Skip to content

Instantly share code, notes, and snippets.

View gavinsykes's full-sized avatar

Gavin Sykes gavinsykes

View GitHub Profile
const prob;
Where P(BB) = 1/2
P(BB) = (B/(B+R)) * ((B-1)/(B+R-1)) = 1/2
(B(B-1)) / ((B+R)(B+R-1)) = 1/2
2B(B-1) / (B+R)(B+R-1) = 1
2B(B-1) = (B+R)(B+R-1)
2B^2 - 2B = B^2 + BR - B + BR + R^2 - R
B^2 - B = 2BR + R^2 - R
B^2 - 2BR - B = R^2 - R
import argparse
import sys
sys.path.append('/home/gavin/Documents/Git Repositories/project-euler')
import pyfuncs
challenge = 'Find the sum of the digits in {}!:'
import math
const factorial = n => {
let res = n;
if (!Number.isInteger(n) || n < 0) {
return undefined;
}
if (n === 0 || n === 1)
return 1;
while (n > 1) {
n--;
result *= n;
const years = {
start : 1900,
end : 2000
};
const genArray = y => {
let arr = [];
for (let i = y.start; i <= y.end; i++) {
arr.push(i);
}
import argparse
import sys
sys.path.append('/home/gavin/Documents/Git Repositories/project-euler')
import pyfuncs
challenge = 'Starting in the top left corner of a 2x2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.\n\nHow many such routes are there through a {}x{} grid?:'
import math
const euler_15 = n => nCr(2*n,n);
const nCr = (n,r) => {
if (r > n || n < 1 || r < 1) {
return undefined;
}
return factorial(n) / (factorial(r) * factorial(n-r));
};
#include <stdio.h>
int nCr(int n,int r);
int factorial(int n);
int main() {
int n;
printf("Please enter a number here:\n");
scanf("%d",&n);
printf("Here is your answer: %d\n",nCr(2*n,n));
import argparse
import sys
sys.path.append('/home/gavin/project-euler')
import pyfuncs
challenge = 'Which starting number, under {}, produces the longest chain in the Collatz problem?'
parser = argparse.ArgumentParser(description = 'Which starting number, under x, produces the longest chain in the Collatz problem?')
parser.add_argument('--num', default = 500, type = int, help = 'Insert the number here, it must be a positive integer. It defaults to 1000000 to correspond with the Project Euler Problem at https://projecteuler.net/problem=14')
import argparse
import sys
sys.path.append('/home/gavin/project-euler')
import pyfuncs
challenge = 'What is the value of the first triangle number to have over {} divisors?'
parser = argparse.ArgumentParser(description = 'What is the value of the first triangle number to have over x divisors?')
parser.add_argument('--num', default = 500, type = int, help = 'Insert the number here, it must be a positive integer. It defaults to 500 to correspond with the Project Euler Problem at https://projecteuler.net/problem=12')
<?php
$grid = [
[8,2,22,97,38,15,0,40,0,75,4,5,7,78,52,12,50,77,91,8],
[49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,4,56,62,0],
[81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,3,49,13,36,65],
[52,70,95,23,4,60,11,42,69,24,68,56,1,32,56,71,37,2,36,91],
[22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80],
[24,47,32,60,99,3,45,2,44,75,33,53,78,36,84,20,35,17,12,50],
[32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70],
[67,26,20,68,2,62,12,20,95,63,94,39,63,8,40,91,66,49,94,21],