Skip to content

Instantly share code, notes, and snippets.

@gabraganca
Created June 20, 2016 19:36
Show Gist options
  • Save gabraganca/78380cf4b663530f2ab03c607bb67b87 to your computer and use it in GitHub Desktop.
Save gabraganca/78380cf4b663530f2ab03c607bb67b87 to your computer and use it in GitHub Desktop.
Regressão linear com o pacote Statsmodels.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Regressão Linear com Statsmodels"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Statsmodels](http://statsmodels.sourceforge.net/) é um pacote em Python que permite a \n",
"seus usuários explorar dados, estimar modelos estatśticos e executar testes estatísticos. \n",
"Uma extensa lista de estatśtica descriptiva, testes estatśticos, funções para plotagem e \n",
"resultados estatísticos estão disponíveis para diferentes tipos de dados e estimadores. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"import statsmodels.api as sm"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Mantém o exemplo reprodutível\n",
"np.random.seed(12)\n",
"\n",
"n = 20 # Tamnaho da amostra\n",
"\n",
"# Aleatoriamente, seleciona os valores de 'x' a partir de uma\n",
"# lista \n",
"x = np.random.choice(np.linspace(0, 10), size=n, replace=False)\n",
"\n",
"# Definimos uma reta\n",
"reta = lambda y : 1 + 2*x\n",
"# Definimos o valor de y e adicionamos um erro gaussiano\n",
"\n",
"y = reta(x)\n",
"y += np.random.normal(scale=10, size=n)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f5757c46fd0>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHvJJREFUeJzt3X90VPW57/H3g4ANBSRgQECYgWoFtR6lC2v10DMcBRV/\nXm+LYlUQrrVy+8Pe1lWQ1UpZS1FrT/XSS9fyGrs4pxKo3nur2OMRFGPrsbSxlcYjRBScoPJrlB/B\nQ4QIz/1jhpjEhOwkM7P3zHxea2U5s/fsmWfImM/s77O/e5u7IyIi0pleYRcgIiKFQYEhIiKBKDBE\nRCQQBYaIiASiwBARkUAUGCIiEkhkAsPMepnZX83sqcz9cjNbbWZvmNmzZnZC2DWKiJSyyAQG8F1g\nQ4v784Dn3P00YC0wP5SqREQEiEhgmNnJwDTgkRaLrwKWZW4vA67Od10iIvKJSAQG8HPgDqDltPNh\n7r4TwN13AEPDKExERNJCDwwzuwzY6e7rATvGQ3UOExGREPUOuwDgAuBKM5sGlAEDzOxfgB1mNszd\nd5rZScCu9jY2MwWJiEg3uPuxvqR/Suh7GO5+p7uPdvexwHXAWne/EVgFzMo8bCbw5DGeo2h/7rrr\nrtBr0PvT+yvF91fM7829e9+zQw+MY7gXmGJmbwAXZu6LiEhIojAk1czdXwRezNzeDVwUbkUiInJU\nlPcwBEgkEmGXkFN6f4WtmN9fMb+37rLujmVFhZl5ob8HEZF8MzO80JreIiJSGBQYIiISiAJDREQC\nUWCIiEggCgwRIZVKUVNTQyqVCrsUiTAFhkiJq6paSSw2jilTvkksNo6qqpVhlyQRpcNqRUpYKpUi\nFhtHY+MLwFlALWVlk6mvr6OioiLs8iSHdFitiHRJMpmkb9846bAAOIs+fWIkk8nwipLIUmCIlLB4\nPM6hQ0mgNrOklqameuLxeHhFSWQpMERKWEVFBZWVSykrm8zAgRMoK5tMZeVSDUdJu9TDEBFSqRTJ\nZJJ4PK6wKBHd6WEoMERESpCa3iIikjMKDBERCUSBISIigSgwREQkEAWGiIgEosAQEZFAFBgiIhKI\nAkNERAJRYIiISCAKDBERCUSBISIigSgwREQkEAWGiIgEosAQEZFAQg8MMzvezP5kZq+a2Wtmdldm\nebmZrTazN8zsWTM7IexaRURKWSSuh2Fm/dz9gJkdB/w78B3gvwIfuPv9ZvZDoNzd57Wzra6HISLS\nRQV7PQx3P5C5eTzQG3DgKmBZZvky4OoQShMRkYxIBIaZ9TKzV4EdwBp3rwGGuftOAHffAQwNs0YR\nkVIXicBw9yPufg5wMnCumZ1Bei+j1cPyX5mIiBzVO+wCWnL3BjOrBi4BdprZMHffaWYnAbs62m7h\nwoXNtxOJBIlEIseViogUlurqaqqrq3v0HKE3vc3sRKDJ3feZWRnwLHAv8A/Abne/T01vEZHs6k7T\nOwqB8QXSTe1emZ+V7n63mQ0GfgOMAuqB6e6+t53tFRgiIl1UkIHRUwoMEZGuK9jDakVEJPoUGCIh\nSqVS1NTUkEqlwi5FpFMKDJGQVFWtJBYbx5Qp3yQWG0dV1cqwSxI5JvUwREKQSqWIxcbR2PgCcBZQ\nS1nZZOrr66ioqAi7PCkB6mGIFIhkMknfvnHSYQFwFn36xEgmk+EVJdIJBYZICOLxOIcOJYHazJJa\nmprqicfj4RUl0gkFhkgIKioqqKxcSlnZZAYOnEBZ2WQqK5dqOEoiTT0MkRClUimSySTxeFxhIXml\niXsiIhKImt4iIpIzCgwREQlEgSEiJUGz6ntOgSEiRU+z6rNDTW8RKWqaVd8+Nb1FRNrQrPrsUWCI\nSFHTrPrsUWCISFHTrPrsUQ9DREqCZtW3ppneIiISiJreIiKSMwoMEREJRIGRQ5pZKiLFRIGRI5pZ\nKiLFRk3vHNDMUpHCUapHT6npHRGaWSpSGDQS0DXaw8gB7WGIRF+p/3+qPYyI0MxSkejTSEDXaQ8j\nh0p1bFSkEGgPo+t7GL1zVYyk9zRK4YMnUoiOjgTMmTOZPn1iNDXVaySgE6HvYZjZycA/A8OAI8D/\ndvf/aWblwEogBiSB6e6+r53tI7uHISLRV6ojAQV5LikzOwk4yd3Xm1l/4C/AVcDNwAfufr+Z/RAo\nd/d57WyvwBCRLnGHVatg3jyoq4MDB+Aznwm7qvwqyKa3u+9w9/WZ2x8CG4GTSYfGsszDlgFXh1Oh\niBSDNWtg4kQwg1694KqrYONGmD0bjj8+7OoKQ6R6GGYWB84G1gHD3H0npEPFzIaGWJqIFJgtW2Dq\nVNi8ufXyM86Ae++Fyy5Lh4cEF5nAyAxHPQF8190/NLO240wdjjstXLiw+XYikSCRSOSiRBGJsN27\nYciQ9tfNmAGPPAL9+uW3piiprq6murq6R88Reg8DwMx6A08Dz7j7Q5llG4GEu+/M9DlecPfx7Wyr\nHoZICXKHv/97ePnl9tdv2QJjxuS3pkJSkD2MjEeBDUfDIuMpYFbm9kzgyXwXJSLR8rOfpYeRjvYh\nWobFz3+eDpGjPwqL7At9D8PMLgB+D7xGetjJgTuBPwO/AUYB9aQPq93bzvbawxApUuvWwZe/3P66\nyZPh+efVh+iugjystqcUGCLF41h9iKPry8vzV08xK+QhKREpQe5wwQWfDDO1DYs//7n1MJPCIlwK\nDBHJq670ISZODK9O+bTIHFYrIsXppZdg0qT21yUSsHat+hCFQoEhIlm1fTuMGNHxevUhCpeGpESk\nR44c+WSIyezTYfH00+pDFAsFhoh02axZnwTEcce1Xjd7duuAuOyyUEqUHNCQlIh06qmn0ifr68jR\nvQwpbgoMEfmUZPLYM6V37IBhw/JWjkSEhqSkR1KpFDU1NaRSqbBLkR5o24doGxZt+xAKi9KkwJBu\nq6paSSw2jilTvkksNo6qqpVhlyRdMGFCx32IiRPVh5BP06lBpFtSqRSx2DgaG18AzgJqKSubTH19\nXUld5rKQPPII3HJLx+sPH05PpJPS0J1Tg6iHId2STCbp2zdOY+NZmSVn0adPjGQyqcCIiM76EPX1\nMHp03sqRIqDvE9It8XicQ4eSQG1mSS1NTfXE4/HwiipxnfUhHn209TCTwkK6SoEh3VJRUUFl5VLK\nyiYzcOAEysomU1m5VHsXeXbOOcH7EDffHE6NUjzUw5AeSaVSJJNJ4vG4wiIP1IeQbNH1MESKjPoQ\nkiu6HoZIHuViDor6EBJlCgyRbsjmHJSuzIdQH0LCpCEpkS7q6RyUe+6BBQs6Xq8+hOSD5mGI5EFX\n56C88QaMG9fx86kPIYVC32NEuqizOSht+xBtw+K++9SHkMKkISmRbqiqWsmcOXPp0ydGU1M9Bw+m\nOHKk/e9fZWVw4ECeCxTphIakpKhEeY7Hrl3X0th4LY2N7a9XH0KKkT7SEklROxPu5s2th5luv731\n+k2bWg8zKSykGGlISiInCmfCPXLk04e4trRkCXzrW3kpRSQnNCQlRSGsM+Ee6xKjsVh61rVIKdOO\ns0ROvs6Eu2BB62Gmtg4f/mSIqVTDQldUlJYUGBI5uToT7oYNrQPinntar9+4UX2IlqLWR5LwRaKH\nYWaVwOXATnc/K7OsHFgJxIAkMN3d97WzrXoYRaqnR0l11of48Y/hJz/pQYFFLAp9JMmtQj754K+A\ni9ssmwc85+6nAWuB+XmvSkJVUVHBxIkTu/QHquUeRHth0XIPQmHRsaN9pHRYQMs+kpSuSASGu78E\n7Gmz+CpgWeb2MuDqvBYlBaErfQjtiAanKypKezo9SsrMVgAfAi8D/+7ub+S8qrSh7r4TwN13mNnQ\nPL2uRNiGDXDGGR2v37jx2OdtkmCO9pHmzJncPJu9UK6oGOUJn4Wu08Bw9+vM7BTgPOA7ZnYh8CTw\nI3c/lOsCW5bS0YqFCxc2304kEiQSiTyUI/lw+DD0PsanVH2I3Jkx41ouuugfC+qP79FTtvTtm95D\nqqxcyowZ14ZdViRUV1dTXV3do+fotOltZl/KPG5d5v7XgL8Bl7v7P/Xo1Vu/TgxY1aLpvRFIuPtO\nMzsJeMHdx7eznZreRWbECNi+veP1+nVLe9So75pcNb2nAP9gZivN7FHgDGAE8GY3ajwWy/wc9RQw\nK3N7Jum9GilCDz7Yug/RNizUh5Ag1KjPvSAzvf8fMMDd7zu6wMz+G7AlW0WY2XIgAQwxs63AXcC9\nwONmNhuoB6Zn6/UkXG+9Baee2vH6zZth7Nj81SPFoXWjPr2HoUZ9dkViHkZPaEgq+nReJsmXtqed\nVw+jY90ZklJgSE4cqw+h8zJJLukoqWAUGBKaBx+E732v4/W6PoRItOhstZI3nfUhtmyBMWPyV4+I\n5J6+80kgba9T3TYslixpfSSTwkKk+GgPo4R1NtarPoSItKQ9jBBE4RoD7Z26uqoq+HwIhUVhisJn\nTwqXmt55FoVTF3wyI/YPwOkdPk59iOIShc+eRIeOkoq4sE9dcOQIVFTA7t3tr7/77re4885Tcl5H\nVBXz4Zhhf/Ykegr5ehglIYxTF9xxR+vrQ7QOi12Z/9ZSVjaEW245IWd1RF2xX11Op82QbFBg5FE+\nrjHw/POt+xAPPPDJupEj03sZ7rB8+UrKysZn9RKohSqVSjFnzlwaG19g376/0Nj4AnPmzC2qcX5d\n30KyQUdJ5VEurjGwaxcMG9bx+lQKTjzx08sL8dTVuXL023dj46e/fRfLv0shX99CokM9jBD0ZKz8\nyBEYOhQ++KD99WvXwuTJWSiyhJTS+H4x92mka9T0LlJ33NF6aKml+fPhnnvyW08x0knrpNQoMIrE\nc8/BlCntrxs5Et55p/3rV0vP6Nu3lBIFRoHatw++8IV0ELSnoz6ESCFQEEeTDqstEO4we/YnRzIN\nGtQ6LNaubX1eJoWFFKpiP1y51GgPI0/+9rd0v+GZZz697rHH4Prr9U1MikspHUxQiLSHETG7d3+y\nF3H22emwOP10eOqpT+ZDuKfDQt/EpNhosmDx0R5GDm3fDpdfDjNnwq23wvHHt/84fROTYqTPdbTp\nAkoRM3w4/OUvnT+uFCaOSenRZMHioz2MCNA3MSlm6s1Fk/YwCpS+iUkxq6io0Ge5SGgPI0L0Tazw\n6XcohUIT90RCpAsUSSFRYIiERH0oKTSahyESEs05kFKgwBDJAl2gSEqBAkMkC44e6VZWNllXMZSi\nFfkehpldAjxIOtwq3f2+NuvVw5DI0FFSUiiKrultZr2ATcCFwDagBrjO3etaPEaBISLSRcXY9D4X\neNPd6929CVgBXBVyTSIiJSnqgTESaHlZoXczy0REJM+K4tQgCxcubL6dSCRIJBKh1SIiEkXV1dVU\nV1f36Dmi3sM4D1jo7pdk7s8DvGXjWz0MEZGuK8YeRg1wipnFzKwvcB3wVMg1iYiUpEgHhrsfBr4F\nrAZeB1a4+8ZwqxIJRyqVoqamhlQqFXYpUqIiPSQVhIakpBToxIaSbUU3DyMIBYYUO53YUHKhGHsY\nIiVPJzaUqFBgiEScTmwoUaHAkLxS47brdGJDiQr1MCRv1LjtGZ3YULJJTW+JLDVuRaJFTW+JLDVu\nRQqfAkPyQo1bkcKnwJC8UONWpPCphyF5pcatSDSo6S0iIoGo6S0iIjmjwBARkUAUGCIiEogCQ0RE\nAlFgiIhIIAoMEREJRIEhIiKBKDBERCQQBYaIiASiwBARkUAUGCIiEogCQ0REAlFgiIhIIAoMEREJ\nRIEhIiKBKDBERCQQBYaIiAQSamCY2VfN7D/M7LCZTWizbr6ZvWlmG81salg1lqJUKkVNTQ2pVCrs\nUkQkQsLew3gN+C/Aiy0Xmtl4YDowHrgUWGpmXbqUoHRPVdVKYrFxTJnyTWKxcVRVrQy7JBGJiEhc\n09vMXgC+7+5/zdyfB7i735e5/wyw0N3/1M62uqZ3lqRSKWKxcTQ2vgCcBdRSVjaZ+vo6Kioqwi5P\nRLKomK7pPRJ4p8X99zLLJIeSySR9+8ZJhwXAWfTpEyOZTIZXlIhERu9cv4CZrQGGtVwEOLDA3Vfl\n+vUluHg8zqFDSaCWo3sYTU31xOPxUOsSkWjIeWC4+5RubPYeMKrF/ZMzy9q1cOHC5tuJRIJEItGN\nl5SKigoqK5cyZ85k+vSJ0dRUT2XlUg1HiRSB6upqqqure/QcUeph/MDd/5K5fzrwGPAl0kNRa4BT\n22tWqIeRfalUimQySTweV1iIFKnu9DBCDQwzuxpYApwI7AXWu/ulmXXzgTlAE/Bdd1/dwXMoMERE\nuqjgAiMbFBgiIl1XTEdJiYhIxCgwREQkEAWGiIgEosAQEZFAcj4PQ0SyKx6PU19fH3YZUiBiseyd\nrUFHSYkUmMzRLWGXIQWio8+LjpISEZGcUWCIiEggCgwREQlEgSEiIoEoMEREAli2bBmTJk3q1rYv\nvvgio0aN6vyBwOLFi/nGN77RrdfJNQWGiGRNPB6nX79+DBw4kBEjRnDzzTdz4MCBQNt25Y9qWHpy\npeig286fP5+HH36426+TSwoMEckaM+N3v/sdDQ0NrF+/nldffZXFixcH2tbde/QHOZuOHDkSdgnt\nOnz4cKivr8AQkaw6esz/0KFDufjii1m/fn3zukOHDvGDH/yAWCzG8OHDue222zh48CAHDhxg2rRp\nbNu2jQEDBjBw4EB27NhBTU0N559/PuXl5YwcOZJvf/vbfPzxx+2+7rRp01i6dGmrZWeffTa//e1v\nAairq2Pq1KkMGTKE8ePH8/jjjzc/7uabb2bu3LlcdtllDBgwgOrqanbv3s2VV17JCSecwHnnncfm\nzZtbPfftt9/O6NGjOeGEE5g4cSIvvfRS87qPPvqIWbNmMXjwYM4880xqampabbt9+3a++tWvMnTo\nUD73uc+xZMmS5nU/+clPuPHGGwGor6+nV69ePProo8RiMS688EIApk+fzvDhwykvLyeRSLBhw4Zg\nv5weUmCISE68++67PPPMM5x66qnNy374wx/y1ltvUVtby1tvvcW2bdtYtGgR/fr145lnnmHEiBHs\n37+fhoYGTjrpJI477jgefPBBdu/ezR//+EfWrl37qVA4asaMGSxfvrz5/oYNG9i6dSuXX345Bw4c\nYOrUqdxwww28//77rFixgrlz51JXV9f8+KqqKn70ox+xf/9+LrjgAubOnUu/fv3YuXMnlZWVPPro\no61e79xzz6W2tpY9e/Zw/fXX87WvfY1Dhw4B6auAvv3227z99ts8++yzLFu2rHk7d+eKK67gnHPO\nYfv27Tz//PM89NBDrFmzpvkxbfe0fv/731NXV8ezzz4LpMNx8+bN7Nq1iwkTJvD1r3+9q7+e7nH3\ngv5JvwWR0tHZZx6y89Md8XjcBwwY4AMGDHAz84suusj37dvXvP6zn/2sb9mypfn+yy+/7GPGjHF3\n9+rqah81atQxn//BBx/0a665pt11+/fv9/79+/vWrVvd3X3BggU+Z84cd3dfuXKlf+UrX2n1+Ftv\nvdUXLVrk7u6zZs3ymTNnNq87fPiw9+nTxzdt2tS87M477/RJkyZ1WFt5ebnX1ta6u/vYsWN99erV\nzesefvjh5ve2bt06j8VirbZdvHixz549293dFy5c6DfeeKO7uyeTSe/Vq5cnk8kOX3fPnj1uZt7Q\n0NDu+o4+L5nlXfp7qz0MkSKTrcjorieffJKGhgZefPFF6urqeP/994H0pX8PHDjAF7/4RQYPHszg\nwYO59NJL+eCDDzp8rjfffJMrrriC4cOHM2jQIBYsWND8fG3179+fadOmsWLFCiC9x3DDDTcA6aGd\ndevWNb9ueXk5y5cvZ+fOnc3bt2y4p1IpDh8+zMknn9y8LBaLtXq9Bx54gNNPP53y8nLKy8tpaGho\nrm3btm0dbrt161bee++9VrUsXryYXbt2dfjv0PK5jhw5wrx58zjllFMYNGgQY8aMwcw6/HfJJgWG\niGSVZ9Jm0qRJzJw5k+9///sAnHjiifTr14/XX3+d3bt3s3v3bvbu3cu+ffuA9o8iuu222xg/fjyb\nN29m79693H333cc8j9bRYal169Zx8OBBEokEkA6DRCLR/Lp79uyhoaGBX/ziF83btnz9iooKevfu\nzTvvvNO8bOvWrc23//CHP/DTn/6UJ554gj179rBnzx4GDhzYXNvw4cNbbdvyZJGjRo1i7NixrWrZ\nt28fq1at6vB9taxt+fLlrFq1irVr17J3716SyWTLEZecUmCISM7cfvvtrFmzhtdeew0z45ZbbuH2\n228nlUoB8N5777F69WoAhg0bxgcffEBDQ0Pz9vv372fgwIH069ePuro6fvnLXx7z9aZNm0Z9fT0/\n/vGPufbaa5uXX3755WzatIlf//rXfPzxxzQ1NfHKK6/wxhtvtPs8vXr14pprrmHhwoU0NjayYcOG\nVn2IDz/8kD59+jBkyBAOHTrEokWL2L9/f/P66dOns3jxYvbu3cu7777bKpjOPfdcBgwYwP33389H\nH33E4cOHef3113nllVfaraVtEOzfv5/jjz+e8vJy/vM//5P58+fn7egyBYaIZE3bP1wnnngiM2fO\nZNGiRQDce++9nHLKKZx33nkMGjSIqVOnsmnTJgBOO+00ZsyYwdixYxk8eDA7duzggQce4LHHHmPg\nwIHceuutXHfddcd8/b59+3LNNdfw/PPPc/311zcv79+/P6tXr2bFihWMGDGCESNGMG/ePA4ePNjh\ncy1ZsoT9+/czfPhwZs+ezezZs5vXXXzxxVx88cV8/vOfZ8yYMfTr16/VkNZdd93F6NGjGTNmDJdc\ncgk33XRT87pevXrx9NNPs379esaMGcPQoUO55ZZbWgXlsf5Nb7rpJkaPHs3IkSM588wzOf/884/5\nb5JNOr25SIHR6c2lK3R6cxERyTsFhoiIBKLAEBGRQBQYIiISiAJDREQCUWCIiEggvcMuQES6JhaL\nReY04BJ9bU9p0hOhzsMws/uBK4CDwGbgZndvyKybD8wGPga+6+6rO3gOzcMQEemiQpyHsRo4w93P\nBt4E5gOY2enAdGA8cCmw1Er0K1V1dXXYJeSU3l9hK+b3V8zvrbtCDQx3f87dj17aah1w9JSMVwIr\n3P1jd0+SDpNzQygxdMX+odX7K2zF/P6K+b11V9h7GC3NBv41c3sk8E6Lde9llomISEhy3vQ2szXA\nsJaLAAcWuPuqzGMWAE3uXpXrekREpHtCP/mgmc0CbgH+0d0PZpbNI301qPsy9/8NuMvd/9TO9up4\ni4h0Q1eb3mEfJXUJ8DPgK+7+QYvlpwOPAV8iPRS1BjhVh0OJiIQn7HkYS4C+wJrMQVDr3H2uu28w\ns98AG4AmYK7CQkQkXKEPSYmISGGI0lFSXWZml5hZnZltMrMfhl1PNpnZyWa21sxeN7PXzOw7YdeU\nbWbWy8z+amZPhV1LtpnZCWb2uJltzPwOvxR2TdlkZt8zs/8ws1oze8zM+oZdU0+YWaWZ7TSz2hbL\nys1stZm9YWbPmtkJYdbYEx28v/szn8/1ZvZ/zGxgZ89TsIFhZr2AXwAXA2cAM8xsXLhVZdXHwP9w\n9zOALwP/vcjeH8B3SQ87FqOHgH919/HA3wEbQ64na8xsBPBtYIK7n0V6aPvY106Nvl+R/lvS0jzg\nOXc/DVhLZmJxgWrv/bU7cfpYCjYwSE/ke9Pd6929CVgBXBVyTVnj7jvcfX3m9oek/+AUzVwUMzsZ\nmAY8EnYt2Zb5pjbJ3X8FkJmA2v4FmwvXccBnzaw30A/YFnI9PeLuLwF72iy+CliWub0MuDqvRWVR\ne+/vGBOnO1TIgdF2ct+7FNEf1JbMLA6cDXzqsOIC9nPgDtJzcorNGOB9M/tVZsjtYTMrC7uobHH3\nbaSPbtxKelLtXnd/LtyqcmKou++E9Bc4YGjI9eTSbOCZzh5UyIFREsysP/AE6RMwfhh2PdlgZpcB\nOzN7UJb5KSa9gQnA/3L3CcAB0sMbRcHMBpH+9h0DRgD9zez6cKvKi2L8ctNy4vTyzh5byIHxHjC6\nxf2TM8uKRmZ3/wngX9z9ybDryaILgCvNbAtQBUw2s38OuaZsehd4x91fydx/gnSAFIuLgC3uvtvd\nDwP/Fzg/5JpyYaeZDQMws5OAXSHXk3WZidPTgECBX8iBUQOcYmaxzBEa1wHFdrTNo8AGd38o7EKy\nyd3vdPfR7j6W9O9trbvfFHZd2ZIZxnjHzD6fWXQhxdXc3wqcZ2afyZxF+kKKo6nfdm/3KWBW5vZM\noNC/tLV6f5mJ03cAVx49y0Znwp64123uftjMvkW6098LqHT3YvjQAmBmFwBfB14zs1dJ7w7f6e7/\nFm5lEtB3gMfMrA+wBbg55Hqyxt3/bGZPAK+Snlj7KvBwuFX1jJktBxLAEDPbCtwF3As8bmazgXrS\nl1woSB28vztpZ+L0MZ9HE/dERCSIQh6SEhGRPFJgiIhIIAoMEREJRIEhIiKBKDBERCQQBYaIiASi\nwBARkUAUGCIiEogCQ0REAinYU4OIRJWZHQdcC4wlfQr+c4EH3P3tUAsT6SHtYYhk39+RPkPtFtIn\ne3sc2B5qRSJZoMAQyTJ3/6u7HyJ9ad0X3b3a3T8Kuy6RnlJgiGSZmU00syGkr5f8tplNCrsmkWxQ\nD0Mk+y4BdgAvm9nVwPsh1yOSFTq9uYiIBKIhKRERCUSBISIigSgwREQkEAWGiIgEosAQEZFAFBgi\nIhKIAkNERAJRYIiISCD/H5mxbilqgJlFAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f575a03a588>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(x, y)\n",
"plt.plot(x, reta(x), 'b-', label='Reta verdadeira')\n",
"\n",
"plt.xlabel('$x$')\n",
"plt.ylabel('$y$')\n",
"\n",
"plt.legend(loc='lower right')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Para calcular uma regressão linear do tipo $y=a+b.x$, fazemos o seguinte:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Adicionamos uma constante aos valores de 'x'.\n",
"# Estes correspondem a constante de interceptação no\n",
"# eixo 'y'\n",
"x2 = sm.add_constant(x)\n",
"\n",
"# Criamos o modelo linear e ajustamos\n",
"ols = sm.OLS(y, x2)\n",
"ml = ols.fit()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"O método `summary` nos dá um sumário sobre o ajuste."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>OLS Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>y</td> <th> R-squared: </th> <td> 0.105</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.055</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 2.116</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Mon, 20 Jun 2016</td> <th> Prob (F-statistic):</th> <td> 0.163</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>16:17:41</td> <th> Log-Likelihood: </th> <td> -75.306</td>\n",
"</tr>\n",
"<tr>\n",
" <th>No. Observations:</th> <td> 20</td> <th> AIC: </th> <td> 154.6</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Df Residuals:</th> <td> 18</td> <th> BIC: </th> <td> 156.6</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Df Model:</th> <td> 1</td> <th> </th> <td> </td> \n",
"</tr>\n",
"<tr>\n",
" <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> \n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[95.0% Conf. Int.]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>const</th> <td> 3.2334</td> <td> 5.782</td> <td> 0.559</td> <td> 0.583</td> <td> -8.915 15.381</td>\n",
"</tr>\n",
"<tr>\n",
" <th>x1</th> <td> 1.3560</td> <td> 0.932</td> <td> 1.455</td> <td> 0.163</td> <td> -0.602 3.314</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <th>Omnibus:</th> <td> 1.111</td> <th> Durbin-Watson: </th> <td> 2.963</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Prob(Omnibus):</th> <td> 0.574</td> <th> Jarque-Bera (JB): </th> <td> 0.960</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Skew:</th> <td> 0.478</td> <th> Prob(JB): </th> <td> 0.619</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Kurtosis:</th> <td> 2.512</td> <th> Cond. No. </th> <td> 14.9</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: y R-squared: 0.105\n",
"Model: OLS Adj. R-squared: 0.055\n",
"Method: Least Squares F-statistic: 2.116\n",
"Date: Mon, 20 Jun 2016 Prob (F-statistic): 0.163\n",
"Time: 16:17:41 Log-Likelihood: -75.306\n",
"No. Observations: 20 AIC: 154.6\n",
"Df Residuals: 18 BIC: 156.6\n",
"Df Model: 1 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"------------------------------------------------------------------------------\n",
"const 3.2334 5.782 0.559 0.583 -8.915 15.381\n",
"x1 1.3560 0.932 1.455 0.163 -0.602 3.314\n",
"==============================================================================\n",
"Omnibus: 1.111 Durbin-Watson: 2.963\n",
"Prob(Omnibus): 0.574 Jarque-Bera (JB): 0.960\n",
"Skew: 0.478 Prob(JB): 0.619\n",
"Kurtosis: 2.512 Cond. No. 14.9\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"\"\"\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ml.summary()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f5757729c18>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt01NW5//H3Ewg2EYIBg3KdgKggAhaP1suPnlAVPdR7\nW6pWRaGtSm+envqr2lbRtVxW66+1tbWnttBCj1zUnlZt6wFbidVajtgq4SIX0QQBiYNcEsstJM/v\nj+8k5DKBSTKT71w+r7WymPnO/s48A2Ge2fv57r3N3RERETmSvLADEBGRzKCEISIiCVHCEBGRhChh\niIhIQpQwREQkIUoYIiKSkLRJGGaWZ2b/MLNnYveLzWyJma0zs8Vm1jfsGEVEclnaJAzga8CaZvdv\nB/7k7icDLwB3hBKViIgAaZIwzGwIMAX4RbPDlwFzY7fnApd3d1wiInJIWiQM4AfAbUDzaefHuXs1\ngLtvAwaEEZiIiARCTxhm9kmg2t3fAOwwTbWGiYhIiHqGHQBwLnCpmU0BCoA+ZvZrYJuZHefu1WZ2\nPPB+vJPNTIlERKQT3P1wX9LbCL2H4e53uvswdx8BXAW84O7XAc8CN8SaTQOePsxzZO3P3XffHXoM\nen96f7n4/rL5vbl37nt26AnjML4LXGBm64DzYvdFRCQk6TAk1cTdXwRejN3eAZwfbkQiItIonXsY\nApSVlYUdQkrp/WW2bH5/2fzeOss6O5aVLszMM/09iIh0NzPDM63oLSIimUEJQ0REEqKEISIiCVHC\nEBGRhChhiAjRaJTly5cTjUbDDkXSmBKGSI5bsGARkcgoLrjgZiKRUSxYsCjskCRN6bJakRwWjUaJ\nREaxd+9SYBxQQUHBJKqq1lJSUhJ2eJJCuqxWRDqksrKSXr1KCZIFwDjy8yNUVlaGF5SkLSUMkRxW\nWlrKgQOVQEXsSAV1dVWUlpaGF5SkLSUMkRxWUlLC7NmPUlAwiaKiCRQUTGL27Ec1HCVxqYYhIkSj\nUSorKyktLVWyyBGdqWEoYYiI5CAVvUVEJGWUMEREJCFKGCIikhAlDBERSYgShoiIJEQJQ0REEqKE\nISIiCVHCEBGRhChhiIhIQpQwREQkIUoYIiKSECUMERFJiBKGiIgkRAlDREQSEnrCMLOjzOx/zex1\nM1tpZnfHjheb2RIzW2dmi82sb9ixiojksrTYD8PMCt19j5n1AP4KfBX4FPCBuz9oZt8Eit399jjn\naj8MEZEOytj9MNx9T+zmUUBPwIHLgLmx43OBy0MITUREYtIiYZhZnpm9DmwDnnf35cBx7l4N4O7b\ngAFhxigikuvSImG4e4O7fxQYApxpZmMIehktmnV/ZCIi0qhn2AE05+41ZlYOXARUm9lx7l5tZscD\n77d33qxZs5pul5WVUVZWluJIRUQyS3l5OeXl5V16jtCL3mZ2LFDn7rvNrABYDHwX+Fdgh7s/oKK3\niEhydabonQ4JYyxBUTsv9rPI3e8zs37AE8BQoAqY6u674pyvhCEi0kEZmTC6SglDRKTjMvayWhER\nSX9KGCIhikajLF++nGg0GnYoIkekhCESkgULFhGJjOKCC24mEhnFggWLwg5J5LBUwxAJQTQaJRIZ\nxd69S4FxQAUFBZOoqlpLSUlJ2OFJDlANQyRDVFZW0qtXKUGyABhHfn6EysrK8IISOQIlDJEQlJaW\ncuBAJVARO1JBXV0VpaWl4QUlcgRKGCIhKCkpYfbsRykomERR0QQKCiYxe/ajGo6StKYahkiIotEo\nlZWVlJaWKllIt9LEPRERSYiK3iIikjJKGCIikhAlDBHJCZpV33VKGCKS9TSrPjlU9BaRrKZZ9fGp\n6C0i0opm1SePEoaIZDXNqk8eJQwRyWqaVZ88qmGISE7QrPqWNNNbREQSoqK3iIikjBKGiIgkRAkj\nhTSzVESyiRJGimhmqYhkGxW9U0AzS0UyR65ePaWid5rQzFKRzKCRgI5RDyMF1MMQSX+5/v9UPYw0\noZmlIulPIwEdpx5GCuXq2KhIJlAPo+M9jJ6pCkaCnkYu/OKJZKLGkYAZMyaRnx+hrq5KIwFHEHoP\nw8yGAPOA44AG4Ofu/iMzKwYWARGgEpjq7rvjnJ+2PQwRSW91dfDKKzvo1WsjI0fm1khAptYwDgJf\nd/cxwNnAl8xsFHA78Cd3Pxl4AbgjxBhFJAu4w5Il8NGPghn06gVlZf0oLz8jp5JFZ4U+JOXu24Bt\nsdsfmtmbwBDgMuBfY83mAuUESUREJGEvvwwTJx6+zdlnd08smS4dehhNzKwUOA1YBhzn7tXQlFQG\nhBeZiGSKlSth+PCgB2HWfrKYMAGefz7odZSVdWuIGSv0HkYjM+sNPAV8LdbTaF2YaLdQMWvWrKbb\nZWVllOlfXyRnfPgh9OmTWNsvfhF+9CM46qjUxpSOysvLKS8v79JzhF70BjCznsDvgefc/YexY28C\nZe5ebWbHA0vdfXScc1X0Fskh7nD55fDMM0due/rpQbtBg1IfV6bJ1KI3wBxgTWOyiHkGuCF2exrw\ndHcHJSLp4Re/ODTElJd3+GTxy18GScUdXntNySKZQu9hmNm5wF+AlQTDTg7cCbwKPAEMBaoILqvd\nFed89TBEskxFBYwfn1jbz3wGnngitfFkI23RKiIZqSN1iMb2Rx+dunhyQSYPSYlIDnGHyy47NMx0\npGSxatWhYSZ3JYuwKGGISLfobB3CHcaM6b44pX1pc1mtiGSXF19MfH6D6hCZQQlDRJJi507o1y/x\n9qpDZB4NSYlIp7hDYeGhYaYjJQvVITKfEoaIJOy221rWIfbubb/t7berDpFtNCQlIu3qSB2iuBh2\n7EhpOKnxz38Gme/YY8OOJO0pYYhIk2gUBnRgmc+dO+GYY1IXT1I1NEBlZTArcMWK4M+KCti4Eb76\nVXj44bAjTHtKGNIl2oY2s7kHQ0uJ+stfjrxUeFqorQ2WrW2eGFauDI63lp8fVODliJQwpNMWLFjE\njBkz6dWrlAMHKpk9+1GuvvqzYYclR3DJJfD73yfW9oor4L//O7XxdElDA7z9dsvEUFERHIvn+OOD\nNUfGjTv0M2pUsJOSHJGWBpFOiUajRCKj2Lt3KTAOqKCgYBJVVWvV00gzv/0tXHll4u3T9r/Trl1B\nL6H5kNLKlbBnT9u2vXrBKaccSg7jx8PYsR0bb8tynVkaRD0M6ZTKykp69Spl795xsSPjyM+PUFlZ\nqYQRsvffh+OOS7x9NJpm9d76etiwoWWPYcUK2LQpfvvBgw/1FhoTxEknBUNNklRKGNIppaXBMBRU\n0NjDqKurorS0NNS4clFH6xBPPw2XXpq6eDpkx462RehVq2DfvrZtP/KR4Nrc1kNK/ft3f9w5SglD\nOqWkpITZsx9lxoxJ5OdHqKurYvbsR9W76CaXXgrPPptY27SoQxw8COvWte01bNkSv/2wYW17DSNH\nQk99ZIVJNQzpEl0l1T0yqg4RjbbtNaxeDQcOtG1bWBjUFpr3GMaNy6BrdTOX9sMQyRIdnQ8RSh3i\nwIGg19A8MaxYAdu2xW8/fHjLHsO4cTBiBPTo0b1xC6Cit0i3SmbvKu3rENu2tUwKFRXw5ptQV9e2\nbe/ebXsMY8dCUVE3BiypoIQh0gnJmINy8smwfn1ibbutDrF/f5AIWg8pvf9+/PYjR7atNZSWdiz7\nScbQkJRIB3V2DsqcOTBjRuKvk9Jfa3d47722iWHt2qBA3VpRUdvEcOqpQW9CMpKGpES6QaJzULZu\nDaYIJCpldYi9e2HNmrbJ4YMP2rbNywu6Ps2HksaPh0gkWKJWcpoShkgHtTcHJRIp7dBn6q9+BdOm\nJTEwd9i8uW0Rev36YAmN1oqL2xahx4wJrlwSiUNDUiKd0FjD2L//7zQ0lCZ0zimnBFeXJsWePcEE\nt9aF6F272rZt7DU0JobGXsOQIeo15DBdVitZJR3neMyfD5/7XOLtu/yr6Q5VVW0Tw4YN8Z+8f/+W\nPYbx42H0aCgo6GIgkm1Uw5CskS4r4W7bBgMHJt5+69aOtW/hww8PLa7X/Kempm3bnj2DVVZbF6IH\nDlSvQVJGPQxJO2GuhNvR+RCdqkM0NMA777TtNWzcGL99SUmQEBpXXG3sNRx1VAdfWOQQ9TAkK3T3\nSrj9+ye+tejEicEmQgmrqWnbY1i5Mv6GPfn5QaGjda+hI0vPiqSQEoaknVSvhPuTn8CXv5x4+4Q6\nsPX1QQ+hda+hsjJ++4EDW+7TMH58MMSUZktyp2MdScKjhCFpJ9kr4W7eDEOHJt6+uvoI6zjt3Nl2\n1dVVq4L5Dq0ddVRwqWrzXsPYscEwU5pLlzqSpI+0qGGY2WzgYqDa3cfFjhUDi4AIUAlMdffdcc5V\nDSNLdfbbbUfrED/9Kdx8c5wHDh4MrkZqvf3nu+/Gf6IhQ1r2GBo38snAJbm1o2L2y+Qaxi+BR4B5\nzY7dDvzJ3R80s28Cd8SOSY4oKSlJ+MOpI3WIAQOCXkQL27e37TWsXh2srdRaQUGwLEbzOsPYsdCv\nX2IBZADtqCjxpEXCcPeXzSzS6vBlwL/Gbs8FylHCkJgf/xi+8pXE2zd1QuvqgiW557daJmPr1vgn\nlpa2XHV1/Hg44YSsX5JbOypKPEdMGGa2EPgQeAX4q7uvS3lUgQHuXg3g7tvMTLu357B33w02YUvU\n5s0wOP/9Q0lhWiwxrFkTfyOfo48+tJFP815D377JexMZJJN3VFShPnWOmDDc/SozGwmcBXzVzM4D\nnga+4+5x/uelTLuFilmzZjXdLisro6ysrBvCkVTqSB0inwM8/q03+czJzYaTTq+IM+4UM2JE29nQ\nw4drSe5Wrr76s5x//icy6sNXhfr2lZeXU15e3qXnOGLR28w+Fmu3LHb/M8AK4GJ3/36XXr3l60SA\nZ5sVvd8Eyty92syOB5a6++g456nonSXOOQf+9rfDtXCOZxvjqODco1dw1+UVhzbyibckd58+bYeT\nTj01OC5ZR4X6jklV0fsCoM7M/h34J7AJiAIbOh7iYVnsp9EzwA3AA8A0gl6NZJHDrct0FPs4hTWM\no6Lp5/xjVwTFaQh+Ex+PNTaDE09su/JqaamWycghKtSnXiIJ47dAH3d/oPGAmX0eeDtZQZjZfKAM\n6G9mm4C7ge8CT5rZdKAKmJqs15NwxF+XyRnMFsZRwXhWNCWHk1lHT+pbNt1OUFNoPZw0ZkxQg5Cc\npkJ96qXFPIyu0JBU+mpdhyhgD6ewpkViGEcF/YlzPWxeXjCHoXFOQ2OSGDpUvQZpV2MNo3mhXjWM\n+LS8uYQuqEM4w9jUlBAaE8SJbKAHcTby6dcv/kY+WpJbOkFXSSVGCUO63aI5/+T7M1a16TUcQ5tJ\n+RykBz1PabaRT+Ofgwap1yDSzZQwJHUaGqCykp0vVvCD6Yd6DSewkbw4VzxHOZYVjOecm8dTeFas\n1zB6NHzkIyEELyKtKWFIctTUBIvprViBr6jglZ9VMJaVFFHbpukB8lnLKFYwngrG8ck7xlP21diS\n3Oo1iKQtJQzpkGh1Ne/99a9Edu2ib+M2oCtWBJv7xPEex1PBuKbkUME4+p8ziqV/7dXNkYtIVylh\nZIhQinK7drXY/nP7Cy/wkbfeonecpvvpxWrGNCWFFYxnJWOJEqzOkmF/3dKMCsLSSAkjA6R86YL6\nenjrrbZLcldVxW2+hUFNPYbGP9dzEgc5tJHPEfeHkIygZTOkOSWMNJf0pQt27Gi7w9uqVbBvX5um\n++wjrPIxLRLDSsbyAce2abt4MUye3PFwMl02f/vWshnSWibvh5ETOr10wcGDwZLcrfdr2LIlfvth\nw3ircByL1h4aUnrLR1Lf7j/3DgoKTszpD49s//atZTMkGZQwulFCSxdEoy17DI1LcsfbyKewMFhM\nb/x4KvuO4/qHgl7Drk3Fh41jwgT4xjfazojN1Q+OaDTKjBkz2bt3aewDtYIZMyZx/vmfyJq/Ey2b\nIcmghNGNmu8xUNhzKMMPvMOPbryOku9971CS2LYt/snDh7dYP+nDEePoO2EEDa/2gFeP/Nq7d0NR\nUfMjmbd0darkwrfvTN7fQtKHahjdobq6RY/h4D/+Qd66deTFW5K7d++WS3LHNvLxPkWMHRvsGpqI\n5cvhX/4luW8jW+XS+H4212mkY1TDSDdXXAGvvALvv9/icNNf+gkntFwmY+zYFhv5PPAA3P5/Enup\nBx+E225LXui5JJe+fXdkn3SR1tTDSKWzz4Zly4KxoObLcTcurtdqI59XX4WPfSyxp54wAf7+9xTE\nnMP07VtyiS6rTTcrVgT7N0QicZfJ2LMnyCkVFYk9Xds6hEj6UyJOT51JGNrEOJXGj2+x65s7LFkS\n3DUL9vw5XLJYvjw4p/FHyUIyzYIFi4hERnHBBTcTiYxiwYJFYYckXaAeRoqtXQvf/jb85jdHbjt3\n7m5Gj16vb2KSFXLpYoJMpB5GmvnOd4IVvdtLFv/3/x7qPcyfv4ibbx6hb2KSNRovVw6SBTS/XFky\nkxJGCu1otvNo377wn/8JBw4cShIPxHZJbz5xbPfuv7N371JmzJhJNBoNJ3CRJGg5WRA0WTDzKWGk\n0E9+Euw75B4sFnvTTZCf37advolJNmq8XLmgYBJFRRMoKJiUtZcr5wrVMNKAxnolm+kqqfSkiXsZ\nKpcmjknu0WTB7KEeRhrRN7HMp39DyRSauCcSomxfIl2yixKGSEhUh5JMo3kYIiHRlW6SC5QwRJJA\ncw4kFyhhiCSB5hxILkj7GoaZXQQ8TJDcZrv7A60eVw1D0oaukpJMkXVFbzPLA9YD5wFbgeXAVe6+\ntlkbJQwRkQ7KxqL3mcAGd69y9zpgIXBZyDGJiOSkdE8Yg4F3m93fHDsmIiLdLCuWBpk1a1bT7bKy\nMsrKykKLRUQkHZWXl1NeXt6l50j3GsZZwCx3vyh2/3bAmxe+VcMQEem4bKxhLAdGmlnEzHoBVwHP\nhByTiEhOSuuE4e71wJeBJcBqYKG7vxluVCLhiEajLF++XBtrSWjSekgqERqSklyghQ0l2bJuHkYi\nlDAk22lhQ0mFbKxhiOQ8LWwo6UIJQyTNaWFDSRdKGNKtVLjtOC1sKOlCNQzpNircdo0WNpRkUtFb\n0pYKtyLpRUVvSVsq3IpkPiUM6RYq3IpkPiUM6RYq3IpkPtUwpFupcCuSHlT0FhGRhKjoLSIiKaOE\nISIiCVHCEBGRhChhiIhIQpQwREQkIUoYIiKSECUMERFJiBKGiIgkRAlDREQSooQhIiIJUcIQEZGE\n9Aw7ABHpmNLSUqqqqsIOQzJEJJK8fWe0+KBIhoktGhd2GJIh2vt90eKDIiKSMkoYIiKSECUMERFJ\niBKGiIgkJNSEYWafNrNVZlZvZhNaPXaHmW0wszfNbHJYMeaiaDTK8uXLiUajYYcikjbmzp3LxIkT\nO3Xuiy++yNChQxNqe//99/PFL36xU6+TamH3MFYCVwAvNj9oZqOBqcBo4N+AR82sQ9V86ZwFCxYR\niYziggtuJhIZxYIFi8IOSTJIaWkphYWFFBUVMWjQIG688Ub27NmT0Lkd+VANS1c+hhI994477uCx\nxx7r9OukUqgJw93XufsGoPXf5GXAQnc/6O6VwAbgzO6OL9dEo1FmzJjJ3r1L2b377+zdu5QZM2aq\npyEJMzP+8Ic/UFNTwxtvvMHrr7/O/fffn9C57t6lD+RkamhoCDuEuOrr60N9/bB7GO0ZDLzb7P6W\n2DFJocrKSnr1KgXGxY6MIz8/eZN+JDc0XvM/YMAALrzwQt54442mxw4cOMA3vvENIpEIAwcO5JZb\nbmH//v3s2bOHKVOmsHXrVvr06UNRURHbtm1j+fLlnHPOORQXFzN48GC+8pWvcPDgwbivO2XKFB59\n9NEWx0477TR+97vfAbB27VomT55M//79GT16NE8++WRTuxtvvJGZM2fyyU9+kj59+lBeXs6OHTu4\n9NJL6du3L2eddRYbN25s8dy33norw4YNo2/fvpxxxhm8/PLLTY/t27ePG264gX79+nHqqaeyfPny\nFue+9957fPrTn2bAgAGccMIJPPLII02P3XPPPVx33XUAVFVVkZeXx5w5c4hEIpx33nkATJ06lYED\nB1JcXExZWRlr1qxJ7B+ni1KeMMzseTOraPazMvbnJal+bemY0tJSDhyoBCpiRyqoq6uitLQ0vKCk\nQ8yS99NVmzdv5rnnnuPEE09sOvbNb36Tt956i4qKCt566y22bt3KvffeS2FhIc899xyDBg2itraW\nmpoajj/+eHr06MHDDz/Mjh07+Nvf/sYLL7zQJik0uvrqq5k/f37T/TVr1rBp0yYuvvhi9uzZw+TJ\nk7n22mvZvn07CxcuZObMmaxdu7ap/YIFC/jOd75DbW0t5557LjNnzqSwsJDq6mpmz57NnDlzWrze\nmWeeSUVFBTt37uSaa67hM5/5DAcOHABg1qxZvPPOO7zzzjssXryYuXPnNp3n7lxyySV89KMf5b33\n3uPPf/4zP/zhD3n++eeb2rTuaf3lL39h7dq1LF68GAiS48aNG3n//feZMGECn/vc5zr6z9M57h76\nD7AUmNDs/u3AN5vd/x/gY+2c63fffXfTz9KlS106b/78hV5Q0M+Lij7qBQX9fP78hWGHJK0E/23b\neyx5P51RWlrqffr08T59+riZ+fnnn++7d+9uevzoo4/2t99+u+n+K6+84sOHD3d39/Lych86dOhh\nn//hhx/2K6+8Mu5jtbW13rt3b9+0aZO7u3/rW9/yGTNmuLv7okWL/OMf/3iL9jfddJPfe++97u5+\nww03+LRp05oeq6+v9/z8fF+/fn3TsTvvvNMnTpzYbmzFxcVeUVHh7u4jRozwJUuWND322GOPNb23\nZcuWeSQSaXHu/fff79OnT3d391mzZvl1113n7u6VlZWel5fnlZWV7b7uzp073cy8pqYm7uONvy9L\nly5t8VkZO96hz+p0WkuqeUp9BnjczH5AMBQ1Eni1vRNnzZqV2shyyNVXf5bzz/8ElZWVlJaWUlJS\nEnZI0gHpsGLI008/zaRJk3jppZe45ppr2L59O0VFRUSjUfbs2cPpp5/e1LahoeGwy5xs2LCBr3/9\n67z22mvs3buXgwcPtji/ud69ezNlyhQWLlzIbbfdxoIFC5g9ezYQDO0sW7aMfv36AcEX5fr6eq6/\n/vqm85sX3KPRKPX19QwZMqTpWCQS4aWXXmq6/9BDDzFnzhzee+89AGpra9m+fTsAW7dubXNuo02b\nNrFly5YWsTQ0NPDxj3+83b+H5s/V0NDAnXfeyVNPPcX27dsxM8yM7du306dPn3afo6ysjLKysqb7\n99xzT7tt2xP2ZbWXm9m7wFnA783sOQB3XwM8AawB/gjM9MP9VklSlZSUcMYZZyhZSKc0/ledOHEi\n06ZN4z/+4z8AOPbYYyksLGT16tXs2LGDHTt2sGvXLnbv3g3Ev4rolltuYfTo0WzcuJFdu3Zx3333\nHTbBNA5LLVu2jP379zd9QA4dOpSysrKm1925cyc1NTX8+Mc/bjq3+euXlJTQs2dP3n33UCl106ZN\nTbdfeuklvve97/HUU0+xc+dOdu7cSVFRUVNsAwcObHFu88Uihw4dyogRI1rEsnv3bp599tl231fz\n2ObPn8+zzz7LCy+8wK5du6isrGw+4pJSYV8l9Tt3H+ruBe4+0N3/rdlj97v7SHcf7e5LwoxTRDrn\n1ltv5fnnn2flypWYGV/4whe49dZbm66827JlC0uWBP+9jzvuOD744ANqamqazq+traWoqIjCwkLW\nrl3LT3/608O+3pQpU6iqquKuu+7is5/9bNPxiy++mPXr1/Nf//VfHDx4kLq6Ol577TXWrVsX93ny\n8vK48sormTVrFnv37mXNmjUt6hAffvgh+fn59O/fnwMHDnDvvfdSW1vb9PjUqVO5//772bVrF5s3\nb26RmM4880z69OnDgw8+yL59+6ivr2f16tW89tprcWNpnQhqa2s56qijKC4u5p///Cd33HFHt11d\nlq5XSYlIBmr9wXXssccybdo07r33XgC++93vMnLkSM466yyOOeYYJk+ezPr16wE4+eSTufrqqxkx\nYgT9+vVj27ZtPPTQQzz++OMUFRVx0003cdVVVx329Xv16sWVV17Jn//8Z6655pqm471792bJkiUs\nXLiQQYMGMWjQIG6//Xb279/f7nM98sgj1NbWMnDgQKZPn8706dObHrvwwgu58MILOemkkxg+fDiF\nhYUthrTuvvtuhg0bxvDhw7noootaDH3l5eXx+9//njfeeIPhw4czYMAAvvCFL7RIlIf7O73++usZ\nNmwYgwcP5tRTT+Wcc8457N9JMml5c5EMo+XNpSO0vLmIiHQ7JQwREUmIEoaIiCRECUNERBKihCEi\nIglRwhARkYQoYYiISEKUMEREJCFKGCLSLW655Rbuu+++sMOQLtBMb5EMkwkzvcvKyqioqKC6upr8\n/PykPe+LL77Itdde22JhPzk8zfQWkbRVVVXFyy+/TF5eHs8880xSn9vTaBvXXKSEISJJNW/ePM4+\n+2xuuOEGfvWrXzUdv/HGG7nrrrsAmDt3LhMnTmxxXl5eHm+//TYAf/zjHxkzZgxFRUUMHTqU73//\n++1u4+ruTYsalpSUcNVVV7Fr165ue7+5RAlDJJukwR6t8+bN49prr+Waa65h8eLFTUuZtw3V2r3/\n+c9/np///OfU1NSwatUqPvGJT7S7jeuPfvQjnnnmGV566SW2bt1KcXExM2fO7HT80j4lDBFJmpdf\nfplNmzYxdepUJkyYwMiRI1vss304zcfZe/XqxerVq6mtraVv376cdtpp7Z73s5/9jPvuu4+BAweS\nn5/PXXfdxVNPPUVDQ0OX34+0pIQhkk2Sua13J8ybN4/JkydTXFwMBDvgNd94KFG/+c1v+MMf/kAk\nEmHSpEksW7as3bZVVVVcccUV9OvXj379+nHKKaeQn59PdXV1p96DtC+d9vQWkQy2b98+nnjiCRoa\nGhg4cCAA+/fvZ/fu3VRUVLRoe/TRR7Nnz56m+9u2bWsxJHX66afzu9/9jvr6eh555BGmTp3Kpk2b\n4ha8hw2ELNZaAAAGcUlEQVQbxpw5czj77LNT9M6kkXoYIpIUv/3tb+nZsydvvvkmK1asYMWKFaxd\nu5aJEycyb968Fm3Hjx/P6tWrqaioYP/+/dxzzz1Nj9XV1TF//nxqamro0aMHffr0oUePHkD8bVxv\nuukm7rzzzqY9t6PRaNKvzpKAEoaIJMW8efOYPn06gwcPZsCAAU0/X/rSl5g/fz719fVNbU888UTu\nuusuzjvvPE466aQ2V0z9+te/Zvjw4RxzzDE89thjPP7440D8bVy/9rWvcdlllzF58mT69u3LOeec\nw6uvvtqt7z1XaOKeSIbJhIl78UybNo0TTzyRb3/722GHklM0cU9EMsrBgwdZt24dw4cPDzsU6QIl\nDBFJuYEDB9KvXz8+9alPhR2KdIGGpEQyTKYOSUk4NCQlIiLdTglDREQSooQhIiIJ0UxvkQwTiUS0\nxLckLBKJJO25Qi16m9mDwCXAfmAjcKO718QeuwOYDhwEvubuS9p5DhW9RUQ6KBOL3kuAMe5+GrAB\nuAPAzE4BpgKjgX8DHrUc/UpVXl4edggppfeX2bL5/WXze+usUBOGu//J3RvXIF4GDIndvhRY6O4H\n3b2SIJmcGUKIocv2X1q9v8yWze8vm99bZ4Xdw2huOvDH2O3BQPNNe7fEjomISEhSXvQ2s+eB45of\nAhz4lrs/G2vzLaDO3RekOh4REemc0Gd6m9kNwBeAT7j7/tix2wF39wdi9/8HuNvd/zfO+ap4i4h0\nQkeL3mFfJXUR8P+Aj7v7B82OnwI8DnyMYCjqeeBEXQ4lIhKesOdhPAL0Ap6PXQS1zN1nuvsaM3sC\nWAPUATOVLEREwhX6kJSIiGSGdLpKqsPM7CIzW2tm683sm2HHk0xmNsTMXjCz1Wa20sy+GnZMyWZm\neWb2DzPLuv00zayvmT1pZm/G/g0/FnZMyWRm/25mq8yswsweN7NeYcfUFWY228yqzayi2bFiM1ti\nZuvMbLGZ9Q0zxq5o5/09GPv9fMPMfmNmRUd6noxNGGaWB/wYuBAYA1xtZqPCjSqpDgJfd/cxwNnA\nl7Ls/QF8jWDYMRv9EPiju48GxgNvhhxP0pjZIOArwAR3H0cwtH1VuFF12S8JPkuaux34k7ufDLxA\nbGJxhor3/uJOnD6cjE0YBBP5Nrh7lbvXAQuBy0KOKWncfZu7vxG7/SHBB07WzEUxsyHAFOAXYceS\nbLFvahPd/ZcAsQmoNSGHlWw9gKPNrCdQCGwNOZ4ucfeXgZ2tDl8GzI3dngtc3q1BJVG893eYidPt\nyuSE0Xpy32ay6AO1OTMrBU4D2lxWnMF+ANxGMCcn2wwHtpvZL2NDbo+ZWUHYQSWLu28luLpxE8Gk\n2l3u/qdwo0qJAe5eDcEXOGBAyPGk0nTguSM1yuSEkRPMrDfwFMECjB+GHU8ymNkngepYD8piP9mk\nJzAB+Im7TwD2EAxvZAUzO4bg23cEGAT0NrNrwo2qW2Tjl5vmE6fnH6ltJieMLcCwZveHxI5ljVh3\n/yng1+7+dNjxJNG5wKVm9jawAJhkZvNCjimZNgPvuvtrsftPESSQbHE+8La773D3euC/gXNCjikV\nqs3sOAAzOx54P+R4ki42cXoKkFDCz+SEsRwYaWaR2BUaVwHZdrXNHGCNu/8w7ECSyd3vdPdh7j6C\n4N/tBXe/Puy4kiU2jPGumZ0UO3Qe2VXc3wScZWYfia0ifR7ZUdRv3dt9BrghdnsakOlf2lq8v9jE\n6duASxtX2TiSsCfudZq715vZlwkq/XnAbHfPhl9aAMzsXOBzwEoze52gO3ynu/9PuJFJgr4KPG5m\n+cDbwI0hx5M07v6qmT0FvE4wsfZ14LFwo+oaM5sPlAH9zWwTcDfwXeBJM5sOVBFsuZCR2nl/dxJn\n4vRhn0cT90REJBGZPCQlIiLdSAlDREQSooQhIiIJUcIQEZGEKGGIiEhClDBERCQhShgiIpIQJQwR\nEUmIEoaIiCQkY5cGEUlXZtYD+CwwgmAJ/jOBh9z9nVADE+ki9TBEkm88wQq1bxMs9vYk8F6oEYkk\ngRKGSJK5+z/c/QDB1rovunu5u+8LOy6RrlLCEEkyMzvDzPoT7Jf8jplNDDsmkWRQDUMk+S4CtgGv\nmNnlwPaQ4xFJCi1vLiIiCdGQlIiIJEQJQ0REEqKEISIiCVHCEBGRhChhiIhIQpQwREQkIUoYIiKS\nECUMERFJyP8HMB6GSnmzk+gAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f575785a6a0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(x, y)\n",
"plt.plot(x, reta(x), 'b-', lw=2, label='Reta verdadeira')\n",
"\n",
"ordem = np.argsort(x)\n",
"plt.plot(x[ordem], ml.fittedvalues[ordem], 'r-', \n",
" lw=2, zorder=5, label='Ajuste')\n",
"\n",
"plt.xlabel('$x$')\n",
"plt.ylabel('$y$')\n",
"\n",
"plt.legend(loc='lower right')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Statsmodels calcula diversos resultados estatísticos, como vimos na tabela acima. \n",
"Porém, para obter alguns resultados, é preciso outras ferramentas."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from statsmodels.stats.outliers_influence import summary_table"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nós iremos obter o intervalo de confiança de 95% do nosso ajuste. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"st, ml_stats, ss2 = summary_table(ml)\n",
"\n",
"inter_conf_inf = ml_stats[:, 4]\n",
"inter_conf_sup = ml_stats[:, 5]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f57576c9be0>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4lNXd//H3CSSYAIEEg+wJCCq7YqWCxYaKYHHBFREX\nEOpGW7Xt4+PSqmgff7i1dcWWFixUWZRat6rgQqwbFRcI+56whyBLggSynd8fZyYkmQlM1ntm8nld\n131l5p4zM2eSyXznnO9ZjLUWERGR44nxugIiIhIZFDBERCQkChgiIhISBQwREQmJAoaIiIREAUNE\nREISNgHDGBNjjPnGGPOm73qSMWahMWatMWaBMaaV13UUEWnMwiZgAHcAq8pdvwf4wFp7KvARcK8n\ntRIRESBMAoYxphMwEvhbudOjgJm+yzOBSxu6XiIiclRYBAzgT8BdQPlp5ydZa3MArLW7gLZeVExE\nRBzPA4Yx5kIgx1q7FDDHKKo1TEREPNTU6woA5wCXGGNGAvFAS2PMP4BdxpiTrLU5xph2wO5gdzbG\nKJCIiNSAtfZYX9IDeN7CsNbeZ63tYq3tBowBPrLWXg+8BYz3FRsHvHGMx4ja48EHH/S8Dnp9en2N\n8fVF82uztmbfsz0PGMfwKHC+MWYtcJ7vuoiIeCQcuqTKWGs/Bj72Xd4LDPO2RiIi4hfOLQwB0tPT\nva5CvdLri2zR/Pqi+bXVlKlpX1a4MMbYSH8NIiINzRiDjbSkt4iIRAYFDBERCYkChoiIhEQBQ0RE\nQqKAISLk5uayZMkScnNzva6KhDEFDJFGbs6ceaSmnsb5599KauppzJkzz+sqSZjSsFqRRiw3N5fU\n1NMoKFgE9AMyiY8fSnb2GlJSUryuntQjDasVkWrJysoiLi4NFywA+hEbm0pWVpZ3lZKwpYAh0oil\npaVRWJgFZPrOZFJUlE1aWpp3lZKwpYAh0oilpKQwffpU4uOHkpg4gPj4oUyfPlXdURKUchgiQm5u\nLllZWaSlpSlYNBI1yWEoYIiINEJKeouISL1RwBARkZAoYIiISEgUMEREJCQKGCIiEhIFDBERCYkC\nhoiIhEQBQ0REQqKAISIiIVHAEBGRkChgiIhISBQwREQkJAoYIiISEgUMEREJiecBwxjTzBjzX2PM\nt8aY5caYB33nk4wxC40xa40xC4wxrbyuq4hIYxYW+2EYYxKstYeMMU2Az4DbgSuA76y1jxtj7gaS\nrLX3BLmv9sMQEammiN0Pw1p7yHexGdAUsMAoYKbv/EzgUg+qJiIiPmERMIwxMcaYb4FdwPvW2iXA\nSdbaHABr7S6grZd1FBFp7MIiYFhrS621ZwCdgIHGmN64VkaFYg1fMxER8WvqdQXKs9bmGWMygAuA\nHGPMSdbaHGNMO2B3VfebPHly2eX09HTS09PruaYiIpElIyODjIyMWj2G50lvY8yJQJG19oAxJh5Y\nADwK/BjYa619TElvEZG6VZOkdzgEjL64pHaM75hnrX3EGJMMvAJ0BrKB0dba/UHur4AhIlJNERkw\naksBQ0Sk+iJ2WK2IiIQ/BQwRD+Xm5rJkyRJyc3O9rorIcSlgiHhkzpx5pKaexvnn30pq6mnMmTPP\n6yqJHJNyGCIeyM3NJTX1NAoKFgH9gEzi44eSnb2GlJQUr6snjYByGCIRIisri7i4NFywAOhHbGwq\nWVlZ3lVK5DgUMEQ8kJaWRmFhFpDpO5NJUVE2aWlp3lVK5DgUMEQ8kJKSwvTpU4mPH0pi4gDi44cy\nffpUdUdJWFMOQ8RDubm5ZGVlkZaWpmAhDUoT90REJCRKeouISL1RwBARkZAoYIhIdCsqgtdeo+D6\n61ny5ZeaVV8LymGISHTauBH+9jd48UXIyQHgwuY9WFT6HdOnT+Waa672uILeUtJbRATgF7+A558v\nu7rKNGGa/TWzuId9bNOsemoWMMJqxz0RkTrRqxeccAJcfTWrf/QjBv9mKgfyHvfdmFw2q74xB4ya\nUAtDRCLT3r2wejWcc07gbd9/73IXrVtr3a4qaFitiES3khJYsACuvhrat4crrnCBobLmzaF1a0Cz\n6uuSWhgiEv6shcmTXQJ761Z3zhgYPtyda9/+uA+hWfUVKektItFr2DD48EPo2hUmTIBx46BzZ69r\nFbEUMEQkslkLhw9DfHzgbZ99BoWF8OMfQ4x602tLAUNEIlNuLvzjHzBjBgwaBH/9q9c1inoaVhtm\n1GcqcgzFxS6BPWMGvPmmuw5QUOCS202aeFs/CaB2XT3Rfs0ix7FvH1x2Gbz2GpSWwkUXucurVytY\nhCl1SdUDjfsWCdFvfgNt28L110OHDp5UobH2BGgeRpjQfs0iuFbDokVuRNP77wcv84c/wN13exYs\n1BNQPWph1AO1MKRRy8yEl16COXNg2zZ37oorYP58b+tVSWP/P1XSO0z4Z5ZOnDiU2NhUioqyNbNU\nGofXX3d5Cb+0NBg7Fm64wbMqVcXfE1BQENgToP/V4NTCqEeNtW9UGrGDB93CfxdeCNddB4MHuxnZ\nYUgtDM3DEJH6dOQIvPsuvPKK22siISGwTGlpxEysmzNnHhMnTqrQE9BY9smIyIBhjOkEzAJOAkqB\nv1prnzHGJAHzgFQgCxhtrT0Q5P4KGCL1qbTUzbJ+6SUXKPbvd+fnzIExY7ytWy0VFcHnn+8lLm4j\n3bs3rp6ASB0lVQz82lrbGxgE/NwYcxpwD/CBtfZU4CPgXg/rKNJ43XYbnHsuTJvmgkX//vDEE26J\njghjLSxcCGec4XrK4uIgPT2ZjIyzGlWwqCnPk97W2l3ALt/lg8aY1UAnYBTgf0fOBDJwQUREGtJP\nf+q6oa691h19+nhdo2r59FMYMuTYZQYNapi6RDrPu6TKM8ak4QJDH2CrtTap3G17rbXJQe6jLimR\n2li7Fl591bUennwy8PaSEvd1PELyEsuXwyWXwPGmPQ0YAI895hbBbYwielitMaYFMB+4w9fSqBwF\nqowKkydPLrucnp5Oenp6fVRRJHqsWuXmRbz6KqxY4c7FxcH990OrVhXLhvkyHQcPQsuWoZW9+WZ4\n5hlo1qx+6xSOMjIyyMjIqNVjhEULwxjTFHgbeNda+7Tv3Gog3VqbY4xpByyy1vYMcl+1MESqo7AQ\nUlIgL89db90aRo2CK6+EESMgNtbb+h2HtXDppW69wuM580xXzqOJ5GEtklsYM4BV/mDh8yYwHngM\nGAe84UG9RCJXQYH7WXlvibg4t/nQ99+7IHHeee5cGPvb3+Cmm0Ir++KLMH58vVan0fK8hWGMOQf4\nD7Ac1+1kgfuAL4FXgM5ANm5Y7f4g91cLQ8QvJwf+/W/3tXrhQnjuObeWU4TJzHSDsUJx1VVutK9U\nT0S2MKy1nwFVdZI20nSUSDUtXOj2vF682PXZ+K1c6VmVqqM6eQh/+ebN668+ElxkDHsQkWMrLYUv\nvnBdSyNHwp//7Bb++8MfvK5ZUNa6tIkx7jhesFixwt3HfyhYeMPzLqnaUpeUNAq7dsGHH8KmTW4k\nU2VHjsA778D550OLFg1fvxAoDxFeInJpkNpSwJCoVFoK770HH3zg9pLwD32NiYHdu6FNG2/rF4KP\nP4ZQR7grD9HwIjKHISJBGOO+ju/Y4a7Hx7ulOIYNC9sJdPv2QXLA1NqqKQ8ReRQwRLxQXAzLlrl1\nKy65BLp2rXi7MW4Np8OHXZAYNCjsZpv5cwn+0bvHs2IF9O5dv3WS+qUuKZGG8tVXbrjrZ5/Bf//r\n5kEAPP003H67t3UL0V13BV89JJh77oEpU+q3PlJz6pISCWdvvQW///3R6927wznnuA2HwlR18hBJ\nSbB3b71Wp358/71rJp14otc1CXsKGCK1tXs3fP21a0F8/bVbO/vBBwPLXXghHDrkgsSgQXDSSQ1f\n1+PIzYW2bUMvv2+fW1kkIpSWuhUJMzNdd2Bmpjs2bnQtvKee8rqGYU8BQ2qlUW9D+9lnbgOhbdsq\nnt+yJXjAGDjQHWHE2url0P/zn+MvFR4W8vPdsrXlA8Py5e58ZbGxLgMvx6WAITXm394yLi6NwsKs\n6NnesqTEfetcscLNlD58GB55JLBc+/YuWLRo4dbKPvNM+MEP3BHGLr4Y3n47tLKXXQavvVa/9amV\n0lI3N6V8YMjMdOeCadfOrTnSr9/R47TTwn4trXChpLfUSG5uLqmpp1FQsAjoB2QSHz+U7Ow14d3S\nsLbqdSjy8tzQ1TVrXJDwa9HC3WYq5QetdXtJnHJK2A51BfjXv+Dyy0MvH7b/Tvv3u1ZC+S6l5ctd\nN19lcXEuN+QPDv37Q9++1etvi3JKekuDycrKIi4ujYKCfr4z/YiNTSUrKyt8AkZJCfz2t7B9e8Xj\nyBF3VP6Qb9HCtSqKi6FLFzcGtE8fdxQXBy77bYz7dhpmdu+uXnokNzfM8r0lJbB+fcUWw7Jlrqsv\nmI4dj7YW/AHilFPCfpn2SKSAITWSlua6oSATfwujqCibtLS0+n3iDz6ArVsrBoAdO1w+ofI8hSZN\nYOrUwH7rhAQ3nKfyp2RMjBvuevLJgZsIhbHq5iHeeMNN/QgLe/cGJqFXrKjYwvM74QQXxCt3KUXA\nrPdooS6p+nbJJbBhg/uQ8h/x8W5RuG7dAsu/9JIbehIX574h+X+OGBF8OMrate7bb+XySUnQtH6/\nD/hzGLGxqRQVZbscxtVXuQ16jhw5+vPIEejcOXg/8cyZsHOn+1A/eND9zM+H558P3n3Qrp1bwruy\nTZsCJ78BvPCC+3137OiODh1cMKjcvRRhLrnEjdINRVjkIYqL3Xu1cqth+/bg5bt0CWw1dO9e7+/p\nxkRrSYWjXr1g9erA88uXu66Oyvr0Cb4kdWam64MNtfyyZe6frLIhQ1xz3x9YmjRxH55vvw09egSW\nHznSlS8tPXpY6xbC69EjcJTUqafCunWBj7N6dfDum1NOcY9f2cqVwecn3HqrGzfvDwD+IHD66e4b\naJSKqDxEbm5gq2HlSvcForKEBPe+Lt9i6NcvgsbqRi7lMMLRe++5b8yHDrmjoMB94HXpErz8tde6\nb12FhVBUdPRnUlLw8ief7D7EK5ev6sMzNzf4N/Rg/8wA2dmuhVRF+ZSUlIo5i2bNXDAq//NYS1rc\neKNrUbVs6XIILVu6o6o9Nf/856ofK4pUdz6EJ3mIwkLXaigfGJYtcyvrBtO1a8UWQ79+rpUd5nuG\ny1FqYTQ2+/Yd7S4qLHQJRmvdP3OwD/bNm113QkyMO4xxP9u1C97FZG3Ed/eEqi7noIR9HmLXropB\nITPTtRqLigLLtmgR2GLo2xcSExuwwnI86pISaSB1MQelqt67YBosD3HkiAsElbuUdu8OXr5798Bc\nQ1paWA8zFkcBQ6QB1HQOyowZMHFi6M9Tr29ra91gg8qBYc0a16KsLDExMDD06RO2mzXJ8SmHIdIA\nQp2DsmOHy8mHqt7yEAUFsGpVYHD47rvAsjExrulTviupf39ITW00XY1SNQUMkWqqag5KampatT5T\n//53GDeuDitmrVuqpHISet06NzCisqSkwCR0795u5JJIEOqSEqkBfw7jyJGvKS1NC+k+vXoFHwFd\nI4cOuQlulRPR+/cHlvW3GvyBwd9q6NRJrYZGTDkMiSrhuBLu7Nlu5HOoav3WtNYNba4cGNavD/7g\nbdpUbDH07w89e7rJiyLlKIchUSNcVsLdtcstShuqHTuqV76CgwePLq5X/sjLCyzbtKmbCFk5Ed2+\nvVoNUm/UwpCw4+VKuNWdD1GjPERpqZvfUrnVsHFj8PIpKS4g+Fdc9bcawmyPb4ksamFIVGjolXDb\ntAl9a9EhQ9wmQiHLywtsMSxfHnzDnthYl+io3GoIw535pHFSwJCwU98r4T7/PPziF6GXD6kB6990\nqXKrISsrePn27Svu09C/v+tiCrMlucMxjyTeUcCQsJOSksL06VOZOHFohZVwa/qBtW2bWyw3VDk5\nx1nHad++wFVXV6xw8x0qa9bMDVUt32ro29d1M4W5cMkjSfgIixyGMWY6cBGQY63t5zuXBMwDUoEs\nYLS19kCQ+yqHEaVq+u22unmIF15wi+AGKC52o5Eqb/+5dWvwB+rUqWKLwb+RTwQuyR2xOypKyCI5\nh/Ei8Cwwq9y5e4APrLWPG2PuBu71nZNGImAl3GOoTh6ibdsgC/bu2RPYali50q2tVFl8vFsWo3ye\noW9fSE4OrQIRICJ2VJQGFxYBw1r7qTEmtdLpUcCPfZdnAhkoYIjPc8/BL38ZevmyRmhRkVuSe3al\nZTJ27Ah+x7S0iquu9u/vlpSP8iW5PdtRUcLacQOGMWYucBD4HPjMWru23mvltLXW5gBYa3cZY7R7\neyO2dWvVW4gEs20bdIzdfTQojPMFhlWrgu/90bz50Y18yrcaImir1rpU13mkhqREff05bsCw1o4x\nxnQHzgZuN8acB7wB3G+trWLXnXpRZaJi8uTJZZfT09NJT09vgOpIfapOHiKWQl7+7WquOrVcd9KZ\nmcE3igK3aU/l2dBdu2pJ7kquueZqhg37SUR9+CpRX7WMjAwyMjJq9RjHTXobY37oK7fYd/0qYBlw\nkbX2j7V69orPkwq8VS7pvRpIt9bmGGPaAYustT2D3E9J7ygxeDB88cWxSljasYt+ZHJO82U8cGnm\n0Y18gi3J3bJlYHdSnz7uvEQdJeqrp76S3ucDRcaYXwHfA1uAXCDIRsy1YnyH35vAeOAxYByuVSNR\n5FjrMjXjML1YRT8yy45hJy5zyWlw78SXfYWNcfuRV155NS1Ny2Q0IkrU179QAsa/gJbW2sf8J4wx\nPwM21VUljDGzgXSgjTFmC/Ag8CjwqjFmApANjK6r5xNvBF+XydKR7fQjk/4sKwsOp7KWppRULLoH\nl1Oo3J3Uu7fLQUijpkR9/QuLeRi1oS6p8FU5DxHPIXqxqkJg6EcmbQgyHjYmxs1h8M9p8AeJzp3V\napAq+XMY5RP1ymEEp+XNxXMuD2HpwpaygOAPED1YTxOCbOSTnBx8Ix8tyS01oFFSoVHAkAY3b8b3\n/HHiioBWQ2sCJuVTTBOa9iq3kY//Z4cOajWINDAFDKk/paWQlcW+jzP504SjrYaT2UhMkBHPuZzI\nMvoz+Nb+JJztazX07AknnOBB5UWkMgUMqRt5eW4xvWXLsMsy+fwvmfRlOYnkBxQtJJY1nMYy+pNJ\nPy68tz/pt/uW5FarQSRsKWBIteTm5LDzs89I3b+fVv5tQJctc5v7BLGTdmTSryw4ZNKPNoNPY9Fn\ncQ1ccwk71gYexkTkwouNhQJGhPAkKbd/f4XtP/d89BEnbNhAiyBFjxDHSnqXBYVl9Gc5fcnFrc4S\nYb/u6FdaCt9/7/bkaN068PZVq2DuXDhwgMM5ORzKzaV5kyY0GzIE7r8/sPxbb8GNN7olVIqK3ONb\nC6NGwauvBpb/17/g8ssDz48aBa+/Hnj+nXfg+uvd3h9xcUd/DhsGzz4bWP7LL+GJJyqWjYuD00+H\nn/0ssPzmzbBggRs0Uf5o394NphAgslerbTTqfemCkhLYsCFwSe7s7ArFTvT93E6HshaD/+c6TqGY\noxv5HHd/CKk71kJ+Puzc6a6fempgmYwMt/JiXh4cOOB+WguXXuo+vCtbvx5+/3sATvAdANu+20un\nYAGjtBS++y7wfFHR8etvzNGjqqVWDh0KvrRwz4CFHJytW2H+/MDzl10WPGB8+y3cdlvg+aoCmIRM\nLYwGVOdLF+zdG7jD24oVcPhwQNHD5gRW2N4VAsNy+vJdWeg4asECGD68+tWJdJ4Nx/zyS/jVr9zM\nxp07j27EdMEF8O67geXffz/wD9S8Ofz0p8FbABs28P20aUx+6nm+K/pf8ulFAbvY2+x3vLF1Q+Br\nPXzYBS3/N/qYmKMBINiOgP7up1AVFrrH97dg/D8TEiC18qLVuJUkv/gisHxaGlx4YWD5r7+Gv/zF\nvY6CgqPHj34EDz0Uej2jnFoYYa7GSxcUF7sluSvv17B9e/DyXbqwIaEf89Yc7VLaYLtTUuWfey/x\n8T0a9Zo7ddryO3gQliyBTZvcsXmz+9m5c/AP9NJS+Pzzo9cTElz3Sbt2wR//hz+EpUvdrPfERHcc\nK1fQvTurrrqKv077kAMHHiw7ndjsxeDvvRNOqN5otuoOboiLcxuYhKpTJ7jqqtDLn3kmTJtWvTpJ\naKy1EX24lxAZdu/ebePjky0s82UFl9n4+GS7e/fu8oWs/eADa//wB2vHjbP2jDOsbdYsWErR2oQE\nawcOtPamm+zm/3nWDuFj25q9QYuWPwYMsHb27Lk2Pj7ZJiaeYePjk+3s2XM9+714LaS/S2XFxdZu\n2RL8tqVLg//i09KCl8/Pt/bjj61du9bavDxrS0tr/6IqqdFrlKjm++ys1uetuqQamP+bbELTznQt\n3MwzE69nUPOEo62GXbuC37Fr1wrrJx3s1o9WA7pRSmgb+Rw44L6IlqcZsc6SJUs4//xbOXDg67Jz\niYkD+OCDv3DWWWe5Ft4337i+cf+xfDkkJQVv5eXnw8iRbhn1rl3dT//RoUMDvrKKtGyGlKdRUuEq\nJ6dCErr4m2+IWbuWmGBLcrdoUXFJbt9GPrZlIn37ul1DQ7FkCfzgB3X7MqLVcXNLBw+6aFv5fZaa\nCmvWRNRkRH1JED/lMMLNZZe5vunduyucLvuln3xyxWUy+vatsJHPY4/BPT8K7akefxzuuqvuqt5o\n7N1LyiefsHTIWRx+fwAjWvTmQPG2irvLtWgBF13kcgZnnOGO0093LYwIU5190kUqUwujPg0aBIsX\nu2+n5Zfj9i+uV2kjny+/dPnMUAwY4AaDSA393//Ba6+55HG598/aZ54hecwYfahK1FMLI9z8+c/u\nW2lqatCRJIcOuZiSmRnawwXLQ0gNLVvmchFxcW6J3aFD4Sc/4dSBA905qTPqBoseamE0IGvdEPoR\nI0IrrzxEDRQWwn//Cx99BIsWwfjx7qjsv/91uYnBg7WMej3SHtvhS0nvMLRmDfzud/DPfx6/7MyZ\nB+jZc52+idXEokXw6KPw6aeu6eY3ZgzMmeNdvRox7bEd3moSMKqYuy914f773WoHVQWL//3fo4P0\nZ8+ex623duP8828lNfU05syZ17CVjXSHD8PChS5Y9O7tls547TV4/nmva9Zo+SequmAB5SeqSmRS\nC6Me/fznMHWqu9yqlRv1NGFC4OoK+iZ2DNa6We7+LqaCAnj77cByBw+680OHuqXVxXN6X4c3Jb3D\nzPPPw3PPHX/lhBovGRLN9u+H22+HDz44uhAfQJMmbmJcpRFmtGjhup8kbKSkpDB9+lQmThxaYbJg\no31PRwG1MMKAvokFUVoKHTu6me8nnVQ2iomhQ938FW3OFDE0Sio8KekdwRrlsg3r17vlpq++Grp0\nCbx9wQK38FyvXgoQInVMASPCRf03MWvdWOHXX4c33nAb+wA89RTccYe3dasjUf83lKihHEaEi/pl\nGyZPhocfPnq9dWu35Mbpp3tWpbqkOQcS7dTCkIbzxRduX4PLLnO7w517bvANeSKQ8lASadTCEO9Y\n6xa3evVVt1lQsI2Czj4btmypeuvOCKaRbtIYKGBIzVnrFu+bNw9eecXtLOe3ebNbebc8/17PUSgt\nzXVDQSb+FkZRUTZpaWme1kukLilgSO1cdhlkZ7vL7drBlVfC6NHB92aOYppzII1B2OcwjDEXAE/h\nljGZbq19rNLtymF46YknICvLDY095xw3sa4R0ygpiRRRN6zWGBMDrAPOA3YAS4Ax1to15cooYNSX\n/Hw3/PXll2HYMPjNb7yukYjUkWhMeg8E1ltrswGMMXOBUcCaY95Laq6oyE2Ye/llFywKCtz5nBwF\nDJFGLtwDRkdga7nr23BBROpLZiZcfPHR6+ecA9de64bDikijFu4BIySTJ08uu5yenk56erpndYl4\nAwa4RPZZZ8E114BG+YhEhYyMDDIyMmr1GOGewzgbmGytvcB3/R7Alk98K4dRTUeOwJtvwowZ8Mwz\n0KOH1zUSEQ9E4wZKS4DuxphUY0wcMAZ40+M6RaZly9x6TR06uGGv770Hf/+717USkQgS1l1S1toS\nY8wvgIUcHVa72uNqRZ6nn4Y77zx6vX9/mDgRxo71rk5SbRqyK14L6y6pUKhLKgTr18MPf+gCxIQJ\nLk8hEUULG0pdi7p5GKFQwPDJynK5iV/+MvjyG4WFEBfX4NWS2tPChlIfojGHIcdSUACzZ7tJdV27\nuhzF118HL6tgEbH8Cxu6YAHlFzYUaUhhncOQY5gyBR57DA4ccNdPOAGuuAISErytl9Q5LWwo4UIt\njEjVpIkLFmedBS+8ADt3wksvue1Mw1hubi5LliwhNzfX66pEDP/ChvHxQ0lMHEB8/FAtbCieUA4j\nnJWUuNzEyScH3rZnjwsSffs2eLVqSonb2tEoKalLSnpHiw0b4MUXYeZM15LYvDniNx1S4lYkvCjp\nHcmsdQHixz92s6//3/+D7dtdsnrbNq9rV2tK3IpEPgWMcGGMy0X85z8ucT1+vLu8bh106eJ17Wqt\nYuIWlLgViTwaJRVO7r/f5SVGj4bERK9rU6e0I51I5FMOoyF98w1MmwYpKfD733tdG08ocSsSHpT0\nDkcHD8KcOS5QfPWVO5ec7FoSmkwnIh6Jxh33Iltenss/+CfXJSXBDTfAzTcrWIhIxFHAqE+JifCj\nH7mAcfPNcOWVEB/vda1ERGpEXVL17fBht2yHiEgY0TyMcKRgISJRQgFDRERCooAhIiIhUcAQEZGQ\nKGCIiEhIFDBERCQkChgiIhISBQwREQmJZnqLRJi0tDSys7O9roZEiNTUutt3RjO9RSKMb4au19WQ\nCFHV+0UzvUVEpN4oYIiISEgUMEREJCQKGCIiEhJPA4Yx5kpjzApjTIkxZkCl2+41xqw3xqw2xgz3\nqo6NUW5uLkuWLCE3N9frqoiEjZkzZzJkyJAa3ffjjz+mc+fOIZWdMmUKN998c42ep7553cJYDlwG\nfFz+pDGmJzAa6An8FJhqjKlWNl9qZs6ceaSmnsb5599KauppzJkzz+sqSQRJS0sjISGBxMREOnTo\nwI033sjDLYBxAAAQ20lEQVShQ4dCum91PlS9UpuPoVDve++99zJt2rQaP0998jRgWGvXWmvXA5V/\nk6OAudbaYmttFrAeGNjQ9WtscnNzmThxEgUFizhw4GsKChYxceIktTQkZMYY/v3vf5OXl8fSpUv5\n9ttvmTJlSkj3tdbW6gO5LpWWlnpdhaBKSko8fX6vWxhV6QhsLXd9u++c1KOsrCzi4tKAfr4z/YiN\nrbtJP9I4+Mf8t23blhEjRrB06dKy2woLC/mf//kfUlNTad++PbfddhtHjhzh0KFDjBw5kh07dtCy\nZUsSExPZtWsXS5YsYfDgwSQlJdGxY0d++ctfUlxcHPR5R44cydSpUyucO/3003n99dcBWLNmDcOH\nD6dNmzb07NmTV199tazcjTfeyKRJk7jwwgtp2bIlGRkZ7N27l0suuYRWrVpx9tlns3HjxgqPfeed\nd9KlSxdatWrFWWedxaefflp22+HDhxk/fjzJycn06dOHJUuWVLjvzp07ufLKK2nbti0nn3wyzz77\nbNltDz30ENdffz0A2dnZxMTEMGPGDFJTUznvvPMAGD16NO3btycpKYn09HRWrVoV2h+nluo9YBhj\n3jfGZJY7lvt+Xlzfzy3Vk5aWRmFhFpDpO5NJUVE2aWlp3lVKqsWYujtqa9u2bbz77rv06NGj7Nzd\nd9/Nhg0byMzMZMOGDezYsYOHH36YhIQE3n33XTp06EB+fj55eXm0a9eOJk2a8NRTT7F3716++OIL\nPvroo4Cg4HfNNdcwe/bssuurVq1iy5YtXHTRRRw6dIjhw4dz3XXXsWfPHubOncukSZNYs2ZNWfk5\nc+Zw//33k5+fzznnnMOkSZNISEggJyeH6dOnM2PGjArPN3DgQDIzM9m3bx9jx47lqquuorCwEIDJ\nkyezefNmNm/ezIIFC5g5c2bZ/ay1XHzxxZxxxhns3LmTDz/8kKeffpr333+/rEzlltZ//vMf1qxZ\nw4IFCwAXHDdu3Mju3bsZMGAA1157bXX/PDVjrfX8ABYBA8pdvwe4u9z194AfVnFf++CDD5YdixYt\nslJzs2fPtfHxyTYx8QwbH59sZ8+e63WVpBL3b1vVbXV31ERaWppt2bKlbdmypTXG2GHDhtkDBw6U\n3d68eXO7adOmsuuff/657dq1q7XW2oyMDNu5c+djPv5TTz1lL7/88qC35efn2xYtWtgtW7ZYa639\n7W9/aydOnGittXbevHn23HPPrVD+lltusQ8//LC11trx48fbcePGld1WUlJiY2Nj7bp168rO3Xff\nfXbIkCFV1i0pKclmZmZaa63t1q2bXbhwYdlt06ZNK3ttixcvtqmpqRXuO2XKFDthwgRrrbWTJ0+2\n119/vbXW2qysLBsTE2OzsrKqfN59+/ZZY4zNy8sLerv//bJo0aIKn5W+89X6rA6ntaTKh9Q3gZeN\nMX/CdUV1B76s6o6TJ0+u35o1ItdcczXDhv2ErKws0tLSSElJ8bpKUg3hsGLIG2+8wdChQ/nkk08Y\nO3Yse/bsITExkdzcXA4dOsSZZ55ZVra0tPSYy5ysX7+eX//613z11VcUFBRQXFxc4f7ltWjRgpEj\nRzJ37lzuuusu5syZw/Tp0wHXtbN48WKSk5MB90W5pKSEG264oez+5RPuubm5lJSU0KlTp7Jzqamp\nfPLJJ2XXn3zySWbMmMHOnTsByM/PZ8+ePQDs2LEj4L5+W7ZsYfv27RXqUlpayrnnnlvl76H8Y5WW\nlnLfffcxf/589uzZgzEGYwx79uyhZcuWVT5Geno66enpZdcfeuihKstWxethtZcaY7YCZwNvG2Pe\nBbDWrgJeAVYB7wCT7LHeVVKnUlJSOOussxQspEb8/6pDhgxh3Lhx/OY3vwHgxBNPJCEhgZUrV7J3\n71727t3L/v37OXDgABB8FNFtt91Gz5492bhxI/v37+eRRx45ZoDxd0stXryYI0eOlH1Adu7cmfT0\n9LLn3bdvH3l5eTz33HNl9y3//CkpKTRt2pStW4+mUrds2VJ2+ZNPPuGJJ55g/vz57Nu3j3379pGY\nmFhWt/bt21e4b/nFIjt37ky3bt0q1OXAgQO89dZbVb6u8nWbPXs2b731Fh999BH79+8nKyurfI9L\nvfJ6lNTr1trO1tp4a217a+1Py902xVrb3Vrb01q70Mt6ikjN3Hnnnbz//vssX74cYww33XQTd955\nZ9nIu+3bt7Nwofv3Pumkk/juu+/Iy8sru39+fj6JiYkkJCSwZs0aXnjhhWM+38iRI8nOzuaBBx7g\n6quvLjt/0UUXsW7dOl566SWKi4spKiriq6++Yu3atUEfJyYmhssvv5zJkydTUFDAqlWrKuQhDh48\nSGxsLG3atKGwsJCHH36Y/Pz8sttHjx7NlClT2L9/P9u2basQmAYOHEjLli15/PHHOXz4MCUlJaxc\nuZKvvvoqaF0qB4L8/HyaNWtGUlIS33//Pffee2+DjS4L11FSIhKBKn9wnXjiiYwbN46HH34YgEcf\nfZTu3btz9tln07p1a4YPH866desAOPXUU7nmmmvo1q0bycnJ7Nq1iyeffJKXX36ZxMREbrnlFsaM\nGXPM54+Li+Pyyy/nww8/ZOzYsWXnW7RowcKFC5k7dy4dOnSgQ4cO3HPPPRw5cqTKx3r22WfJz8+n\nffv2TJgwgQkTJpTdNmLECEaMGMEpp5xC165dSUhIqNCl9eCDD9KlSxe6du3KBRdcUKHrKyYmhrff\nfpulS5fStWtX2rZty0033VQhUB7rd3rDDTfQpUsXOnbsSJ8+fRg8ePAxfyd1Scubi0QYLW8u1aHl\nzUVEpMEpYIiISEgUMEREJCQKGCIiEhIFDBERCYkChoiIhEQBQ0REQqKAISIiIVHAEJEGcdttt/HI\nI494XQ2pBc30FokwkTDTOz09nczMTHJycoiNja2zx/3444+57rrrKizsJ8emmd4iErays7P59NNP\niYmJ4c0336zTx7ZhtI1rY6SAISJ1atasWQwaNIjx48fz97//vez8jTfeyAMPPADAzJkzGTJkSIX7\nxcTEsGnTJgDeeecdevfuTWJiIp07d+aPf/xjldu4WmvLFjVMSUlhzJgx7N+/v8Feb2OigCESTcJg\nj9ZZs2Zx3XXXMXbsWBYsWFC2lHlgVU2V13/2s5/x17/+lby8PFasWMFPfvKTKrdxfeaZZ3jzzTf5\n5JNP2LFjB0lJSUyaNKnG9ZeqKWCISJ359NNP2bJlC6NHj2bAgAF07969wj7bx1K+nz0uLo6VK1eS\nn59Pq1atOP3006u831/+8hceeeQR2rdvT2xsLA888ADz58+ntLS01q9HKlLAEIkmdbmtdw3MmjWL\n4cOHk5SUBLgd8MpvPBSqf/7zn/z73/8mNTWVoUOHsnjx4irLZmdnc9lll5GcnExycjK9evUiNjaW\nnJycGr0GqVo47ektIhHs8OHDvPLKK5SWltK+fXsAjhw5woEDB8jMzKxQtnnz5hw6dKjs+q5duyp0\nSZ155pm8/vrrlJSU8OyzzzJ69Gi2bNkSNOHdpUsXZsyYwaBBg+rplYmfWhgiUif+9a9/0bRpU1av\nXs2yZctYtmwZa9asYciQIcyaNatC2f79+7Ny5UoyMzM5cuQIDz30UNltRUVFzJ49m7y8PJo0aULL\nli1p0qQJEHwb11tuuYX77ruvbM/t3NzcOh+dJY4ChojUiVmzZjFhwgQ6duxI27Zty46f//znzJ49\nm5KSkrKyPXr04IEHHuC8887jlFNOCRgx9Y9//IOuXbvSunVrpk2bxssvvwwE38b1jjvuYNSoUQwf\nPpxWrVoxePBgvvzyywZ97Y2FJu6JRJhImLgXzLhx4+jRowe/+93vvK5Ko6KJeyISUYqLi1m7di1d\nu3b1uipSCwoYIlLv2rdvT3JyMldccYXXVZFaUJeUSISJ1C4p8Ya6pEREpMEpYIiISEgUMEREJCSa\n6S0SYVJTU7XEt4QsNTW1zh7L06S3MeZx4GLgCLARuNFam+e77V5gAlAM3GGtXVjFYyjpLSJSTZGY\n9F4I9LbWng6sB+4FMMb0AkYDPYGfAlNNI/1KlZGR4XUV6pVeX2SL5tcXza+tpjwNGNbaD6y1/jWI\nFwOdfJcvAeZaa4uttVm4YDLQgyp6LtrftHp9kS2aX180v7aa8rqFUd4E4B3f5Y5A+U17t/vOiYiI\nR+o96W2MeR84qfwpwAK/tda+5SvzW6DIWjunvusjIiI14/lMb2PMeOAm4CfW2iO+c/cA1lr7mO/6\ne8CD1tr/Brm/Mt4iIjVQ3aS316OkLgD+AJxrrf2u3PlewMvAD3FdUe8DPTQcSkTEO17Pw3gWiAPe\n9w2CWmytnWStXWWMeQVYBRQBkxQsRES85XmXlIiIRIZwGiVVbcaYC4wxa4wx64wxd3tdn7pkjOlk\njPnIGLPSGLPcGHO713Wqa8aYGGPMN8aYqNtP0xjTyhjzqjFmte9v+EOv61SXjDG/MsasMMZkGmNe\nNsbEeV2n2jDGTDfG5BhjMsudSzLGLDTGrDXGLDDGtPKyjrVRxet73Pf+XGqM+acxJvF4jxOxAcMY\nEwM8B4wAegPXGGNO87ZWdaoY+LW1tjcwCPh5lL0+gDtw3Y7R6GngHWttT6A/sNrj+tQZY0wH4JfA\nAGttP1zX9hhva1VrL+I+S8q7B/jAWnsq8BG+icURKtjrCzpx+lgiNmDgJvKtt9ZmW2uLgLnAKI/r\nVGestbustUt9lw/iPnCiZi6KMaYTMBL4m9d1qWu+b2pDrLUvAvgmoOZ5XK261gRoboxpCiQAOzyu\nT61Yaz8F9lU6PQqY6bs8E7i0QStVh4K9vmNMnK5SJAeMypP7thFFH6jlGWPSgNOBgGHFEexPwF24\nOTnRpiuwxxjzoq/LbZoxJt7rStUVa+0O3OjGLbhJtfuttR94W6t60dZamwPuCxzQ1uP61KcJwLvH\nKxTJAaNRMMa0AObjFmA86HV96oIx5kIgx9eCMr4jmjQFBgDPW2sHAIdw3RtRwRjTGvftOxXoALQw\nxoz1tlYNIhq/3JSfOD37eGUjOWBsB7qUu97Jdy5q+Jr784F/WGvf8Lo+degc4BJjzCZgDjDUGDPL\n4zrVpW3AVmvtV77r83EBJFoMAzZZa/daa0uA14DBHtepPuQYY04CMMa0A3Z7XJ8655s4PRIIKeBH\ncsBYAnQ3xqT6RmiMAaJttM0MYJW19mmvK1KXrLX3WWu7WGu74f5uH1lrb/C6XnXF142x1Rhziu/U\neURXcn8LcLYx5gTfKtLnER1J/cqt3TeB8b7L44BI/9JW4fX5Jk7fBVziX2XjeLyeuFdj1toSY8wv\ncJn+GGC6tTYa3rQAGGPOAa4FlhtjvsU1h++z1r7nbc0kRLcDLxtjYoFNwI0e16fOWGu/NMbMB77F\nTaz9Fpjmba1qxxgzG0gH2hhjtgAPAo8CrxpjJgDZuC0XIlIVr+8+gkycPubjaOKeiIiEIpK7pERE\npAEpYIiISEgUMEREJCQKGCIiEhIFDBERCYkChoiIhEQBQ0REQqKAISIiIVHAEBGRkETs0iAi4coY\n0wS4GuiGW4J/IPCktXazpxUTqSW1METqXn/cCrWbcIu9vQrs9LRGInVAAUOkjllrv7HWFuK21v3Y\nWpthrT3sdb1EaksBQ6SOGWPOMsa0we2XvNkYM8TrOonUBeUwROreBcAu4HNjzKXAHo/rI1IntLy5\niIiERF1SIiISEgUMEREJiQKGiIiERAFDRERCooAhIiIhUcAQEZGQKGCIiEhIFDBERCQk/x/75bax\nhl7J/AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f57576f1668>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(x, y)\n",
"plt.plot(x, reta(x), 'b-', lw=2, label='Reta verdadeira')\n",
"\n",
"\n",
"plt.plot(x[ordem], ml.fittedvalues[ordem], 'r-', lw=2, label='Ajuste')\n",
"plt.plot(x[ordem], inter_conf_inf[ordem], 'r--', lw=2)\n",
"plt.plot(x[ordem], inter_conf_sup[ordem], 'r--', lw=2)\n",
"\n",
"plt.xlabel('$x$')\n",
"plt.ylabel('$y$')\n",
"\n",
"plt.legend(loc='lower right')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment