Skip to content

Instantly share code, notes, and snippets.

View gabriel19913's full-sized avatar
🏠
Working from home

Gabriel Aparecido Fonseca gabriel19913

🏠
Working from home
View GitHub Profile
@gabriel19913
gabriel19913 / get-image-links.py
Created November 25, 2018 20:27
WebScraping para pegar links de fotos do IMGBB e salvar em arquivos txt
[['SOSA4515240', 150, 'https://produto.mercadolivre.com.br/MLB-1104249558-capacete-para-moto-_JM'], ['VEROVEROMOTOS', 254.9, 'https://produto.mercadolivre.com.br/MLB-1103179117-capacete-peels-mirage-storm-_JM'], ['MOTOLOPES.COM.BR', 260, 'https://produto.mercadolivre.com.br/MLB-1010537625-capacete-peels-mirage-storm-preto-rosa-_JM'], ['ROTADOCAPACETE', 264.47, 'https://produto.mercadolivre.com.br/MLB-1135088554-capacete-peels-mirage-original-new-classic-_JM'], ['CENTRALMOTOS17', 266.31, 'https://produto.mercadolivre.com.br/MLB-1114344661-capacete-peels-mirage-storm-preto-vermelho-lancamento-_JM'], ['RACINGMOTOPARTS', 266.31, 'https://produto.mercadolivre.com.br/MLB-1116545168-capacete-peels-mirage-storm-preto-vermelho-lancamento-_JM'], ['MOTOSHRC', 266.31, 'https://produto.mercadolivre.com.br/MLB-1118021626-capacete-peels-mirage-storm-preto-vermelho-lancamento-_JM'], ['WHMOTOS', 266.35, 'https://produto.mercadolivre.com.br/MLB-1030699897-capacete-peels-mirage-storm-preto-e-rosa-feminino-56-58-60-_JM'], ['GALP
# -*- coding: utf-8 -*-
import scrapy
from netshoes.items import NetshoesItem
class NetshoesspiderSpider(scrapy.Spider):
name = 'NetshoesSpider'
allowed_domains = ['netshoes.com.br']
start_urls = [
'https://www.netshoes.com.br/busca?nsCat=Natural&q=mirage+storm',
'https://www.netshoes.com.br/busca?nsCat=Natural&q=mirage+revo',
# -*- coding: utf-8 -*-
import scrapy
from ponto_frio.items import PontoFrioItem
class PontofrioSpider(scrapy.Spider):
name = 'PontoFrio'
allowed_domains = []
start_urls = ['https://search3.pontofrio.com.br/busca?q=capacete+axxis']
def parse(self, response):
rom selenium import webdriver
from bs4 import BeautifulSoup
import csv
browser = webdriver.Chrome('C:\\Users\\100pau\\workspace\\chromedriver.exe')
browser.get('https://www.centauro.com.br/capacete-peels-mirage-storm-preto-e-verde-fosco-m00w4e-mktp.html?cor=34')
html = browser.execute_script("return document.getElementsByTagName('html')[0].innerHTML")
soup = BeautifulSoup(html, 'html.parser')
%%time
#Importing libraries
import pandas as pd
import json as JSON
from json import load
import numpy as np
import requests
import matplotlib.pyplot as plt
import seaborn as sns
import time
C1 = np.random.multivariate_normal(np.array([5, 5]), np.array([[1, 0],[0, 1]]), 500)
C2 = np.random.multivariate_normal(np.array([0, 0]), np.array([[1, 0],[0, 1]]), 500)
data1 = pd.DataFrame({'X1':C1[:,0],'X2':C1[:,1]})
data1['Class'] = np.full((500, 1), 'C1')
data2 = pd.DataFrame({'X1':C2[:,0],'X2':C2[:,1]})
data1['Class'] = np.full((500, 1), 'C2')
data = pd.concat([data1, data2], sort=True)
clear all
clc
x1 = -0.25 + 0.08 * randn(1, 10);
x2 = 0.5 + 0.08 * randn(1, 10);
C1 = [x1;x2];
x1 = 0.7 + 0.08 * randn(1, 10);
x2 = 0.25 + 0.08 * randn(1, 10);
C2 = [x1;x2];
from sklearn.datasets import load_wine
from sklearn.utils import shuffle
import numpy as np
from sklearn.model_selection import KFold
from sklearn.preprocessing import scale
from sklearn import tree
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
@gabriel19913
gabriel19913 / condaenv.txt
Created May 24, 2019 16:50 — forked from pratos/condaenv.txt
To package a conda environment (Requirement.txt and virtual environment)
# For Windows users# Note: <> denotes changes to be made
#Create a conda environment
conda create --name <environment-name> python=<version:2.7/3.5>
#To create a requirements.txt file:
conda list #Gives you list of packages used for the environment
conda list -e > requirements.txt #Save all the info about packages to your folder