q6mpUVFQgNjYWXl5edbbjrbfewqFDh6x6ntTUVJw7dw4ffvghAgMD0a5dO+Vv\ne/bsQb9+/ZRgrK6uRnFxscXH27RpE/z9/ZGamoo9e/Zg6tSpeOedd6zaFiJzDEdSzZo1azBnzhzl\n8rp161BWVoZp06Yp1504cQKLFy9GUVERgJqpxi1btmDs2LHKKSC1bt26hRdffBErVqxQrhs+fDh2\n7dqFqqoqfPnll4iLi0PLli3r3R5/f3+sX78e77//vskiA5cuXcLUqVMRFxeHMWPGKNdLA6c6vPba\na7hw4YISpOXl5Zg9e7bSioyMjMTQoUOxfPlyVFVVAQA++eQTNGnSpNEKTERw4MAB5UvFiRMnsGvX\nLsyaNavB7Zo/fz6+/vprHDhwAABw8+ZNzJo1S1lgwFHmz9e+fXtlIYb09HTMnj0bYWFhmDRpEt5+\n+20ltI4dO4YNGzbg4YcfbvCx7hYREYG+ffvixRdfrDNRHBMTg0OHDin7ZevWrbh27ZrF/Tl37lyT\nNnpJSYnVHQOiOlxxoJPcU0ZGhkRHR0vXrl1lyJAhMnXqVCksLDS5zeHDh2XcuHHStWtXeeSRRyQh\nIUHmzZsnpaWldR7vrbfekqefftrkuoqKCpk0aZJERUXJgw8+KCdPnmx0u7Kzs2XixInSv39/6dWr\nl0RFRcnChQtNnnPkyJESGBgoYWFhkpycrExJ1jp69KgkJydLnz59pHv37jJ37lyTvxcUFEhKSopE\nR0fLqFGjJD09XcLCwiQqKkr++Mc/yvr166VHjx7i7e0tycnJsnfvXklKShJ/f3955513ZOLEiTJk\nyBCJjY01mTodN26cBAcHS0hIiMlgy/bt26Vv377St29fiY6Olvfee8/iPpg8ebKEhYWJv7+/JCcn\ny+nTp2Xbtm0m25SXlycvvvii8nzTp08XEZFbt27JsGHDpGfPnjJ06FA5deqUiIhUVlbKnDlzJCEh\nQR566CFJTEyU48ePK3+rfX33339/nSnmWmvWrJF77rlHmfKtlZubKy+99JJ06dJFkpKSZMaMGRIS\nEiJRUVGyevVqeeWVVyQsLEwCAwPlscceExGR5cuXS0JCgiQkJEhSUpK88MILcu7cOYv7haghXiI8\nk5aIiOhubKsSERGZYTgSERGZYTgSERGZcfp5jrauq0lERGSrQYMGqfp4Th/IuXHjhjMf3nBat26N\n69evu3ozSCOtWwe5ehOc6vp1/vdN+hAUpO5/a1whh8iJtAoPLULYk4Jw2bIM7N+fi/79Q/Dqq+Nc\nvTnkAqwcNcbKkfTCUwJAy+rdk75A6I3alSPDUWMMR6I77A+utQCyAXQCYN3ve5J7hzfbqgY3e/Zs\nV28CkW7Y82G9bFkGNm0qwMWLaQgNXYyxY1eqWvneefzf//vxA926sqb6sXIkIru4+7CROXeuutwB\nK0ci0gVHwsK2YHVOC5VhR5YwHInIbtpUj40HIoOO1MZwJPJgxm+N1lSVrVs7VlUyXMkcjzkSkW5Z\nGo7h4AzdjadyGNzSpUs5sUpupf7qk6daWItVqzoYjgbH8xzJ3ald0bmi9cvAMh6Go8ExHMlRxj9O\naDwMS/3jqRxEHs5ZH9S2h662rVMGFGmJ4UhEAEzDx7qgtC0QGW5kJAxHIg+gh1asFoM7DGBSC8NR\nY5xUJVdQOzTUGLpx9hqpRI7gQA4R2aX2J68OHlyk6fOyOqT6cFqViAzFupZu/e1VBiFZi+FIRIbl\n6LFPhiU1hKdyEHmo2jZm//4hLj8256oBn8ael+FJamE4EhnAneGVRcjJWQwgw6UBqWYIcY1U0iO2\nVTXGtVWNTw+nRdhDz1WVnqpiMiYeczQ4Lh9H1nAkgPUcgtZiWJKtGI4Gx3Akexk9MJxdcbvDlwKy\nH8PR4BiO5A6M2lq2hqMha/QvMUbFaVUicjlnVmlGHtDR2+AU2Y+Vo8ZYORI1zp7qy52rWXt4WpuZ\nbVWD47QqkWs0FLh6DVVPCzdHMRyJiMyoGXA85mhMDEcicit6rdysZSlMGZTa4UAOEbkVLdqHrhjy\n4XCOsbFyJHIAKwPjUOPfSu9Vricfp2RblUgnjHzKAanP01c1cjWGo8FxWtV6ev+Wrkf8kNUXdha0\nw3A0OJ7n6DpGCVu9BRw/4MkIGI4Gx3B0L0YJDqN8MQD09+WAjIHhaHAMR7KXkQLOOmsBZAPoBGCK\n1fdieFJ9eCoHkYdyRSg4a+jozuOm/ftxV+q68ibPw8pRY6wcydXcrwJtGKtMz8HK0eA4qUqucPex\n0evXnVehaRm8DD5yJlaORAaldhBpHTZGGWYiY+BADpEbMkqrU4/VGkOWALZVidwSfzzYPly/lJyF\nlSORB9BzdaWnqlmPlTFZh21VItIFrQPX0RBl8Lk3hqPBcW1V0hNXV21qBJaeq2LSDsPR4Hieo3G5\nOkioftev32BAEgdyiFyFbbk79DTkw6EccgZWjhpj5Uh6xKrYNfiFSz2sHIlIdXr5kK4b0vYtTm6J\nXl4r6RvDkYg0Y3uF6nggMgzJHgxHjXFSlYzKtmBTv+Kzl1otY4asZ+ExRyJSlVrDOnoa+iH946kc\nROQwdx7AYYXnmTiQQ2Qgej3/zpYA0SJIGWikN6wcyWO4c7VkiSuCR69fCsh9sa1KdBdPDTxXcocq\nj+HtfhiOBse1VT0HB0qczxVfjtzhy4E7YjgaHFfI8SysUBpW377xhE4Aw9U5GI4Gx3Akcm1VzYre\nPTEcDY7hSO5Ez5WepQqNFb37YTgaHMORPIUjwdlY65HhRuYYjgbHcCSqYU3AqVmZ8life2M4Ghyn\nVckd3R10S5ZMd/XmqI7Bqn8MRyLSFa0HXDhQQ/VhOBJ5AD0PumitvqqNxxzJHMORiFShdSuUrUly\nJoYjEVnkioXCWcmRqzEciTyMti1W/fxIcX1YfVJDGI4Gx2lV0oP6hloAcNCFDIvhaHA8z5Fs4emD\nOawUyVr8sWMiD6JmODg7aB3ZVh6zJL1h5agxVo6kZ2qFlB4rXlah7o1tVYNjOJJe6THQXKPxoSQG\nrf6wrUpETuGqD3w9rXhzZ1vS/r0tK9nm9VCsHDXGaVWiuli1WocVa8PYViUilzDa0IyrA5dBpi2G\nIxFZRetwcJcwMNqXAKrBcCQyAPuDSd8r1KjNXQKVXI/hSOSm9DSYYk7P20YEMByJdMfVx7acRU+L\ni7PVSY1hOBocp1XJWWHqri1KVq1kDYajwXERALLEnSokPVfU7vpFwpMxHA2O4Uh65spwtjdMGXQE\nMBwNj+FIWtBT1aZGeLlTRU3OwXA0OIYjqcG54ee600lYBZK9uLYqETklRJYty8CqVUdRWHg/gDS0\najUXzz3HtUXJM7Fy1BinVUkNemqbqoEVIzmKbVUispkzw5TBVhePkWqP4UhETsUP9oY540sGv1yo\ng+FIRB7B0ZB2t9azPTwpeDmQQ0Ru786qOIuQk7MYQIbNAckfbyZHsHIkIpu4S0XmzPBka1p7bKsa\nHKdVyVVc9YGtZZh6UhuRTDEcDY6LAJAaPCFwWH2RLRiOBsdw9EzGakWqu0IOqznSAgdyiAzI1QFh\n7ZDIndul/ft2XCGHPBMrR42xciRbGanqdPWXAPJcrByJPIwagVM3YB1rnTIEyd0xHDXGSVVyFtsq\nTNsCkWFInoZtVSIXM1Lb1Fb2hCqnVMkebKsSuRmtqzI9r+Cixso4RGpg5UjkgdSqzty36l2LRx45\nz+rVQHieIxEZlhF+1ULPlTU1jOFIRG6tvqrWfSvUhnEIyjYMR4Pj2qpkKw6oWEdPAcpg0x7D0eC4\nCIBn0dMHtprc/cOfX0iMh+FocAxH13PXwHI9dddkdTZ3D3hPw1M5iBxkpA9FowyHcE1WcjesHDXG\nytGYWG3ql5G+7JDzsHIkcgG9fgAvW5aBJUuuwCitzProdd+SZ2M4aoyTqtQY26rU6TY/vrPCiEMs\n5E7YViVyMiO3ZPVQ1TF0yRpsqxIZjDMrNSMM6ziCa62Sq7ByJDIwW6oqI1ewzqaHCpkcw/McidyI\nJ7YMtQppBp5nYTgS6ZgeqzOjh4QnfoEg2zEcDY5rqxqTHkPP1YweumpjiLsWw9HguAgA1fKEgRpP\nwX9L12M4GhzDke7GasN13KkbwCqep3IQEamisUDROjwZcPrCylFjrBzdl5Yfpvwg1R92AVyLbVWD\nYzi6jju10exlT6jyQ5+MgG1Vg+OkquvordoywhAHV6ghT8XKkciFWM1qS29fkEg9rByJ3IijH9bG\nD9e1ALJhzU9uMdhIS6wcicgiR445cqk40goHcojIJfRTpVpfbboKw1p7DEcicgt3DyQ5C0PKczAc\nDY5rq5KR6ad6NOdYNckQNT6Go8HxPEci+9V3+gsA3Z8SQ87HcDQ4hiN5Cv1WmY5jpak/PJWDiAzB\nkQCpb0LWWWHLoKP6sHLUGCtHMjK9VYO1wcYl7ohtVYNjOJIrOCfU9H9KRS1Wh+6PbVWD46QquYLa\n4XBnMCbt30MwK1Wr2Iyw5iy5P1aORG5Kby1QtbAKpPqwciQiq9j781RLllyBFq1ShhzpGStHIg/k\naFV5/foNDsGQrnAgh4ga1Hjo6XuIhtUk2YvhSER2aWzQhYMwZGQMR4Pj2qpkDz0P17DaIz1gOBoc\nz3MkZ7j7+N+SJdNVe1wGHxkFw9HgGI7kKDWqyNdeU++8RCI9YDgaHMORGuNY+KkzcMOKkYyG5zkS\nuTlbg+nOIE0IfHwycfv2EtVXrSHyNKwcNcbKUT/0PORiJKwySQ9YORocJ1X1w5Uf6noNZlv2Se0Q\n0LJlXASA3A8rRyI34uiqNc4MbVaY5EwcyCEim+m1UrXMuuEihi4BDEci0gFbVtNxVTAzND0Lw5GI\ndMFZCw/U0McasAxY42A4EpFbW7YsA6tWXUJh4RsAlqBVq5/w3HO9OPRDFjEcDY5rq5KeGfPYpGWs\n/jwDw9HgeJ4jeTq1Aljt0OPvUxobw9HgGI5EjTMPKla01BiGo8ExHMmdOT/E9DGo4yoM1IZxhRwi\n0i1nfnjfOX0kTfW1Y/lDz2SOlaPGWDmS0bhjS9MZWNW5FitHg+OkKhmNMz/0TYNXfy1TBp7nYuVI\nRJpToxplcNHdWDkSkerUOI1B6/ZrQ8/H0CQ1MByJPNydYZRFyMlZDCDDroB0JJQ4EEN6w7YqkcHp\ncWDGnqDkSfjkCJ7nSERWc0ZwGr1tyRB2TwxHg+PaqqRHeg4MV1fGRv8y4CkYjgbH8xzJyNQNKv2d\nuqEGhqlrcFqViFxGrQ9+Z652Y93zcvCHLGPlqDFWjmQkrm5pquXuUNdzC5nsx7aqwTEcyRW0DgRn\nhSpbltQQhqPBMRxJLa6o6tQMJ1ZwpCaGo8FxWpXq4y7ty4ZoUfExbD0bw5GIbOIJQyie8BrJMoYj\nEdnM2VWVpcd396q4Pjw2qj2GIxHpirOrNi3DlaFmXAxHIrKZO1RvjQUXjzl6NoYjEWlKi2B1ZcXG\nUHUPDEeD47QquSO9BIzWFTLbsPrB5eMMjuFIZMrILV9Ht53hql8MRyJyiKM/luzqlipPAaH6sK2q\nMa6QQ85m5ErMHo6Gq15awuQYHnM0OIYjuYreQpOLgZOaGI4Gx3Ako9NbyFrCY3qegwM5BsdhHNIT\nbYNO+x83tvb1MUTJHCtHInI6S4MvHIohNbCtSkQup7fWKis/YluViFzOPIxsD0vLLVaGHbkaK0ci\ncgqtqksGKQGsHInISVq33gKtB2bU0FgIMzzJHgxHjXH5ONKjZcsyEBpagIsX0/49FLPSaUMxHMAh\nI2BbVWM8z5H0NsziCq+9tpIn/ZOqOK1qcAxHaojaq8S4+09NEd2N4WhwDEfP4axwclYgcQk3MjKG\no8ExHI3DHdufeqn0GMSkNk6rEmlEyyDxpCEVR3/iikgLrBw1xmlVaoieqyl3qaL1UjmT+thWJSJd\nqQlObRcVZ8iRObZVicip7KsS7Q9EBh3pEcORyOCM3vK0p/JkoJKzsa1KRA5xZJhIzWBnYHo2HnMk\nIt0xHyZyfjWr/jFOhquxMRwNjtOqRKZsrTw96bQXsh7D0eC4CAB5KqMfG7UGq0/X4bQqEalKq/Mr\n7QkO/iYkuQorR42xciQtuHuo6HnBBHINtlUNjuFI9lA37LQ7YZ8VGWmFbVUiD6RWyNwZZqn5UeP7\n7nsWP/98H4dbiMywctQYp1XJnDsOqrBiJK2xrUpEjeIPHduOxzGNjeFIRA5x5xBwdRXubl8YjITh\nSESG5erwskzbXxbRA3cKc4YjEZHKhg+fg0OHAnH79hL4+LyGPn0KsG3bm67eLLIBw5GI3Ja+K0t9\ncqfqzxE8lcPgOK1K1DBnftDbH7yNt1sZUO6HlaPGuAgAkXZcUYkyKF2DlSMR6ZJaU7BGb606a/sZ\nutpiOBKRw+6svLMIOTmLAWTYHZB6CgH+PJbnYltVY2yrki2MXkW5ipoB687nhboTTqsaHMORXEV/\nQWs66KKnipGMh8ccDY6TquQqzg6f+iosy4FsOvlZ320ZmOQqrByJyGaOV6H6XI2GYWxcrByJyGXU\na802HIgMKNIDhiMRAbAl+Jxb9al9bJRhS/ZgW5WIrKbGqQ08PYKcgdOqRGQX/U2rNozVHtmKxxwN\njmurkqvYEjhqBWljz8lzCEmvWDlqjOc5ktHZGmhcTo20wLaqwTEcyaiM1Ja1xN5QZZWrb2yrEpFL\nqF2pGWkwR821Y8kYWDlqjJUj0R3OrsaMWu2yZWw7tlUNjuFIRuTOLUVnBCjDTXsMR4PjtCrpEQOi\nce78BcEdMByJPJRRW4SW6ClAGX7GxoEcIg/lqiAx0uCMvThwQ+ZYORJRo9SuqtyxCraXnqpnI2Pl\nSESaqwnEmoBUo6pyViBoEboMM8/AypGI+EsY4DFHo+NAjsFxWpVcwbkVlXN+wsqIAUuuw3A0OJ7n\nSEbU0FCOJwzrkDEwHA2O4UjO4AkDLqwkyRIO5BBRHfYGh/Whqk7rlAFHRsFwJPIg9leYtgcig5CM\njOFIZDBGaaE6sp0MVnI1px9z3L17tzMfnoiICIMGDVL18ZwejkREREbj7eoNICIi0huGIxERkRmG\nIxERkRmGIxERkRmGIxERkRm7z3MsLi5GRkYG7rnnHuTl5WHs2LFo1apVndvt27cPFy9ehLe3N9q3\nb4/BgwcDAC5fvozNmzcjODgYV65cwYQJE+Dn54dTp04hPT0dLVq0AAD07NkTw4cPt3czne7kyZM4\nevQoAgIC4OXlhVGjRpn8vbKyEhs2bECbNm2Qm5uLESNGICQkBIDt+8YInLE/PvzwQ/zyyy/KY0ye\nPBmdOnXS7kU5yJF9kpeXhw0bNsDHxwczZ85U7uOp75GG9oenvkfOnj2Lv/71r+jYsSPKy8sRERGB\n3r17A/DM94il/WHze0TstHr1ajl06JCIiBw7dkyWL19e5zZXr16V3/3ud8rl1157TXJzc0VEZNGi\nRXL27FkREfnqq6/k448/FhGRU6dOyalTp+zdLE2Vl5fLCy+8ILdu3RIRkbfeekv+8Y9/mNxmy5Yt\n8sUXX4iIyMWLF2X+/PkiYt++0Ttn7Y9PP/1Ui813Ckf2iYjI/v37ZdeuXfL222+b3McT3yMiDe8P\nT32PHD16VLltSUmJPPvss1JRUSEinvkesbQ/bH2P2N1WPX78OCIjIwEA3bp1w/Hjx+vc5sSJE+jc\nubNyOTL+nn+cAAAOWklEQVQyEj/88AOqqqrw448/okuXLvXef9++ffjiiy+wc+dOFBUV2buJTpeZ\nmYl27dqhSZOaAry+/fDDDz8o+6lTp064cOECysrK7N43euaM/QEA5eXl2Lx5M7Zs2YLjx4+jurpa\no1fkOHv3SXl5OQCgX79+yn1reeJ7xNL+ADz3PZKQkICYmBgAgLe3NyorK+Ht7e2x75GG9gdg+3vE\nYlt18eLFKCwsrHP9k08+iaKiIqVE9/f3R0lJCaqrq5UNAYCioiL4+/srl5s3b46ioiIUFxfD19dX\nud7f318JwY4dO2LUqFFo27YtfvzxR8ybNw/vvfeexRfhKoWFhSZtiubNmyMrK6vObcz3QWFhoV37\nRu+csT+Amg/E0NBQeHt7Y9WqVcjKysKvf/1rJ78adTiyTxpqgd28edMj3yOWWoJ8jwBffvklxo4d\niyZNmuDGjRse/x65e38Atr9HLIbj73//+wb/FhAQgPLycjRv3hxlZWVo0aKFSTDW3iYvL0+5XFpa\nipCQELRs2RKVlZUm1wcEBCj3qRUVFYWCggJcvXoVbdu2tbSpLhEYGKh8owVqXkdgYKDJbVq1aoWy\nsrI6t7Fn3+idM/YHAISHhyvX9+zZEzt27DDMB5+9+6S+4/e1PPE9Yml/AHyP7N+/HwCU4/Se/h4x\n3x+A7e8Ru9uq8fHxOH36NADgp59+woMPPggAEBFcvXoVANCjRw+cP39euU9mZiZ69OgBHx8fREdH\n4+zZswCA06dPK/ffunUrrly5AgDIz88HgDo7Ri8iIiJw5coVVFVVAah5HT179kRxcbHyD9ezZ09k\nZmYCALKzsxEWFgY/Pz/ExcXZvG/0zhn7AwBWr16tXH/x4kUEBwdr9ZIc5sg+aUiTJk088j1iiSe/\nR3bv3o2bN2/iiSeeQHZ2NnJzcz36PVLf/gBsf4/YvbZqcXExNm7ciHbt2iE/Px/jx49HQEAALly4\ngBUrVuCtt94CUJPg58+fh7e3N0JCQpQkv3LlCj7//HO0b98e165dw8SJE9GsWTN8++23OHToEO67\n7z6Ul5cjPj5e6SHr0cmTJ/Hdd98hICAAPj4+GDVqFDZu3IgWLVpgxIgRylRVUFAQ8vLy8MQTTyj/\nKLbuGyNwxv7485//jKZNmyIwMBC3bt3C448/bphvwYBj++TYsWPYu3cvcnNzkZiYqExue+p7pKH9\n4anvkaNHj2LlypVKVXTz5k1MmTIF3bt398j3iKX9Yet7hAuPExERmeEiAERERGYYjkRERGYYjkRE\nRGYYjkRERGbsXluVSCtXrlzB2rVrcfnyZXh7e6N58+bo27cvHnvsMYv3O3bsGD766CMEBQVhwYIF\nyvWbNm3CqVOnUFFRgWnTpqFr167K3/70pz/h+PHjaNGiBe655x7l+suXL2P69Ono3r07gJoTjA8d\nOoSysjKkpKTgvvvuw4YNG3Djxg34+/sjJiYGt2/f1s25dtXV1di2bRt69+6tTH7+/PPP+Pjjj1FW\nVoYbN26gefPmePjhhzFo0CBlbePDhw/jL3/5C5o0aYLy8nKEhoZi+PDh6Ny5M7Zt24YdO3agpKTE\n5ByykpIS9OrVC6NHjwYA7Ny5E1999RX8/f1RVlaGiIgIZbpw9+7duO+++5TVToh0w97174i0kpaW\nJp988olyed++fTJz5kyr7vvNN99IWlqacvnSpUsybdo0ERHJzMyUrKysep/PfB3KTz/9VFnzt7S0\nVCZMmCAVFRWSm5srJ0+elIyMDMnIyBARkZ07d8qtW7eksrLSptfpTJ9//rmsWLFCuXzq1Cl5/vnn\nTV7/qVOnJCUlRb7//nsREcnNzZXx48fLpUuXRESkoqJClixZItu2bVPu8+mnn5qsfVr7OLXrWJ46\ndUpSU1OlqKhIRGr23auvviqHDx8WEZHCwkJ5/vnn5ZdfflH/RRM5gG1V0r2srCzEx8crl/v164c+\nffrY9VhnzpxRKqeIiAiEhYVZdb/+/fsrK/hnZWWhZcuW8PX1RXBwMGJjY5GZmams6DNkyBA0adIE\nTZs2tWsb1Xb9+nVs374dkydPBlBTRa5btw5Dhw41ef3du3fHoEGDlOW2srOz0a5dO9x7770AAF9f\nX/z6179Ghw4dTB5fzM4G69SpE/r37w8AOH/+PCIjI9GyZUsANcuYjRkzBm3atAFQsyLW6NGjkZ6e\nrv4LJ3IA26qkexEREfjqq6/wzDPPoFmzZnV+wqawsBCrV69GXl4evLy8MGbMGPTq1avO4xw7dgxb\nt25FQUEBFi5ciCFDhqBv376NPn9aWhrS0tIAAGfPnsX69euVx+jVqxdyc3Nx4cIFFBQUYO/evRg2\nbFiddm5eXh7Wrl2L8vJylJSUoHfv3hg9ejTKy8vx4Ycf4sqVKygvL0dkZCSmTJmiLMV4/vx5bNiw\nAVVVVaioqMDgwYMRGBiIDz74AP7+/pgwYQIefvhhzJ8/H/n5+ZgxYwZiY2NNtv/IkSMIDw9H8+bN\nAQC5ubnIzs6ud8WUqVOnKv+/a9eu+OWXX3DkyBE89NBDynWWfPbZZ4iOjlbaz5GRkfjkk09w+vRp\ndOvWDQBMvugANStprV69GiUlJUo7l8jVGI6keyNGjMA777yDZ599Fg899BCSkpKUD1+g5jhhhw4d\nMGvWLOTm5uLVV1/Fu+++i3bt2pk8TkJCAoqLi7F3716TY5DmRAT79u3DTz/9BKBmqalaXbt2RWpq\nKlauXGnyGDk5ORgwYACSkpIAQHkeoKZSW7p0KUaOHInExEQUFRXhhRdewOjRo1FVVaVUbADw9ttv\nY8+ePRg4cCBKS0uxePFizJo1C1FRUcjJycHSpUuxfPlyXL58GSdOnMDDDz8MABg2bBjKysrqBCNQ\nU+m2b99euVy7nFZQUJDF/d66dWsMHToUb7/9Njp06IC+ffti0KBBde6XnZ2NhQsXAqg5NhsdHa38\nLSIiAj179sT8+fPRpUsX9O3bF8nJySYhGBgYiCZNmiA7OxtRUVEWt4lIKwxH0r3o6Gj8+c9/xsGD\nB7F//34sXLgQjz32GKZMmYLr16/jn//8J37zm9/Ay8sL9957L0JDQ3Hw4EGMGDHCrufz8vJCYmIi\nxowZAwDKB38t8zZiY9dnZmYiPz8f/fr1A1DTSpwzZw4A4Fe/+hV8fHywbNkylJaW4sqVK8pawt9/\n/z2aN2+uBEbHjh0xffp0ADWt5U2bNqGgoACBgYE4fPgwpk2bVu/zFxUVoWPHjhZfc22FWlRUhB49\nemDChAkAgEmTJuHRRx/Fnj178M033+CLL77A3LlzTUIsNDRU+aLw2WefmTyul5cXZs6ciaysLOWn\n6LZu3Yo//OEPSrsWqGm31vcLQESuwnAkQ2jWrBkGDhyIgQMH4sSJE1i2bBnGjRuHa9euAQDS09Ph\n5eUFAKioqEBFRYVqz22pyrxb7fObu379ep1frbn//vsBAHv27EF6ejr++Mc/om3btvjss8+Uhfev\nXbtWZ+3H2vsFBgYiJiYG+/btQ3JyMnx8fBpcnFtETLat9pjr9evXleOknTt3xoIFC7B8+XIUFxeb\n3D8kJARjx45FSkoKVqxYgZ07d5qE491fCmonVM2Fh4cjPDwc48aNwxtvvIE9e/Zg3LhxJrcx0m8w\nkvtjOJLuvfvuu3j55ZeVy7GxsfDx8UF+fr4y2DF16lSlOrp16xZu376t6jbk5OQgICDArsWs27Rp\nU+f3Tn/++WcEBwcjKysLkZGRyk+ylZeXK0HWtm3bOr/Bl5WVpZw2kZSUhM2bN8PX1xePPPJIg89v\n/vM+HTp0QKdOnXD06FFl4e671YbdmTNncPr0aTz++OMAasL/wQcfxNatWy2+3qKiIqVa/e6773D7\n9m3l2G7Tpk0RFxeHM2fOmNynvLxct7++Q56J06qke2fPnsXRo0eVywcPHoSfnx/uvfdetG7dGg88\n8AD27t2L6upqiAj+9Kc/mfw2pK3qa48eOnQIOTk5Fu/TUFs1IiICwcHBOHDgAACgoKAAa9asQdOm\nTRETE4Pz58+jvLwcFRUVOH78uPI48fHxKCsrw7/+9S8ANcc+N2/erDxur169cPXqVXzzzTeIi4tr\ncNs6deqkVKNATchNnjwZ27dvV37SCKipJHNzc5UAr6ysxN/+9jcUFBQol/fv39/occGff/4Zhw4d\nAgCUlZVh165dKCkpAVDzu3uHDx82eYybN2+isrKy0dYvkZb4qxyke7t378bevXtRUlICEUFAQAB+\n85vfKJOTRUVFWLNmDS5duoR27dohISEBgwcPxrFjx7Bx40YUFBQgMTERsbGxyuWwsDC8/PLLdSrB\ntWvX4ttvv0VAQIDJh/WlS5fw1FNPwdfXF6tXr8Yvv/yCiIgITJ48GTt37sTBgwcRGBiI+Ph4xMXF\nYd26dcrzTp48Gfn5+Vi7di0qKirwq1/9CiNHjkSXLl1QVVWFjRs34vjx42jfvj18fX2RmZmJ//qv\n/8KwYcOUY4FATSt1zJgxJr9D98EHH8DPzw+TJk1qcP9dvXoVc+bMwYoVK0x+sig7O1tZBKC6uhrV\n1dVISEjAY489Bj8/PxQVFWHLli34+9//Dj8/PxQXF+OBBx7AhAkT4Ofnh127duGrr75CUVGRyYBU\nUVERYmJiMGrUKFy+fBlbtmzBjz/+iBYtWqC4uBi9e/dGSkqKEsLffvstdu/ejXnz5jnwLiFSF8OR\nyMA2btyIPn36oHPnzo3erqKiAlOmTNFoy6xTWlqK2bNnY9asWQgNDXX15hAp2FYlMqC9e/eisrIS\nFy5caDQYASAlJQVNmzZ1qN3sDAcOHMBTTz3FYCTdYeVIZEDTp09Hu3btMHr0aJPzColIHQxHIiIi\nM2yrEhERmWE4EhERmWE4EhERmWE4EhERmWE4EhERmWE4EhERmfl/iH5JLaaUgFAAAAAASUVORK5C\nYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x1d177b7d0>" | |
] | |
} | |
], | |
"prompt_number": 108 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment