Skip to content

Instantly share code, notes, and snippets.

View galenseilis's full-sized avatar
🚀
🟰🦀➕🐍

Galen Seilis galenseilis

🚀
🟰🦀➕🐍
View GitHub Profile
import networkx as nx
import matplotlib.pyplot as plt
from sympy import factorint
def f(n):
result = factorint(n)
result = result.items()
result = [n*e//p for p, e in result]
result = sum(result)
import numpy as np
from scipy.spatial.distance import pdist, squareform
from itertools import combinations
sph = 2000
def monte_plot(sph):
X = 100 * np.random.random(sph * 2).reshape(sph, 2)
radial_dists = np.sqrt(np.sum((X - np.array([50,50]))**2, axis=1))
plot_X = X[radial_dists <= 3.999]
@galenseilis
galenseilis / tensor_minors.py
Created October 17, 2022 01:08
Computes a "minor" of a tensor.
import numpy as np
def multiminor(arr, I):
modes = len(arr.shape)
assert modes == len(I)
result = arr.copy()
for mode in range(modes):
result = np.delete(result, I[mode], axis=mode)
from math import factorial
import time
n = 241779
prod_n = factorial(n)
while 1:
prod_n = prod_n * (n + 1)
str_n = str(prod_n)
n += 1
@galenseilis
galenseilis / power_tower.py
Created October 17, 2022 01:14
Naive implementation of a 'power tower'.
def exp_seq(iterable):
'''Calculates the exponent tower of a sequence of numbers.'''
a = iterable[0]
for i in iterable[1:]:
a = a**i
return a
@galenseilis
galenseilis / prime_factors.py
Created October 17, 2022 01:15
Brute force search of prime factors of a number.
def prime_factors(n):
'''Brute-force method of searching for primes.'''
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
@galenseilis
galenseilis / mult_pers.py
Created October 17, 2022 01:17
Recursively multiply digits of a number's digits of....
import numpy as np
def mult_pers(n):
if len(str(n)) == 1:
return n
else:
prod = np.prod([int(i) for i in str(n)])
return mult_pers(prod)
@galenseilis
galenseilis / prime_frac.py
Created October 17, 2022 01:19
Functions for prime factors of integers and fractions of integers
import collections
def prime_factors(n):
'''Brute-force method of searching for primes.'''
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
from itertools import chain, combinations
from random import sample
import matplotlib.pyplot as plt
def powerset(iterable):
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
pX = [set(i) for i in powerset(list(range(10)))]
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
x = np.random.normal(size=1000)
y1 = np.cos(x)
y2 = np.sin(x)