Skip to content

Instantly share code, notes, and snippets.

@fredcallaway
Created February 22, 2018 02:54
Show Gist options
  • Save fredcallaway/08ab5bae7308171a5766bb1582475700 to your computer and use it in GitHub Desktop.
Save fredcallaway/08ab5bae7308171a5766bb1582475700 to your computer and use it in GitHub Desktop.
Item level effects
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Modeling item-effects in two-alternative forced choice data"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"sns.set_style('white')\n",
"sns.set_context('notebook', font_scale=1.3)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>looked_at_target</th>\n",
" </tr>\n",
" <tr>\n",
" <th>target</th>\n",
" <th>distractor</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">0</th>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">1</th>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">2</th>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" looked_at_target\n",
"target distractor \n",
"0 1 1\n",
" 2 0\n",
"1 0 1\n",
" 2 0\n",
"2 0 1\n",
" 1 1"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.DataFrame({\n",
" 'target': [0, 1, 2, 0, 1, 2], # the item_id of the target\n",
" 'distractor': [1, 2, 0, 2, 0, 1], # the item_id of the distractor\n",
" 'looked_at_target': [1, 0, 1, 0, 1, 1]\n",
"})\n",
"# Note that item 2 always wins.\n",
"data.set_index(['target', 'distractor']).sort_index()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Each item should occur as a target and a distractor.\n",
"# Although this requirement could be removed if you used\n",
"# tighter priors to encourage the model to use the universal\n",
"# target_pref parameter rather than each specific item_pref\n",
"assert set(data.target) == set(data.distractor)\n",
"n_items = len(set(data.target))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/miniconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [
"import pymc3 as pm"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Auto-assigning NUTS sampler...\n",
"Initializing NUTS using jitter+adapt_diag...\n",
"/usr/local/lib/miniconda3/lib/python3.6/site-packages/pymc3/model.py:384: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" if not np.issubdtype(var.dtype, float):\n",
"Multiprocess sampling (2 chains in 2 jobs)\n",
"NUTS: [target_pref, item_prefs]\n",
"100%|██████████| 1000/1000 [00:02<00:00, 429.57it/s]\n",
"The number of effective samples is smaller than 25% for some parameters.\n"
]
}
],
"source": [
"with pm.Model() as model:\n",
" # Latent variables.\n",
" item_prefs = pm.Normal('item_prefs', mu=0, sd=10, shape=n_items)\n",
" target_pref = pm.Normal('target_pref', mu=0, sd=10)\n",
" \n",
" # Softmax looking probability\n",
" pref_distractor = item_prefs[data.distractor.as_matrix()]\n",
" pref_target = item_prefs[data.target.as_matrix()] + target_pref\n",
" p_look_target = np.exp(pref_target) / (np.exp(pref_target) + np.exp(pref_distractor))\n",
" \n",
" # Likelihood.\n",
" pm.Bernoulli('looked_at_target', p=p_look_target, observed=data.looked_at_target)\n",
" \n",
" # Sample two chains of 500 samples using NUTS.\n",
" trace = pm.sample(500, njobs=2)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.gridspec.GridSpec at 0x11ea7bf60>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAEoCAYAAADWuc86AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcTfnjBvAnJVKiRmQkZMlQaSEiy1QMhi9jpwkRkmWY\nCfky1omxhjZKaMgag2EMY4sx2SZJ46eM0GSNFiJS3d8f6nzvVamT6tyb5/16eb3c7ZznLt3nns/5\n3HPVZDKZDERERCqoitQBiIiISoslRkREKoslRkREKoslRkREKoslRkREKoslRvSR4sRkKk8V9fpi\niVGpZWRkYP78+ejQoQNsbGzg4eGBxMREhesEBQXB1NS0wL9bt24BAO7fvw9nZ2dYWVnB1dUVjx49\nUrj90qVL4efnV+JM9+/fx+LFi+Ho6AgLCwv06NEDy5YtQ2pq6off4UIkJSXB1NQUZ86cAQB4eXlh\nyJAhhV5WGF9fX3Tq1OmDMuzbtw+mpqZ4/fp1iW8THx+P8ePHf9B6y4qLiwumT58udYxKw8XFpcDf\nm5mZGbp06YI5c+YgPT29yNuWxesRAHbs2IENGzZ88HJKQqNC1kKV0qxZsxAZGYmpU6eiWbNmOHjw\nIIYPH45ffvkF+vr6AN6+Wdrb22PKlCkKtzUyMgIArFixAjKZDAEBAVi3bh2WL1+OVatWAQAePXqE\nI0eO4Ndffy1RnqtXr2L8+PEwNjbGlClTYGhoiFu3bmH9+vU4e/Ystm3bhtq1a5fhI1CQh4eHqDKR\nytGjR3H9+nWpY1A56dixI7755hvh9KtXrxATEwN/f3+kp6eL+mBYGsHBwejdu3e5riMfS4xKJT4+\nHsePH8eyZcvQv39/AIC9vT2GDRuGoKAgeHl5AQDi4uLQs2dPWFpaFrqcuLg4jBw5EnZ2drhz5w62\nbdsmXBYQEAAXFxfo6OgUm+fVq1f47rvvYGZmhg0bNkBD4+1Lu0OHDujYsSP69euH9evXC7nKi7Gx\ncbkun6gkateuXeBvrkOHDnjx4gU2bNiAFy9eQFtbW6J0ZYvDiVQqCQkJAIAuXboonG9lZYVz584B\nAN68eYPbt2/D1NS0yOV8+umnuHTpEp4/f47Lly/j008/BQD8+++/iIiIwNdff12iPCdOnMC///6L\nmTNnCgWWr0mTJvjuu+/QrFkzAMCFCxdgamqKnTt3ws7ODvb29sjIyIBMJkNQUBAcHBxgbm6OAQMG\n4MKFCwrL+ueffzBq1ChYWlriyy+/RGxsrMLl8sOJ8o/VsGHDYG5ujq+++gqRkZFF3o+SZCiOr68v\nhg8fjn379sHJyQnm5uZwdnbGP//8I1zu5+eHJ0+ewNTUVFj+o0ePMG3aNNjY2MDGxgYzZsxQGIb1\n8vLCN998gylTpqBNmzaYO3cuLC0tsWXLFoX1Hzt2DK1atcKTJ08AAKdOncKwYcNgaWkJCwsLDBs2\nDH/99VeR+ffu3YtevXrB3NwcDg4O8PX1RW5urqjHgAqX/4GwuP1V+a8dCwsLjBgxQnjtAEBWVhZW\nr14NJycnmJmZoUOHDvDy8kJGRgYAwMHBAffu3UNwcDAcHBzK787kYYlRqdSpUwfA231Q8u7du4d7\n9+4BAG7fvo03b97g999/R5cuXWBmZobRo0fj9u3bwvWnTp2KP/74A23btsWFCxfw7bffAgD8/f3h\n6uoKLS2tEuWJjIxE3bp1iyzMUaNGYdCgQQrnbdmyBT/++CPmzJkDHR0d+Pj4wNfXF0OHDoW/vz+a\nNGkCNzc3/P333wCA58+fY9SoUXj9+jV8fHwwdOhQzJkzp9hsK1euRPv27eHn5wdDQ0OMGzcON2/e\nLPS6xWUoqfj4eISEhOC7776Dj48PHjx4gNmzZwMABg8ejEGDBqF27drYtWsXWrdujZcvX2LkyJGI\nj4+Ht7c3Fi9ejCtXrmDChAnIyckRlnv8+HHo6OggICAAgwYNQrdu3XDs2DGFdR89ehS2traoU6cO\nrly5Ag8PD1haWmL9+vVYtmwZnj9/Dk9PT4Xl5rt06RLmzp2L/v37IyQkBC4uLggMDMTOnTtF3f+P\nnUwmQ3Z2tvDv+fPniIiIwObNm9GlS5f3jm6kpKQgODgYnp6eWLlyJe7fvy/8XQKAt7c3wsPDMWnS\nJISEhMDNzQ2HDh1CcHAwAMDPzw8GBgbo169fuQ9bAhxOpFKysLBA48aNMXfuXHh7e8PIyAhHjhxB\nREQEsrKyALwdKgSAtLQ0LFu2DOnp6fD398eYMWNw+PBh1KhRAxYWFoiIiMC9e/fQsGFDaGpqIiEh\nARcvXsSiRYsQFhaG7du3o1GjRli4cCEMDAwKzfP48WNhK66kxowZg65duwoZN2/ejClTpggTHrp0\n6QJnZ2f4+/sjICAAP//8MzIyMhAQECDs88vOzsayZcveu54BAwYIExc6deoEJycnbN26FYsWLVK4\nXkkylFRGRgbWrVuHpk2bAgCePn2KefPmITU1FYaGhjA0NISGhoYw5BQWFoZ79+7h6NGjaNCgAQCg\nVatW6NWrF06dOgUnJydh2fPnz0f16tUBAF9++SWmTp2K5ORkGBgYICsrC6dOnRKGbW/duoU+ffoo\nDONqaGhg8uTJuH//Pho2bKiQ+8qVK9DS0oKrqys0NTVha2sLdXV11K1bt8T3nYAjR47gyJEjCudp\na2vjiy++KHZIPTc3F2vXrkWLFi0AAMnJyVi0aBGeP3+OmjVrIjU1FbNnz0bfvn0BAO3bt8dff/0l\nbF23atUKmpqaqFu3Llq1alUO904Rt8SoVDQ1NeHn54fc3FwMGDAAtra2OHDgANzc3IQ3uA4dOmDD\nhg3w9/eHnZ0devbsiaCgIDx58gT79u0TllW9enU0bdoUmpqaAN4Od40bNw5xcXFYtWoVvL29oaen\nh/nz5xeZp0qVKoV+sn+fJk2aCP+/evUqsrKy0LlzZ4VPsPb29sJwW1RUFMzMzIQCA4Du3bsXux75\n62hoaMDe3h5RUVEFrleSDCWlo6MjFBgAGBoaAgAyMzMLvf6lS5fQvHlz1KtXT1ivkZERjI2Ncf78\neYXl5D+/wNuSrVGjBo4fPw4AOHv2LF6/fi3c50GDBmHFihXIyMhATEwM9u/fj4MHDwJ4O9z8Lmtr\na7x8+VL4FP9///d/GDlypEKJUvHs7e0RHh6OPXv2YN68eahevToGDBiAJUuWoFatWgW21LKzs4Xb\namtrCwUG/G8S1vPnzwEA69atQ9++ffHgwQOcO3cOW7Zswa1btwp9PisCt8So1Jo3b46DBw/iwYMH\nyMnJgZGREdauXQtdXV0AgIGBAbp166Zwm/r166Np06aIj48vdJk3btxAbGwsli9fDn9/f7Rr1w6W\nlpZQV1fH0KFDkZ2dXWCfF/B239q7+6fkpaamQltbWyhKAApllJaWBgDCJJV3ZWZm4tmzZ9DT01M4\n/5NPPilynUVdR09PT3hDkFeSDCUdXpUvGgBQU1MDgCL3LaWlpeH69eto3bp1gctatmwp/P/d+1Kt\nWjU4Ojri2LFjGD58OI4ePQo7OzvhcXrx4gXmzp2L3377Derq6mjWrJnwpljYfpm2bdvC398fmzZt\nQkBAAHx9fdG8eXMsWbIEFhYWJbrvBOjq6sLc3BzA21ETbW1tzJo1CwYGBpgwYQIuXryIkSNHKtwm\nf+Tk3dfYu6+dy5cvY/78+fjnn39Qu3ZtmJmZoXr16pJ975AlRqWSmZmJo0ePwt7eHvXr1xfOv3Hj\nhvCmd/nyZSQnJ6NXr14Kt339+jVq1KhR6HLXrl2LiRMnomrVqkhJSUHNmjUBADVr1kROTg5SU1ML\nHVLs2LEjwsLCEB8fr/ApMt/y5ctx9uxZnD59utD15hdvSEgIatWqVeByTU1N1KpVCw8fPlQ4/33f\nucn37NkzhdNPnz5VKFAxGcqLrq4urKysCt3HV1gWeb1798akSZPw9OlTnDp1Stj3BgA//PAD/vrr\nL/z000+wtLRE1apVERERgd9//73I5Tk6OsLR0RFpaWk4ffo0/Pz8MGPGDBw9erT0d/Aj179/fxw4\ncAB+fn7o2bMnWrdujfDwcNHLef78OSZOnAh7e3sEBQUJQ8/Tpk0rsH+8onA4kUpFQ0MDCxYsUHhj\nSUxMxNmzZ4X9TJGRkfDy8lKY4Xbz5k3cuXMHbdu2LbDMmJgY3L59G/369QPwdksp/7ZPnz5FlSpV\nCmwJ5evSpQsaNmyI5cuXKwyN5K/zyJEj6N69e6FbccDbT6saGhpIT0+Hubm58O/cuXPYsWMH1NXV\n0a5dO1y7dk2hyM6ePVvsY/Xnn38K/8/KysKZM2dgY2NTqgxlpUoVxT99Kysr3L17F02aNBHW27x5\nc/j6+uLatWvvXVanTp2gra2NtWvXIjMzU2HoLzo6Gg4ODmjXrh2qVq0K4H+PR2Gf3Dds2IChQ4cC\neDtNvH///hgyZEiBL8GTeLNnz0Z2djZWrVoFHR0dhddY/lZbcRISEvDs2TO4uroKBfbq1StERUUp\nbOW/+/oqT9wSo1KpWrUqBg4cCD8/P+jq6kJLSwsrVqxA48aNhVmAQ4YMwbZt2zBx4kS4u7sjPT0d\na9euhYWFBRwdHQssc82aNZg8ebLwZt25c2eEhITg8OHDOHToEOzt7YssIU1NTXh7e2PChAn4+uuv\nMWLECBgYGOD69esIDg6GkZERvvvuuyLvzyeffIJhw4ZhwYIFwtTzixcvIjAwUPjS6FdffYWQkBCM\nHz8eU6dOxZMnT+Dr61vsY7V9+3bo6+vDxMQEoaGhyMzMhKura6kylBVdXV2kp6fj9OnTsLKywsCB\nAxEaGgo3NzeMHTsWmpqa2LRpE2JiYoqdCFC1alV0794de/bsQdeuXYUtSgAwMzPDb7/9BhsbG9Sp\nUwcnT55EWFgYAODly5cFltWuXTusWbMG8+bNQ69evfD06VOEhYVxn1gZaNGiBfr37499+/bhypUr\nsLKyEr2MJk2aoEaNGli7di3Gjh2L58+fY9OmTXj8+LEwagK8fX1dvXoV0dHRRX5HtKxwS4xKzdPT\nE7169cLSpUsxZ84cWFhYYPPmzcKwV7169bB161Zoa2vD09MT3t7eaN++PTZs2CCMs+e7dOkSkpOT\nFb7lb2NjgwkTJmDRokVITU1978QO4O0sqZ07d+LTTz/FqlWrMGHCBOzevRsDBgzA9u3bi/3S9H//\n+1+MGjUKoaGhGDduHA4fPoxZs2bB3d0dwNt9BaGhoTA0NISnpydCQkKwYMGCYh+nOXPm4MCBA/Dw\n8EBGRgZCQ0OFT7FiM5SV3r17o1mzZpg8eTL++OMP6OrqYuvWrTAwMICXl5cwpTo0NBQmJibFLu/L\nL79Ebm5ugaM0eHl5oW3btliwYAGmTZuGGzduYMuWLdDS0sLVq1cLLMfa2hqrVq1CdHQ03N3d4e3t\njW7dupXocabiTZs2DdWrV8fy5ctLdXtdXV2sXbsWjx8/hru7O3788UeYmpri+++/x507d4T9um5u\nboiLi8O4ceMKjIyUNTUZjwJKREQqiltiRESkslhiRESkslhiRESkslhiRESksjjFvhLIzs4u8CVc\nIvpw+ceYrAivXr1CbGwsDAwMyvQ7gZVBTk4OkpOThaODyGOJVQIPHz4s9HtXRPRhTpw4IRwmq7zF\nxsbC2dm5QtalqsLCwgocKIElVgkYGhrixIkTUscgqnTyD5xcEfIPpxYWFlah61UFDx8+hLOzc6GH\nnGOJVQIaGhoV9mnxY2drawsAuHjxosRJqLLJH0I0NDTk33MRChtmZYkRiVBZftKdqLJgiRGJcOrU\nKakjEJEcTrEnIiKVxRIjEuHcuXM4d+6c1DGIKA+HE4lEyJ8CfefOHWmDEBEAlhiRKPk/UUJEyoEl\nRiTC1KlTpY5ARHK4T4yIiFQWS4xIBE9PT3h6ekodg4jysMSIRAgPD0d4eLjUMYgoD/eJEYnwxx9/\nSB2BiOSwxIhE4DHtiJQLhxOJiEhlscSIRDAxMYGJiYnUMYgoD4cTiUSwsbGROgIRyWGJEYmwZ88e\nqSMQkRwOJxIRkcpiiRGJcODAARw4cEDqGESUh8OJRCJ88803AIB+/fpJnISIAJYYVUJRiam4kJCC\n9ib6sDbWK9NlL1mypEyXR0QfhiVGknLdfBGn4pKljlGsz00NsNnVFiNGjJA6ChHJKZMSk8lkUFNT\nK4tFUQXq4ROB+EcZUsdQCafiktHY67DUMQQt6ung2PSuUscgkpzoEvPy8kJCQgJ2794NANixYwfS\n09Ph7u5e5uGUhUwmw/z58/HLL79AQ0MDv/zyCwwNDUUtw9TUVPj/pUuXoKuri7///hve3t64fv06\nDAwMMH78eAwePBgAMH36dPz6668AgAULFmD48OFld4fyVMY3wajEVAxZH4nsXBk0qqhht7tdmQ4p\njh49GgCwZcuWMlsmEZWe6BLz8PDA69evhdPBwcHo3bt3mYZSNjExMdi1axemTJkCW1tb1KtXr1TL\ncXNzQ/fu3aGtrY3k5GSMGTMGVlZWWLt2LS5cuIC5c+dCT08PTk5OmDZtGkaNGoWhQ4eW8b2p3KyN\n9bDb3a7c9omdPn26TJdHRB9GdIkZGxuXRw6l9uzZMwBvZ6Q1bNiw1MsxMjKCpaUlAGD79u3Q1NTE\nunXroKmpia5duyIlJQWBgYFwcnJCo0aN0KhRozLJ/7GxNtYr8/LK93//93/lslwiKh3R3xPz8vLC\nkCFDAAAODg64d+8egoOD4eDgIFzn1KlT6N+/P8zNzeHo6IiwsDCFZZiammL//v1wd3dHmzZt4ODg\ngF9//RXx8fEYOnQo2rRpg6FDh+LWrVslznXhwgWYmpoiMjISffv2RZs2beDs7IwbN24oZP/mm28w\nZcoUtGnTBvPmzQMAPHr0CNOmTYONjQ1sbGwwY8YMpKamAgB8fX3h5uYGAHBycoKXlxcAYO/evejV\nqxfMzc3h4OAAX19f5ObmljhvZGQkOnfuDE1NTeE8BwcHxMbGIi0trcTLoYqlpaUFLS0tqWMQUZ4P\n+rKzn58fDAwM0K9fP/j5+QEAzpw5Aw8PD7Rq1QoBAQH46quv4O3tXaDIFi9ejFatWmH9+vUwNjbG\nnDlzMHXqVPTv3x9r1qzBvXv3sHjxYtGZpk+fjr59+2LNmjXIysrCqFGjhEICgOPHj0NHRwcBAQEY\nMGAAXr58iZEjRyI+Ph7e3t5YvHgxrly5ggkTJiAnJweDBw/G7Nmzhfvr4eGBS5cuYe7cuejfvz9C\nQkLg4uKCwMBA7Ny5s8Q579y5U2BLK/9nPhITE0Xf749ZVGIqAk/fQlRiavFX/kCpqakKryei8laR\nr29V9EGzE1u1agVNTU3UrVsXrVq1AgCsW7cOHTt2FL5P07lzZ2RnZ8PX1xdDhgxB1apVAQCdOnXC\n1KlTAQDq6upwcXHBf/7zH2ECg7OzMzZu3Cg6k7OzM8aPHw8AwlZeeHg4xo0bJ1xn/vz5qF69OgAg\nLCwM9+7dw9GjR9GgQQPhfvXq1QunTp2Ck5OTcNTyzz77DEZGRvjtt9+gpaUFV1dXaGpqwtbWFurq\n6qhbt26Jc2ZkZEBbW1vhvPzTL168EH2/VZGyTq/Pn05fGCsrKwBvP4QQlbfynqhUGZTp98RevnyJ\n2NhYzJ49G9nZ2cL59vb2CAwMxM2bN4Wys7CwEC7/5JNPAACtW7cWzqtduzYyMsRP/5afZKKvrw9L\nS0tERUUJ5xkaGgoFBrydKdi8eXPUq1dPyGxkZARjY2OcP38eTk5OBdZhbW2Nly9fol+/fvjyyy/h\n6OiIkSNHisr5vq8llNfXFTilvmTeO51+mD8ASDLdntPqPz4XElKQnSsDAGTnynAhIYUl9o4yLbFn\nz55BJpNhyZIlhR7ZIDn5f5+6390KAaBQLqX17taQvr4+Hj16JJzOL8x8aWlpuH79ukKB5mvZsmWh\n62jbti38/f2xadMmBAQEwNfXF82bN8eSJUsUyvl9dHR0Cmxx5Z+uWbNmiZYhVmV8A+QnVarM2pvo\nQ6OKmvD6bm+iL3UkpVOmJaajowMA+Pbbb9GxY8cCl1fEbLu0tDSFEnj69Cn09Yt+4nV1dWFlZYU5\nc+YUuKxWrVpF3s7R0RGOjo5IS0vD6dOn4efnhxkzZuDo0aMlytm4cWMkJSUpnJeUlAQ1NTXOShSh\nvKfUE0mJr+/iffBR7KtU+d8idHR00KJFC9y7dw/m5ubCv5SUFPj6+ip8v6y8nDlzRvj/06dPER0d\njbZt2xZ5fSsrK9y9exdNmjQR8jZv3hy+vr64du1aobfZsGGD8P2t2rVro3///hgyZIjCFl9xOnTo\ngLNnzyIrK0s47+TJk2jdurXwYYBKxtpYDxO7Na2QP/BNmzZh06ZN5b4eonwV+fpWRR9cYrq6urh6\n9Sqio6MBAJMnT0Z4eDiWLVuGyMhI7NmzBzNnzkR2djYMDAw+OHBxVq9eje3bt+PkyZMYP3489PT0\nMGjQoCKvP3DgQFSrVg1ubm74/fffERERgQkTJuDSpUv47LPPCr1Nu3btEBMTg3nz5iEyMhKHDh1C\nWFhYofvPijJixAikp6dj4sSJiIiIwIoVK4SvHZDyWrRoERYtWiR1DCLK88HDiW5ubliwYAHGjRuH\nyMhIfPHFF1i9ejUCAwOxdetW6Onp4csvv8S3335bFnmL5eXlhY0bN+Lx48ewtbXFmjVrCt3/lk9X\nVxdbt27F8uXLhe+AmZmZITQ0VJiV+C5ra2usWrUK69evx4EDB1CjRg306NEDM2bMKHHOevXqISQk\nBN7e3pg8eTLq168Pb29vdO/eXdwdpgoVFBQkdQQikierJM6fPy9r0aKF7J9//pE6SqFatGgh2759\ne4XdjohUy7///itr0aKF7N9//5U6itJ532Oj9D/FIpPJkJOT897rqMoR9JOSkhAdHQ1zc3Ooq6u/\n97p3797ll2qJiIqh9CV28eLFYr+D1aBBAyxdurSCEpXexo0bsXHjRuEo9u+zZs0a4Sj2pDz69OkD\nADh06JDESYgIUIESa926NcLDw997HU1NTZiamiIuLq6CUoknNpuPjw98fHzKKQ2V1u3bt6WOQERy\nlL7EdHR0YG5uLnUMIgDA33//LXUEIpLzwVPsiYiIpMISIxLh5s2buHnzptQxiCiP0g8nEimT/O/x\n8Sj2RMqBJUYkwtdffy11BCKSwxIjEuGHH36QOgIRyeE+MSIiUlksMSIRli9fjuXLl0sdg4jysMSI\nRAgICEBAQIDUMYgoD/eJEYmwd+9eqSMQkRyWGJEINjY2UkcgIjkcTiQiIpXFEiMSwc7ODnZ2dlLH\nIKI8HE4kEqFq1apSRyAiOSwxIhHOnDkjdQQiksPhRCIiUlksMSIRzp8/j/Pnz0sdg4jycDiRSIRh\nw4YB4FHsiZQFS4xIhGnTpkkdgYjksMSIRGCJESkX7hMjIiKVxRIjEmHmzJmYOXOm1DGIKA9LjEiE\n3bt3Y/fu3VLHIKI83CdGJEJERITUEYhIDkuMSIRGjRpJHYGI5HA4kYiIVBZLjEiE5s2bo3nz5lLH\nIKI8HE4kEsHc3FzqCEQkhyVGJMK+ffukjkBEcjicSEREKoslRiTCoUOHcOjQIaljEFEeDicSiTB5\n8mQAQJ8+fSROQkQAS4xIlMWLF0sdgYjksMSIRHBxcZE6AhHJ4T4xIiJSWSwxIhHGjh2LsWPHSh2D\niPJwOJFIhBMnTkgdgYjksMSIRIiNjZU6AhHJYYkRiaCjoyN1BCKSw31iRCI8e/YMz549kzoGEeXh\nlhiRCBYWFgCAO3fuSBuEiACwxIhE6dGjh9QRiEgOS4xIhKCgIKkjEJEc7hOjSisqMRWBp28hKjFV\n6ihEVE64JUaSc918EafikqWO8V6fmxpgs6sttmzZAgAYPXq0pHmI6C2WWAUxNTUV/n/p0iXo6uoK\npzMyMtCnTx8sWrQIXbp0AQCsXLkSwcHBAIBx48bB09OzTPP08IlA/KOMMl1mZXYqLhmNvQ4DMAAA\nLPA6LG2gd7Sop4Nj07tKHYOowrHEKpCbmxu6d+8ObW1t4byXL19i8uTJePDggcJ1nZ2d4eTkJPz0\nR1mr7G94UYmpGLI+Etm5MmhUUcNudztYG+t98HKPHDkCAOjVq9cHL4uIPhxLrAIZGRnB0tJSOB0d\nHY3vv/8ejx49KnDd+vXro379+tDU1KzIiJWGtbEedrvb4UJCCtqb6JdJgQEsLyJlw4kdEvr222/R\nuHFjYdiQypa1sR4mdmtaZgVGRMqHW2ISCgoKQrNmzZCUlCR1lEohKjG1zLe83tWvXz8AwIEDB8pl\n+UTvqojXtSpjiUmoWbNmUkeQjLLPSMyfjfiuuLg4CdLQx6q89u1WJiwxAsDZiu/632zEd/RfBQCF\nX1ZBOBPx43EhIQXZuTIAQHauDBcSUlhi72CJEQDVn63IT6xUGbU30YdGFTXhdd3eRF/qSEqHJUaV\nQnnNRnxXQkICAMDExKRclk8kr6Je16qMJUaVhrWxXrn/kTs4OADgUeyp4lTE61qVscSIRBg+fLjU\nEYhIDkuMSISlS5dKHYGI5LDElICRkRGnbhMRlQKP2FGBkpKSEB0djZycnGKv++DBA0RHRyMrK6sC\nklFJrVq1CqtWrZI6BhHlYYlVoI0bN2Lo0KF48eJFsdcNCwvD0KFDkZysvF8I/hj5+vrC19dX6hhE\nlIfDiRVE7HChp6dnmf/8Cn243bt3Sx2BiOSwxIhEsLUteCgqIpIOhxOJiEhlscSIRLC3t4e9vb3U\nMYgoD0uMiIhUFveJEYnwxx9/SB2BiORwS4yIiFQWS4xIhIsXL+LixYtSxyCiPBxOJBJhyJAhAHgU\neyJlwRIjEmHKlClSRyAiOSwxIhG+++47qSMQkRzuEyMiIpXFEiMSYfbs2Zg9e7bUMYgoD0uMSIQd\nO3Zgx44dUscgojzcJ0YkwsmTJ6WOQERyWGJEIpiYmEgdgYjkcDiRiIhUFkuMSISWLVuiZcuWUscg\nojwcTiQSwdTUVOoIRCSHJUYkwoEDB6SOQERyOJxIREQqiyVGJMKRI0dw5MgRqWMQUR4OJxKJMHHi\nRAA8ij3afkZRAAAVkklEQVSRsmCJEYmwYMECqSMQkRyWGJEIo0ePljoCEcnhPjEiIlJZLDEiEcaP\nH4/x48dLHYOI8nA4kUiEY8eOSR2BiOSwxIhEiImJkToCEclhiRGJoKurK3UEIpLDfWJEImRkZCAj\nI0PqGESUh1tiRCKYmZkB4JediZQFS4xIBEdHR6kjEJEclhiRCCEhIVJHICI53CdGREQqiyVGJMLW\nrVuxdetWqWMQUR4OJxKJ8P333wMAXFxcJE5CRABLjEgUPz8/qSMQkRyWGJEIffr0kToCEcnhPjEi\nIlJZLDEiEQYMGIABAwZIHYOI8nA4kUiEa9euSR2BiOSwxIhEuHnzptQRiEgOhxOJiEhlscSIRLh7\n9y7u3r0rdYwPFpWYisDTtxCVmCp1FKIPwuFEIhG6du0KoGKPYu+6+SJOxSVX2PrKyuemBtjsait1\nDKrkWGIVxNTUVPj/pUuXoKuri8jISKxduxbx8fGoVasWHB0dMX36dGhra2PlypUIDg4GAIwbNw6e\nnp5SRf8o9PCJQPyjEvxO2DB/AEBjr8PlnEj1nYpLVsrHqUU9HRyb3lXqGFRGWGIVyM3NDd27d4e2\ntjauX78ONzc39OzZE5MmTcLDhw+xevVqPHjwAP7+/nB2doaTkxMmT54sdeyPwsf0phaVmIoh6yOR\nnSuDRhU17Ha3g7WxntSxiEqFJVaBjIyMYGlpCeDtgWSbNWuGlStXQk1NDQCgo6ODadOm4d69e2jQ\noAHq168PTU1NKSNTJWRtrIfd7na4kJCC9ib6LDBSaSwxibRs2RJt27YVCgwAmjRpAgBCiZHyWbNm\nDQBg2rRpEif5MNbGeiwvqhRYYhIZNWpUgfMiIiKgpqaGxo0bV3wgKhFVLrGoxFRufakgPm/vxxJT\nEjdv3sSGDRvQp08f1K1bV+o4VISdO3eW27JVaRYiZx5WDO6/LB5LTAkkJCRgzJgxqFevnvB7VVS+\nSjwbsSj7lW/WXUVS1pmHRVHVGYkXElKQnSsDAGTnynAhIYUl9g6WmMRiYmIwYcIE6OrqYvPmzahV\nq5bUkT4KqviG9iH4iV41tTfRh0YVNeF5a2+iL3UkpcMSk9D58+cxceJEGBkZYdOmTTAwMJA6EhWj\nS5cuAIAzZ85InEQczkhUTXzeiscSk0hCQgI8PDzQtGlThISEcAtMRbx580bqCKXGGYmqic/b+7HE\nJOLt7Y03b97A3d0dt2/fVrisadOmqFmzpkTJ6H0iIyOljkBEclhiEsjMzMS5c+cgk8kwadKkApcH\nBwcLw1ZERFQ0lpgEtLS0cOPGDaljUCn89ddfAAAbGxuJkxARwBKrUElJSYiOjoa5uTnU1dXfe90H\nDx7g0aNHyMrKqqB0VBIDBw4EULFHsSeiorHEKtDGjRuxceNG4Sj27xMWFiYcxZ6Uh4eHh9QRiEiO\nmkwmk0kdgojoY5eUlARHR0ecOHECRkZGUsdRKu97bPjLzkREpLJYYkQizJ07F3PnzpU6BhHlYYkR\nibBt2zZs27ZN6hhElIcTO4hE+P3336WOQERyWGJEIjRv3lzqCEQkh8OJRESkslhiRCK0bt0arVu3\nljoGEeXhcCKRCE2aNJE6AhHJYYkRiXDo0CGpIxCRHA4nEhGRymKJEYlw7NgxHDt2TOoYRJSHw4lE\nIowfPx4Aj2JPpCxYYkQizJs3T+oIRCSHJUYkwpgxY6SOQERyuE+MiIhUFkuMSAR3d3e4u7tLHYOI\n8nA4kUiE3377TeoIRCSHJUYkwpUrV6SOQERyWGJEIujp6UkdgYjkcJ8YkQiZmZnIzMyUOgYR5eGW\nGJEIn332GQB+2ZlIWbDEiETo1q2b1BGISA5LjEiELVu2SB2BiORwnxgREakslhiRCNu3b8f27dul\njkFEeTicSCTCf//7XwDAiBEjJE5CRABLjEiUtWvXSh2BiOSwxIhE6Nevn9QRiEgO94kREZHKYokR\niTB48GAMHjxY6hhElIfDiUQi/PXXX1JHICI5LDEiERISEqSOQERyOJxIREQqiyVGJEJSUhKSkpKk\njkFEeTicSCSCvb09AB7FnkhZsMSIRBg0aJDUEYhIDkuMSISVK1dKHYGI5HCfGBERqSyWGJEI69at\nw7p166SOQUR5OJxIJMLq1asBAFOnTpU4CREBLDEiUcLCwqSOQERyWGJEInTq1EnqCEQkh/vEiIhI\nZbHEiET4/PPP8fnnn0u2/qjEVASevoWoxFTJMhApEw4nEonw4sWLMl2e6+aLOBWXXKbLLMznpgbY\n7Gpb7ushqmgssXfIZDKoqalJHYOUUA+fCDx2mA8AaOx1WOI04pyKSy7XzC3q6eDY9K7ltnyiokha\nYg8ePMDs2bOxYcMGVKtWTcooAIDLly9j586dSnNUhujoaHh5eeHevXsYNmwY5syZI3Wkj5rUb9JR\niakYsj4S2bkyaFRRw253O1gb60maiUhqkpZYZGQkIiMjpYygIDw8HImJiVLHEPj5+UEmkyEoKAgN\nGjSQOg7h7QcLALC0tKzwdVsb62G3ux0uJKSgvYk+C4wIHE5Uas+fP4elpSXs7OykjkJ5+vfvD0C6\no9hbG+uxvIjkSDY7cd++fZg9ezYAwMLCAvv27QMA/PPPP5g0aRJsbW1hZmaGL774Anv27BFu5+vr\ni+HDh2P+/PmwsrLCuHHjAACJiYlwc3ODlZUVHBwc8PPPP6N79+7CcgHgypUrGD58OCwsLNC5c2f4\n+voiNzcXAODl5YWff/4ZV69ehampaYl/M8rFxQVLlizBDz/8AGtra9jb22PdunXCcpOSkmBqaoqf\nfvoJXbp0ga2trfAGuHfvXvTs2RNmZmbo3bs3jhw5IizX1NQU0dHR2L9/v6g8VL4mTJiACRMmVOg6\nOSPx48bn//0k2xLr1q0bJk6ciMDAQGzbtg1NmzZFRkYGRo4ciVatWgn7pXbs2IHvv/8ebdu2RZMm\nTQAAMTEx0NHRQUBAAADg1atXGD16NHR1dbFixQqkpKTgxx9/VJhJduPGDYwaNQqdOnWCr68v7t69\ni9WrV+Ply5eYNWsWPDw8kJKSgvv37+OHH35A3bp1S3xf9u3bh2bNmmHVqlWIj4/HunXroKamhilT\npgjXCQoKwrx58/Dy5Us0btwYu3btwoIFC+Dq6go7OzucOXMG06dPR7Vq1eDg4IBdu3Zh7ty5+PTT\nT+Hh4SEqD5Wf/A9eZaEiZiZyVqJq437Q4klWYvr6+jA2NgbwdkusWrVquHbtGpo0aQIfHx/UrFkT\nANCmTRvY2toiKipKKLHs7GzMmTMHjRs3BgDs3r0bycnJ2Llzp/BmX6tWLYXj2wUGBqJhw4bw8/OD\nuro6AEBLSwsLFy6Em5sbjI2Noa+vj7S0tFLt7wgODkbNmjXx+eefIy0tDVu2bIG7u7tw+cCBA9Gj\nRw8AQG5uLtatW4fBgwdj5syZAIDOnTsjLS0Na9euhYODAywtLVGjRg3o6+tLsv+FFPXwiUD8owyp\nY4hW3rMSAc5MLE8XElKQnSsDAGTnynAhIYUl9g6l2idmbm6OsLAwZGVlIS4uDnfu3EFMTAwA4M2b\nN8L1NDQ00LBhQ+H0hQsXYG5urrC14uTkBA2N/929S5cuoU+fPpDJZMjOzgbwtjjevHmDqKgodO/e\nvdS5O3fuLJQuADg6OmLTpk24efMmdHV1AUAoYAC4ffs2njx5gi5dughZ8pdz8OBBpKWloXbt2qXO\nQ2Uv/016/vy3U+wXLlxYIevlJ/GPW3sTfWhUUROe//Ym+lJHUjpKVWLA2xl5ISEhyMzMRMOGDWFr\n+3YoRCaTCdepXbu2sDUFAGlpadDXV3xy1dXVoaenp3Cd0NBQhIaGFljn48ePPyizgYGBwun8LOnp\n6UKJyedLTX07tj1p0qRCl/fkyROWmJLKf/1UVIlxRuLHjc9/8ZSqxPbv34+AgAB4e3ujR48e0NbW\nxqtXrxAeHv7e29WtW7fAbDGZTIa0tDThdM2aNdGnTx9hdpm8Tz/99INyp6enK5xOSUkBgALFmi+/\n2JYuXYrmzZsXuNzIyOiD8lD5+e233yp8nZyR+HHj8/9+kh47sUoVxdVfuXIFjRs3xldffQVtbW0A\nwLlz5wBAmO1XGGtra8TGxipsUZ09e1ZhCNLKygp37tyBubm58E9DQwNr1qzB06dPC81TUn/++Sey\nsrKE08ePH0ft2rULLSgAMDExQe3atfHkyROFPHFxcQgKCip1Dip/LVu2RMuWLaWOQUR5JN0Sy98i\nOXLkCDp27AgzMzPs2rULQUFBsLS0xPXr1+Hn5wc1NTVkZmYWuZx+/fohMDAQ7u7u8PDwQEZGBlat\nWgXgf8Xk7u4OZ2dnzJ49G71790Z6ejp8fHygpaUl7K/S1dVFYmIiIiMjYWVlherVq5fofiQnJ2PK\nlClwdnZGbGwstm7dipkzZxZZRhoaGpgwYQLWrFmDN2/ewMbGBjdu3ICPjw/+85//QFNTs8SPIRHR\nx0zSErOzs0OHDh0wd+5cfPPNNxg7diwSEhIQGhqKwMBAGBsb47///S8OHjyIq1evFrkcTU1NhISE\nYOHChfj2229Rp04dzJw5E56entDS0gLw9ggLISEhWLNmDSZNmgRtbW3Y29tjxowZqFq1KgBgyJAh\nOH78OMaPH4/Q0FBYW1uX6H50794denp6mDp1KvT19eHl5QUXF5f33mbMmDGoXr26cF/r1q0LV1fX\nIveTkXKwsLAAAGHCERFJS00mP2NCRcXFxeH+/fsKP5Fx+/Zt9OzZEwcOHCjX4R8XFxfUqVMHPj4+\n5bYOUh69e/cGAPz6668SJ6HKJikpCY6Ojjhx4gT3i7/jfY+NUk3sKK20tDRMnDgRU6ZMQbt27ZCa\nmor169fD0tISpqampVpmTk4Oiut3+RmS9HFgeREpl0pRYu3bt8fixYsRGhqKDRs2QFtbG926dcOs\nWbNK/bMqo0ePxsWLF997naVLl5Zq2UREVDYqRYkBwODBgzF48OAyW97ChQuL/QFEIyMjDBgwoMzW\nScrv+PHjAN5+mZ6IpFdpSqysmZiYSB2BlJCbmxsA6Y5iT0SKWGJEIvCHSYmUC0uMSIT8n/4hIuXA\nQ0MQEZHKYokRiTBp0iR+IZ1IibDEiEQ4fPgwDh8u39/nIqKS4z4xIhEuX74sdQQiksMSIxKhTp06\nUkcgIjkcTiQSISsrS+Fnd4hIWtwSIxKhRYsWAPhlZyJlwRIjEqFz585SRyAiOSwxIhG2bt0qdQQi\nksN9YkREpLJYYkQi7Nq1C7t27ZI6BhHl4XAikQizZs0CAAwdOlTiJEQEsMSIRFm9erXUEYhIDkuM\nSAT+CCqRcuE+MSIiUlksMSIRhg0bhmHDhkkdg4jycDixEsjOzsbDhw+ljvFROH/+PAAgKSlJ4iRU\nEQwNDaGhUTFvkzk5OQDAv+VC5D8m+Y+RPJZYJfDw4UM4OjpKHeOjUK1aNQDg4/2ROHHiBIyMjCpk\nXcnJyQAAZ2fnClmfKkpOTkajRo0UzlOTyWQyifJQGeGWGFH5qMgtsVevXiE2NhYGBgZQV1evkHWq\nipycHCQnJ8PMzAzVq1dXuIwlRkREKosTO4iISGWxxIiISGWxxIiISGWxxIiISGWxxFRcQEAAunXr\nhrZt28LFxQXx8fHCZX/++Sf69OkDS0tLjBgxArdv35YwaeF++OEHLFu2TOE8Zc19/fp1DBo0CJaW\nlujXrx+io6OljvReMTExsLe3F06np6dj0qRJsLGxQbdu3bBnzx4J0ym6fPkyBg8eDBsbGzg5OWHn\nzp0AlDtzRXn3eaysinoNFEtGKmvv3r2yHj16yBITE2Vv3ryR+fv7y7p16ybLycmRJScny6ysrGQn\nTpyQvX79Wubr6yvr3bu3LDc3V+rYMplMJktJSZHNmjVL1qJFC9mPP/4onK+suV+9eiXr3LmzLCws\nTJaVlSXbs2ePrEOHDrKMjAxJcxUmNzdXtmfPHpmNjY3M1tZWOH/KlCkyT09P2atXr2RXr16V2dra\nyq5cuSJh0rfS0tJk7dq1kx08eFCWk5Mji42NlbVr10527tw5pc1cEYp6Hiuj970GisMtMRWWmpoK\nd3d3NGzYEBoaGhg5ciTu37+Phw8f4tixY/jss8/g4OAATU1NTJw4EY8fP8a1a9ekjg0AGDFiBNTV\n1fHFF18onK+suc+fP48qVapgxIgRqFq1KgYNGoQ6deogIiJC0lyFWb9+PX766Se4u7sL57148QLH\njx/H1KlTUa1aNVhYWKBPnz7Yv3+/hEnfun//Prp27Yq+ffuiSpUqaN26Ndq3b4+oqCilzVwRCnse\nK6v3vQaKwxJTctnZ2Xj27FmBfxkZGRg7diy++uor4bonT55E7dq1YWhoiISEBDRt2lS4TF1dHQ0b\nNkRCQoLkuQFgy5Yt8Pb2Ro0aNRRuJ3Xuoty+fVshFwA0adJE8lyFGThwIA4cOABzc3PhvLt370JD\nQwMNGzYUzlOW/J999hlWrFghnE5PT8fly5cBQGkzV4TCnsfKqqjXQMuWLYu9LQ87peQuXrwIV1fX\nAuc3aNAAJ0+eVLje/PnzsWjRIlSpUgWZmZnQ0dFRuI2WlhYyMzPLPXN+nvflrlevXqG3kzp3UV6+\nfAktLS2F86pXr45Xr15JlKhodevWLXDey5cvCxzpQBnzP3/+HO7u7sIn8Z9++knhcmXMXF4Kex4/\nBvKvAQcHh2KvzxJTch07dkRcXNx7r7N//34sXLgQ33//Pfr27Qvg7Rv/u3/smZmZBbZ8yktJchdG\n6txFKSzXq1evJM9VUlpaWnj9+rXCecqW/99//xWGx9esWYNbt24pfWYqW+++BqpUKX6wkMOJKs7f\n3x9Lly5FQECAwg82mpiYKMzqy8nJQWJiIpo1ayZFzBJT1tzv5gLeDjFKnaukGjVqhDdv3uD+/fvC\necqU/++//8aQIUNgb2+PgIAAVK9eXekzU9kq7DVQEiwxFbZ3716EhoZi+/btsLOzU7ise/fuiI2N\nxbFjx5CVlYXAwEAYGhqiVatWEqUtGWXNbWdnh6ysLGzduhVv3rxBeHg4njx5ojJTn3V0dODo6IhV\nq1YhMzMTMTExOHTokLDlLqUnT57Azc0Nrq6umD17tvDpW5kzU9kq6jVQEiwxFRYUFIQXL15g0KBB\nsLKyEv7dunULBgYGCAgIgJ+fH9q3b48///wTvr6+UFNTkzr2eylrbk1NTQQHB+Pw4cOwtbXFtm3b\nEBgYqFJDW4sXL0Z2dja6du2KqVOnYsaMGWjTpo3UsRAeHo6UlBQEBgYqvI59fHyUNjOVrfe9BorD\no9gTEZHK4pYYERGpLJYYERGpLJYYERGpLJYYERGpLJYYERGpLJYYERGpLJYYERGpLJYYERGpLJYY\nERGprP8HIJY+iaz7/tcAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11bb04668>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Look at these nice sensical results!\n",
"pm.plots.forestplot(trace, varnames=['item_prefs', 'target_pref'])"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
},
"nav_menu": {},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment