Skip to content

Instantly share code, notes, and snippets.

@gabraganca
Created July 12, 2016 18:54
Show Gist options
  • Save gabraganca/4e720a14b7ab44bdfc7694c13b196522 to your computer and use it in GitHub Desktop.
Save gabraganca/4e720a14b7ab44bdfc7694c13b196522 to your computer and use it in GitHub Desktop.
Exercício sobre série temporal
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercício sobre série temporal"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Neste exercício, vamos testar o que vimos até agora em aula. Para isso usaremos os seguintes dados:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>t</th>\n",
" <th>y0</th>\n",
" <th>y1</th>\n",
" <th>y2</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.06</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.2</td>\n",
" <td>0.0</td>\n",
" <td>-0.01</td>\n",
" <td>-0.04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.4</td>\n",
" <td>0.0</td>\n",
" <td>-0.01</td>\n",
" <td>0.09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.6</td>\n",
" <td>0.0</td>\n",
" <td>-0.01</td>\n",
" <td>-0.03</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.8</td>\n",
" <td>0.0</td>\n",
" <td>0.01</td>\n",
" <td>-0.02</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" t y0 y1 y2\n",
"0 0.0 0.0 0.00 0.06\n",
"1 0.2 0.0 -0.01 -0.04\n",
"2 0.4 0.0 -0.01 0.09\n",
"3 0.6 0.0 -0.01 -0.03\n",
"4 0.8 0.0 0.01 -0.02"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"data = pd.read_csv('http://pastebin.com/raw/jmSftLRe')\n",
"data.columns = ['t', 'y0', 'y1', 'y2']\n",
"data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A coluna `t` é o tempo em segundos que a media foi feita. A coluna `y0` é a \n",
"medida da intensidade do sinal e `y'`e `y2` é o sinal com ruído."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exercício:\n",
"\n",
"1. Faça um gráfico para cada série temporal\n",
"2. Calcule a frequência máxima que é possível obter para este sinal. \n",
" A resposta deve ser em Hertz.\n",
"3. Calcule e plote a transformada de Fourier dos sinais.\n",
"4. Calcule a densidade espectral (PSD).\n",
"\n",
"Para os items 3 e 4 talvez seja necessário escrever uma função para calcular o espectro e outra para o PSD.\n",
"O pacote `numpy` fornece diversas ferramentas para Transformada de Fourier neste [link][1]. Também é\n",
"interessante olhar a biblioetca [`thinkdsp`][2] que utilizamos em aula.\n",
"\n",
"A equação da PSD é: \n",
"\n",
"$PSD = |H(f)|^2 + |H(-f)|^2$\n",
"\n",
"[1]: http://docs.scipy.org/doc/numpy/reference/routines.fft.html\n",
"[2]: https://github.com/AllenDowney/ThinkDSP/blob/master/code/thinkdsp.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment