This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"embeddings": [ | |
{ | |
"tensorName": "Intent40", | |
"tensorShape": [ | |
1360, | |
768 | |
], | |
"tensorPath": "https://gist.githubusercontent.com/gaphex/d56f0124a7b7459408d92bbaca373f3e/raw/abb29897ab1015d7e05d9eda90514aeb45181953/embeddings.tsv", | |
"metadataPath": "https://gist.githubusercontent.com/gaphex/2793c044577abc73cff7d438a2097ef1/raw/014ab59be93252b9516c0883d21dba6a9b0622ad/metadata.tsv" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Label | Id | Sentence | |
---|---|---|---|
blagotvoritelnost_212 | 0 | греф_помогает_тяжело_больным | |
blagotvoritelnost_212 | 0 | греф_миллиардер | |
blagotvoritelnost_212 | 0 | может_поможете_бедным_у_вас_же_много_денег | |
blagotvoritelnost_212 | 0 | сбербанк_заботится_о_больных | |
blagotvoritelnost_212 | 0 | сбербанк_помогает_людям | |
blagotvoritelnost_212 | 0 | грефу_только_денег_не_надо | |
blagotvoritelnost_212 | 0 | сбербанк_заботится_о_ветеранах | |
blagotvoritelnost_212 | 0 | грефу_только_денег_не_надо | |
blagotvoritelnost_212 | 0 | греф_помогает_научному_прогрессу |
We can't make this file beautiful and searchable because it's too large.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-0.033 -0.578 0.1926 0.2186 -0.5674 0.2001 0.4424 -0.2903 0.1769 0.355 0.2542 -1.124 0.1263 -0.5547 0.157 -0.1073 -0.02002 -0.1493 0.02702 0.1525 0.1299 0.3364 0.276 -0.004074 -0.3472 0.4946 -0.1622 0.3628 0.03714 0.3384 0.3384 -0.4062 -0.392 -0.3782 0.2084 0.09204 -0.01868 0.1995 -0.03073 0.4304 0.087 -0.04553 -0.6196 0.05472 0.337 0.4192 0.4705 -0.2595 -0.2952 -1.256 -0.10583 0.4216 -0.03677 0.04718 -0.414 0.651 -0.1908 0.2788 -0.125 0.1112 -0.3457 -0.4543 0.256 0.444 0.372 0.007282 0.254 -0.0879 -0.9517 0.1906 0.0641 0.3645 0.09 -0.4607 -0.4106 -0.1879 0.4492 0.12067 -0.1442 0.3267 0.1013 -0.4993 -0.2394 0.814 -0.2183 0.3274 -0.2252 -0.02669 0.2515 -0.457 -0.0087 -0.6934 0.312 0.1274 -0.3042 0.05402 -0.06024 -0.3518 0.5913 0.063 -0.4602 -0.6064 -0.04974 -0.01523 0.4531 -0.07745 -0.01627 0.2477 0.2498 -0.02473 0.10626 0.164 0.3872 -0.4756 0.2184 -0.7964 -0.3525 0.4448 0.02672 -0.432 0.1124 0.3257 0.3655 -0.203 -0.2278 0.01701 0.1403 0.235 0.0183 -0.1366 -0.5996 0.1203 0.3403 0.04422 -0.16 -0.657 0.362 -0.18 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inp = tf.keras.Input(shape=(1,), dtype=tf.string) | |
encoder = BertLayer(bert_path="./bert-module/", seq_len=48, | |
tune_embeddings=False, do_preprocessing=True, | |
pooling='cls', n_tune_layers=3, verbose=False) | |
pred = tf.keras.layers.Dense(1, activation='sigmoid')(encoder(inp)) | |
model = tf.keras.models.Model(inputs=[inp], outputs=[pred]) | |
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) | |
model.fit(trX, trY, validation_data=[tsX, tsY], batch_size=128, epochs=5) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sess = tf.Session(graph=restored_graph) | |
t_data = ["What would happen if earth stopped rotating? ||| What would happen if the Earth rotation suddenly stop?"] | |
y_out = sess.run(y, feed_dict={ | |
x: np.array(t_data).reshape((-1,1)) | |
}) | |
y_out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
preprocessor = build_preprocessor("./uncased_L-12_H-768_A-12/vocab.txt", 64) | |
py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32], name='preprocessor') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
graph_ops = restored_graph.get_operations() | |
input_op, output_op = graph_ops[0].name, graph_ops[-1].name | |
x = restored_graph.get_tensor_by_name(input_op + ':0') | |
y = restored_graph.get_tensor_by_name(output_op + ':0') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def load_graph(frozen_graph_filename): | |
with tf.gfile.GFile(frozen_graph_filename, "rb") as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
with tf.Graph().as_default() as graph: | |
tf.import_graph_def(graph_def) | |
return graph | |
restored_graph = load_graph("frozen_graph.pb") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
frozen_graph = freeze_keras_model(model, export_path="frozen_graph.pb") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.python.framework.graph_util import convert_variables_to_constants | |
from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference | |
def freeze_keras_model(model, export_path=None, clear_devices=True): | |
""" | |
Freezes the state of a session into a pruned computation graph. | |
@param model The Keras model to be optimized for inference. | |
@param clear_devices Remove the device directives from the graph for better portability. | |
@return The frozen graph definition. |