Last active
June 25, 2022 10:11
-
-
Save g-leech/cd151192e03ea453657a6c8cacd939e3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "ColdTakesTables.ipynb", | |
"provenance": [], | |
"collapsed_sections": [] | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"id": "3IU1XcPdplRI" | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"asimov_url = \"https://docs.google.com/spreadsheets/d/e/2PACX-1vT6xk8FVWbA1U-0YRzTLf4FuBE2wo_WbOmN5m5LN4INELxe15BcAtL3slo7vRVCuvRTYReE2ZG92XUe/pub?gid=0&single=true&output=csv\"\n", | |
"clarke_url = \"https://docs.google.com/spreadsheets/d/e/2PACX-1vTQHFjeHPN-vnR8Ggmy8u8yJAYSJ4RO22QsNE0HZhjAyIwx6VNZ1qFM1wIVl9fxCTvQ5WNzLcRbN-j7/pub?gid=0&single=true&output=csv\"\n", | |
"heinlein_url = \"https://docs.google.com/spreadsheets/d/e/2PACX-1vRq-qcyqdbG-krcZmUXgpZLadDkpOSGjnqFGrp80pyk2kvdSR_2N5WTYcboksmuwhJsB_xxXX4pBZ6x/pub?gid=0&single=true&output=csv\"" | |
], | |
"metadata": { | |
"id": "ScEukCznpt-f" | |
}, | |
"execution_count": 14, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"asimov_df = pd.read_csv(asimov_url)\n", | |
"clarke_df = pd.read_csv(clarke_url)\n", | |
"heinlein_df = pd.read_csv(heinlein_url)" | |
], | |
"metadata": { | |
"id": "jBCQEaG7qFsU" | |
}, | |
"execution_count": 15, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"asimov_table = {}\n", | |
"\n", | |
"asimov = asimov_df[asimov_df[\"Resolved\"] == 1]\n", | |
"asimov = asimov[asimov[\"Years out\"] >= 30]\n", | |
"\n", | |
"asimov_counts = asimov[\"Correctness\"].value_counts()\n", | |
"asimov_table[\"All predictions\"] = {\n", | |
" \"# correct\": asimov_counts[2],\n", | |
" \"# incorrect\": asimov_counts[0],\n", | |
" \"# ambiguous/near-miss\": asimov_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(asimov_counts[2] / (asimov_counts[2] + asimov_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"asimov_tech = asimov[asimov[\"Category\"] == \"Tech\"]\n", | |
"asimov_counts = asimov_tech[\"Correctness\"].value_counts()\n", | |
"asimov_table[\"Tech predictions\"] = {\n", | |
" \"# correct\": asimov_counts[2],\n", | |
" \"# incorrect\": asimov_counts[0],\n", | |
" \"# ambiguous/near-miss\": asimov_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(asimov_counts[2] / (asimov_counts[2] + asimov_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"asimov_hard = asimov[asimov[\"Difficulty\"] >= 4]\n", | |
"asimov_counts = asimov_hard[\"Correctness\"].value_counts()\n", | |
"asimov_table[\"Difficult predictions\"] = {\n", | |
" \"# correct\": asimov_counts[2],\n", | |
" \"# incorrect\": asimov_counts[0],\n", | |
" \"# ambiguous/near-miss\": asimov_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(asimov_counts[2] / (asimov_counts[2] + asimov_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"asimov_hardtech = asimov_tech[asimov_tech[\"Difficulty\"] >= 4]\n", | |
"asimov_counts = asimov_hardtech[\"Correctness\"].value_counts()\n", | |
"asimov_table[\"Difficult tech predictions\"] = {\n", | |
" \"# correct\": asimov_counts[2],\n", | |
" \"# incorrect\": asimov_counts[0],\n", | |
" \"# ambiguous/near-miss\": asimov_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(asimov_counts[2] / (asimov_counts[2] + asimov_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"asimov_strict = asimov_hardtech[~asimov_hardtech[\"Target Year\"].isna()] # Definite year: Target Year is not Nan\n", | |
"asimov_counts = asimov_strict[\"Correctness\"].value_counts()\n", | |
"asimov_table[\"Difficult + tech + definite date\"] = {\n", | |
" \"# correct\": asimov_counts[2],\n", | |
" \"# incorrect\": asimov_counts[0],\n", | |
" \"# ambiguous/near-miss\": asimov_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(asimov_counts[2] / (asimov_counts[2] + asimov_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"pd.DataFrame.from_dict(asimov_table).transpose()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 302 | |
}, | |
"id": "vtl21xx9sATr", | |
"outputId": "376edb23-32a3-437f-bd3a-53a60aa2e54c" | |
}, | |
"execution_count": 16, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" # correct # incorrect \\\n", | |
"All predictions 23.0 29.0 \n", | |
"Tech predictions 11.0 4.0 \n", | |
"Difficult predictions 10.0 11.0 \n", | |
"Difficult tech predictions 5.0 1.0 \n", | |
"Difficult + tech + definite date 5.0 1.0 \n", | |
"\n", | |
" # ambiguous/near-miss \\\n", | |
"All predictions 14.0 \n", | |
"Tech predictions 8.0 \n", | |
"Difficult predictions 7.0 \n", | |
"Difficult tech predictions 4.0 \n", | |
"Difficult + tech + definite date 4.0 \n", | |
"\n", | |
" correct / (correct + incorrect) \n", | |
"All predictions 0.44 \n", | |
"Tech predictions 0.73 \n", | |
"Difficult predictions 0.48 \n", | |
"Difficult tech predictions 0.83 \n", | |
"Difficult + tech + definite date 0.83 " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-a711ba5f-4925-43cc-b62e-c2de6930f220\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th># correct</th>\n", | |
" <th># incorrect</th>\n", | |
" <th># ambiguous/near-miss</th>\n", | |
" <th>correct / (correct + incorrect)</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>All predictions</th>\n", | |
" <td>23.0</td>\n", | |
" <td>29.0</td>\n", | |
" <td>14.0</td>\n", | |
" <td>0.44</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Tech predictions</th>\n", | |
" <td>11.0</td>\n", | |
" <td>4.0</td>\n", | |
" <td>8.0</td>\n", | |
" <td>0.73</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult predictions</th>\n", | |
" <td>10.0</td>\n", | |
" <td>11.0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0.48</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult tech predictions</th>\n", | |
" <td>5.0</td>\n", | |
" <td>1.0</td>\n", | |
" <td>4.0</td>\n", | |
" <td>0.83</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult + tech + definite date</th>\n", | |
" <td>5.0</td>\n", | |
" <td>1.0</td>\n", | |
" <td>4.0</td>\n", | |
" <td>0.83</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a711ba5f-4925-43cc-b62e-c2de6930f220')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-a711ba5f-4925-43cc-b62e-c2de6930f220 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-a711ba5f-4925-43cc-b62e-c2de6930f220');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 16 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"clarke_table = {}\n", | |
"\n", | |
"clarke = clarke_df[clarke_df[\"Resolved\"] == 1]\n", | |
"clarke = clarke[clarke[\"Years out\"] >= 30]\n", | |
"\n", | |
"clarke_counts = clarke[\"Correctness\"].value_counts()\n", | |
"clarke_table[\"All predictions\"] = {\n", | |
" \"# correct\": clarke_counts[2],\n", | |
" \"# incorrect\": clarke_counts[0],\n", | |
" \"# ambiguous/near-miss\": clarke_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(clarke_counts[2] / (clarke_counts[2] + clarke_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"clarke_tech = clarke[clarke[\"Category\"] == \"Tech\"]\n", | |
"clarke_counts = clarke_tech[\"Correctness\"].value_counts()\n", | |
"clarke_table[\"Tech predictions\"] = {\n", | |
" \"# correct\": clarke_counts[2],\n", | |
" \"# incorrect\": clarke_counts[0],\n", | |
" \"# ambiguous/near-miss\": clarke_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(clarke_counts[2] / (clarke_counts[2] + clarke_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"clarke_hard = clarke[clarke[\"Difficulty\"] >= 4]\n", | |
"clarke_counts = clarke_hard[\"Correctness\"].value_counts()\n", | |
"clarke_table[\"Difficult predictions\"] = {\n", | |
" \"# correct\": clarke_counts[2],\n", | |
" \"# incorrect\": clarke_counts[0],\n", | |
" \"# ambiguous/near-miss\": clarke_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(clarke_counts[2] / (clarke_counts[2] + clarke_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"clarke_hardtech = clarke_tech[clarke_tech[\"Difficulty\"] >= 4]\n", | |
"clarke_counts = clarke_hardtech[\"Correctness\"].value_counts()\n", | |
"clarke_table[\"Difficult tech predictions\"] = {\n", | |
" \"# correct\": clarke_counts[2],\n", | |
" \"# incorrect\": clarke_counts[0],\n", | |
" \"# ambiguous/near-miss\": clarke_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(clarke_counts[2] / (clarke_counts[2] + clarke_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"clarke_strict = clarke_hardtech[~clarke_hardtech[\"Target Year\"].isna()] # Definite year: Target Year is not Nan\n", | |
"clarke_counts = clarke_strict[\"Correctness\"].value_counts()\n", | |
"clarke_table[\"Difficult + tech + definite date\"] = {\n", | |
" \"# correct\": clarke_counts[2],\n", | |
" \"# incorrect\": clarke_counts[0],\n", | |
" \"# ambiguous/near-miss\": clarke_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(clarke_counts[2] / (clarke_counts[2] + clarke_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"pd.DataFrame.from_dict(clarke_table).transpose()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 302 | |
}, | |
"id": "XgU-STSrxRwz", | |
"outputId": "dab94f9f-a551-4753-aa81-e674fbc5641d" | |
}, | |
"execution_count": 17, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" # correct # incorrect \\\n", | |
"All predictions 129.0 148.0 \n", | |
"Tech predictions 85.0 82.0 \n", | |
"Difficult predictions 14.0 10.0 \n", | |
"Difficult tech predictions 10.0 6.0 \n", | |
"Difficult + tech + definite date 6.0 5.0 \n", | |
"\n", | |
" # ambiguous/near-miss \\\n", | |
"All predictions 48.0 \n", | |
"Tech predictions 29.0 \n", | |
"Difficult predictions 4.0 \n", | |
"Difficult tech predictions 2.0 \n", | |
"Difficult + tech + definite date 2.0 \n", | |
"\n", | |
" correct / (correct + incorrect) \n", | |
"All predictions 0.47 \n", | |
"Tech predictions 0.51 \n", | |
"Difficult predictions 0.58 \n", | |
"Difficult tech predictions 0.62 \n", | |
"Difficult + tech + definite date 0.55 " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-773ec3ac-a9e0-4b5f-8c02-24f48f92371b\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th># correct</th>\n", | |
" <th># incorrect</th>\n", | |
" <th># ambiguous/near-miss</th>\n", | |
" <th>correct / (correct + incorrect)</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>All predictions</th>\n", | |
" <td>129.0</td>\n", | |
" <td>148.0</td>\n", | |
" <td>48.0</td>\n", | |
" <td>0.47</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Tech predictions</th>\n", | |
" <td>85.0</td>\n", | |
" <td>82.0</td>\n", | |
" <td>29.0</td>\n", | |
" <td>0.51</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult predictions</th>\n", | |
" <td>14.0</td>\n", | |
" <td>10.0</td>\n", | |
" <td>4.0</td>\n", | |
" <td>0.58</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult tech predictions</th>\n", | |
" <td>10.0</td>\n", | |
" <td>6.0</td>\n", | |
" <td>2.0</td>\n", | |
" <td>0.62</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult + tech + definite date</th>\n", | |
" <td>6.0</td>\n", | |
" <td>5.0</td>\n", | |
" <td>2.0</td>\n", | |
" <td>0.55</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-773ec3ac-a9e0-4b5f-8c02-24f48f92371b')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-773ec3ac-a9e0-4b5f-8c02-24f48f92371b button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-773ec3ac-a9e0-4b5f-8c02-24f48f92371b');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 17 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"heinlein_table = {}\n", | |
"\n", | |
"heinlein = heinlein_df[heinlein_df[\"Resolved\"] == 1]\n", | |
"heinlein = heinlein[heinlein[\"Years out\"] >= 30]\n", | |
"\n", | |
"heinlein_counts = heinlein[\"Correctness\"].value_counts()\n", | |
"heinlein_table[\"All predictions\"] = {\n", | |
" \"# correct\": heinlein_counts[2],\n", | |
" \"# incorrect\": heinlein_counts[0],\n", | |
" \"# ambiguous/near-miss\": heinlein_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(heinlein_counts[2] / (heinlein_counts[2] + heinlein_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"heinlein_tech = heinlein[heinlein[\"Category\"] == \"Tech\"]\n", | |
"heinlein_counts = heinlein_tech[\"Correctness\"].value_counts()\n", | |
"heinlein_table[\"Tech predictions\"] = {\n", | |
" \"# correct\": heinlein_counts[2],\n", | |
" \"# incorrect\": heinlein_counts[0],\n", | |
" \"# ambiguous/near-miss\": heinlein_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(heinlein_counts[2] / (heinlein_counts[2] + heinlein_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"heinlein_hard = heinlein[heinlein[\"Difficulty\"] >= 4]\n", | |
"heinlein_counts = heinlein_hard[\"Correctness\"].value_counts()\n", | |
"heinlein_table[\"Difficult predictions\"] = {\n", | |
" \"# correct\": heinlein_counts[2],\n", | |
" \"# incorrect\": heinlein_counts[0],\n", | |
" \"# ambiguous/near-miss\": heinlein_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(heinlein_counts[2] / (heinlein_counts[2] + heinlein_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"heinlein_hardtech = heinlein_tech[heinlein_tech[\"Difficulty\"] >= 4]\n", | |
"heinlein_counts = heinlein_hardtech[\"Correctness\"].value_counts()\n", | |
"heinlein_table[\"Difficult tech predictions\"] = {\n", | |
" \"# correct\": heinlein_counts[2],\n", | |
" \"# incorrect\": heinlein_counts[0],\n", | |
" \"# ambiguous/near-miss\": heinlein_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(heinlein_counts[2] / (heinlein_counts[2] + heinlein_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"\n", | |
"heinlein_strict = heinlein_hardtech[~heinlein_hardtech[\"Target Year\"].isna()] # Definite year: Target Year is not Nan\n", | |
"heinlein_counts = heinlein_strict[\"Correctness\"].value_counts()\n", | |
"heinlein_table[\"Difficult + tech + definite date\"] = {\n", | |
" \"# correct\": heinlein_counts.get(2, default=0),\n", | |
" \"# incorrect\": heinlein_counts[0],\n", | |
" \"# ambiguous/near-miss\": heinlein_counts[1],\n", | |
" \"correct / (correct + incorrect)\": round(heinlein_counts.get(2, default=0) / \n", | |
" (heinlein_counts.get(2, default=0) + heinlein_counts[0]), 2)\n", | |
"}\n", | |
"\n", | |
"pd.DataFrame.from_dict(heinlein_table).transpose()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 302 | |
}, | |
"id": "06ijKq9LtehL", | |
"outputId": "9fcdb968-4fdb-44ec-d994-2c2ab8e69a72" | |
}, | |
"execution_count": 18, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" # correct # incorrect \\\n", | |
"All predictions 19.0 41.0 \n", | |
"Tech predictions 14.0 20.0 \n", | |
"Difficult predictions 1.0 16.0 \n", | |
"Difficult tech predictions 1.0 9.0 \n", | |
"Difficult + tech + definite date 0.0 1.0 \n", | |
"\n", | |
" # ambiguous/near-miss \\\n", | |
"All predictions 7.0 \n", | |
"Tech predictions 6.0 \n", | |
"Difficult predictions 1.0 \n", | |
"Difficult tech predictions 1.0 \n", | |
"Difficult + tech + definite date 1.0 \n", | |
"\n", | |
" correct / (correct + incorrect) \n", | |
"All predictions 0.32 \n", | |
"Tech predictions 0.41 \n", | |
"Difficult predictions 0.06 \n", | |
"Difficult tech predictions 0.10 \n", | |
"Difficult + tech + definite date 0.00 " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-aaee1fdf-0899-48e3-b08a-8d92720b9cba\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th># correct</th>\n", | |
" <th># incorrect</th>\n", | |
" <th># ambiguous/near-miss</th>\n", | |
" <th>correct / (correct + incorrect)</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>All predictions</th>\n", | |
" <td>19.0</td>\n", | |
" <td>41.0</td>\n", | |
" <td>7.0</td>\n", | |
" <td>0.32</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Tech predictions</th>\n", | |
" <td>14.0</td>\n", | |
" <td>20.0</td>\n", | |
" <td>6.0</td>\n", | |
" <td>0.41</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult predictions</th>\n", | |
" <td>1.0</td>\n", | |
" <td>16.0</td>\n", | |
" <td>1.0</td>\n", | |
" <td>0.06</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult tech predictions</th>\n", | |
" <td>1.0</td>\n", | |
" <td>9.0</td>\n", | |
" <td>1.0</td>\n", | |
" <td>0.10</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difficult + tech + definite date</th>\n", | |
" <td>0.0</td>\n", | |
" <td>1.0</td>\n", | |
" <td>1.0</td>\n", | |
" <td>0.00</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-aaee1fdf-0899-48e3-b08a-8d92720b9cba')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-aaee1fdf-0899-48e3-b08a-8d92720b9cba button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-aaee1fdf-0899-48e3-b08a-8d92720b9cba');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 18 | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment