Last active
June 24, 2017 15:36
-
-
Save gelin/f2f45a3c00d1f0241d6ab83accff6b75 to your computer and use it in GitHub Desktop.
matplotlib examples
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from matplotlib import pyplot as plt\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x7f48adda05c0>]" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuU1fV57/H3g2QQFJEY4JyBBu1JsKcVaxtiWAuEISBy\n0RBDEfASkHhZZkolbYrgOtWZSFJhVTxKIsRAMdZRQEEBdbwyAypEpxgrpCiJHGICrdCOLmQUZZjv\n+ePZCIG57Jn5zf7uy+e11l7uPfs3v/24+c2zv/t7eb4WQkBERPJTp9gBiIhIx1GSFxHJY0ryIiJ5\nTEleRCSPKcmLiOQxJXkRkTzWYpI3s2Vm9p6ZvdnE82eY2Toze8PMtpnZ9MSjFBGRNkmnJb8cuKSZ\n50uBX4UQLgBGAHeZWeckghMRkfZpMcmHEF4G3m/uEKB76n534L9DCPUJxCYiIu2URIv7x8A6M9sL\nnA5MTuCcIiKSgCQGXi8BfhlCKAb+AviJmZ2ewHlFRKSdkmjJXwv8I0AI4R0z+3/AnwD/euKBZqZC\nOSIibRBCsLb8XroteUvdGvNbYBSAmfUBBgC7mjpRCEG3hG6333579Bhy/fbd7wYuvTRw5EhgypTb\n6dMn8G//Fj+uXL/p2kz21h4ttuTN7GGgBDjLzN4FbgeKPF+H+4F5wAPHTbGcHUKobVdUIhmwdCm8\n+CK8+ip06gTnnguXXw5jxkBVlT8WyXUtJvkQwpUtPP8fND/FUiTrbN4Mt94KL70EPXoc+/kVV8BH\nH8HFF8PGjXDOOfFiFEmC5rPnsJKSktgh5KQ9e2DSJFi+/A9b60ffz+nToa4ORo2CTZugb98oYeY0\nXZvZw9rb39OqFzMLmXw9kRMdOgTDh8OECd6Sb86CBf5BsHEj9O6dmfhEGmNmhDYOvCrJS8EIAWbM\ngIMHYdUqsDT+ZG6/Hdau9T76nj07PkaRxrQnyau7RgrGokWwdav3x6eT4AHKyvxDYexYeP556N69\nxV8RySpqyUtBqKqCqVNhy5bWD6aGAN/9LuzYAU8/Dd26dUyMIk1Rd41IM3bvhsGDoaICRo5s2zka\nGnxAdv9+eOIJ6NIlyQhFmqckL9KEujoYMsQT9KxZ7TtXfT1MmeIJf9Uq6KzOTskQJXmRRoTgXTRd\nusADD6TfD9+cTz+Fb37TB2EffBBOOaX95xRpSXuSvHaGkry1YAG88w4sWZJMggcoKoLVq2HvXrjp\nJv8gEclmaslLXqqshOuu85IF/folf/4PP4TRo72vf+HC5D5ERBqjlrzIcXbuhGnTvN+8IxI8+FTK\nykqorobbbuuY1xBJgoaOJK8cOOB95vPm+YBrRzrzTHjuOV9Be9ppMGdOx76eSFuou0byRkODJ/ji\nYu+Hz5S9e2HYMLj5Zpg5M3OvK4VDK15FgPJyeP99eOyxzL5ucbGXLB42zFv0M2Zk9vVFmqMkL3lh\nzRovJlZT4zNgMq1/fy97MGKEr4idMiXzMYg0Rklect727XDjjT4Q2qdPvDgGDIBnn/USxd26wTe+\nES8WkaM0u0ZyWm2t98MvXAiDBsWOBs47D556yqdvPv987GhENPAqOay+HsaN88S6cGHsaP7QK6/4\nVoKrV8NFF8WORnKd5slLQZo711ecLlgQO5KTDRkCjzwCEyf6OIFILErykpMqKnywdcWK7C0UNnIk\nLFsGl10Gb77Z8vEiHUHdNZJztm6FMWNgwwYYODB2NC1btcorYFZV/eGesiLp0jx5KRj79sG3vgWL\nF+dGgge44gr46CO4+GLfL7a1m5aItIeSvOSMw4dh0iS45hr4q7+KHU3rTJ/ute1HjYJNm6Bv39gR\nSaFosU/ezJaZ2Xtm1mSvopmVmNkvzWy7mVUlG6KImzULzjgDfvCD2JG0TWmpz+cfNcq/kYhkQjot\n+eXAIuDBxp40sx7AT4DRIYQ9ZvaFBOMTAWDpUi8d8Oqr0CmHpwvMnu0t+tGjvY++Z8/YEUm+a/HP\nJYTwMvB+M4dcCawOIexJHf9fCcUmAsDmzXDrrbB2LfToETua9isr85k3Y8d6XXqRjpREm2gA8Hkz\nqzKzGjO7JoFzigCwZ4/3wy9fnj8zU8zgn/4JLrgALr3UB2VFOkoSA6+dgb8Evg6cBmwxsy0hhN80\ndnBZWdln90tKSigpKUkgBMlHhw75TJrSUhg/PnY0yTKD++7zAdmJE+GJJ3wvWhGA6upqqqurEzlX\nWvPkzaw/sD6EcH4jz90CnBpCKE89XgpUhhBWN3Ks5slLWkLwkr11dbByZf5ur1dfD5Mn+//vqlXZ\nu7BL4spEWQNL3RqzFhhqZqeYWTfga8COtgQjctSiRb7oafny/E3w4En9kUf8W8u0aXDkSOyIJN+0\n2JI3s4eBEuAs4D3gdqAICCGE+1PHfB+4FjgC/CyEsKiJc6klLy2qqoKpU2HLlsJZOPTxx15s7ctf\nhp/+NL8/2KT12tOSV1kDySq7d8PgwV6bZuTI2NFk1ocf+tTKwYO9qqYSvRylKpSSF+rqvDb8nDmF\nl+ABunf3jU+qq+G222JHI/lCLXnJCiF4F02XLvDAA4Xdit2/H4YPh29/2z/wRFSgTHLeggXwzjte\n16WQEzxAr17wwgvHNgafOTN2RJLLlOQluspKuPdeL1nQtWvsaLJDcbGXcTia6GfMiB2R5ColeYlq\n506fOvj449CvX+xoskv//r5P7IgRvjH4lCmxI5JcpCQv0Rw44AOt8+b5dnlysgED4NlnvXJl164w\nYULsiCTXaOBVomho8ARfXAxLlsSOJvtt3eoFzSoqfPMRKSyaQik5p7wc3n/f++KlZV/5iu9pe9VV\n8NJLsaORXKIkLxm3Zo2XK3jsMSgqih1N7hg6FB5+2Aua1dTEjkZyhbprJKO2b/eBxMpKGDQodjS5\naf16uP56eO45OP+kkoGSj9RdIzmhttb74RcuVIJvj8sug3vugTFj4O23Y0cj2U6zayQj6ut9CuA3\nvuEbcUv7TJ7sRc0uvhg2biycQm7SekrykhFz53rpggULYkeSP6ZP93o/o0b5SuG+fWNHJNlISV46\nXEWFD7a+9po2xUhaaemxRL9xI/TuHTsiyTb6k5MOtXUrzJoFGzbAWWfFjiY/zZ7tiX70aK/F37Nn\n7Igkm2jgVTrMvn2+R+vixTBwYOxo8ltZmZdnHjvW69KLHKUplNIhDh/2LoSLLvKyBdLxQoCbboId\nO3yKardusSOSpGhnKMk6paXw7ruwdi100vfFjGlo8AHZ/fvhiSe8Pr/kPs2Tl6yydKmXyX3oISX4\nTOvUCf75n70VP3WqT12VwqaWvCRq82Zf8PTSS3DuubGjKVyffur/Dj17woMPwimnxI5I2kMteckK\ne/bApElel0YJPq6iIli9Gvbu9X56ta0Kl5K8JOLQIZ9JU1oK48fHjkbA68+vWwfbtsHf/q0SfaFS\nd420Wwi+PV1dHaxcqT1as80HH3hRuEsvhTvuiB2NtEWHdteY2TIze8/M3mzhuK+a2WEz+1ZbApHc\ntWiRL3pavlwJPhudeaZXrFy9Gu68M3Y0kmnpdNcsBy5p7gAz6wTcCTybRFCSO6qq4Ec/8qmSp50W\nOxppSq9e8MILPvNp0aLY0UgmtVjWIITwspn1b+GwmcBjwFcTiUpywu7dPk2vokJVEHNBcbFPbR02\nzD+QZ8yIHZFkQrtr15hZMfDNEMIIM7swgZgkB9TV+RS9OXN8Ob3khv794fnnvY++Wzcv/yz5LYkC\nZf8XuOW4x832ypaVlX12v6SkhJKSkgRCkEwKAb7zHfjzP4ebb44djbTWgAHw7LNedqJrV5gwIXZE\ncqLq6mqqq6sTOVdas2tS3TXrQwgnbTZmZruO3gW+ANQBN4QQ1jVyrGbX5IH5831/1k2bPElIbtq6\n1QuaVVT45iOSvTKxGMpoooUeQvjj1O0cvF/+u40leMkPlZVw773w+ONK8LnuK1/xOv9XXeUrlCU/\npTOF8mFgMzDAzN41s2vN7EYzu6GRw9VMz2M7d8K0abBqFfTrFzsaScLQofDwwzBxItTUxI5GOoIW\nQ0laDhyAwYN9A5AbGvt4l5y2fj1cf73Ppz//pE5ZiU2lhqVDNTTA5Zf7FLzFi2NHIx1l5Ur43vd8\n7YNqD2WX9iR5bf8nLSovh9paePTR2JFIR5o8GT7+2AdhN27U2od8oSQvzVqzxssV1NR4ZUPJb9On\nH9sYfNMm6Ns3dkTSXkry0qTt2+HGG31GTZ8+saORTCktPZboN26E3r1jRyTtoSQvjaqt9RWtCxfC\noEGxo5FMmz0bDh6E0aO9j75nz9gRSVtp4FVOUl8P48bBeed5kpfCFAJ8//vwyiteCqF799gRFS7N\nrpFE/f3fwxtveDdNZ33XK2gh+M5SO3b49dCtW+yICpO2/5PEVFT4YOuKFUrw4vsD3HefFzabOBE+\n+SR2RNJaasnLZ7ZuhTFjYMMGGDgwdjSSTerrfYplCL7iWQ2AzFJLXtpt3z7fo3XJEiV4OVnnzvDI\nI76X77RpcORI7IgkXUrywuHDMGkSXHONfyUXaUxRkW8huHev99PrS3luUHeNUFoK777rW/h10se+\ntODDD31q5eDBPvtK+/p2PHXXSJstXepbwj30kBK8pKd7d59pU10Nt90WOxppiYZPCtjmzXDrrV5L\nvEeP2NFILjnzTK9YOXy47xc7Z07siKQpSvIFas8e74dfvlwVB6VtevWCF144tjH4zJmxI5LGKMkX\noEOHfCZNaSmMHx87GsllxcWe6I+26GfMiB2RnEgDrwUmBP9DrKvz+uEaNJMk7NwJI0bAXXfBlCmx\no8k/qicvaVu0yBc9bdmiBC/JGTAAnnnGa9F37QoTJsSOSI5Ski8gVVXwox95gj/ttNjRSL4ZOBCe\nfNKL23Xr5glf4tOkuQKxezdMneq1abTjj3SUQYO89tFVV/msLYlPSb4A1NV5bfg5c2DkyNjRSL4b\nOhQefthXT9fUxI5GNPCa50LwFvypp/p0SfXDS6asXw/XX+/z6c8/P3Y0uU0rXqVJCxbArl1eeEwJ\nXjLpssvgnnu8sunbb8eOpnC1OPBqZsuAS4H3QggnfR6b2ZXALamHHwI3hRC2JRqltEllJdx7L7z6\nqrfkRTJt8mT4+GMfhN24UeNBMaTTkl8OXNLM87uAYSGEPwfmAT9LIjBpn507vSTsqlXQr1/saKSQ\nTZ8Ot9ziG4Pv2RM7msLTYks+hPCymfVv5vlfHPfwF0DfJAKTtjtwwAda582DIUNiRyPiq6vr6jzR\nb9wIvXvHjqhwJD1P/jqgMuFzSis0NHhd+OHD4YYbYkcjcszs2XDwoJcprqqCnj1jR1QYEkvyZjYC\nuBYY2txxZWVln90vKSmhpKQkqRAEKC+H2lp49NHYkYicrLzcW/Rjx8Lzz3vZYjlZdXU11dXViZwr\nrSmUqe6a9Y0NvKaePx9YDYwJIbzTzHk0hbIDrVkDs2b53OQ+fWJHI9K4EHxnqR07fHJAt26xI8p+\nmZhCaalbYy/+RTzBX9NcgpeOtX073HijJ3oleMlmZnDfffDFL/qCqU8+iR1RfmuxJW9mDwMlwFnA\ne8DtQBEQQgj3m9nPgG8Bv8U/CA6HEC5s4lxqyXeA2lq48EIoK4Orr44djUh66ut9imUIPgussypp\nNak9LXmteM1x9fVeEGrgQC/zKpJLPv3UZ4L17AkPPginnBI7ouykFa8FbO5cbwnNnx87EpHWKyqC\n1ath717vp1cbMHlK8jmsosL74Fes0FddyV1du8K6dbBtG3zve0r0SVN3TY7autVrgmzY4F01Irnu\ngw98d6lLL4U77ogdTXbRzlAFZt8+36N1yRIleMkfZ57pFSuP7hc7Z07siPKDknyOOXwYJk3yVa0T\nJ8aORiRZvXr5xuDDhnminzkzdkS5T0k+x8yaBWecAT/4QexIRDpGcbEn+qMt+hkzYkeU25Tkc8jS\npfDii146uJOGzCWPnX22lz0YMcJXxE6ZEjui3KUknyM2b4Zbb/V9M3v0iB2NSMcbMACeecZr0Xft\nChMmxI4oNynJ54A9e7wffvlyOPfc2NGIZM7AgfDkk77gr2tXr2ApraMv/Vnu0CGfSVNaCuPHx45G\nJPMGDfL1IFdd5d9kpXU0Tz6LheCDTnV1sHKl9miVwvbCC3DllfDUU/DVr8aOJrNU1iBPLVoEr7/u\n3TRK8FLoRo2CZct8g/A334wdTe5QSz5LVVXB1KmwZYs2PxY53sqVXv6gqqpwxqi04jXP7N7tCb6i\nQgle5ESTJ8PHH/usm40b9TfSEiX5LFNX56VX58yBkSNjRyOSnaZPP7Yx+KZN0Ldv7Iiyl7prskgI\n3oI/9VT1w4ukY8EC/1vZuBF6944dTcdRd02eWLAAdu3ylokSvEjLZs+Ggwd9/nxVlW8+In9ILfks\nUVkJ113nJQv69YsdjUjuCAG+/3145RUvhdC9e+yIkqft/3Lczp0wdCg8/jgMGRI7GpHcE4LvLLVj\nhzeYunWLHVGylORz2IEDMHiwV5e84YbY0YjkroYGmDYN9u+HtWuhS5fYESVHST5HNTTA5Zd7adXF\ni2NHI5L76ut9imVDA6xaBZ/7XOyIkqEVrzmqvBxqa+Gee2JHIpIfOneGRx6BTz7xaZZHjsSOKD4l\n+UjWrPGpX4895jvWi0gyiopg9WrYu9f76Qu986DFJG9my8zsPTNrslqEmd1rZr82szfM7IJkQ8w/\n27fDjTd6ou/TJ3Y0Ivmna1dYtw62bfMSCIWc6NNpyS8HLmnqSTMbC/yvEMKXgRuBJQnFlpdqa31F\n6913ewlVEekY3bvD00/7QqnbbosdTTwtJvkQwsvA+80cMgF4MHXsq0APM1P7tBH19b6idcIEuPrq\n2NGI5L+ePeG557z75s47Y0cTRxIrXvsCvzvu8Z7Uz95L4Nx5Ze5cH/WfPz92JCKFo1cvr0U/bJhv\nDD5zZuyIMivjZQ3Kyso+u19SUkJJSUmmQ4iiosL74F97zWcAiEjmFBd7oh8+3BP9jBmxI2pedXU1\n1dXViZwrrXnyZtYfWB9COL+R55YAVSGElanHbwHDQwgnteQLdZ781q0wZgxs2OB7VopIHDt3wogR\ncNddMGVK7GjSl4l58pa6NWYd8O1UIIOBDxpL8IVq3z7fo3XJEiV4kdgGDIBnnvEV5mvXxo4mM1rs\nODCzh4ES4Cwzexe4HSgCQgjh/hDC02Y2zsx+A9QB13ZkwLnk8GGYNAmuuQYmTowdjYiAN7aefBLG\njfOplqNHx46oY6msQQcqLYV33/UWQyctOxPJKi+/7GVF1qyBiy6KHU3zVNYgCy1dCi++CA89pAQv\nko2GDvUSCBMnQk1N7Gg6jlryHWDzZl/w9NJLhbPRsEiuWr8err/e59Off9LUkuyglnwW2bPH++GX\nL1eCF8kFl13mRQLHjIG3344dTfI0YztBhw75TJrSUhg/PnY0IpKuyZPho4/g4ou9DMI558SOKDnq\nrklICL7Aoq4OVq7UHq0iuegnP4GFC32f5b59Y0dzjDbyzgI//jG8/rr3xyvBi+Sm0lJvqI0a5S36\n3r1jR9R+SvIJqKqCH/4QtmzxJdMikrtmz4aDB33+/IYN8PnPx46ofdRd0067d/serRUVMHJk7GhE\nJAkhwN/9Hbzyite86d49bjza4zWSujoYMsS3GZs1K3Y0IpKkEHxnqR07oLISunWLF4uSfAQheG34\nU0/16ZLqhxfJPw0NMG0a7N/vK9e7dIkTh+bJR7BgAeza5YXHlOBF8lOnTt6IO+00r1p5+HDsiFpP\nLfk2qKyE666DV1+Ffv1iRyMiHe3TT30Ve8+e8OCDcMopmX19teQzaOdO//q2apUSvEihKCryLQT3\n7vV++lxqqyrJt8KBA/5pPm+eD7iKSOHo2hXWrYNt2+B738udRK/umjQ1NHhZ0uJiWLw4djQiEsv7\n78PXvw6XXgp33JGZ19SK1wwoL4faWnj00diRiEhMPXt6xcqj+8XOmRM7ouYpyadhzRofYa+p8b45\nESlsvXr5IqlhwzzRz5wZO6KmKcm3YPt2uPFGn1HTp0/saEQkWxQX/2GinzEjdkSNU5JvRm2tD7Te\nfTcMGhQ7GhHJNmef7Yl+xAgfmJ06NXZEJ1OSb0J9vf+DTZgAV18dOxoRyVYDBsAzz3gt+m7dPGdk\nEyX5Jsyd6zNq5s+PHYmIZLuBA+HJJ2HcOG/Rjx4dO6JjNE++ERUVPti6YgV01segiKRh0CDPG1dd\n5fs7ZwvNkz/B1q2+1+OGDf7pLCLSGi+8AFdeCU89BV/9ajLn7PCyBmY2xszeMrOdZnZLI8//kZlt\nMLPXzewNMxvblmBi27fP92hdskQJXkTaZtQoWLbMNwh/883Y0aTRkjezTsBOYCSwF6gBpoQQ3jru\nmJ8Cr4cQfmpm/xt4OoRw0la42dySP3zY/3GGDcvcKjYRyV8rV3r5g6oqOPfc9p2ro1e8Xgj8OoTw\n29SLrQAmAG8dd0wDcEbq/pnAnrYEE9OsWXDGGb6yVUSkvSZPho8+8lk3GzfCOSc1ezMjnSTfF/jd\ncY9/jyf+45UDz5nZ3wDdgFHJhJcZS5fCiy966eBOGooWkYRce60n+lGjYNMm6Ns38zEkNXdkKrA8\nhHC3mQ0GHgL+rLEDy8rKPrtfUlJCSUlJQiG0zebNcOutPhreo0fUUEQkD5WW+laho0Z5i75375Z/\np7q6murq6kReP50++cFAWQhhTOrxHCCEEOYfd8x24JIQwp7U43eAr4UQ/uuEc2VVn/yePXDhhXD/\n/TB+fOxoRCSf3XablyresAE+//nW/W5Hz66pAb5kZv3NrAiYAqw74ZjfkuqiSQ28djkxwWebQ4d8\nJk1pqRK8iHS88nIvUTx2LHz4YeZeN6158mY2BrgH/1BYFkK408zKgZoQwpOpxP4z4HR8EPbvQwgv\nNnKerGjJh+DFhOrqfARce7SKSCaE4DtL7djhRQ+7dUvv99rTki/IxVCLFvlg6+bNXj1ORCRTGhp8\nC9H9+2HtWujSpeXfUZJvhaoqLzy2ZUu8KU0iUtjq632KZUOD7xf9uc81f7w28k7T7t2e4CsqlOBF\nJJ7OneGRR+CTT2D6dDhypONeq2CSfF2d14afMwdGjowdjYgUuqIiWL0a9u71fvqO6uQoiO6aELwF\nf+qpvo2fBlpFJFt8+KGXJv7a13yDosbyk7prWrBgAeza5YXHlOBFJJt07w5PP+0Lpf7hH5I/f95X\nS6+shHvv9ZIFp54aOxoRkZP17AnPPQfDh/uMv7lzkzt3Xif5nTt9qtLjj0O/frGjERFpWq9exzYG\nP/10mDkzmfPmbZI/cMAHWufNgyFDYkcjItKy4uJjif6003zRZnvlZZJvaIBrrvGvPjfcEDsaEZH0\nnX22J/oRI3y/2KlT23e+vEzy5eVQWwuPPho7EhGR1hswAJ55xmvRp1v6oCl5N4VyzRrfAKSmBvr0\n6dCXEhHpUP/6rzBuHOzfr7IGAGzf7l9xKit953QRkVz38stw0UVK8tTWem34sjK4+uoOeQkRkSgK\nvkBZfb3XhD/vPLjrrsRPLyISVcGveJ0712fUzJ/f8rEiIoUk52fXVFT4YOtrr3llNxEROSanu2te\nfx0uucT3TBw4MLHTiohklYLsrtm3Dy6/3IuOKcGLiDQuJ5P84cMwaRJ8+9swcWLsaEREsldOdteU\nlsK77/r+iJ1y8mNKRCR97emuybmhyqVL4cUXvXSwEryISPNyqiW/ebNXlnzpJTj33AQDExHJYgUx\n8LpnD1xxBTzwgBK8iEi60kryZjbGzN4ys51mdksTx1xhZr8ys21m9lCSQR46BN/6lvfFjxuX5JlF\nRPJbi901ZtYJ2AmMBPYCNcCUEMJbxx3zJWAlMCKEcMDMvhBC+K9GztXq7poQvHB+XR2sXKk9WkWk\n8HT0wOuFwK9DCL9NvdgKYALw1nHHXA/8JIRwAKCxBN9WP/6xL3ravFkJXkSktdLprukL/O64x79P\n/ex4A4BzzexlM9tsZpckEVxVFfzwh/DEE74VloiItE5SUyg7A18ChgFfBDaZ2XlHW/bHKysr++x+\nSUkJJSUljZ5w927f9qqiAs45J6EoRURyQHV1NdXV1YmcK50++cFAWQhhTOrxHCCEEOYfd8xi4Bch\nhJ+nHr8A3BJC2HrCudLqk6+r8823p0/3XZ5ERApZR0+hrAG+ZGb9zawImAKsO+GYJ4ARqWC+AHwZ\n2NWWgEKA73wHLrgAbr65LWcQEZGjWuyuCSEcMbO/Bp7DPxSWhRB2mFk5UBNCeDKE8KyZjTazXwH1\nwPdDCO+3JaAFC2DXLti0SQOtIiLtlVUrXisr4brrvGRBv34ZC0tEJKvlRe2anTth2jR4/HEleBGR\npGRFWYMDB7wmzbx5PuAqIiLJiN5d09Dgm38UF8PixRkLRUQkZ+R0d015OdTWwqOPxo5ERCT/RE3y\na9bA8uVQUwNFRTEjERHJT9G6a7ZvhxEjfEbNoEEZC0FEJOfkXD352lofaL37biV4EZGOlPGW/OHD\ngfHj4bzz4K67MvbSIiI5K6da8nPn+oya+fNbPlZERNon4y35P/7jwGuvwVlnZexlRURyWnta8hlP\n8m++GRg4MGMvKSKS83IqyWfy9URE8kFO9cmLiEjmKMmLiOQxJXkRkTymJC8ikseU5EVE8piSvIhI\nHlOSFxHJY0ryIiJ5TEleRCSPKcmLiOSxtJK8mY0xs7fMbKeZ3dLMcRPNrMHM/jK5EEVEpK1aTPJm\n1gn4MXAJ8GfAVDP7k0aOOx34G+AXSQcpjauuro4dQl7R+5kcvZfZI52W/IXAr0MIvw0hHAZWABMa\nOe4O4E7gkwTjk2boDylZej+To/cye6ST5PsCvzvu8e9TP/uMmf0F0C+EUJlgbCIi0k6d23sCMzNg\nITDt+B+397wiItJ+LdaTN7PBQFkIYUzq8RwghBDmpx6fAfwGOIgn9/8B/DfwjRDC6yecS8XkRUTa\noMM2DTGzU4C3gZHAfwCvAVNDCDuaOL4K+NsQwi/bEpCIiCSnxT75EMIR4K+B54BfAStCCDvMrNzM\nLm3sV1AejcXhAAAC5klEQVR3jYhIVsjo9n8iIpJZia94NbNlZvaemb3ZzDH3mtmvzewNM7sg6Rjy\nSUvvp5kNN7MPzOz11O3/ZDrGXGFm/cxsg5n9ysy2mdnfNHGcrs80pPN+6vpMn5l1MbNXzeyXqffz\n9kaOKTKzFanrc4uZfbHFE4cQEr0BQ4ELgDebeH4s8FTq/teAXyQdQz7d0ng/hwPrYseZCzd8UsAF\nqfun42NNf3LCMbo+k30/dX227j3tlvrvKfjC0gtPeP4m4L7U/cl493mz50y8JR9CeBl4v5lDJgAP\npo59FehhZn2SjiNfpPF+gsZA0hJC+M8Qwhup+weBHZyw5gNdn2lL8/0EXZ9pCyF8lLrbBZ/ifmJ/\n+gTg56n7j+ETYpoVo0DZiYur9tD4hSHpG5z6iveUmf1p7GBygZmdjX9DevWEp3R9tkEz7yfo+kyb\nmXUys18C/wk8H0KoOeGQz67P4JNiPjCzzzd3znYvhpLotgL9QwgfmdlY4AlgQOSYslqqztJjwM2p\nFqi0Qwvvp67PVgghNAB/kVp/9ISZ/WkI4d+b+ZUWvyXFaMnvAf7ouMf9Uj+TNgghHDz6FS94WYnP\ntfTJXsjMrDOekP4lhLC2kUN0fbZCS++nrs+2CSEcAKqAMSc89XtS12dqDdMZIYTa5s7VUUneaPoT\nZh3wbfhsNe0HIYT3OiiOfNHk+3l8f7GZXYhPi232H73A/TPw7yGEe5p4Xtdn6zT7fur6TJ+ZfcHM\neqTudwUuBt464bD1HCshMwnY0NJ5E++uMbOHgRLgLDN7F7gdKMJLIdwfQnjazMaZ2W+AOuDapGPI\nJy29n8BfmdlNwGHgY3zEXRphZkOAq4BtqX7PANwK9EfXZ6ul836i67M1/ifw81R5907AytT1WA7U\nhBCeBJYB/2Jmv8bLx0xp6aRaDCUikse0/Z+ISB5TkhcRyWNK8iIieUxJXkQkjynJi4jkMSV5EZE8\npiQvIpLHlORFRPLY/werOldKnzgB8AAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48ae064d30>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.figure()\n", | |
"\n", | |
"x = [1, 2, 3]\n", | |
"y = [0.5, 1.8, 0.7]\n", | |
"\n", | |
"plt.plot(x, y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuU1fV57/H3g2QQFJEY4JyBBu1JsKcVaxtiWAuEISBy\n0RBDEfASkHhZZkolbYrgOtWZSFJhVTxKIsRAMdZRQEEBdbwyAypEpxgrpCiJHGICrdCOLmQUZZjv\n+ePZCIG57Jn5zf7uy+e11l7uPfs3v/24+c2zv/t7eb4WQkBERPJTp9gBiIhIx1GSFxHJY0ryIiJ5\nTEleRCSPKcmLiOQxJXkRkTzWYpI3s2Vm9p6ZvdnE82eY2Toze8PMtpnZ9MSjFBGRNkmnJb8cuKSZ\n50uBX4UQLgBGAHeZWeckghMRkfZpMcmHEF4G3m/uEKB76n534L9DCPUJxCYiIu2URIv7x8A6M9sL\nnA5MTuCcIiKSgCQGXi8BfhlCKAb+AviJmZ2ewHlFRKSdkmjJXwv8I0AI4R0z+3/AnwD/euKBZqZC\nOSIibRBCsLb8XroteUvdGvNbYBSAmfUBBgC7mjpRCEG3hG6333579Bhy/fbd7wYuvTRw5EhgypTb\n6dMn8G//Fj+uXL/p2kz21h4ttuTN7GGgBDjLzN4FbgeKPF+H+4F5wAPHTbGcHUKobVdUIhmwdCm8\n+CK8+ip06gTnnguXXw5jxkBVlT8WyXUtJvkQwpUtPP8fND/FUiTrbN4Mt94KL70EPXoc+/kVV8BH\nH8HFF8PGjXDOOfFiFEmC5rPnsJKSktgh5KQ9e2DSJFi+/A9b60ffz+nToa4ORo2CTZugb98oYeY0\nXZvZw9rb39OqFzMLmXw9kRMdOgTDh8OECd6Sb86CBf5BsHEj9O6dmfhEGmNmhDYOvCrJS8EIAWbM\ngIMHYdUqsDT+ZG6/Hdau9T76nj07PkaRxrQnyau7RgrGokWwdav3x6eT4AHKyvxDYexYeP556N69\nxV8RySpqyUtBqKqCqVNhy5bWD6aGAN/9LuzYAU8/Dd26dUyMIk1Rd41IM3bvhsGDoaICRo5s2zka\nGnxAdv9+eOIJ6NIlyQhFmqckL9KEujoYMsQT9KxZ7TtXfT1MmeIJf9Uq6KzOTskQJXmRRoTgXTRd\nusADD6TfD9+cTz+Fb37TB2EffBBOOaX95xRpSXuSvHaGkry1YAG88w4sWZJMggcoKoLVq2HvXrjp\nJv8gEclmaslLXqqshOuu85IF/folf/4PP4TRo72vf+HC5D5ERBqjlrzIcXbuhGnTvN+8IxI8+FTK\nykqorobbbuuY1xBJgoaOJK8cOOB95vPm+YBrRzrzTHjuOV9Be9ppMGdOx76eSFuou0byRkODJ/ji\nYu+Hz5S9e2HYMLj5Zpg5M3OvK4VDK15FgPJyeP99eOyxzL5ucbGXLB42zFv0M2Zk9vVFmqMkL3lh\nzRovJlZT4zNgMq1/fy97MGKEr4idMiXzMYg0Rklect727XDjjT4Q2qdPvDgGDIBnn/USxd26wTe+\nES8WkaM0u0ZyWm2t98MvXAiDBsWOBs47D556yqdvPv987GhENPAqOay+HsaN88S6cGHsaP7QK6/4\nVoKrV8NFF8WORnKd5slLQZo711ecLlgQO5KTDRkCjzwCEyf6OIFILErykpMqKnywdcWK7C0UNnIk\nLFsGl10Gb77Z8vEiHUHdNZJztm6FMWNgwwYYODB2NC1btcorYFZV/eGesiLp0jx5KRj79sG3vgWL\nF+dGgge44gr46CO4+GLfL7a1m5aItIeSvOSMw4dh0iS45hr4q7+KHU3rTJ/ute1HjYJNm6Bv39gR\nSaFosU/ezJaZ2Xtm1mSvopmVmNkvzWy7mVUlG6KImzULzjgDfvCD2JG0TWmpz+cfNcq/kYhkQjot\n+eXAIuDBxp40sx7AT4DRIYQ9ZvaFBOMTAWDpUi8d8Oqr0CmHpwvMnu0t+tGjvY++Z8/YEUm+a/HP\nJYTwMvB+M4dcCawOIexJHf9fCcUmAsDmzXDrrbB2LfToETua9isr85k3Y8d6XXqRjpREm2gA8Hkz\nqzKzGjO7JoFzigCwZ4/3wy9fnj8zU8zgn/4JLrgALr3UB2VFOkoSA6+dgb8Evg6cBmwxsy0hhN80\ndnBZWdln90tKSigpKUkgBMlHhw75TJrSUhg/PnY0yTKD++7zAdmJE+GJJ3wvWhGA6upqqqurEzlX\nWvPkzaw/sD6EcH4jz90CnBpCKE89XgpUhhBWN3Ks5slLWkLwkr11dbByZf5ur1dfD5Mn+//vqlXZ\nu7BL4spEWQNL3RqzFhhqZqeYWTfga8COtgQjctSiRb7oafny/E3w4En9kUf8W8u0aXDkSOyIJN+0\n2JI3s4eBEuAs4D3gdqAICCGE+1PHfB+4FjgC/CyEsKiJc6klLy2qqoKpU2HLlsJZOPTxx15s7ctf\nhp/+NL8/2KT12tOSV1kDySq7d8PgwV6bZuTI2NFk1ocf+tTKwYO9qqYSvRylKpSSF+rqvDb8nDmF\nl+ABunf3jU+qq+G222JHI/lCLXnJCiF4F02XLvDAA4Xdit2/H4YPh29/2z/wRFSgTHLeggXwzjte\n16WQEzxAr17wwgvHNgafOTN2RJLLlOQluspKuPdeL1nQtWvsaLJDcbGXcTia6GfMiB2R5ColeYlq\n506fOvj449CvX+xoskv//r5P7IgRvjH4lCmxI5JcpCQv0Rw44AOt8+b5dnlysgED4NlnvXJl164w\nYULsiCTXaOBVomho8ARfXAxLlsSOJvtt3eoFzSoqfPMRKSyaQik5p7wc3n/f++KlZV/5iu9pe9VV\n8NJLsaORXKIkLxm3Zo2XK3jsMSgqih1N7hg6FB5+2Aua1dTEjkZyhbprJKO2b/eBxMpKGDQodjS5\naf16uP56eO45OP+kkoGSj9RdIzmhttb74RcuVIJvj8sug3vugTFj4O23Y0cj2U6zayQj6ut9CuA3\nvuEbcUv7TJ7sRc0uvhg2biycQm7SekrykhFz53rpggULYkeSP6ZP93o/o0b5SuG+fWNHJNlISV46\nXEWFD7a+9po2xUhaaemxRL9xI/TuHTsiyTb6k5MOtXUrzJoFGzbAWWfFjiY/zZ7tiX70aK/F37Nn\n7Igkm2jgVTrMvn2+R+vixTBwYOxo8ltZmZdnHjvW69KLHKUplNIhDh/2LoSLLvKyBdLxQoCbboId\nO3yKardusSOSpGhnKMk6paXw7ruwdi100vfFjGlo8AHZ/fvhiSe8Pr/kPs2Tl6yydKmXyX3oISX4\nTOvUCf75n70VP3WqT12VwqaWvCRq82Zf8PTSS3DuubGjKVyffur/Dj17woMPwimnxI5I2kMteckK\ne/bApElel0YJPq6iIli9Gvbu9X56ta0Kl5K8JOLQIZ9JU1oK48fHjkbA68+vWwfbtsHf/q0SfaFS\nd420Wwi+PV1dHaxcqT1as80HH3hRuEsvhTvuiB2NtEWHdteY2TIze8/M3mzhuK+a2WEz+1ZbApHc\ntWiRL3pavlwJPhudeaZXrFy9Gu68M3Y0kmnpdNcsBy5p7gAz6wTcCTybRFCSO6qq4Ec/8qmSp50W\nOxppSq9e8MILPvNp0aLY0UgmtVjWIITwspn1b+GwmcBjwFcTiUpywu7dPk2vokJVEHNBcbFPbR02\nzD+QZ8yIHZFkQrtr15hZMfDNEMIIM7swgZgkB9TV+RS9OXN8Ob3khv794fnnvY++Wzcv/yz5LYkC\nZf8XuOW4x832ypaVlX12v6SkhJKSkgRCkEwKAb7zHfjzP4ebb44djbTWgAHw7LNedqJrV5gwIXZE\ncqLq6mqqq6sTOVdas2tS3TXrQwgnbTZmZruO3gW+ANQBN4QQ1jVyrGbX5IH5831/1k2bPElIbtq6\n1QuaVVT45iOSvTKxGMpoooUeQvjj1O0cvF/+u40leMkPlZVw773w+ONK8LnuK1/xOv9XXeUrlCU/\npTOF8mFgMzDAzN41s2vN7EYzu6GRw9VMz2M7d8K0abBqFfTrFzsaScLQofDwwzBxItTUxI5GOoIW\nQ0laDhyAwYN9A5AbGvt4l5y2fj1cf73Ppz//pE5ZiU2lhqVDNTTA5Zf7FLzFi2NHIx1l5Ur43vd8\n7YNqD2WX9iR5bf8nLSovh9paePTR2JFIR5o8GT7+2AdhN27U2od8oSQvzVqzxssV1NR4ZUPJb9On\nH9sYfNMm6Ns3dkTSXkry0qTt2+HGG31GTZ8+saORTCktPZboN26E3r1jRyTtoSQvjaqt9RWtCxfC\noEGxo5FMmz0bDh6E0aO9j75nz9gRSVtp4FVOUl8P48bBeed5kpfCFAJ8//vwyiteCqF799gRFS7N\nrpFE/f3fwxtveDdNZ33XK2gh+M5SO3b49dCtW+yICpO2/5PEVFT4YOuKFUrw4vsD3HefFzabOBE+\n+SR2RNJaasnLZ7ZuhTFjYMMGGDgwdjSSTerrfYplCL7iWQ2AzFJLXtpt3z7fo3XJEiV4OVnnzvDI\nI76X77RpcORI7IgkXUrywuHDMGkSXHONfyUXaUxRkW8huHev99PrS3luUHeNUFoK777rW/h10se+\ntODDD31q5eDBPvtK+/p2PHXXSJstXepbwj30kBK8pKd7d59pU10Nt90WOxppiYZPCtjmzXDrrV5L\nvEeP2NFILjnzTK9YOXy47xc7Z07siKQpSvIFas8e74dfvlwVB6VtevWCF144tjH4zJmxI5LGKMkX\noEOHfCZNaSmMHx87GsllxcWe6I+26GfMiB2RnEgDrwUmBP9DrKvz+uEaNJMk7NwJI0bAXXfBlCmx\no8k/qicvaVu0yBc9bdmiBC/JGTAAnnnGa9F37QoTJsSOSI5Ski8gVVXwox95gj/ttNjRSL4ZOBCe\nfNKL23Xr5glf4tOkuQKxezdMneq1abTjj3SUQYO89tFVV/msLYlPSb4A1NV5bfg5c2DkyNjRSL4b\nOhQefthXT9fUxI5GNPCa50LwFvypp/p0SfXDS6asXw/XX+/z6c8/P3Y0uU0rXqVJCxbArl1eeEwJ\nXjLpssvgnnu8sunbb8eOpnC1OPBqZsuAS4H3QggnfR6b2ZXALamHHwI3hRC2JRqltEllJdx7L7z6\nqrfkRTJt8mT4+GMfhN24UeNBMaTTkl8OXNLM87uAYSGEPwfmAT9LIjBpn507vSTsqlXQr1/saKSQ\nTZ8Ot9ziG4Pv2RM7msLTYks+hPCymfVv5vlfHPfwF0DfJAKTtjtwwAda582DIUNiRyPiq6vr6jzR\nb9wIvXvHjqhwJD1P/jqgMuFzSis0NHhd+OHD4YYbYkcjcszs2XDwoJcprqqCnj1jR1QYEkvyZjYC\nuBYY2txxZWVln90vKSmhpKQkqRAEKC+H2lp49NHYkYicrLzcW/Rjx8Lzz3vZYjlZdXU11dXViZwr\nrSmUqe6a9Y0NvKaePx9YDYwJIbzTzHk0hbIDrVkDs2b53OQ+fWJHI9K4EHxnqR07fHJAt26xI8p+\nmZhCaalbYy/+RTzBX9NcgpeOtX073HijJ3oleMlmZnDfffDFL/qCqU8+iR1RfmuxJW9mDwMlwFnA\ne8DtQBEQQgj3m9nPgG8Bv8U/CA6HEC5s4lxqyXeA2lq48EIoK4Orr44djUh66ut9imUIPgussypp\nNak9LXmteM1x9fVeEGrgQC/zKpJLPv3UZ4L17AkPPginnBI7ouykFa8FbO5cbwnNnx87EpHWKyqC\n1ath717vp1cbMHlK8jmsosL74Fes0FddyV1du8K6dbBtG3zve0r0SVN3TY7autVrgmzY4F01Irnu\ngw98d6lLL4U77ogdTXbRzlAFZt8+36N1yRIleMkfZ57pFSuP7hc7Z07siPKDknyOOXwYJk3yVa0T\nJ8aORiRZvXr5xuDDhnminzkzdkS5T0k+x8yaBWecAT/4QexIRDpGcbEn+qMt+hkzYkeU25Tkc8jS\npfDii146uJOGzCWPnX22lz0YMcJXxE6ZEjui3KUknyM2b4Zbb/V9M3v0iB2NSMcbMACeecZr0Xft\nChMmxI4oNynJ54A9e7wffvlyOPfc2NGIZM7AgfDkk77gr2tXr2ApraMv/Vnu0CGfSVNaCuPHx45G\nJPMGDfL1IFdd5d9kpXU0Tz6LheCDTnV1sHKl9miVwvbCC3DllfDUU/DVr8aOJrNU1iBPLVoEr7/u\n3TRK8FLoRo2CZct8g/A334wdTe5QSz5LVVXB1KmwZYs2PxY53sqVXv6gqqpwxqi04jXP7N7tCb6i\nQgle5ESTJ8PHH/usm40b9TfSEiX5LFNX56VX58yBkSNjRyOSnaZPP7Yx+KZN0Ldv7Iiyl7prskgI\n3oI/9VT1w4ukY8EC/1vZuBF6944dTcdRd02eWLAAdu3ylokSvEjLZs+Ggwd9/nxVlW8+In9ILfks\nUVkJ113nJQv69YsdjUjuCAG+/3145RUvhdC9e+yIkqft/3Lczp0wdCg8/jgMGRI7GpHcE4LvLLVj\nhzeYunWLHVGylORz2IEDMHiwV5e84YbY0YjkroYGmDYN9u+HtWuhS5fYESVHST5HNTTA5Zd7adXF\ni2NHI5L76ut9imVDA6xaBZ/7XOyIkqEVrzmqvBxqa+Gee2JHIpIfOneGRx6BTz7xaZZHjsSOKD4l\n+UjWrPGpX4895jvWi0gyiopg9WrYu9f76Qu986DFJG9my8zsPTNrslqEmd1rZr82szfM7IJkQ8w/\n27fDjTd6ou/TJ3Y0Ivmna1dYtw62bfMSCIWc6NNpyS8HLmnqSTMbC/yvEMKXgRuBJQnFlpdqa31F\n6913ewlVEekY3bvD00/7QqnbbosdTTwtJvkQwsvA+80cMgF4MHXsq0APM1P7tBH19b6idcIEuPrq\n2NGI5L+ePeG557z75s47Y0cTRxIrXvsCvzvu8Z7Uz95L4Nx5Ze5cH/WfPz92JCKFo1cvr0U/bJhv\nDD5zZuyIMivjZQ3Kyso+u19SUkJJSUmmQ4iiosL74F97zWcAiEjmFBd7oh8+3BP9jBmxI2pedXU1\n1dXViZwrrXnyZtYfWB9COL+R55YAVSGElanHbwHDQwgnteQLdZ781q0wZgxs2OB7VopIHDt3wogR\ncNddMGVK7GjSl4l58pa6NWYd8O1UIIOBDxpL8IVq3z7fo3XJEiV4kdgGDIBnnvEV5mvXxo4mM1rs\nODCzh4ES4Cwzexe4HSgCQgjh/hDC02Y2zsx+A9QB13ZkwLnk8GGYNAmuuQYmTowdjYiAN7aefBLG\njfOplqNHx46oY6msQQcqLYV33/UWQyctOxPJKi+/7GVF1qyBiy6KHU3zVNYgCy1dCi++CA89pAQv\nko2GDvUSCBMnQk1N7Gg6jlryHWDzZl/w9NJLhbPRsEiuWr8err/e59Off9LUkuyglnwW2bPH++GX\nL1eCF8kFl13mRQLHjIG3344dTfI0YztBhw75TJrSUhg/PnY0IpKuyZPho4/g4ou9DMI558SOKDnq\nrklICL7Aoq4OVq7UHq0iuegnP4GFC32f5b59Y0dzjDbyzgI//jG8/rr3xyvBi+Sm0lJvqI0a5S36\n3r1jR9R+SvIJqKqCH/4QtmzxJdMikrtmz4aDB33+/IYN8PnPx46ofdRd0067d/serRUVMHJk7GhE\nJAkhwN/9Hbzyite86d49bjza4zWSujoYMsS3GZs1K3Y0IpKkEHxnqR07oLISunWLF4uSfAQheG34\nU0/16ZLqhxfJPw0NMG0a7N/vK9e7dIkTh+bJR7BgAeza5YXHlOBF8lOnTt6IO+00r1p5+HDsiFpP\nLfk2qKyE666DV1+Ffv1iRyMiHe3TT30Ve8+e8OCDcMopmX19teQzaOdO//q2apUSvEihKCryLQT3\n7vV++lxqqyrJt8KBA/5pPm+eD7iKSOHo2hXWrYNt2+B738udRK/umjQ1NHhZ0uJiWLw4djQiEsv7\n78PXvw6XXgp33JGZ19SK1wwoL4faWnj00diRiEhMPXt6xcqj+8XOmRM7ouYpyadhzRofYa+p8b45\nESlsvXr5IqlhwzzRz5wZO6KmKcm3YPt2uPFGn1HTp0/saEQkWxQX/2GinzEjdkSNU5JvRm2tD7Te\nfTcMGhQ7GhHJNmef7Yl+xAgfmJ06NXZEJ1OSb0J9vf+DTZgAV18dOxoRyVYDBsAzz3gt+m7dPGdk\nEyX5Jsyd6zNq5s+PHYmIZLuBA+HJJ2HcOG/Rjx4dO6JjNE++ERUVPti6YgV01segiKRh0CDPG1dd\n5fs7ZwvNkz/B1q2+1+OGDf7pLCLSGi+8AFdeCU89BV/9ajLn7PCyBmY2xszeMrOdZnZLI8//kZlt\nMLPXzewNMxvblmBi27fP92hdskQJXkTaZtQoWLbMNwh/883Y0aTRkjezTsBOYCSwF6gBpoQQ3jru\nmJ8Cr4cQfmpm/xt4OoRw0la42dySP3zY/3GGDcvcKjYRyV8rV3r5g6oqOPfc9p2ro1e8Xgj8OoTw\n29SLrQAmAG8dd0wDcEbq/pnAnrYEE9OsWXDGGb6yVUSkvSZPho8+8lk3GzfCOSc1ezMjnSTfF/jd\ncY9/jyf+45UDz5nZ3wDdgFHJhJcZS5fCiy966eBOGooWkYRce60n+lGjYNMm6Ns38zEkNXdkKrA8\nhHC3mQ0GHgL+rLEDy8rKPrtfUlJCSUlJQiG0zebNcOutPhreo0fUUEQkD5WW+laho0Z5i75375Z/\np7q6murq6kReP50++cFAWQhhTOrxHCCEEOYfd8x24JIQwp7U43eAr4UQ/uuEc2VVn/yePXDhhXD/\n/TB+fOxoRCSf3XablyresAE+//nW/W5Hz66pAb5kZv3NrAiYAqw74ZjfkuqiSQ28djkxwWebQ4d8\nJk1pqRK8iHS88nIvUTx2LHz4YeZeN6158mY2BrgH/1BYFkK408zKgZoQwpOpxP4z4HR8EPbvQwgv\nNnKerGjJh+DFhOrqfARce7SKSCaE4DtL7djhRQ+7dUvv99rTki/IxVCLFvlg6+bNXj1ORCRTGhp8\nC9H9+2HtWujSpeXfUZJvhaoqLzy2ZUu8KU0iUtjq632KZUOD7xf9uc81f7w28k7T7t2e4CsqlOBF\nJJ7OneGRR+CTT2D6dDhypONeq2CSfF2d14afMwdGjowdjYgUuqIiWL0a9u71fvqO6uQoiO6aELwF\nf+qpvo2fBlpFJFt8+KGXJv7a13yDosbyk7prWrBgAeza5YXHlOBFJJt07w5PP+0Lpf7hH5I/f95X\nS6+shHvv9ZIFp54aOxoRkZP17AnPPQfDh/uMv7lzkzt3Xif5nTt9qtLjj0O/frGjERFpWq9exzYG\nP/10mDkzmfPmbZI/cMAHWufNgyFDYkcjItKy4uJjif6003zRZnvlZZJvaIBrrvGvPjfcEDsaEZH0\nnX22J/oRI3y/2KlT23e+vEzy5eVQWwuPPho7EhGR1hswAJ55xmvRp1v6oCl5N4VyzRrfAKSmBvr0\n6dCXEhHpUP/6rzBuHOzfr7IGAGzf7l9xKit953QRkVz38stw0UVK8tTWem34sjK4+uoOeQkRkSgK\nvkBZfb3XhD/vPLjrrsRPLyISVcGveJ0712fUzJ/f8rEiIoUk52fXVFT4YOtrr3llNxEROSanu2te\nfx0uucT3TBw4MLHTiohklYLsrtm3Dy6/3IuOKcGLiDQuJ5P84cMwaRJ8+9swcWLsaEREsldOdteU\nlsK77/r+iJ1y8mNKRCR97emuybmhyqVL4cUXvXSwEryISPNyqiW/ebNXlnzpJTj33AQDExHJYgUx\n8LpnD1xxBTzwgBK8iEi60kryZjbGzN4ys51mdksTx1xhZr8ys21m9lCSQR46BN/6lvfFjxuX5JlF\nRPJbi901ZtYJ2AmMBPYCNcCUEMJbxx3zJWAlMCKEcMDMvhBC+K9GztXq7poQvHB+XR2sXKk9WkWk\n8HT0wOuFwK9DCL9NvdgKYALw1nHHXA/8JIRwAKCxBN9WP/6xL3ravFkJXkSktdLprukL/O64x79P\n/ex4A4BzzexlM9tsZpckEVxVFfzwh/DEE74VloiItE5SUyg7A18ChgFfBDaZ2XlHW/bHKysr++x+\nSUkJJSUljZ5w927f9qqiAs45J6EoRURyQHV1NdXV1YmcK50++cFAWQhhTOrxHCCEEOYfd8xi4Bch\nhJ+nHr8A3BJC2HrCudLqk6+r8823p0/3XZ5ERApZR0+hrAG+ZGb9zawImAKsO+GYJ4ARqWC+AHwZ\n2NWWgEKA73wHLrgAbr65LWcQEZGjWuyuCSEcMbO/Bp7DPxSWhRB2mFk5UBNCeDKE8KyZjTazXwH1\nwPdDCO+3JaAFC2DXLti0SQOtIiLtlVUrXisr4brrvGRBv34ZC0tEJKvlRe2anTth2jR4/HEleBGR\npGRFWYMDB7wmzbx5PuAqIiLJiN5d09Dgm38UF8PixRkLRUQkZ+R0d015OdTWwqOPxo5ERCT/RE3y\na9bA8uVQUwNFRTEjERHJT9G6a7ZvhxEjfEbNoEEZC0FEJOfkXD352lofaL37biV4EZGOlPGW/OHD\ngfHj4bzz4K67MvbSIiI5K6da8nPn+oya+fNbPlZERNon4y35P/7jwGuvwVlnZexlRURyWnta8hlP\n8m++GRg4MGMvKSKS83IqyWfy9URE8kFO9cmLiEjmKMmLiOQxJXkRkTymJC8ikseU5EVE8piSvIhI\nHlOSFxHJY0ryIiJ5TEleRCSPKcmLiOSxtJK8mY0xs7fMbKeZ3dLMcRPNrMHM/jK5EEVEpK1aTPJm\n1gn4MXAJ8GfAVDP7k0aOOx34G+AXSQcpjauuro4dQl7R+5kcvZfZI52W/IXAr0MIvw0hHAZWABMa\nOe4O4E7gkwTjk2boDylZej+To/cye6ST5PsCvzvu8e9TP/uMmf0F0C+EUJlgbCIi0k6d23sCMzNg\nITDt+B+397wiItJ+LdaTN7PBQFkIYUzq8RwghBDmpx6fAfwGOIgn9/8B/DfwjRDC6yecS8XkRUTa\noMM2DTGzU4C3gZHAfwCvAVNDCDuaOL4K+NsQwi/bEpCIiCSnxT75EMIR4K+B54BfAStCCDvMrNzM\nLm3sV1AejcXhAAAC5klEQVR3jYhIVsjo9n8iIpJZia94NbNlZvaemb3ZzDH3mtmvzewNM7sg6Rjy\nSUvvp5kNN7MPzOz11O3/ZDrGXGFm/cxsg5n9ysy2mdnfNHGcrs80pPN+6vpMn5l1MbNXzeyXqffz\n9kaOKTKzFanrc4uZfbHFE4cQEr0BQ4ELgDebeH4s8FTq/teAXyQdQz7d0ng/hwPrYseZCzd8UsAF\nqfun42NNf3LCMbo+k30/dX227j3tlvrvKfjC0gtPeP4m4L7U/cl493mz50y8JR9CeBl4v5lDJgAP\npo59FehhZn2SjiNfpPF+gsZA0hJC+M8Qwhup+weBHZyw5gNdn2lL8/0EXZ9pCyF8lLrbBZ/ifmJ/\n+gTg56n7j+ETYpoVo0DZiYur9tD4hSHpG5z6iveUmf1p7GBygZmdjX9DevWEp3R9tkEz7yfo+kyb\nmXUys18C/wk8H0KoOeGQz67P4JNiPjCzzzd3znYvhpLotgL9QwgfmdlY4AlgQOSYslqqztJjwM2p\nFqi0Qwvvp67PVgghNAB/kVp/9ISZ/WkI4d+b+ZUWvyXFaMnvAf7ouMf9Uj+TNgghHDz6FS94WYnP\ntfTJXsjMrDOekP4lhLC2kUN0fbZCS++nrs+2CSEcAKqAMSc89XtS12dqDdMZIYTa5s7VUUneaPoT\nZh3wbfhsNe0HIYT3OiiOfNHk+3l8f7GZXYhPi232H73A/TPw7yGEe5p4Xtdn6zT7fur6TJ+ZfcHM\neqTudwUuBt464bD1HCshMwnY0NJ5E++uMbOHgRLgLDN7F7gdKMJLIdwfQnjazMaZ2W+AOuDapGPI\nJy29n8BfmdlNwGHgY3zEXRphZkOAq4BtqX7PANwK9EfXZ6ul836i67M1/ifw81R5907AytT1WA7U\nhBCeBJYB/2Jmv8bLx0xp6aRaDCUikse0/Z+ISB5TkhcRyWNK8iIieUxJXkQkjynJi4jkMSV5EZE8\npiQvIpLHlORFRPLY/werOldKnzgB8AAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48add60208>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"figure = plt.figure()\n", | |
"axes = figure.gca()\n", | |
"\n", | |
"x = [1, 2, 3]\n", | |
"y = [0.5, 1.8, 0.7]\n", | |
"\n", | |
"axes.plot(x, y)\n", | |
"\n", | |
"figure.savefig('fig2.png')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGiNJREFUeJzt3X9wlNW9x/H3FyhYrHirHRQFdG7BOjJqhGKx6hAvWqVV\nYNRL6BTByAjTC4IUgx3tGOqISqqIoTbFERnpFWJ1pmJpGbh3SFp6S5io/FSgOLeg9abp8EMUZADD\nuX+c1ca4STbJs3ueffbzmsm4m32y++GJ+92T85wf5pxDRESSqVvoACIikj0q8iIiCaYiLyKSYCry\nIiIJpiIvIpJgKvIiIgnWbpE3s/5mtt7M3jKz7WY2s5XjKs1sj5ltMbOi6KOKiEhH9cjgmE+AHznn\ntpjZV4A3zGydc27XpweY2Wjg6865wWb2LeCXwIjsRBYRkUy125J3zv3dObcldfsIsBM4v8VhY4Hl\nqWM2AWea2TkRZxURkQ7qUJ+8mV0IFAGbWjx0PvBes/vv88UPAhERybGMi3yqq+YVYFaqRS8iIjGX\nSZ88ZtYDX+B/5ZxbleaQ94EBze73T32v5fNooRwRkU5wzllnfi7TlvzzwNvOuadbefw1YBKAmY0A\nPnDONaY70DkX+6/y8vLgGZRTOfM1o3JG/9UV7bbkzexq4AfAdjPbDDjgAeACX7Pds86535vZd83s\nHeAoUNqlVCIiEol2i7xz7n+A7hkcNyOSRCIiEhnNeE2juLg4dISMKGe08iFnPmQE5YwT62p/T4de\nzMzl8vVERJLAzHBZvvAqIiJ5SEVeRCTBVORFRBJMRV5EJMFU5EVEEkxFXkQkwVTkRUQSTEVeRCTB\nVORFRBJMRV5EJMFU5EVEEkxFXkQkwVTkRUQSTEVeRCTBVORFRBJMRV4KnnPwzDPw0Uehk4hET0Ve\nCt6qVTBzJtx3X+gkItFTkZeCdvw4zJkDL78M69bBmjWhE4lEq92NvEWSbNEiuPRSuPVW+OpX4Y47\nYNs2OOus0MlEoqE9XqVgNTT4Al9XB4MG+e/NmgX798OLL4bNJtJcV/Z4VZGXglVaCn37woIF//ze\nxx/DFVfA/Plw++3hsok0pyIv0kH19TB2LOzaBX36fP6xujoYNw62boVzzgmTT6S5rhR5XXiVguOc\n75Z55JEvFniAESNgyhSYOtUfK5LPVOSl4KxcCSdOwJ13tn7MQw/B3r2wfHmuUolkh7prpKAcPQoX\nXwzV1XD11W0fu3Ur3HADvP46DByYm3wi6ai7RiRDFRVw7bXtF3iAyy+He+/1XTenTmU/m0g2qCUv\nBWPfPhg6FLZsgQEDMvuZTz6Ba67x4+enT89uPpHWaHSNSAZKSuCSS6C8vGM/t3u3L/R//jMMHpyd\nbCJtUZEXaceGDTBxIuzcCb17d/znKyvhpZfgj3+E7t2jzyfSFvXJi7ShqckPmVywoHMFHmDGDOjV\nC554ItpsItmmIi+Jt2yZL+4lJZ1/jm7d/PM88QRs3x5dNpFsU3eNJNrhw37I5OrVMGxY15/v+edh\n8WLYtAl69uz684lkQn3yIq0oK4ODB2Hp0miezzm45RY/Sufhh6N5TpH2qMiLpLFnD1x1FezYAeee\nG93zNjRAUZH/62D48OieV6Q1uvAqksacOXD//dEWeIB+/fxom0mT4NixaJ9bJGpqyUsirV3rR8Ts\n2OFHxWTDhAlw3nmwcGF2nl/kU+quEWnm5Em/JMHjj8OYMdl7nQMH4LLLYMUKGDkye68jou4akWaq\nqqB/f3+BNJvOPhuWLPGbj3z0UXZfS6Sz1JKXRNm/3y9dUFMDQ4bk5jWnTIEePXzBF8kGddeIpEyf\n7icuLV6cu9f88EPfbVNVBaNH5+51pXCoyIvgZ6KOGuW39DvrrNy+dk2NX6ly27bcv7Ykn4q8FDzn\n4Prr4dZbwy0JPGuW7y568cUwry/JpQuvUvBWrYLGRpg2LVyGxx7zu0i98kq4DCItqSUvee/4cX+x\ndckS35oPqa4Oxo3zWweec07YLJIcaslLQVu0CC69NHyBBxgxwo+2mTrVdyGJhNZukTezpWbWaGbb\nWnl8pJl9YGZvpr5+En1MkfQaGuBnP4vXOu8PPQR798Ly5aGTiGTQXWNm1wBHgOXOucvSPD4SmOOc\na3duobprJGqlpdC3r98QJE62boUbbvB99AMHhk4j+a4r3TU92jvAOfcnM7ugvQydeXGRrqiv92vU\n7NoVOskXXX453Huv77pZu9aP3RcJIar/9UaY2WYz+52ZXRLRc4q0yjk/ZHH+fOjTJ3Sa9ObO9csd\nVFWFTiKFrN2WfAbeAC5wzn1sZqOBV4GLWjt43rx5n90uLi6muLg4gghSaFauhBMnYPLk0Ela16MH\nvPACXH01fOc7MHhw6ESSL2pra6mtrY3kuTIaQpnqrvltuj75NMf+FRjmnDuY5jH1yUuXHT3qt/Sr\nrvYFNO4qK33WDRuge/fQaSQf5WIIpdFKv7uZndPs9pX4D44vFHiRqFRUwLXX5keBB7+u/WmnxWsE\nkBSOTEbXrACKgbOBRqAc6Ak459yzZjYd+CFwEjgGzHbObWrludSSly7Zt8/vr7plCwwYEDpN5vbt\ng29+E9av92P6RTpCa9dIwSgp8bNby8tDJ+m455/3q2Nu2gQ9e4ZOI/lERV4KwoYNMHEi7NwJvXuH\nTtNxzvmNTIYOhYcfDp1G8omKvCReUxMMH+6HJU6YEDpN5zU0QFERrF7t/z0imdDaNZJ4y5b51ntJ\nSegkXdOvnx9tM2kSHDsWOo0UArXkJfYOH/ZDJlevhmHDQqeJxoQJcN55sHBh6CSSD9RdI4lWVgaH\nDsFzz4VOEp0DB/yWgStWwMiRodNI3KnIS2Lt2QNXXQVvvZW89dlXr4aZM/1iZmecETqNxJmKvCTW\nmDF+4lNZWegk2TFlip8F++yzoZNInKnISyKtXetni+7YAb16hU6THR9+6Lttqqpg9OjQaSSuNLpG\nEufkSZg9G558MrkFHvwKmsuWwd13w0EtBiJZoCIvsVRVBf37+8lDSXfddXDbbXDPPaGTSBKpu0Zi\nZ/9+v3RBTQ0MGRI6TW58/DFccYVfH//220OnkbhRn7wkyvTpfielxYtDJ8mtujoYN86PtknaSCLp\nGhV5SYzt22HUKL+l31lnhU6Tew8+6C80v/oqmDbVlBRdeJVEcM7vi1peXpgFHuChh2DvXli+PHQS\nSQoVeYmNVaugsRGmTQudJJxevXyBLyuDd98NnUaSQN01EgvHj/uLrUuWwPXXh04T3qOP+gvPa9f6\n6xNS2NRdI3lv0SK/Y5IKvDd3Lnz0kR9KKtIVaslLcA0NvsDX1cGgQaHTxMfu3X4f240bYfDg0Gkk\nJI2ukbxWWgp9+8KCBaGTxE9lJVRX+12xuncPnUZCUZGXvFVfD2PH+iGTffqEThM/p075Lqwbb4T7\n7w+dRkJRkZe85Jzvjrj7bt+al/T27vVbBa5f77u1pPDowqvkpZUr4cQJmDw5dJJ4u/BCePxxv2Xg\niROh00i+UUtegjh61G/pV13tW/PSNuf8Ym1Dh8LDD4dOI7mm7hrJO+XlftenFStCJ8kfDQ1QVOR3\nlBo+PHQaySUVeckr+/b5FumWLTBgQOg0+eWll2DePHjzTfjyl0OnkVxRkZe8UlLiZ7eWl4dOkp8m\nTIDzzoOFC0MnkVxRkZe8sWEDTJwIO3dC796h0+SnAwf8loErVsDIkaHTSC5odI3khaYmmDULKipU\n4Lvi7LP9Gj+lpX7pA5G2qMhLzixbBqefDuPHh06S/26+2W8bOGdO6CQSd+qukZw4fNgPmVy9GoYN\nC50mGT780HfbVFXB6NGh00g2qU9eYq+sDA4dgueeC50kWWpq4I47YNu2wt1opRCoyEus7dkDV10F\nb72lvUuzYdYsv/n5iy+GTiLZoguvEmtz5vjFtVTgs+Oxx+D11+GVV0InkThSS16yau1amDHDb07d\nq1foNMlVVwfjxsHWrfowTSK15CWWTp6E2bPhySdV4LNtxAi46y6YOtWvcyPyKRV5yZqqKujf3y+s\nJdlXXu6XJV6+PHQSiRN110hW7N/vly6oqYEhQ0KnKRxbt8INN/g++oEDQ6eRqGh0jcTO9OnQrRss\nXhw6SeF59FG/wci6df53IPlPRV5iZft2GDXKb+mnsdu598kncM01fvz89Omh00gUVOQlNpzze5Le\neqsKTEi7d/vNWDZuhMGDQ6eRrtLoGomNVaugsRGmTQudpLB94xvw0EN+a8WmptBpJCQVeYnM8eN+\n4tOiRdCjR+g0MmMGnHYaPPFE6CQSkrprJDILFvjugVdfDZ1EPrV3r98qcP16uPTS0Gmks9QnL8E1\nNPgiUlcHgwaFTiPNLV0KP/85bNoEPXuGTiOdoSIvwZWWQt++vjUv8eKcn5A2dCg8/HDoNNIZKvIS\nVH09jB3rh0z26RM6jaTT0ABFRX49/+HDQ6eRjtLoGgnGOb/U7fz5KvBx1q8fVFbCpElw7FjoNJJL\n7RZ5M1tqZo1mtq2NYyrNbI+ZbTGzomgjSpytXAknTvihehJvJSV+J6kHHwydRHIpk5b8MuDG1h40\ns9HA151zg4FpwC8jyiYxd/SoXyf+6ac1fT5f/OIX8NJL8Ic/hE4iudLuW9M59yfgUBuHjAWWp47d\nBJxpZlrRugBUVMC11/qZlZIfzj4bliyBO++Ejz4KnUZyIYr21/nAe83uv5/6niTYvn3wzDMaTZOP\nbr4Z/u3f/MQ1Sb6cz0ucN2/eZ7eLi4spLi7OdQSJwNy5cM89MGBA6CTSGU895fvn16yB0aNDp5GW\namtrqa2tjeS5MhpCaWYXAL91zl2W5rFfAjXOuZdS93cBI51zjWmO1RDKBNiwASZOhJ07oXfv0Gmk\ns2pq/EqV27ZptdC4y8UQSkt9pfMaMCkVZATwQboCL8nQ1OSHTFZUqMDnu+uug9tu83+RSXJlMoRy\nBfBn4CIze9fMSs1smplNBXDO/R74q5m9AywB/iOriSWoZcvg9NNh/PjQSSQKjz3md5F65ZXQSSRb\nNONVMnb4MFx8sZ81OWxY6DQSlbo6GDfObx14jsbFxZKWNZCcKCuDQ4fguedCJ5GoPfAAvPWWX0HU\nOlVKJJtU5CXr9uyBq67yhUCtveQ5fhyuvBJ+9CPNXo4jFXnJujFj/MSnsrLQSSRbtm71Wze+8QYM\nHBg6jTSnBcokq9au9cMlZ84MnUSy6fLLYfZsuOsuOHUqdBqJioq8tOnkSf/GX7gQevUKnUaybe5c\nOHIEqqpCJ5GoqLtG2lRZ6UfTrF2rC3KFYvduvx7Rxo0weHDoNALqk5cs2b8fLrnEz4wcMiR0Gsml\nykqorvazm7t3D51GVOQlK6ZP92/wysrQSSTXTp3yF2FvvNEvJy1hqchL5LZvh1Gj/JZ+WtekMO3d\n67cKXL/eb9Iu4Wh0jUTKObj3XigvV4EvZBdeCI8/7rcMPHEidBrpLBV5+YJVq6CxEaZNC51EQrvr\nLjj/fHjkkdBJpLPUXSOfc/y4v9i6ZInvkxVpaICiIj/Kavjw0GkKk7prJDKLFvn+VxV4+VS/fv7i\n+6RJcOxY6DTSUWrJy2caGnyBr6uDQYNCp5G4KSnxXTcLF4ZOUng0ukYiUVoKfftq31ZJ78AB3whY\nuRJGjgydprCoyEuX1dfD2LF+yGSfPqHTSFytXu13ktq2Dc44I3SawqEiL13inJ/GfvfdvjUv0pYp\nU/wkuWefDZ2kcOjCq3TJypV+HLTWEZdMPPUUrFsHa9aETiKZUEu+wB096rf0q672rXmRTNTUwB13\n+G4bTZjLPnXXSKeVl/tdn1asCJ1E8s2sWX4RuxdfDJ0k+VTkpVP27fMbcm/eDAMGhE4j+ebjj+GK\nK2D+fLj99tBpkk1FXjqlpMTPbi0vD51E8lVdHYwb57cO1N6/2aMiLx22YQNMnOi39evdO3QayWcP\nPOA3eH/1VW0sky0aXSMd0tTk+1MrKlTgpevKy/2yxMuXh04i6ajIF6Bly+D002H8+NBJJAl69fIF\n/r774N13Q6eRltRdU2AOH/ZDJlev9hddRaLy6KN+g5F166Cbmo+RUneNZOyRR+B731OBl+jNnQtH\njkBVVegk0pxa8gVkzx749rdhxw6NhJDs2L3bT6rbuBEGDw6dJjk0ukYyMmYMXHstlJWFTiJJVlkJ\nv/mNnxUr0VCRl3atXQszZvhWfK9eodNIkp06Be+8AxddFDpJcqjIS5tOnoTLL/frxN9yS+g0ItJR\nuvAqbaqqgv794eabQycRkVxTSz7h9u/3SxfU1MCQIaHTiEhnqLtGWjV9ut/gobIydBIR6ayuFPke\nUYeR+Ni+HV5+2W/pJyKFSX3yCeUc3HuvX1dEmzqIFC4V+YRatQoaG2HatNBJRCQk9ckn0PHj/mLr\nkiVw/fWh04hIV2kIpXzOokVw6aUq8CKilnziNDT4Al9XB4MGhU4jIlHQEEr5TGmpX3zs8cdDJxGR\nqGgIpQBQX+/XqNm9O3QSEYkL9cknhHN+S7/58+GMM0KnEZG4UJFPiJUr4cQJmDw5dBIRiRP1ySfA\n0aN+S7/qar9hg4gki4ZQFriKCr8ZiAq8iLSklnye27fP79e6eTMMGBA6jYhkQ9Zb8mZ2k5ntMrO/\nmNn9aR6fbGb/MLM3U193dSaMdNzcuXDPPSrwIpJeuy15M+sG/AUYBfwfUA9McM7tanbMZGCYc25m\nO8+llnyENmyAiRNh507o3Tt0GhHJlmy35K8E9jjn9jnnTgLVwNh0OToTQDqnqckPmayoUIEXkdZl\nUuTPB95rdv9vqe+1dKuZbTGzX5tZ/0jSSauWLYPTT4fx40MnEZE4i2rG62vACufcSTObCryA7975\ngnnz5n12u7i4mOLi4ogiFJavfc3v9mT6+0kkcWpra6mtrY3kuTLpkx8BzHPO3ZS6/2PAOecWtHJ8\nN+Cgc+5f0jymPnkRkQ7Kdp98PTDIzC4ws57ABHzLvXmAc5vdHQu83ZkwIiISrXa7a5xzTWY2A1iH\n/1BY6pzbaWY/Beqdc6uBmWY2BjgJHATuzGJmERHJkCZDiYjEnJY1EBGRtFTkRUQSTEVeRCTBVORF\nRBJMRV5EJMFU5EVEEkxFXkQkwVTkRUQSTEVeRCTBVORFRBJMRV5EJMFU5EVEEkxFXkQkwVTkRUQS\nTEVeRCTBVORFRBJMRV5EJMFU5EVEEkxFXkQkwVTkRUQSTEVeRCTBVORFRBJMRV5EJMFU5EVEEkxF\nXkQkwVTkRUQSTEVeRCTBVORFRBJMRV5EJMFU5EVEEkxFXkQkwVTkRUQSTEVeRCTBVORFRBJMRV5E\nJMFU5EVEEkxFXkQkwVTkRUQSTEVeRCTBVORFRBJMRV5EJMFU5EVEEkxFXkQkwVTkRUQSTEVeRCTB\nVORFRBIsoyJvZjeZ2S4z+4uZ3Z/m8Z5mVm1me8xso5kNjD6qiIh0VLtF3sy6AT8HbgSGAN83s4tb\nHDYFOOicGwwsAiqiDppLtbW1oSNkRDmjlQ858yEjKGecZNKSvxLY45zb55w7CVQDY1scMxZ4IXX7\nFWBUdBFzL19+8coZrXzImQ8ZQTnjJJMifz7wXrP7f0t9L+0xzrkm4AMzOyuShCIi0mnZuvBqWXpe\nERHpAHPOtX2A2QhgnnPuptT9HwPOObeg2TFrUsdsMrPuQINzrm+a52r7xUREJC3nXKcazz0yOKYe\nGGRmFwANwATg+y2O+S0wGdgE/DuwPsqQIiLSOe0Weedck5nNANbhu3eWOud2mtlPgXrn3GpgKfAr\nM9sDHMB/EIiISGDtdteIiEj+ysqF13yZPJVBzslm9g8zezP1dVeAjEvNrNHMtrVxTGXqXG4xs6Jc\n5muWoc2cZjbSzD5odi5/EiBjfzNbb2Zvmdl2M5vZynFBz2cmOWNyPnuZ2SYz25zKWZ7mmODv9Qxz\nBn+vN8vSLZXhtTSPdfx8Ouci/cJ/cLwDXAB8CdgCXNzimB8Cv0jdLgGqo84RUc7JQGWus7XIcA1Q\nBGxr5fHRwO9St78F1MU050jgtcDn8lygKHX7K8DuNL/z4Oczw5zBz2cqR+/Uf7sDdcCVLR4P/l7P\nMGfw93qzLLOB/0z3++3M+cxGSz5fJk9lkhMCDwd1zv0JONTGIWOB5aljNwFnmtk5ucjWXAY5Ify5\n/Ltzbkvq9hFgJ1+c8xH8fGaYE2IwVNk593HqZi/8Nb6W/b9xeK9nkhNicD7NrD/wXeC5Vg7p8PnM\nRpHPl8lTmeQEuDX1Z/uvU7+AuGn573if9P+OOBiR+pP5d2Z2ScggZnYh/i+PTS0eitX5bCMnxOB8\nproWNgN/B/7LOVff4pA4vNczyQnxeK8/BZSR/kMIOnE+47IKZfBP0Fa8BlzonCsC/pt/foJKx70B\nXOCcuwK/FtKroYKY2VfwraBZqZZyLLWTMxbn0zl3KpWhP/CtDD5sgrzXM8gZ/L1uZt8DGlN/xRmZ\nnat2j8lGkX8faH4xoH/qe839DRgAkJo81cc5dzALWdrSbk7n3KFUVw74P5+G5ShbR7xP6lympDvf\nwTnnjnz6J7Nzbg3wpUAtuh74wvkr59yqNIfE4ny2lzMu57NZng+BGuCmFg/F4b3+mdZyxuS9fjUw\nxsz+F1gJXGdmy1sc0+HzmY0i/9nkKTPriR8z3/Iq8aeTp6CNyVNZ1m5OMzu32d2xwNs5zPe5KLT+\nif0aMAk+m538gXOuMVfBWmg1Z/N+bTO7Ej98N8Sb/Xngbefc0608Hpfz2WbOOJxPM/uamZ2Zuv1l\n4AZgV4vDgr/XM8kZh/e6c+4B59xA59y/4uvReufcpBaHdfh8ZjLjtUNcnkyeyjDnTDMbA5wEDgJ3\n5jqnma0AioGzzexdoBzo6f8J7lnn3O/N7Ltm9g5wFCjNdcZMcgK3m9kP8efyGH5kQK4zXg38ANie\n6p91wAP4EVaxOZ+Z5CQG5xPoB7xgfjnybsBLqfMXq/d6hjmDv9db09XzqclQIiIJFpcLryIikgUq\n8iIiCaYiLyKSYCryIiIJpiIvIpJgKvIiIgmmIi8ikmAq8iIiCfb/84NcPqdw244AAAAASUVORK5C\nYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48add8ceb8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"figure = plt.figure()\n", | |
"axes = figure.gca()\n", | |
"\n", | |
"x = [1, 2, 3]\n", | |
"y = [0.5, 1.8, 0.7]\n", | |
"\n", | |
"axes.plot(x, y)\n", | |
"\n", | |
"axes.set_xbound(0, 4)\n", | |
"axes.set_ybound(0, 2)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEfCAYAAABmsjC7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVPXZxvHvTVOxIBgr9ooao9HYsK3dEEUkiL0nMdFY\n4muvxIIae+8FVLAmKsYYVFiNUUmxxBaNJvaKiIJK233eP35nZFwpCzszZ2b2/lzXXMycOeWZ4ew+\n++uKCMzMzNqqQ94BmJlZfXBCMTOzknBCMTOzknBCMTOzknBCMTOzknBCMTOzknBCsZol6QRJ17Zi\nv5sknd7Kcy4m6XFJn0s6r+1RGoCkZkkr5h2HlVenvAMwmxlJE4DCQKn5gclAU7bt4Ig4uwyX/QXw\ncUR0K8O555ikZmDliPhv3rG0kQe8tQNOKFa1ImLBwnNJ/wUOiojRZb7scsDLc3OgpI4R0VTieOrl\nF7HyDsDKz1VeVitEi19Kkk6TdEvR600l/VXSZ5LekrTvd04iLShplKSLZ/DeTcB+wHGSvpC0laQu\nki6W9J6kdyVdJKlztv8Wkt6RdKykD4Abi7YdI+mj7LidJf1Y0quSxko6oeia60t6Mov5PUmXSeqU\nvfdY9pn/lcWz6wy/GOlASS9L+lTSnyQtm23fWNInknpmr9eWNE7Sqtnr4yS9np37RUn9is65n6Qn\nJF2YxfZ6dr79JL0t6cPi7zerVrxK0sjsfKMLccwg3i6Szs/+jz6QdKWkeWa0r9UWJxSrdQEgaTng\nQeAS4HvAOsBzxTtK6gE8AvwlIo78zokiDgBuA86NiIUiYhRwMrAB8ANg7ez5yUWHLQEsDCxLqi4r\nbOsCLAWcBlwH7AX8ENgcOCWLF1IV3pFAD2BjYCvgkCyeLbJ91sriuatlzJJ2Bo4H+gGLAn8BhmfH\nPwVcDQyRNC9wC3BSRLyWHf46sElELAT8FrhV0uJFp98g+w57ZOe8HfgRsBKwD3C5pK5F+++ZnWcR\n4Pnsu5yRc4GVSd/pykBP4NSZ7Gu1JCL88KPqH8D/gK1abDsNGJo9Px64ZybH3gTcALwAHDWb69wE\nnF70+nVg+6LX2wH/zZ5vAUwCOhe9vwXwJaDs9QJAM/Cjon3+AfSdyfWPKP4c2bErziLeB4EDil53\nyK6/TPa6U3a9fwF/nM1nfxbYKXu+H/Bq0XvfJyW/7xVtGwv8oOh7G1b03vzANKBny88BTARWKNp3\n48J36kdtP1xCsXqxDPDGLN7/CTAvcM0cnncp4O2i129l2wo+iYipLY75NLLflMDX2b8fF73/NSnR\nIGkVSSOyqp/xwFmkElZrLQdcklVljQM+JZXaegJExDTgZmBN4MLiAyXtK+nZrErrs2yf4mt/1CJm\nImLsjD5H5p3Ck4j4EhjHt78rJC0KdAX+WRTzn0ilGqtxTihWL94hVZ/MzLXAQ8CfJM03B+d9j/RL\nu2A54P2i121tNL8KeAVYKSIWBk5izhqw3yb1eOuRPbpHxAIR8TRA1n5yGqkEcWFR+8+ypO/kkOyY\n7sBLc3jtlpYpPJG0AKmq7L0W+4wFvgLWLIp54aiSXnXWNk4oVi9uA7aWNEBSR0k9JK1dvENEHAa8\nCjyQtSm0xu3AyZK+J+l7wCmktohSWRD4IiK+ktQL+FWL9z8EZjV+4xrgRElrAEjqJmlA0fs3AddF\nxM9IifDMbPv8pGqosZI6SDqAVK01K7NLNn0k9ZbUBTgDeCoiipMvWcntOuDirLSCpJ6StpvNua0G\nOKFYrZhlSSAi3gH6AEeTqlqeJTX6tvQLUmnm3uwX3+yucybT2yCez56fNUeRf/ecxa+PBvaS9AUp\nOdzeYt9BwNCsemhAi/eIiHuBc4DbsyqzfwE7AEg6nNRQX2jwPhDYX9ImEfEKcAHwNClprQk80YbP\nATAsi/dTUgeEvWey73Gktqmns5hHAqvO5tpWAzS9qjeHi0s3ADsCH0XED7Jt3YE7SFULbwIDI+Lz\n7L1LgR+TGh33j4jnsi6Qw0iNjwdHxBhJHUnVGztFxKQKfyyzdifrcv1ORLi3VjuWdwnlJmD7FtuO\nBx6JiNWAUcAJAJJ+TKpnXgU4mNQdkuz54aS/To/Jtv0KuMXJxMyscnJNKBHxBPBZi807A0Oy50Oy\n14XtQ7PjxgDdsj7zU0j1wQsAUyR1A3aMiKFlDt/MpquXEf3WBtU49cpiEfERQER8WDTQqidF3RJJ\nvUd6AleSEk0XUmnlFGBw5cI1s4g4MO8YLH95V3m1xmwbYyNiy4jYhNQvvifwb0lDJQ2XNKuupGZm\nViLVWEL5SNLiEfGRpCWYPiDsPYr6uQNL890+7meR+vEfTuqa+CZwNt/ubQKAJBfRzczmQkTMsAt5\nNSSUlpP+3Q/sT5rvZ3/gvqLthwJ3SNoIGF+oGoM0UR/wXkS8kQ1cKySMmQ5iy7OHm1mxDz6ALbeE\n/faDE06A3XcfxBNPDGLMGOjZM+/ozKaTZj4cKdeEImkY0AAsIult0ojec4C7JB1ImuZiIEBEPCip\nj6TXSd2GD2hxuhOB3bLn15EGunXkuwPFzKpKIZnsu29KJgC9esHaa0O/fvDYY9C166zPYVYNck0o\nEbHnTN7aZib7/3oW59q+6Pm/gfXaFp1Z+X34IWy1FeyzD5x44rffO/54eOklOPBAGD4cZvGHoVlV\nqIVGebO69OGHqWSy115w0knffq+hoQEJrr8e3nwTzjxzhqcwqyq5jpTPk6Ror5/d8vfRRymZ7LEH\nnHLKrPf98EPYYAO46CL46U8rE5/ZzEiaaaO8E4pZhRWSye67w6mtnKjkmWdg++1h5Ej44Q/LG5/Z\nrMwqobjKy6yCPvootZnstlvrkwnAuuvCVVfBzjunRnyzauSEYlYhH3+cksmuu8Jpp8358QMGwM9+\nBrvsApM8S51VIVd5mVVAIZkMGACDBs39eSJSu0unTnDLLe75ZZXnKi+zHH3yCWy9dWpQb0sygZRA\nbrwRXn0VzjmnJOGZlUw1jJQ3q1uffJJKJrvs0vZkUtC1K9x7L2y4IayxRmpXMasGrvIyK5NCMunX\nD04/vfTVU3//O/TpA488kkbVm1WCq7zMKqxQzbXzzuVJJgDrrw+XXZau8fHHs9/frNycUMxKbOzY\nlEx22gnOOKO8Dee7757mAOvfHyZPLt91zFrDVV5mJVRIJj/5CZx1VmV6YTU3w8CBsMACcNNN7vll\n5eUqL7MK+PRT2Gab1K5RqWQC0KEDDBkCzz8PF1xQmWuazYh7eZmVwKefppLJDjvA4MGVLyXMPz/c\nfz9stFGa+n7HHSt7fTNwlVfeYVgdKJRMttsujQ3Js8rp6aehb18YNQq+//384rD65SovszIZNw62\n3TY98k4mkEooF16YksrYsfnGYu2PSyhmc2ncuFQy2WYbOPfc/JNJsRNOgCefhIcfhi5d8o7G6omn\nr58BJxRri0LJZKut4He/q65kAqnnV//+sOiicO211Ref1S5XeZmV0GefpWSy5ZbVmUwg9fy65RYY\nMwYuuSTvaKy9cC8vsznw2WepiquhAc47rzqTScGCC8KIEdN7fu2wQ94RWb1zCcWslQolky22gPPP\nr+5kUrDccnDXXWk0/Suv5B2N1TsnFLNWGD8+dQvebLM0eLAWkknBppumqrmddkpdnM3KxY3yZrMx\nfnwqmWyyCVx0UW0lk2LHHJPWpn/oIejcOe9orFa5l9cMOKFYaxRKJr1713YyAWhqSjMTL7ssXHll\n3tFYrXIvL7O58PnnsP32sPHGtZ9MADp2hGHD4LHH4Ior8o7G6lHVJhRJR0h6IXscnm3rLmmkpFcl\n/VlSt2x7f0kvSnpMUvds24qShuf5Gax2ff55KplsuCFcfHHtJ5OChRZKPb/OOCMNejQrpapMKJLW\nBA4CfgSsA+woaSXgeOCRiFgNGJW9BjgMWA+4Ftgz23YmcHIl47b6UCiZbLBBGsNRL8mkYMUV4Y47\nYO+94bXX8o7G6klVJhRgdWBMREyOiCbgcaA/0BcYku0zBOiXPW8C5gO6AlMlbQp8EBFvVDZsq3Vf\nfJHGa/zoR3DppfWXTAq22ALOPDP1/Prss7yjsXpRlY3yknoB9wIbA5OBR4B/AHtHRI+i/cZFRA9J\n2wDnAO8B+wB3AbtFxPhZXMON8vYtX3yRSibrrguXX16/yaTYkUfCyy/Dgw9CJw9ztlaoyV5ekg4A\nDgUmAi8BU4D9WiSUTyNikRbH7QN0B8YARwPjgCMiYlKL/eK000775nVDQwMNDQ3l+TBW9Qolkx/+\nsP0kE4Bp09LaKauumkpkZi01NjbS2Nj4zevf/va3tZdQikk6C3gHOAJoiIiPJC0BjI6I1Yv2mw8Y\nAWwP/BHYBdgV6BIR17c4p0soBkxPJuusk3o/tZdkUjB+fOrJduSRcPDBeUdj1a4muw1LWjT7d1lS\nYhgG3A/sn+2yH3Bfi8OOAS7J2l3mzbY1k9pXzL5jwgT48Y9h7bXbV8mk2MILp9UeTz0VRo/OOxqr\nZVVbQpH0ONADmAr8JiIaJfUA7gSWAd4CBhbaSSQtCVwbETtlrwcAg4DPgH4R8WmL87uE0s5NmJBK\nJmutlQb6dajaP68qY9Qo2HNPeOIJWHnlvKOxalWTbSjl5oTSvhVKJmuuCVdd5WRScNVVcNll8NRT\n0K1b3tFYNXJCmQEnlPZrwgTo0wdWXx2uvtrJpKVDD4X//S8NgOzYMe9orNrUZBuKWTlMnJiSSa9e\nTiYzc/HFMGUKHHts3pFYrfGPk7UbxcnkmmucTGamc+e0hsqIEXDDDXlHY7XEVV7WLkycCD/5Cayy\nSlpj3clk9v79b9h8c7jnnrQOjBm4ysvauS+/TMlk5ZWdTOZEr15w660wcGBqUzGbHf9oWV0rJJOV\nVoLrrnMymVPbbQcnnAB9+6bODGaz4iovq1tffpmmFVl++dQW4GQydyLgl7+E99+He+91z6/2zlVe\n1u4UJ5Prr3cyaQspjU2ZMAFOPDHvaKya+cfM6s5XX6Vp2ZdbLiUT/0Xddl26pMb5u++GoUPzjsaq\nlau8rK589VUqmSyzDNx4o5NJqb38MjQ0pKqv3r3zjsby4CovaxcKJZOll3YyKZc11oCbb4YBA+Dt\nt/OOxqqNE4rVha++Sj2RevaEm25yMimnPn3g6KPT9z1xYt7RWDVxlZfVvK+/Tr/cllgi/fXsZFJ+\nEXDQQWn54HvucaeH9sRVXla3Cslk8cWdTCpJSjMTjx2b1lExAycUq2Fffw077wyLLQZDhjiZVNo8\n86TSyW23wbBheUdj1cBVXlaTvv4a+vWDRRZJ3Vg7dco7ovbrhRdg663hgQdggw3yjsbKzVVeVlcm\nTYJddoEePZxMqsFaa6XxPv37w7vv5h2N5ck/ilZTJk1KJZPu3eGWW5xMqkXfvvDKK6kK8i9/ga5d\n847I8uAqL6sZhWSy8MJpFlwnk+oSAfvtl/6fbr/dPb/qlau8rOYVqrm6dXMyqVZSWh7gnXfg9NPz\njsby4IRiVW/SpFQ/v9BCqUeRk0n1mnde+MMf0uDSO+/MOxqrNFd5WVWbPDklk/nnT11TnUxqw3PP\nwbbbwkMPwXrr5R2NlZKrvKwmFZJJ164umdSaddaBa65JbV7vv593NFYpTihWlSZPhp/+FOabL5VM\nOnfOOyKbU/37p4W5+vVL44as/lVtQpH0G0kvSvqXpNskdZG0vKSnJb0mabikTtm+v5b0gqQHirZt\nIumCfD+FzY3Jk9NstvPOC8OHO5nUshNPhJVXTvN+uYa5/lVlQpG0FHAYsG5E/IA0XmYP4FzggohY\nFRgPHJQdsldErAU8BWyfbTsFOKOigVubTZ4Mu+6aFnRyMql9Ulp++fXXYfDgvKOxcqvKhJLpCMyf\nlTjmA94HtgTuyd4fAvQr7CypC9AVmCppb+DBiBhf2ZCtLaZMScmkU6c0jsHJpD7MN19akOvqq+H3\nv887GiunqkwoEfE+cAHwNvAe8DnwDDA+Ipqz3d4FembPrwCeBpYGngT2z7ZZjSgkk44dnUzq0VJL\npaRy8MGpB5jVp6pMKJIWBnYGlgOWAuYHdpjZ/hFxa0SsGxH7Ab8BLgX6SLrL7SjVb8oUGDgwVY/c\ncUeq7rL6s956cMUVaXqWDz/MOxorh2rtiLkN8N+IGAcg6Q/AJsDCkjpkpZSlSaWXb2RtL+tHxBmS\nGklVZKdI2joiHm15kUGDBn3zvKGhgYaGhvJ8GpupQjKBNBDOyaS+DRyY1qXfZRcYPTp1vLDq1tjY\nSGNjY6v2rcqBjZI2AG4A1gcmAzcBfwc2B34fEXdIugp4PiKuLjrueuCyiHhe0tPAxsBJ2X4jWlzD\nAxtzNmUK7LYbNDfDXXc5mbQXzc2w++4pmQwZkkqmVjtqbmBjRPwNuBt4FngeEHAtcDxwlKTXgB6k\npAOApHXSofF8tmk48ALQG3ioctFba0ydmn6pNDU5mbQ3HTqk1TVfegnOOy/vaKyUqrKEUgkuoeRn\n6tRUMpk2De6+28mkvXr3Xdhww7SUcN++eUdjrTWrEooTilVUoWQyZUpKJvPMk3dElqcxY2CnneDR\nR9NCXVb9aq7Ky+rT1Kmwxx5p8KKTiUEqoVx8cSqhfPJJ3tFYWzmhWEVMnQp77pmmor/nHicTm27P\nPdOjf//0x4bVLld5WdlNnQp77QVffplGSjuZWEvNzWn+toUXTlO1uOdX9XKVl+Vm2rSUTCZOdMnE\nZq5DBxg6FJ55Bi66KO9obG5V68BGqwOFZDJhQlrFz4PYbFYWWADuvx822gh69YI+ffKOyOaUSyhW\nFtOmwd57wxdfOJlY6y27bOqwsf/+aUS91RYnFCu5QjIZP97JxOZc795w/vmpO/HYsXlHY3PCjfJW\nUtOmwT77wLhxcN99TiY29447Lo1TGTnSg1+riQc2zoATSulNmwb77pv+qrzvvrQOhtncampKywcv\ntVRaS8U9v6qDe3lZ2U2bBvvt52RipdOxIwwbBk8+CZdfnnc01holSSiSjpC0kJIbJD0jabtSnNuq\nX1NTSiaffOJkYqW14IKp59fgwanqy6pbqUooB0bEF8B2QHdgH+CcEp3bqlghmXz8sZOJlccKK6S1\ncvbeG159Ne9obFZKlVAK9Wl9gFsi4qWibVanmppS984PP3QysfLabDM4++zU82vcuLyjsZkpVUL5\np6SRpITyZ0kLAs2zOcZqWFMTHHAAvP9+qpLo2jXviKzeHXQQ7LhjWvVx6tS8o7EZKUkvL0kdgHVI\ny/aOl7QI0DMi/tXmk5eJe3nNvaYmOPDAtJ7FiBFOJlY5TU0pqay0khvq81KJXl4PR8QzETEeICI+\nBTwjTx1qakp/Kb7zjpOJVV7HjnD77TBqVFqYy6pLm+bykjQv0BX4nqTuTG83WQjo2cbYrMo0NcHP\nfgZvvQUPPOBkYvno1i39MbPJJrDaarDVVnlHZAVtqvKSdARwJLAU8B7TE8oXwHURUbWFUld5zZlC\nMnnzzZRM5p8/74isvRs9Oq3++cQTsMoqeUfTfpR9pLykwyLisjafqIKcUFqvuTklk//+F/74RycT\nqx7XXJNWfHzqqbSWipVfRaZekdQbWJ6iarSIGFqSk5eBE0rrFJLJG2/Agw86mVj1OfxweO21VHLu\n5AU5yq4SJZRbgJWA54CmbHNExOFtPnmZOKHMXnMz/Pzn8J//pGSywAJ5R2T2XdOmpbVT1lgjlVas\nvGaVUEqVz38ErOHf0PWjuRl+8QsnE6t+nTrBHXekhbnWXDP9EWT5KFVCeRFYAvigROezHDU3w8EH\np2oEJxOrBd27p55fm20Gq64KW2yRd0TtU6mqvEaTBjb+DZhc2B4Rfdt88jJxldeMNTfDL38Jr7wC\nf/qTk4nVlkceSXN+PfkkrLhi3tHUp0q0oczw74GIeGwuz7cqcAcQpK7IKwKnALdk25cD3gQGRsTn\nkvoDpwOfAv0i4jNJKwJnRcQeM7mGE0oLzc3wq1/BSy+lZLLggnlHZDbnrrgCrrwy9fxaaKG8o6k/\nlerltRywSkQ8Iqkr0DEiJpTgvB2Ad4ENgV8Dn0bE7yQdBywcESdkJaQdgAHZtiskDQNOiYg3ZnJe\nJ5Qizc1wyCHw4otOJlbbItK9/M47adLSjh3zjqi+lH3qFUk/B+4Grsk29QTuLcW5gW2ANyLiHWBn\nYEi2fQjQL3veBMxHGrU/VdKmwAczSyb2bc3NcOih8MILTiZW+yS49FL46is4/vi8o2lfStUofyiw\nATAGICL+I2mxEp17N2BY9nzxiPgou8aHkhbPtp8DPEIarb8PcFd2nM1GczP8+tfw/PPw0ENOJlYf\nOneGu+6a3vNr//3zjqh9KFVCmRwRU5Qt+iypE6n9o00kdQb6Asdlm1qeMwAi4hFS12Uk7QP8EVhN\n0tHAOOCIiJjU8vyDBg365nlDQwMNDQ1tDbmmRKRk8txzKZm4vtnqySKLpKUVttgiTc2yySZ5R1Sb\nGhsbaWxsbNW+pWqU/x0wHtgXOAw4BHg5Ik5q43n7AodExA7Z61eAhoj4SNISwOiIWL1o//mAEcD2\npKSyC7Ar0CUirm9x7nbdhhKRqrmefRb+/GcnE6tfDz2U1u556ilYfvm8o6l9lZi+/njgE+AF4GDg\nQeDkEpx3D2B40ev7gf2z5/sB97XY/xjgkohoAubNtjWT2lcsUyiZPPOMSyZW/3bYAY47Dvr2hYkT\n846mvpWqhDI/MCn7RY6kjsA8EfFVG87ZFXgLWLHQW0xSD+BOYJnsvYGFNVgkLQlcGxE7Za8HAIOA\nz0hdiT9tcf52WUKJgMMOg3/8I5VMunXLOyKz8otIMz988gn8/vfQoVR/SrdDlRiH8jSwTURMzF4v\nAIyMiN5tPnmZtMeEEpEm0vvb32DkSCcTa1+mTIFtt01tKYMH5x1N7apElde8hWQCkD338ktVJAKO\nOCIlE5dMrD3q0gXuuSet+HjrrXlHU59KlVC+lLRu4YWk9YCvS3Rua6MIOPJIePrplEy8boS1V9/7\nXur5ddRR6efBSqtUVV4/Ik2J8j5pqpQlgN0i4p9tPnmZtJcqrwj4zW/S3EYjRzqZmEFaO+Xgg1NS\nWWaZvKOpLWVtQ8mmRtkI+DuwWrb51YiY2qYTl1l7SCgR6S+xJ56Ahx92MjErdt55MGxY+vnwwnGt\nV4lG+Wcj4odtPlEF1XtCiYD/+z94/PGUTLp3zzsis+oSkcanTJwId97pnl+tVYlG+Ucl/VSFofKW\nqwg4+mgnE7NZkdKa9B98AEWTZlgblKqEMgGYnzRJ49ekdpSIiKodMlevJZRCMmlsTGtDOJmYzdrH\nH8MGG8C558JungFwtioyfX2tqceEEgHHHAOjRqVk0qNH3hGZ1Ybnn4dttkkrlK6/ft7RVLdKTF8v\nSXtLOiV7vYykDUpxbmudCDj2WCcTs7mx9tpw3XWwyy7w3nt5R1O7StWGciWwMbBn9noicEWJzm2z\nEZHmKnrkEScTs7nVr1+aMLVfv7SWis25UrWhPBMR6xb39pL0fESs3eaTl0m9VHlFpEWERo5MyWSR\nRfKOyKx2RcA++8C0aTB8eGq4t2+rRC+vqdmEkJFdcFHSLL9WRhFwwglp9LuTiVnbSXD99fDmm3Dm\nmXlHU3tKlVAuBf4ALCbpLOAJwNOvlVEEnHhimn7eycSsdOadF+69N7Wp3HNP3tHUlpL18pLUC9ia\n1GX40Yh4pSQnLpNarvKKgJNOgj/+ER59NM1PZGal9cwzsP32qTr5hzU1bLu8ytZtWNK8wC+BlUmL\na90QEdPm+oQVVKsJJQJOPjnNReRkYlZed9+dpi8aMwaWXDLvaKpDOdtQhpDWcn8B+DFwfhvPZ7MQ\nAaecAiNGOJmYVcKAAfCzn6XuxJMm5R1N9WtrCeWFiFgre94J+FtErDubw6pCrZVQIuDUU+G++1Iy\nWXTRvCMyax8iYI89oFMnuOUW9/wqZwnlmxmFa6WqqxYVksm99zqZmFWaBDfeCK++Cueck3c01a2t\nJZQm4MvCS2A+4Cs8l1fJRMBpp6V1sEeNgsUWyzsis/bpvfdgww3hiitg553zjiY/nstrBmoloZx2\nWuq66GRilr+//x369Eld9deu2mHb5VWJgY1WBoMGpV4mTiZm1WH99eGyy1IJ5eOP846m+jihVKnf\n/hbuusvJxKza7L477Lsv9O8PkyfnHU11cZVXFTr9dLj9dhg9GhZfPO9ozKyl5mYYOBAWWABuuql9\n9fxylVcNOeOMNCndqFFOJmbVqkMHGDIkraNywQV5R1M9OuUdgE135pkwbFgqmSyxRN7RmNmszD8/\n3H8/bLQR9OoFO+6Yd0T5q9oSiqRuku6S9IqklyRtKKm7pJGSXpX0Z0ndsn37S3pR0mOSumfbVpQ0\nPN9P0XpnnQW33eZkYlZLllkm9cI88EB48cW8o8lf1SYU4BLgwYhYHVgb+DdwPPBIRKwGjMpeAxwG\nrAdcy/RFvs4ETq5oxHNp8OA0AnfUKCcTs1qz0UZw4YXQty+MHZt3NPmqyoQiaSFgs4i4CdIo/Ij4\nHNiZNH8Y2b/9sudNpEGVXUlrs2wKfBARb1Q28jk3eDAMHZpKJp58zqw27b037LYb/PSnMGVK3tHk\npyp7eUlam1TaeJlUOvkHcCTwXkR0L9pvXET0kLQNcA7wHrAPcBewW0SMn8U1cu/ldfbZcPPN0Njo\nZGJW65qbU1fiRReFa6+t355fs+rlVa2N8p2AdYFDI+Ifki4iVW+1zAABEBGPkGY9RtI+wB+B1SQd\nDYwDjoiI78wVOmjQoG+eNzQ00NDQUPIPMjPnnJOSiUsmZvWhQ4dUdb3JJnDJJXDkkXlHVBqNjY00\nNja2at9qLaEsDjwVEStmrzclJZSVgIaI+EjSEsDorI2lcNx8wAhge1JS2QXYFegSEde3uEZuJZRz\nz4Ubbkglk6WWyiUEMyuTt95K7So33QQ77JB3NKVXc+NQIuIj4B1Jq2abtgZeAu4H9s+27Qfc1+LQ\nY4BLIqIJmDfb1kxqX6kKv/tdSiajRzuZmNWj5ZZLs1zsuy+8UtXr1pZeVZZQ4Jt2lOuBzsB/gQOA\njsCdwDIGcH3fAAASb0lEQVTAW8DAQjuJpCWBayNip+z1AGAQ8BnQLyI+bXH+ipdQzjsv1a02NkLP\nnhW9tJlV2M03p7FlY8bAIovkHU3peLbhGah0Qjn/fLjmmlQyWXrpil3WzHJ0zDFpbfqHHoLOnfOO\npjScUGagkgnlggvgqqtSycTJxKz9aGpKMxMvuyxceWXe0ZRGzbWh1JMLL0zJxCUTs/anY8c0ndJj\nj6WFuepdtXYbrgsXXZT+Khk9Ok3RYGbtz0ILwYgR0Ls3rLoqbLtt3hGVj0soZXLRRXD55U4mZgYr\nrgh33JFG1L/2Wt7RlI8TShlcfLGTiZl92xZbpF5fO+0En32WdzTl4Ub5Erv4Yrj00tQAv+yyJT+9\nmdW4I4+El1+GBx+ETjXY6OBG+Qq55JKUTEaPdjIxsxk7//w0TctRR+UdSek5oZTIpZem0sno0Wmk\nrJnZjHTqlJb4fvjhNDatntRggav6XHZZaoR3MjGz1lh44bTa46abpp5fW26Zd0Sl4RJKG11+eRpr\nMno0LL983tGYWa1YZRUYPhz22ANefz3vaErDCaUNrrgi1Yc6mZjZ3NhqKzjttLTa4+ef5x1N27mX\n11y68so0c/Do0bDCCiUMzMzanUMPhf/9Lw2A7Ngx72hmzb28Suyqq9KaJqNGOZmYWdtdfHFaOvjY\nY/OOpG2cUObQ1Ven1RZHj06jX83M2qpz57SGyogRab2kWuVeXnPgmmvSOvCjRjmZmFlpde+een5t\nvnnq+bXZZnlHNOdcQmmla66BwYNTMllppbyjMbN61KsX3HorDByY2lRqjRNKK1x7LZx1lpOJmZXf\ndtvBCSeknl8TJuQdzZxxL6/ZuPbaNKHbqFGw8soVCMzM2r0I+OUv4f334d57q6vnl3t5zaXrrnMy\nMbPKk9IMHBMmwIkn5h1N6zmhzMT118Ppp8OjjzqZmFnldekC99wDd98NQ4fmHU3ruMprBm64AQYN\nSiWTVVapbFxmZsVefhkaGlLVV+/eeUfjKq85cuONaSqERx91MjGz/K2xBtx8MwwYAG+/nXc0s+aE\nUuSmm+DUU1PJZNVV847GzCzp0weOPjr1/Jo4Me9oZs5VXpmbb4aTT04lk9VWyy8uM7MZiYCDDkrL\nB99zT1qkKw81WeUl6U1Jz0t6VtLfsm3dJY2U9KqkP0vqlm3vL+lFSY9J6p5tW1HS8NZca8gQOOkk\nJxMzq15Smkdw7NhUk1KNqjahAM1AQ0T8MCI2yLYdDzwSEasBo7LXAIcB6wHXAntm284ETp7dRYYM\nSd3ynEzMrNrNM08qndx2Gwwblnc031XNCUV8N76dgSHZ8yFAv+x5EzAf0BWYKmlT4IOIeGNWFxg6\ndHoy6dWrdIGbmZXLYoulOb+OPBL+9re8o/m2qm1DkfRfYBwQwDURcb2kzyKie9E+4yKih6RtgHOA\n94B9gLuA3SJi/CzOH0stFU4mZlaT7r8fDjkEnn4all66ctedVRtKNSeUJSPiA0mLAiOBw4H7IqJH\n0T6fRsQiLY7bB+gOjAGOJiWlIyJiUov94uWXg9VXL/cnMTMrj3PPhTvvhL/8Bbp2rcw1Z5VQqnb6\n+oj4IPv3E0n3AhsAH0laPCI+krQE8HHxMZLmA/YDtgf+COwC7ArsDVzf8hp33DHom+cNDQ00NDSU\n5bOYmZXDscfCSy/B/vvD7beXp+dXY2MjjY2Nrdq3KksokroCHSJioqT5SSWU3wJbA+Mi4lxJxwHd\nI+L4ouNOBZ6NiBGSGoEfAz/N9rusxTXatASwmVk1mDQJttwStt8+zfBRbrVYQlkc+IOkIMV4W0SM\nlPQP4E5JBwJvAQMLB0haElg/Ik7PNl0O/B34jOmN92ZmdWXeeeEPf4ANN0yj6gcOnP0x5VKVJZRK\ncAnFzOrJc8/BttvCQw/BeuuV7zo1ObDRzMxab5110sqy/fqldVTy4IRiZlYn+vdPC3P16wdff135\n67vKy8ysjkTAXnul57fdlqZsKSVXeZmZtRNSWtPp9ddh8ODKXrtae3mZmdlcmm++tCDXhhvC6qun\nqrBKcJWXmVmd+uc/YYcd4OGHU6N9KbjKy8ysHVpvPbjiCth5Z/jww/JfzwnFzKyODRwIBxwAu+yS\nRtWXk6u8zMzqXHMz7L57GlU/ZEjben65ysvMrB3r0CEtc/7SS3DeeeW7jnt5mZm1A127wn33pZ5f\nvXpB376lv4arvMzM2pExY2CnndJKtWutNefHu8rLzMyAVEK5+OJUQvnkk9Ke2yUUM7N26KST4PHH\n4ZFHYJ55Wn9cTS4BXG5OKGbWnjU3w4ABsPDCaaqW1vb8cpWXmZl9S4cOMHQoPPMMXHRRac7pXl5m\nZu3UAgvA/ffDRhulnl99+rTtfC6hmJm1Y8suC3ffDfvvDy+/3LZzOaGYmbVzvXvD+een7sRjx879\nedwob2ZmABx3XBqnMnIkdOky433cy2sGnFDMzL6tqSktH7zUUnD11TPu+eVeXmZmNlsdO8KwYfDk\nk3D55XN+vHt5mZnZNxZcMPX86t0bVlsNttuu9ce6hGJmZt+ywgpw552w997w6qutP84JxczMvmOz\nzeDss1PPr3HjWndMVScUSR0kPSPp/uz18pKelvSapOGSOmXbfy3pBUkPFG3bRNIFecZvNrcaGxvz\nDsGMgw6CHXdMqz5OnTr7/as6oQBHAMVDbc4FLoiIVYHxwEHZ9r0iYi3gKWD7bNspwBmVCtSslJxQ\nrFqcdx507gy/+c3s963ahCJpaaAPcH3R5q2Ae7LnQ4B+Rft3AboCUyXtDTwYEeMrFK6ZWV3q2BFu\nvx1GjYKrrpr1vtXcy+si4BigG4CkRYDPIqI5e/9doGf2/ArgaeAF4EngXqaXVMzMrA26dYMRI2CT\nTWa9X1UObJT0E+DHEfFrSQ3AUcABwNMRsUq2z9KkUsgPWhx7CvA8EMC+wNsR8X8zuEb1fXAzsxow\ns4GN1VpC2QToK6kPMB+wIHAJ0E1Sh6yUsjTwXvFBkpYC1o+IMyQ1AlsCp0jaOiIeLd53Zl+ImZnN\nnapsQ4mIEyNi2YhYEdgdGBURewOjgV2z3fYD7mtx6OmkxniAebN/m0ltK2ZmVkZVmVBm4XjgKEmv\nAT2AGwpvSFoHiIh4Pts0nNSm0ht4qNKBmpm1N1XZhmJmZrWn1kooZmZWIVJrV5pP6jahKFm3MHLe\nrJpI6i+pe95xmLWU/e48XtJyc7rGR90mFOA24EZg7bwDMSuQtLekp4FNgUl5x2NWLBum8QKwHtBx\nTo+vy7/es2LafMB/gPUkvRkRn8qralkOsvtRpJ6J1wO9I2JMvlGZzdAWwMkRcW/xxtb+7qyLEoqk\neYqeFz74GODvpDEtq0PqApZPhNZeSZonkmbgb8AdwORs4tP9JK2ec4jWjhX/7sxsDHwuqaukUyXt\nIWmh1v7urPmEIukE4PeSDpP0/YgIST2ADYFLgReBLSX9XNIKuQZr7UrRvXm4pNUj4iVgJPAAaTaH\njYEbJZ2d7V/zP49WO1r87iw0DTwBbECavqoTsAdwbmv/8KnZG1jSCpJGAWsC5wOrAftJ6hYR44BX\nI2ISaQqWY0lTt3yeW8DWbszk3jxQUlfgz8A1QL+I+CWwD7C/pKWK5qkzK5sZ3J+9gL0ldQQ+INXq\nPBcRpwIHAt8DlmvNuWu5DWUc8EBEXAjfzDa8L/C1pMWArSQ9Saq7vgWYACycHWdWTjO6N/cDpgEf\nA+dExFSAiHg9u0+XA97PKV5rX2Z0f+4fEU3Z2lMbAPNL6hERYyWNA5ZozYlrsoSStZN8DlxXtPkl\nYBmga0R8DPweuCMiNgYOJSWTeb9zMrMSmsW9uTQwT0Q0FZKJpPkkXUya9eHl757NrLRmcX/2zGp3\nPgFuJdXmXCjpImB9Unv0bNVEQpG0laRvMmShgSgiJhTttiHwTmENlIg4JyIuKdr/kIjwD62V1Bze\nmxOKjtsSKExY+pPsh9yspObw/vw8e+8vwCCgkVQFtnnW/jdbVZ1QJPWW9BKwP7BA0XYVGjCLBi4u\nR2roRNLGktYs7AsQEU0VDN3qXBvuzd5Z55DngF0j4siI+KqiwVvda+P9+f2ImBIRN0fE7yJiYquv\nW609abMGouuBhyNiWNH2wvT1SFoSmBAREyVdCnwBLAYsDxzpEomVQxvvzRWAI3xvWrnk+buzmkso\nC5Ea1B+U1EXSPpJWBroASLqQ1Kd/NUkLAgNIU9u/FBHb+QfWyqgt9+a2vjetzHL73Vk1vbwkHQ6s\nRVqV8QZSsluRNHXKUcBkYEdgvKSjSLHvHBGfZcefAdwZEZ/mEb/VL9+bVs2q6v6MiNwfpHq+p4Ed\ngMeAk0lTp5wDvA4MzPZbEPgUWLvo2C55x+9H/T58b/pRzY9quz+rpcpra+DciHgI+D9S995DgFNJ\nX8SC8E3PhGHA4vBNF7gpuURs7YXvTatmVXV/5ppQiqaaeJZUJCMi/kEa/r8msCRwDLC9pJ0knUwa\nxflytm919iiwmud706pZtd6fFU0okjaRtFLhdUyfauKvQAdJm2evXwTeAdaLiKHA1aTpvpcFdoyI\ndysYtrUDvjetmtXK/VmRRnlJ65Lq9LYgTYhX2F7oxvYf0mjN3ST9NSLezaZPWQUgIkZJagzPdWQl\n5nvTqlmt3Z9lLaFI6izpGuBa0sy/fwYasvc6Fn3ICcBfgHmA8yV1BroDnxTO5R9YKyXfm1bNavX+\nLHeV1zzA48BmEfEAaX6t1SV1imzkuqTfkhqLPgdOIX0Zf8leDylzfNZ++d60alaT92fJq7wkbQSM\ni4jXgC8j4raitzsCTRExLZsSZS1S0ez4iHgjO/5AYP749lwzZm3me9OqWT3cnyWbekXSwqR13DcH\nzgUuiogvsw+viGjORmv+FegVEZ9lXdciO76Dqw6sHHxvWjWrp/uzlFVe85Pq+Q7Lnm8OqXta9oV0\nAN7M9tmi8B5U1xdidcn3plWzurk/25RQJO0raQulNYffIzUg3QlMAjaUtFS2n7IPXVi/eFJhO7hR\n00rP96ZVs3q9P+c4oShZUtJo0ip0ewFXSfpeREyKNBX3I6QGoq0gZdOsZ8KX2TU3Kmwv1Qcx871p\n1aw93J9zlFCyDxak4fzvRcTWwK9IS0peW9gvIv5KKqL1ktRNUteYvh7JgRExqBTBmxX43rRq1l7u\nz1YlFEkdJQ0GBkvaAlgNaIJvFq46AuidvVdwHWlhl4eB/xWKcOH5jayEfG9aNWtv9+dsE0r2Qf9J\nKoa9DpwBTAW2lLQBfFOPNyh7FPyENEnZ88BaEfF+KQM3871p1aw93p+tGYfSDFwQEbcASPohadW5\nU4GrgPWyXgj3AltJWj4i3iQ1Hm0TEY+XJXIz35tW3drd/dmaKq9/AncqLSsJqS/0shFxM9BR0mFZ\nll2aNPDmTYCIuK8WvxCrKb43rZq1u/tztgklIr6KiMlFDUPbMn2emANI0wE8AAwHnoHpXdrMysn3\nplWz9nh/tnrqlSzLBmmBlvuzzROAE4HvA//L+lNXbZc2q0++N62ataf7c066DTcDnYGxwA+yzHoK\n0BwRTxS+ELMc+N60atZu7s85mstLafKyJ7PHTRFxQ7kCM5sTvjetmrWX+3NOE8rSwD7AhRExuWxR\nmc0h35tWzdrL/Vmy2YbNzKx9q+ia8mZmVr+cUMzMrCScUMzMrCScUMzMrCScUMzMrCScUMzKSFKT\npGckvSjpWUlHzW56DUnLSdqjUjGalYoTill5fRkR60bE90lzOf0YOG02x6wA7Fn2yMxKzAnFrEIi\nYizwC+DX8E1J5HFJ/8geG2W7ng1smpVsjpDUQdLvJI2R9Jykn2fHLyHpsWy/f0naJJ9PZpZ4YKNZ\nGUn6IiIWarFtHGnlvgmk+ZymSFoZGB4R62cLM/1fRPTN9v85sGhEDJbUhTQN+gDgp8A8EXF2Vo3W\nNVt73CwXrZ5t2MxKptCG0gW4XNI6pGVhV5nJ/tsBa0naNXu9ULbv34EbJXUG7ouI58sYs9lsOaGY\nVZCkFYFpEfGJpNOADyPiB9kU51/P7DDgsIh4eAbn24y0ZOzNki6IiFvLFrzZbLgNxay8vunRJWlR\n0tKvl2WbugEfZM/3BQor+00AFiw6x5+BQyR1ys6ziqSukpYFPs5mrr0eWLdsn8KsFVxCMSuveSU9\nQ6remgoMjYiLsveuBO6RtC/wEFBo//gX0CzpWeDmiLhE0vLAM1lbycdAP6ABOEbSVFIS2rcyH8ls\nxtwob2ZmJeEqLzMzKwknFDMzKwknFDMzKwknFDMzKwknFDMzKwknFDMzKwknFDMzKwknFDMzK4n/\nB4Y4uRwhUU5zAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48adc137f0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"from datetime import date\n", | |
"import matplotlib.dates as mdates\n", | |
"import matplotlib.ticker as mtick\n", | |
"\n", | |
"x = [date(2017, 6, 24), date(2017, 6, 25), date(2017, 6, 26)] # даты\n", | |
"y = [50, 100, 40] # проценты\n", | |
"\n", | |
"figure = plt.figure()\n", | |
"axes = figure.gca()\n", | |
"\n", | |
"axes.set_title('Tick format example') # заголовок графика\n", | |
"axes.set_xlabel('Dates') # заголовок оси X \n", | |
"axes.set_ylabel('Percents') # заголовок оси Y\n", | |
"\n", | |
"axes.xaxis.set_major_locator(\n", | |
" mdates.DayLocator()) # местоположение меток по оси X, на каждый день\n", | |
"axes.xaxis.set_major_formatter(\n", | |
" mdates.DateFormatter('%Y-%m-%d')) # формат меток по оси X, в формате strftime\n", | |
"axes.yaxis.set_major_formatter(\n", | |
" mtick.FormatStrFormatter('%.0f%%')) # формат меток по оси Y, в формате оператора %\n", | |
"\n", | |
"axes.plot(x, y)\n", | |
"\n", | |
"figure.autofmt_xdate() # красиво расположить метки по оси X" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<Container object of 3 artists>" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAEACAYAAAB4ayemAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADV1JREFUeJzt3H+M5Hddx/Hn63qKBeVyot0NFnqgFhoh0iaUJjVhABGr\nf7T80UpNY4Hyp4HERHttYm75Q2JNiCHRf1Qkp8HyQ6StRO3ZXCf+SCqUXrXpT1B7aQ23FUoxBaOV\ne/vHTsv2bvdmZnf2Zt53z0ey6cz3vrPfd/a797zPfGemqSokST3smvcAkqTJGW1JasRoS1IjRluS\nGjHaktSI0ZakRiaKdpI9ST6b5OEkDyZ5S5K9SQ4leTTJnUn27PSwknS2m3Sl/THgr6rqIuCngUeA\n/cBdVfU64DBw086MKEl6XsZ9uCbJy4EjVfXjJ2x/BHhrVa0mWQaGVfX6nRtVkjTJSvs1wNeTfCLJ\nfUn+IMlLgaWqWgWoqmPAeTs5qCRpsmjvBi4Bfr+qLgG+zdqlkROX6H4eXpJ22O4J9nkSeKKq7h3d\n/xxr0V5NsrTu8shTGz04iTGXpC2oqpy4bexKe3QJ5IkkF442vQN4ELgDeO9o2/XA7af4Hmfs14ED\nB+Y+w9n0NfqNmtHXgRl+rzrjf9cX7etM/7u3mUlW2gAfBD6Z5PuAfwPeB5wDfCbJ+4GjwDUTfi9J\n0hZNFO2q+mfgzRv80c/OdhxJ0qn4ichtGgwG8x5BWzaY9wDahrP1797Y92lv+wBJ7fQxdPZIwuK+\nUSmnvBYpTSMJtZUXIiVJi8NoS1IjRluSGjHaktSI0ZakRoy2JDVitCWpEaMtSY0YbUlqxGhLUiNG\nW5IaMdqS1IjRlqRGjLYkNWK0JakRoy1JjRhtSWrEaEtSI0Zbkhox2pLUiNGWpEaMtiQ1YrQlqRGj\nLUmNGG1JasRoS1IjuyfZKcnjwLeA48BzVXVpkr3Ap4ELgMeBa6rqWzs0pySJyVfax4FBVV1cVZeO\ntu0H7qqq1wGHgZt2YkBJ0vdMGu1ssO+VwMHR7YPAVbMaSpK0sUmjXcCdSb6U5AOjbUtVtQpQVceA\n83ZiQEnS90x0TRu4vKq+luRHgUNJHmUt5OudeF+SNGMTRbuqvjb6738muQ24FFhNslRVq0mWgac2\ne/zKysoLtweDAYPBYDszS2poeXkfq6tH5z3GhpaWLuDYscfnOsNwOGQ4HI7dL1WnXiAneSmwq6qe\nTfIy4BDwYeAdwNNVdUuSG4G9VbV/g8fXuGNIk0rC4j6pC/6ub85zN50kVFVO3D7JSnsJ+HySGu3/\nyao6lORe4DNJ3g8cBa6Z6cSSpJOMXWlv+wCutDVDrtb68txNZ7OVtp+IlKRGjLYkNWK0JakRoy1J\njRhtSWrEaEtSI0Zbkhox2pLUiNGWpEaMtiQ1YrQlqRGjLUmNGG1JasRoS1IjRluSGjHaktSI0Zak\nRoy2JDVitCWpEaMtSY0YbUlqxGhLUiNGW5IaMdqS1IjRlqRGjLYkNWK0JakRoy1JjRhtSWpk4mgn\n2ZXkviR3jO7vS3JPkseS3Jpk986NKUmC6VbaHwIeWnf/FuCjVXUh8AxwwywHkySdbKJoJzkf+AXg\nj9ZtfjvwudHtg8C7ZzuaJOlEk660fxf4daAAkrwC+GZVHR/9+ZPAK2c/niRpvbHXoZP8IrBaVfcn\nGaz/o0kPsrKy8sLtwWDAYDDYdN+dtry8j9XVo3M7/qksLV3AsWOPz3sMSXMwHA4ZDodj90tVnXqH\n5CPAdcD/AecCPwTcBvwcsFxVx5NcBhyoqis2eHyNO8bplITRE4YFFBbpZ7WIPH99ee6mk4SqOmlx\nPPbySFXdXFWvrqrXAu8BDlfVdcDdwNWj3a4Hbp/lwJKkk23nfdr7gV9L8hjww8DHZzOSJGkzYy+P\nbPsAXh6ZwuI9RVs0nr++PHfT2fLlEUnS4jDaktSI0ZakRoy2JDVitCWpEaMtSY0YbUlqxGhLUiNG\nW5IaMdqS1IjRlqRGjLYkNWK0JakRoy1JjRhtSWrEaEtSI0Zbkhox2pLUiNGWpEaMtiQ1YrQlqRGj\nLUmNGG1JasRoS1IjRluSGjHaktSI0ZakRoy2JDUyNtpJXpLkn5IcSfJAkgOj7fuS3JPksSS3Jtm9\n8+NK0tltbLSr6n+At1XVxcCbgCuSvAW4BfhoVV0IPAPcsKOTSpImuzxSVd8Z3XwJsBso4G3A50bb\nDwLvnvl0kqQXmSjaSXYlOQIcA/4W+Ffgmao6PtrlSeCVOzOiJOl5E12HHsX54iQvBz4PvH6ag6ys\nrLxwezAYMBgMpnm4JJ3xhsMhw+Fw7H6pqqm+cZLfBP4b+A1guaqOJ7kMOFBVV2ywf017jJ2UhLWr\nO4soLNLPahF5/vry3E0nCVWVE7dP8u6RH0myZ3T7XOCdwEPA3cDVo92uB26f3biSpI2MXWkneSNr\nLzTuGn19uqp+K8lrgE8Be4EjwHVV9dwGj3elPbHF+9d+0Xj++vLcTWezlfbUl0e2cGCjPbHF+8VZ\nNJ6/vjx309ny5RFJ0uIw2pLUiNGWpEaMtiQ1YrQlqRGjLUmNGG1JasRoS1IjRluSGjHaktSI0Zak\nRoy2JDVitCWpEaMtSY0YbUlqxGhLUiNGW5IaMdqS1IjRlqRGjLYkNWK0JakRoy1JjRhtSWrEaEtS\nI0Zbkhox2pLUiNGWpEaMtiQ1MjbaSc5PcjjJg0keSPLB0fa9SQ4leTTJnUn27Py4knR2S1Wdeodk\nGViuqvuT/CDwZeBK4H3AN6rqd5LcCOytqv0bPL7GHeN0SgIszjwvFhbpZ7WIPH99ee6mk4Sqyonb\nx660q+pYVd0/uv0s8DBwPmvhPjja7SBw1ezGlSRtZKpr2kn2AW8C7gGWqmoV1sIOnDfr4SRJL7Z7\n0h1Hl0b+HPhQVT2b5MTnEps+t1hZWXnh9mAwYDAYTDelJJ3hhsMhw+Fw7H5jr2kDJNkNfAH466r6\n2Gjbw8CgqlZH173vrqqLNnis17QntnjX1RaN568vz910tnxNe+SPgYeeD/bIHcB7R7evB27f1oSS\npLEmeffI5cDfAQ+w9s9kATcDXwQ+A7wKOApcU1XPbPB4V9oTW7x/7ReN568vz910NltpT3R5ZJsH\nNtoTW7xfnEXj+evLczed7V4ekSQtAKMtSY0YbUlqxGhLUiNGW5IaMdqS1IjRlqRGjLYkNWK0JakR\noy1JjRhtSWrEaEtSI0Zbkhox2pLUiNGWpEaMtiQ1YrQlqRGjLUmNGG1JasRoS1IjRluSGjHaktSI\n0ZakRoy2JDVitCWpEaMtSY0YbUlqxGhLUiNjo53k40lWk/zLum17kxxK8miSO5Ps2dkxJUkw2Ur7\nE8C7Tti2H7irql4HHAZumvVgkqSTjY12Vf0D8M0TNl8JHBzdPghcNeO5JEkb2Oo17fOqahWgqo4B\n581uJEnSZmb1QmTN6PtIkk5h9xYft5pkqapWkywDT51q55WVlRduDwYDBoPBFg8rSWem4XDIcDgc\nu1+qxi+Sk+wD/rKq3ji6fwvwdFXdkuRGYG9V7d/ksTXJMU6XJCzuE4OwSD+rReT568tzN50kVFVO\n2j5u0CR/BgyAVwCrwAHgNuCzwKuAo8A1VfXMJo832hNbvF+cReP568tzN50tR3sGBzbaE1u8X5xF\n4/nry3M3nc2i7SciJakRoy1JjRhtSWrEaEtSI0Zbkhox2pLUiNGWpEaMtiQ1YrQlqRGjLUmNGG1J\nasRoS1IjRluSGjHaktSI0ZakRoy2JDVitCWpEaMtSY0YbUlqxGhLUiNGW5IaMdqS1IjRlqRGjLYk\nNWK0JakRoy1JjRhtSWrEaEtSI9uKdpKfT/JIkseS3DiroSRJG9tytJPsAn4PeBfwU8C1SV4/q8H6\nGM57AG3ZcN4DaFuG8x5gLraz0r4U+EpVHa2q54BPAVfOZqxOhvMeQFs2nPcA2pbhvAeYi+1E+8eA\nJ9bdf3K0TZK0Q3whUpIa2b2Nx/4H8Op1988fbTtJkm0cZifMep4Pz+w7Ld7PahHN8mc0u3MHnr/x\n/Lu3XamqrT0wOQd4FHgH8DXgi8C1VfXw7MaTJK235ZV2VX03ya8Ch1i7zPJxgy1JO2vLK21J0unn\nC5FblOSqJMeTXDjvWTSdJN9Ncl+S+5Pcm+Syec+kySVZSnJrkq8k+VKSLyT5iXnPdboY7a17D/D3\nwLXzHkRT+3ZVXVJVbwJuBn573gNpKp8HDlfVT1bVm4GbgKU5z3TaGO0tSPIy4HLgBox2R+vfJrAH\neHpeg2g6Sd4G/G9V/eHz26rqgar6xzmOdVpt5y1/Z7Mrgb+pqq8m+XqSi6vqyLyH0sTOTXIfcC6w\nDLx9zvNocm8AvjzvIebJlfbWXMvax/YBPg388hxn0fS+M7o8chFwBfCn8x5ImpTvHplSkr2sfWT/\nKaCAc4Cqqn3znEuTS/JfVfXydfePAW+oqq/PcSxNIMnbgQNV9dZ5zzIvrrSndzXwJ1X1mqp6bVVd\nAPx7kp+Z92Ca2AvXtEf/Z8pdwDfmN44mVVWHge9P8oHntyV5Y5LL5zjWaWW0p/dLrL16vd5f4AuS\nnfzA6C1/R4BbgV8pn3J28m7gnUm+muQB4CPAsTnPdNp4eUSSGnGlLUmNGG1JasRoS1IjRluSGjHa\nktSI0ZakRoy2JDVitCWpkf8H61dUViWlpbEAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48add023c8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"values = [40, 60, 50] # значения\n", | |
"tick_labels = ['A', 'B', 'C'] # подписи к столбцам\n", | |
"\n", | |
"positions = np.arange(len(values)) # положения столбцов по оси X\n", | |
"width = 0.35 # ширина столбцов\n", | |
"\n", | |
"figure = plt.figure()\n", | |
"axes = figure.gca()\n", | |
"\n", | |
"axes.bar(positions, values, width, tick_label=tick_labels, \n", | |
" align='center') # по центру — красивее" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(-1.0220474171821168,\n", | |
" 1.0000000328673935,\n", | |
" -1.0000000246505483,\n", | |
" 1.0091699670167189)" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADtCAYAAAAcNaZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeclNW9x/HPb3rZXZrAItJUBCUooijYsTcUI9cWUeON\nuUESkxhv9CYmV2NNLNeeqxITSQQRG0QjapQbpYgVRGkWBAEBEZZtszuzM+f+8QxVypaZOc/M83u/\nXvtC1t2Z77KzXw7nOc85YoxBKaVUYfhsB1BKKS/R0lVKqQLS0lVKqQLS0lVKqQLS0lVKqQLS0lVK\nqQIK2A6glIgI0AnoCewHxIGuEO8B4R4glWDiLXhIA/I1JJdC7WdgVgJbv1UZXSupLBF97alCEREf\nsA9wED4GE+ZIMuxDis74MEQwJH1hkhfWQ/cIVPqhK9AFp4elmc+UBr7G6dcv07C0AZY1wUoffB2G\ntEBsPQS/ArMcaj6C1BxgjjFmTT6+dqU20dJVeSEiIeBgYBAhDsPPUJLsQ5gmKkmzF2VU4mMPoAKI\n4PTkoz5DMt3cdm2lGpxCXpX9dVEa/lUHH4TBVwuhd2DDa2DeBt4zxtTlN4/yEi1dlRPZKYIBwElE\n+S5JhlBBI3sRoDsxKnEGrdFdPEgD8Acgk8bO5QYDfAK8DcxqhH81wCdxiK+A9JtQ8wYwB/hIpydU\na2npqlYTkT2BEwlzNhlOIESAvvjpS4Q+QKwVD3oTkF6GM73rBo3Ahzhd+2YdvGGgJgXyHNROBqYb\nYxrtZlTFREtXtYiI9MDHRQS5ggx70ZsU+1HGPkDHHDzBXRhqpgiclYMHywcDLAamZODJWlgYguh0\nqHoCmGqMqbEcULmclq7aLRHpCIwiwo9Isz8HYBhElF7kfhbgYdJ8dZsfrsvxA+fLWuBF4K81MCsE\n0dehahzwkjEmYTmc60Sj0dUNDQ1dbefIlUgksiaRSFS25HO0dNUOiUgUGEGEH5LiKPahiYOJ05f8\nLjScRBML/z0A4/L4JPmyHngWGFcDcwMQfhGq7zbGzLadzC1EpKSmw0UEY0yLLvxq6aptiEgPAlwN\n/JBupBlMOfvjrC4ohFcwzDpR4NUCPWG+fAVMzMAdCUgshY2/A54zxjTZTmaTlq6WrsoSkUMJcz0Z\nTuFghGGE6WAhyBzg1b5pmpb4LTx7HqSBqcBNNbCkARpuh/Q4Y0y17WQ2aOlq6XqaiPiBEYT5LX76\ncSQRDsFXsFHtjiwAprRvonFDCd4t+TZwWz1MA3yPQf2dxphltlMVkpaulq4niUgI4QcE+Q3tKONY\nytgfcMPYcgXw12CGxmQJ7wuyDPifJDyagcA/ofpmY8wc26kKQUtXN7zxFBHxicj5hFhGT/7AxVRy\nJWV8B3cULkA5kE6V+OuyF3BPCL6KwA2nQ5fXRNq9JyKH2E5mQ2Vlb0Qkb2+Vlb1bnOm4446jY8eO\npFKpnH+9Jf7iVpuIyHDCfMwejOMCKvk+cXrS/O0MCqUMZxqUBstBCqEC+LkPVsbhroOh3ZsiFRNE\npEVLkIrdmjXLcNY/5+fNefzmW7ZsGTNmzMDn8zF16tS2fnnfoqVb4kTkQInIG5Txd86kP1dSxt62\nU+2CHwgBzLccpJACwA8ElkfhB+dC9DOR8H+JSNh2Mi8aP348w4YN47LLLuMvf/lLzh9f53RLlIjs\nRYi7EEYwnDCH4iuajTzvI8P6cT74d9tJLPkEGFsHs6uhdgzOnW4l8YO6ozldZ9uOfH55Qkv++Pr2\n7cs111zDkCFDGDp0KCtXrqRz5847fmSd01Ui4hO/jCHAIoZwDj8nytAiKlyACjLOrbZe1Rd4JQ7P\ndINeT0DFTBH5TiGeWURGikhGRPYrxPO5zYwZM1i+fDnnnXcegwcPZt9992XChAk5fQ4t3RIiIn0J\nM4fO3MEPiXMSQavLv1qrAwKf207hAifj7HJ20+FQ9o5I2aMi0inPT3oB8CZwYZ6fx5XGjx/PySef\nTIcOziL1Cy+8kMcffzynz6HTCyVARAL4uQYfv+V4QhyOv6j/On0DmH6owbzjtst8Fq0DftUITzRA\n/feMMS/m+hlEJA4sAoYDLxhj+ufhOVw7vdDQ0EBlZSWZTIZ43DmoJJlMUlVVxdy5cxk4cOC3H1mn\nF7xHRA4ixHz25HrGEGVYkRcuOBf1AyvTtmO4yx7AI2GY1g46PyVS9sc8XGg7G5hmjPkUWCciB+f4\n8V3tueeeIxAIsHDhQubNm8e8efNYuHAhRx99dE5Hu8X+4+lZIhKQoNxCiNmcSj8uJ56TrRXdoBzw\nVekod4eOBhbF4LhLoHy+iORyNHoh8GT2vycBF+XwsXeqa9deOGsX8/PmPP7ujR8/nssvv5zu3bvT\npUuXzW9jx45lwoQJZDKZnHy9Or1QhESkKyGm0JWB/BsxKmwnyrG1wLhCHNtTzAzwcAZ+0QCNV0H6\nsbascBCRDjj3A67NPrgfMMaY3jmJu+V5SmUhBqDTC54gIkcTZAGHMZjvl2DhgjO90JSR/M7zFTsB\nfuSDt2PQ+14of15E2rfhAf8NGG+M6WOM2dsY0wtYKiJH5Sav2kRLt0iIiEhQriXMy5xHR04kWLLf\nvTDZO+VWWg5SDAYA8+Nw4ckQXywiw1r5QOcDz233vmfx6CqGfNLphSIgIu0J8STtOYqLiNOW8Uyx\nuBND7d8FzrSdpIhMAUYnIPV7aLjZGOO6i5E6vaAjXdcTkUEEWcBAjuWHHilcgHIyzj6PqvnOBhZE\n4Tv/CeUviEhrjgZVeaal62IiciZBZjKCSkYQKaq7ytqqHca5HVa1zF7AjDicdiyUzxGRLrYTqW1p\n6bqU+GUMYZ7iEmIc6Lq9wPKvAz5n31nVcmHgyShc1Q/i80Skn+1EagstXZcREZGQ3EGcO/khUXrY\nTmRJe3z4l7luTrJ4CHBzEO7rArF3ROQY24mUQ0vXRUQkQIi/0ZEx/IgY+b7L3s3KgcDa0rniYs3l\nPphSDmUviYhelXQBLV2XEJEIIf5OJSO5nDhx24ksKweo09dnTpwIvBaDiqdEAhfbTuN1+qJ2AREp\nI8R0+nAslxBDt652bpDIlPqxPYV0GDArCu0fFgn/xHaarVXuVZnf43r2av5BHL179yYWi1FRUUGn\nTp0YMWIEK1fmdr24rtO1TESihJhOfw5iJBH9azArDdwMmAQU5f6UbrUUOKoeNvzBmPobC/3sO91l\n7IY8PukNNHsT8z59+vDYY48xfPhwkskkY8aMYcOGDTz77LM7/Hhdp1tkRCRIiBfZhwO1cLez+die\njywHKTV9gHdj0PmXIuGf2U7jRpsKOhQKMWrUKBYsyO16cf0xt0RE/IR4mh4cziii+p3YgTgZb52V\nVijdgDdiUHariO9822ncqr6+nkmTJjFsWGvvrN4xLy23dw0R8RFiPF05kQuIueb4c7epIMP6RfrX\nUV70AqZH4cg/i8jXxpjXbSdyi5EjRxIIBKitraVLly68/PLLOX18fUEXmIgIQR6kI2dzMTGCthO5\nWHs9tie/DgT+HoXYFBEZZDuNW0yZMoX169fT2NjI/fffzzHHHMPatWtz9vhauoUW5DbaMZpLiesq\nhd3ogA9Zpld68+o44C9xiL0uIn1sp3GDTXO6IsI555yD3+9nxowZOXt8Ld0CEr+MJcaP+T5xorbT\nFIEKhMAKvSst7/5N4LYKiL8hIjs+a9yjpkyZQlVVFfvvv3/OHlPndAtERI4hxB1cStTzNz40VwXg\n2+i9fSesuMoPq7rAQ9NF5HBjTF2hnrlr966suWFNXh+/JUaMGIHf70dE6NWrF+PHj89p6eo63QIQ\nkZ4E+ZALaMc+ttMUET22p8AMcEkDTJkDNScZY1K5fgbdT1enF/JORGKEeJXhlGnhtlA52WN7VGEI\n8OcIHD4Eyh+znaZUaenmkYgIIZ6gLz0YpgvDWmzzjWh6bE/hBIDnYtDhHBFfQU4D9hot3Xzycx3t\nOImRRD24I27bCRDDwFzbSTymDHg+DtFHRGRv22lKjZZunojIqQT5DRcT17W4bVCmx/bYcTBwcwTK\np4qIvoJzSEs3D0SkkiCTuJAo7WynKXLt9dgee37mh8P6QPx220lKiZZujomIEOZvHE6UXrbTlAA9\ntsciASbGIDRGRE60naZUaOnmmnA5ZQzlOJ1UyIl2+PB/oTdIWNMZmByF2FN640RuaOnmkIj0IcC9\nnEdcbzvJkQog8HXpLOwsSicAV8adkydELwm3kZZujmR3DpvMcURo2Q0walfKAWr1dWrdrSHoNQRC\nugdvG+mLOVf8/II96K/rcXOsHMg06evUuiDwXByCt4jIwbl85N6V+T2up3dl84/rAZgwYQJDhgyh\nvLyc7t27c8YZZzBz5sycfb36Ys4BERmAjxsYRVz/RHOsHGgyQKPtJIp9gPsjUPGEiOTslb5szRoM\n5O1t2Zrm7+tw9913c/XVV3P99dezdu1ali9fzpVXXsnUqVNz8aUCuvdCm4mIjzBzOYkBHKqVmxe3\nAY3vAofYTqLIAINr4cMfG5N5vKWfvbMz0vLZQkLzzkirrq6me/fuPP7443z3u99t3mPr3gtWXEQF\nfRisf5Z5o8f2uIgPeKQMoveISLntNLk0e/ZsGhsbGTlyZF6fR4uiDUSkjCD3chZl+ieZR+UYWGw7\nhdrsMODsMMRvsJ0kl7755hv22GMPfL78/jBrVbRFkOvpS4QetoOUuA4An9lOobZxVxTMGBEpmb3z\nOnXqxLp168hkMnl9Hi3dVhKR3sBVnELMcpTSp8f2uFA34NdBqHjIdpJcGTZsGOFwmOeffz6vz6Ol\n21phHuRIgrq3QgFUIARW6l1prnN1AGJHlcotwhUVFdx4442MHTuWKVOmkEgkaGpqYtq0aVx33XU5\nex4t3VYQkWMJcBxH6n1nBVEO+Da4/E6oFcDxwABgIHB/9v0XAIOzb32yvwLMBA7CmR/dNHWyETil\nQHlzIQI8FIPyR0Wk1T8Lvbp2RSBvb726Nv9upauvvpq7776bm2++mS5dutCzZ08efPDBnF5c0yVj\nLZS982wRZ9OXAbbTeERRHNuzOvs2CKjFWd42Bei/1cdcgzNB/WvgXOABYCnwLHAn8J/ACOCYgqVu\nOwMcWQfvXGdM6oHdfbQe16Mj3dYYSTu6cYDtGB5SDqTdfmxPJU7hgrMJ+P58+8SLp4ALs/8dwinn\nuux/f44zWi6mwgVnLPlwHEK3ikhH22mKgZZuC2S3bbyVEyjTkyAKKIIzoGKV5SDN9QXOaReHb/W+\nN3GKedNBDNcBlwC3Az/GGf3eXLiIOTUQOD8IkWttJykGWrotczJRurOf7RgeI0AUA/NsJ2mGWmAU\ncC/OiHeTiWwZ5YIznzsbeA1nTndPnLu9LsAp468LETaHro8AY0vthol80NJtiTC3crzeCGFFORn4\n2HaK3WjCKdzRwNlbvT+NM297/k4+72bgN8CNwB3AFTilXUz2Bk4TCPzIdhK30/poJhE5iiD99OKZ\nJe0w8KntFLtxOXAA8NPt3v8qzhzvnjv4nPHAGUB7IMGWa+6J/MXMm9/EIPRfIhK2ncTNtHSbK8wt\nHEdMN260pCM+Z67UrWYCTwCv4xzqOBiYlv1/k9h2amGTBPA4MDb7+58Dp2d/LcYB48HAoUGQi20n\ncTNdMtYMIjKICLO4hqiuzLXkLeDV/mnSC/WvPVebDpy9Amp67mhtWDQaXd3Q0FAy2/xHIpE1iUSi\nRRv2aoU0R5ibOIaw/mlZVA4E1hj0vjSXOw7o3B5qTgD+uf3/bWlBlSKdXtgNEelMmpN060bLKkCP\n7SkGAlwbh/b/ZTuJW+mLeHeE0fQnTcR2EI/TY3uKyPcEUkeISB/bSdxIX8S7ICJCiKs4VHcSs66M\n7LE9SdtJ1G7FgSt8ELvKdhI30tLdtSEE2YNetmMoAjhnI/KR5SCqeX4SgswVIhK1ncRttHR3JcRY\nDiOit/y6hB7bU0T2Bg5MU1zbphWElu5OiEiMDKMYpCtzXaMCA4tsp1DNNrocKkbbTuE2Wro7N4q9\nyDhXzZUrtAdnK0RVHL4rkDxVREK2k7iJlu7ORPgph22zY4myrQM+5Au9m6do7An0awJOsJ3ETbR0\nd0BEOtPEd3Q3MZepQAis0Nsjisol5VCutwVvRUt3x06jN0m9A81lKiiCY3vUts4VSJ3VluN8So2W\n7o5EuIABOrXgOuWAadTXbFHpBfTOAMfaTuIW+gLejoiESDGcfW0nUd9SAaTdfE6a2rFLyqDsItsp\n3EJL99uOoiNJdP9799l8bM9qy0FUy4zyQeZcEdG+QUv324KcwwDitmOoHdh8bM8HtpOoFukLVPqA\nI2wncYOSKV0RSYvI+yIyV0TeFZGhrXsgzmU/vSHCtcrIwALbKVSLjY5BbEc7uXtOyZQuUGeMGWyM\nGQT8CueY1RYRkf3w0Y5uuQ+ncqQdBj6xnUK12Gl+CJ1qO4UblFLpbn2BpR2wvhWPcTL7IbrXgot1\nxAfLbKdQLXYQUNdDRDy/Y18prZ2Lisj7QBSoBI5v8SNEOJk+6K5IbtYOH/4v0qR1Cqi4RIB962Hh\nYGCG7TQ2ldJItz47vbA/cBrw1xY/QoZh9Mh5LpVLFUBgrd4KXJSOiQCH2U5hWymV7mbGmLeAPURk\nj+Z+joh0x1BOpzwGU21XDnpsT7E6MgwdPL8PQym9eDfPxIpIf5yv7ZsWfP5QutOo87kuVwFkUqX0\nuvWQw4DUENspbCulOd1Idk53U21esqMjoHfKz+H00lt/XW+bY3t0x8Di0hdIV4hIF2PMWttpbCmZ\n0jXGBNv0ACGOZc+SGvmXpk3H9iQXAIMsh1Et4wMOboBZhwEv2E5ji5YM2QMoUwxgT9tJVLPEyMCH\ntlOoVjm2DIKtu3GpRGjpOnoSQHS/hSKhx/YUsaF+KPf0xbSSmV5oo/50ImU7xDYywCM4F44uAjYA\nTwMJnA35zwH8wBzgPZzbQS7Ivm85sJDSPRKwA7D8c9spVKscBtQdKCLSomsuJURHuo696Uzb5oRz\nbQ7Qeavf/xNnu5CrcNaZb9rzZT5wJdAD+Cz7vn8BxxQmphUd8MFyT/7AFr9KnPuXvLsiXksXwE9f\nOuGe2xM34mwvMHir9y0F9s/+90Fs+6/rJiCF892ch3ORuJTvq6tACH6px/YUrW4poLvtFLZo6QKE\nGEAH2yG28jJwElsWv9XjjG43fbcqgOrsfw8BxmV/3wOYS+nf81OOHttT1HoKHi5dndMFMOzjmtJd\nAsSBbjTvtPGDsm/gTCscjjNKnoczz1uK87oVgGnQAUPR6hNGS9fjUuzpmtJdDizGKc4moBF4CWjA\nubjmwxnVVmz3edXASpyTqP4MXIZTwp8DexcgdyGVo8f2FLVeYQj3sp3CFs+Xroh0IIDfNXOgJ2bf\nAL4AZgHnApNx9u7+Ds4ott92nzedLfuqNWV/FXDZmozciJI9tmct0MVuFtUK3YH4PrZT2KL/RIM+\nlNPg+j0XTgRmA/fhLBvb+iLbVzgFW5n9/UDgIeBLKMkDNvXYniLXHZCetlPY4vmRLtDbNVML2+ud\nfQNnbeoVO/m4bsBZW/1+aPatlJWRoe5jf2lOWpe6PYFU5W4/rETpSBfaE9cNsYuOHttTxLoD9Z1E\nxO3/vswLLV2oIKIj/qLTQY/tKV7lgN/grK/xHC1dKCeiewQWnfb48C/TGySKVudGPLpsTEvXTwfC\nrr+MprZXDvjX6K3ARat7Bi1djwrQibDtEKrFKgCp0ddv0Wov4M19/fRF66O9Ti4UoXL02J6iFhQ8\nunpKX7TQTke6Raic7LE9Tbv7SOVKQdDS9ax2OtItQpuO7WGB5SCqdYICLttOtUC0dCHizW99CdBj\ne4pYyIdHR7qe/KK3k0QXHhWlaBJCXGrgcl3FUGQMTdFqj65e0NKFRp0WLELvQbge3z/I4CejS/6K\nzI2Q/IezY5HnaOlCo450i0wa4v8gcw/IMHSNdTHq6FwB9eRwR+d0ocGb3/oi9gKmdxpGa+EWrbSz\nOacnhzs60tWRbnGpgegHyDgQHTEUr0andEtxt+fd0tetIaGlWzyCE8mcDulS37my1K13RrlVtnPY\noCNdQ0KnF4rEUgiswnev7Ryqzb5xftlgN4UdOtLVkW7RiE0mfS1kPLnOqMRUOfPxWrqelGItCXSd\np9vNhLJ6fL/U12xJqHbuRtPS9STDCqpI2I6hdiEF8dcwD4G45fxQ1TZ1EMKjc7paurCSKm9eRS0W\n8jxm/wzmu7aDqJxIwKZ/WnpysKOlCyup1vWerrUBIh8jj4JPv0mlYT0QhlpjjCen9bR0YSV1us+Y\nW4UmkD4f0oNsB1E5swyIwGrbOWzR0oV1pAjqBIMLLYLg1/j/gJ7WXEqWOr98ajeFPZ4vXWNMhiBV\n1NpOoraRgfizpH8HprPtLCqnPgNTAx/ZzmGL50sXAD9rqLYdQm3j/6BDEt9PdH+FkrMI6lM60vW8\n5Vq6LtII8Tcxj4Do/vKlZ7Gzu9jntnPYoqUL0MDbrNH70tzCN5nMoQZzmu0gKi+WOdsPaOl6muED\nvqTOdgwFrIHQp/ge1tdmSWoEqiACrLCdxRZ9YTvmsVY3/3GDyETSP4B0P9tBVF58BJTBCmOMZ7eZ\n0tJ1fEES0bGuZfMhVIX/Jl0iVrLec355224Ku7R0AWOMIcQnrLGdxMMyEJ9C5vdg2tvOovJmNiQ2\nwpu2c9ikpbtJE7O9e4+MC7wM3ZqQK3SJWEmb7ZwW8Z7tHDZp6W6S4h1W6gSDFXUQmwPjQHReoXQl\ngc8hBsy1ncUmLd0t5rFKl43ZEJhEZjikj7UdROXVR0AMVhlj6m1nsUlLd4uP2EiEBtsxPGYFBJfj\ne0AvnpW89wCBd2znsE1LN8sY00CYeXxhO4m3xJ4k/VPI9LYdROXdq1BXBa/YzmGblu7WGniWT2m0\nHcMz3oFILf7r9XVY8gzwivN9ftV2Ftv0xb41w6ssIWk7hiekIf4SmfuAuO0sKu8+BjJQY4xZajuL\nbVq625pLPT422o7hAX/H7JOBi2znUAXxijPYfcl2DjfQ0t2KMSZNgDfw/N/FebYRonORcXoEj2dM\nhZoaeMF2DjfQ0t1eA8+zRNfr5lNoIukRkB5iO4gqiCTwlrPJzeu2s7iBlu63vcpn+PDkkXkF8BkE\nVuO/R5eIecZsIApfGGPW287iBlq62zHGLMWwUW8Jzo/Y06R/BZlutoOogpkMyTqYZDuHW2jp7kiG\nCczXoypzbgaUJ/D9Ql93npEBJkBTCibYzuIW+uLfkSYeZy5JMraDlJAUxF/D/BEkYjuLKpgZQAbW\nGGMW2c7iFlq6O2CM+ZA06/jSdpLSIc9hvmMwI20HUQX1BDTUw2O2c7iJlu7OpHiUuboTQ058A5EF\nyKO6RMxT0sAkMCl40nYWN9HS3ZkMf+NjnHNLVZuEJ5K+CNIDbQdRBfUvQJyjeTx73PqOaOnuhDFm\nGT6W8JntJEVuEQTX4f+9LhHznL9CQw38yXYOt9HS3ZUG/pcP9EaJVstA/FnSvwPTyXYWVVDVwFNA\nGv5mO4vbaOnu2mQ+JaAzu600HTol8f1Yj+DxnL+CCcJ0Y8xK21ncRkt3F4wx6/DzGvP0/rQWa4DY\nDMwjIEHbWVRBGeBOqNsId9jO4kZaurvTyG3MpE7X7LaMfzKZoYbMKbaDqIJ7E/gGqoD/sxzFlbR0\nd28mjazWC2otsBpCn+H7X7145kl3Q10d3GGM0X8h7oCW7m4YYwyN3MIMam1nKRaRiaSvgHRf20FU\nwa0GXgZfBh63ncWttHSb50lWkWaN7RhFYC6EN+L/nY5yPelBaArCZGOMHgWwE1q6zWCMaSDDXbyJ\np4+O3q0MxF8gcweYdrazqILbCNwDqRq4yXYWN9PSba40D7AI0aN8dmEadG9CLtclYp50LzT54EW9\nA23XtHSbyRizAeExZuppwTtUB7G34U8gOq/gPTXAHdBUDdfbzuJ2WrotkeJW3idDle0g7hN4ksyJ\nkD7KdhBlxf2Q9sHLxpjFtrO4nZZuCxhjVgH38U8StrO4ynIIfonvfr145km1wO8hWQ2/tp2lGGjp\ntlQTt7KIJj3OZ4vYJNJXQ6an7SDKigedXRxfN8Z8bDtLMdDSbSFjTDVpfsM03QgHgDkQrcP/K30t\nedJ64BZnlHut7SzFQn9QWsPwR1ZRw1LbQSxrgvjLmAeAmO0sedAIHA4cDAwEbsy+/wfAoOzbebB5\nHeED2Y87ky3bMM8EflGgvDb8t/PHNElHuc0neqde64jI+XRmHGMo8+pfXfIc5qB5mPdL+ESIepy/\nUNLAkcB9wAFAWfb//wLoCvwSGIZz3PgtOIV8BnAqzrEJ7QuaujCWAIOgPgF9jDFrbecpFh6ti5yY\nTDUrWGA7hiVVEJmHjCvhwoUtI/hGnNGrsKVwDZBg20XJSZyiDuJsJHs6pVm4AGOhLg23aOG2jJZu\nKxljMjRyJS9RT9J2msILTSR9DqQPsR0kzzI40wuVwEnAkOz7Lwe6AYuBn2TfNxYYCqwAjgD+kn1f\nKXoReAuqknCX7SzFRqcX2kjC8gyDOIPTCdvOUjCfQuxv8BlOGXlBNTASZ972gOz7DE7hHgpctt3H\n3wQchDMKHg/0pHTaqRHYG+pWwShjzDTbeYqNjnTbKsl/8AENXjquPfY06d9AxiuFC1ABDAe2bhgB\nzgee3e5jVwHvAGfhFO1TQDvgtfzHLIibIFULs7RwW0dLt42MMetI8R88Q50nTg5+A9o14Pu5B147\n62DzVhsJ4FWgH2zeWtkAU4H+233eb9my48umk558UBK7JX0A3A2N1d8e3KtmKvkfnAJ5igSzeIOU\n7SB5lYT4dMz/gnhhLuUrnNHtIJylY6fgXBi7FGfq4CCc/WN/u9XnzMUZAR+U/f2FOMvIZuGsZChm\nSeA8qGuAsdm7M1Ur6JxujojIngRYwg+Il+pEp28iZuhizIwSX7GgduzXkHoA3qyGE/VUiNbTkW6O\nGGNWkebnPEMdadtp8uBrCC9GHtHC9aT3gf9xphVGa+G2jZZuLhnGUc18ZpVe7YYnkh4N6QG2g6iC\n22pa4Uoe6EJQAAAJAklEQVSdVmg7Ld0cyp6ndgFvUM8y22lyaAEE1+O/TXcR86RfQuNamG2c+z1U\nG2np5pgxZhkpLuBJEiVxlGUG4s+RuRVMR9tZVME9C4yD6hq4QKcVckNLNw+MMf+gifuYRD0Z22na\n6DXonELG6BE8nvMJcAkk6uAMY8w3tvOUCi3dfEnxa9Yyj9eL+CbhBMRmYcaBBGxnUQVVD5wBdUn4\npTHmHdt5SomWbp4YY9I0MpI51LLEdprW8T9F5khD5gTbQVRBGeAKSKyGV1LwoO08pUZLN4+MMWtJ\ncRZPk2CD7TQttApCS/H9US+eec44yEyFtTVwic7j5p6Wbp4ZY2aS5rc8QV0xTTREnyQ9BjL72A6i\nCur/gJ9BfS2cZowphUvBrqN3pBWAiAghnqA7Z3MxMdePHd+H9lNhOVBuO4sqmI+BoZCohRHGmFLZ\nn8d1dKRbAMYYQ5JLWMkcnqcBN/89l4b4i2TuBqOF6x2rgOOdUyB+pIWbX1q6BWKMaSLJCBbzCa+6\neKLhJeiRhkt1iZhn1AAnQF0N/KHJmPG285Q6Ld0CMsbUkeR43mUNb7nwVuEaiL4LfwKfvjC8IQWc\nBfUr4NkE/M52Hi/Qn60CM8asI8nRvMZGPnLXREPwSTKnQvoI20FUQWSAy6DhPXi3Fi7XlQqFoaVr\nQfZW4eFMoY7PbafJWgaBlfju0yVinpABLoWGv8P8GjjdGOOFLfhdQUvXEmPMh6Q4k4nUbz6KwKLY\nJNL/CZm9bAdRebepcKc4hTvcGFNnO5OX6JIxy0TkaIL8g3Mp+9a5L4XyFnSeBsuAqKUIqjC0cO3T\nka5lxpg3STGcZ6hmvoU53iaIv4J5EC3cUqeF6w5aui5gjHmXFEcylSreK+y+ZPI8pl8GM6qQT6oK\nLgV8TwvXFbR0XcIY8xEpDmMa3xTs5IkNEPkIGadH8JS0auAEqH8RZmnh2qel6yLGmE9JcSjTWc10\nUvmebAhNJD0K0gfn92mURSuBIVD3AUyqgVO0cO3T0nUZY8xyUhzKbJbyNIm8Her+CQTX4r9Tl4iV\nrPnAwVC/HG6rhX/XZWHuoKXrQsaY1SQ5mE94lUepozr3zxF/mvR/Q6ZL7h9aucDrwBGQWAdXJIy5\nRW98cA8tXZcyxtSTZCTruZ2HSLA8hw8+Hdo34vupfv9LjgEegswIqKmF0zPGTLCdSW1L1+kWARE5\nnSCTOJUYh7SxKBshfjtmkkHOyFE+5Q61wPch8TKsrHH2w/3Udib1bVq6RUJE+hHiVQbSmdOJtHYm\n1jcBc+QSzL90xUJJWYhzptk6mFrjzN8mbGdSO6b/vCwSxpjFJBnIfGbzJ+padfzP1xBegjyshVtS\nJoIZAvVfwk+rjblIC9fdtHSLiDFmI0lOYg238BAJ3se0ZFlZeALpyyC9f94SqkJKAD+CxitgdR0c\nmTLmT7Yzqd3T6YUiJSIHEuJZetCNc4hRtptPmA/lzzj7K3QoRECVV7OAC6BuI/yzGi4zxlTZzqSa\nR0e6RcoY8yFJBrCch7ifBAt38cEZiE8lczsYLdzilgB+BsmTYOOXcOlGY0Zq4RYXHemWABE5giBP\n04/2nEmUyHYf8DLsPRuzBETvhChes3FGt1XwerVzsexr25lUy+lItwQYY2aRYj+WMJH7qGcBbJ7r\nrYfYbMw4LdyiVQf8HJInQPVyuGyjMWdp4RYvHemWGBEZTog/U8kejCAeeIHMScsw/9DbfYuOASYD\nY6E+CS9XOyf1rrWdS7WNlm4JEpEgfq4Cbgymib8DHGQ7lGqRD4H/gLqPYXWNc37ZG7YzqdzQ6YUS\nZIxJmSZzF2n6hmHaMZD4I2R0txP3+wq4BBqGQs27cG0N9NfCLS060vUAERlUAQ93gAG/h/godK7B\nbb4B7oLUvdAk8Egd3KCrEkqTlq5HiIgAp7SDO9pD71uh7Hy0fG37GrgDkg9Cxg+Ta+C/jTFLbedS\n+aOl6zHZ8j2xAu6ogH1vgfhFQMB2MI9ZA9wOyYedsp1QC78zxiyznUvln5auR2XL97h2cEcM+l8P\nsdEg5baDlbhPgHsg+WfI+OCvdU7ZrrCdSxWOlq5CRI5pD79KwrEXA1dBZIDtUCWkCXgBuBNq33dW\ngo1LwJ3GmFWtfUwR6QrcAxwKVOEMnn+m2zm6n5au2kxE9orAGB9cOQD810D5SCBkO1iRWg08Aun7\noDENn1XB74GnjTGNbX1sEZkF/NkY82j29wOBCmPMzLY+tsovLV31LSISBEa2h2sNHDAa/N+D0OGA\nbgm5a3XAi8BfoHY6BILwVA38jzFmbq6eQ0SG41xwOy5Xj6kKR0tX7ZKI9A/BxWG4LALtR0PoIggO\nRgt4kwTwEvA41L0CgSi8vwHGAc8YYzbm+vlE5CdAb2PML3L92Cr/tHRVs2QvvA2MwPcCcEk5lI+G\n8JkQGAoEbQcssG9wDn98CupfBH8E5m+AR4Hn8r0vgpZucdPSVS2WLeDBEbggAiMboOcR0DACyk8G\n2Z/SGwU3ADOBl6FpKtQvhXAZvLMBnjTOiHZ1obKIyPE40wvHFuo5Ve5o6ao2E5E9gOMr4KwMnBKE\n2ElgjoH4ITj7PkQtZ2ypNcB7wLuQeQVq34FIHD6tgylJmAa8ZYxJ2sonIrOBPxljxmV/rxfSioSW\nrsqp7Ch4H+CECjjaB0ProOdekBgKgSMgdgjQD+cEC9sj4jSwEpiPU7AznGVdgTqQMvi4Dt5sgDeB\n6W66LVdEKoF7gUNwppW/wFky9pnNXGr3tHRV3olIGBgIHFIBR/nh8Dro6QfpDol9wXcARPeFwN5A\nJU4hdwDKaH0xp3EWsG7Ivi0HPgcWQ2IRJJeCby3EwlATgU9q4Y1GmIMzyF1q9IdD5YGWrrIiOyLu\nCPQB9gb2roABQeifhs4pqEhCPA2BGCTLIdUOMhU4+0X4cG5dzmTf0kAKp2Q3QqAWgo0QCEFDCGoD\nUO2D5fWwIAGLcfr3c2CZnp6rCklLV7maiISA9tm3DkA5W3rXj3OHVxqnezf17qYBbrUxJmMhtlI7\npaWrlFIFpJuYK6VUAWnpKqVUAWnpKqVUAWnpKqVUAWnpKqVUAf0/m71xRPgpxDkAAAAASUVORK5C\nYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48adbab470>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"values = [40, 60, 50] # значения\n", | |
"labels = ['A', 'B', 'C'] # подписи\n", | |
"\n", | |
"figure = plt.figure()\n", | |
"axes = figure.gca()\n", | |
"\n", | |
"axes.pie(values, labels=labels,\n", | |
" autopct='%.0f%%') # расставить проценты\n", | |
"axes.legend()\n", | |
"\n", | |
"axes.axis('equal') # чтобы круг был круглым" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAD7CAYAAAChScXIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAElZJREFUeJzt3X+Q1PV9x/HnW7D+oEQxrUesiaBtEuyBQIK/ENjAJEo6\nieIErU7TGKPOZKbTzLTTAplxvPzRjjaJDjOtNjXUoY0aDYmEOm39MWYVxRAVFCcSiaWQGMOlRrCA\nYkl4949bLwgHt3u3d7uf4/mY2eG7n/t+9/u+++y99nOf72fZyEwkSWU4qtUFSJLqZ2hLUkEMbUkq\niKEtSQUxtCWpIIa2JBVk9FCfICJcUyhJA5CZcWDbsIy0M3PE3m644YaW1+DNvjsSbyO9/w7F6RFJ\nKoihLUkFMbQHqVKptLoEDZB9V7Yjtf/icHMnTTlBRA71OaQDvf7669x11118/vOfb3Up0oBEBNmq\nC5HScNu+fTu33nprq8uQms7Q1oi0ZMkSNm/ezPTp07n66qu5//77AViwYAHXXHMNAHfccQfXX389\nADfffDOTJ09mypQpLF26tGV1S/0xtDUi3XjjjZxxxhmsW7eOCy+8kNWrVwPwyiuv8MILLwCwevVq\nZs+ezbp161i+fDlPPfUUTz75JLfffjvPPfdcK8uXDsnQ1og3a9YsHnvsMTZu3MiZZ55JR0cH27Zt\n48knn+T888/n8ccfZ8GCBRx77LGMGTOGSy+9tDfkpXYz5O+IlFrtlFNOYceOHTzwwAPMmTOH1157\njXvvvZexY8cyZsyYVpcnNcSRtkaksWPHsnPnzt775557LrfccguzZ8/mggsu4Ctf+QqzZs0Cekbi\nK1euZM+ePezevZv77ruv92tSu3GkrRHppJNOYubMmUyZMoX58+cza9YsHnroIU4//XTe9773sX37\ndmbPng3AtGnTuOqqq5gxYwYRwXXXXcdZZ53V4u9A6pvrtCWpDblOW5JGgLpCOyJOiIhvRcTGiPhh\nRJwTEeMi4sGIeDEiHoiIE4a6WEk60tU70l4K/HtmTgLOAn4ELAYezswPAI8AS4amREnS2/qd046I\ndwHrM/OMA9p/BMzJzO6IGA9UM/ODfRzvnLYkNWgwc9oTgVcj4o6IWBcR/xQRxwMdmdkNkJnbgJOb\nW7Ik6UD1hPZoYDrwD5k5HdhNz9TIgcNnh9OSNMTqWaf9MvDTzHy6dv/b9IR2d0R07Dc98otDPUBX\nV1fvdqVSOWL/H1wN3vjxE+ju3trqMvrU0XEa27ZtaXUZKlS1WqVarfa7X13rtCPiUeDazNwUETcA\nx9e+9Fpm3hQRi4Bxmbm4j2Od01bTRATt+0ddHPaz/aRGHGpOu97QPgv4OnA0sBn4LDAKuBd4L7AV\nuCwzd/RxrKGtpjG0daQYVGgP8sSGtprG0NaRwndEStIIYGhLUkEMbUkqiKEtSQUxtCWpIIa2JBXE\n0JakghjaklQQQ1uSCmJoS1JBDG1JKoihLUkFMbQlqSCGtiQVxNCWpIIY2pJa7vXXX+e2224D4NFH\nH+UTn/hEiytqX4a2pJbbvn07t956KwCZWfuwi8Pbt2/fUJfVlgxtSS23ZMkSNm/ezPTp01m0aBE7\nd+5k4cKFTJo0iU9/+tO9+02cOJHFixfz4Q9/mBUrVrB582bmz5/PjBkzmDNnDps2bQLg1Vdf5VOf\n+hTnnHMO55xzDmvWrGnVt9Z8mTmkt55TSM0BJGSb3nyuD9SWLVty8uTJmZlZrVbzxBNPzFdeeSX3\n7duX5513Xj7xxBOZmTlhwoT88pe/3HvcvHnz8qWXXsrMzLVr1+bcuXMzM/PKK6/sPeYnP/lJTpo0\naTi/naaoPZ8OytTRLX3FkKQ+nH322bznPe8BYOrUqWzZsoXzzz8fgMsvvxyA3bt3s2bNGhYuXNj7\n2Zx79+4F4OGHH2bjxo297bt27eKNN97g+OOPH+5vpekMbUlt55hjjundHjVqFL/61a96748ZMwbo\nmdMeN24c69atO+j4zGTt2rUcffTRQ1/sMHNOW1LLjR07lp07dwLU/Yn2Y8eOZeLEiaxYsaK3bcOG\nDQB87GMfY+nSpb3tzz33XBOrbS1DW1LLnXTSScycOZMpU6awaNGid3xt/5UkB64qufPOO1m2bBlT\np06ls7OTVatWAbB06VKefvppzjrrLDo7O/na17429N/EMIl6X9UGfIKIHOpz6MjR80vbrs+nqHuU\nKPUnIsjMg9Y+OtKWpILUdSEyIrYArwP7gL2ZeXZEjAPuAU4DtgCXZebrQ1SnJIn6R9r7gEpmTsvM\ns2tti4GHM/MDwCPAkqEoUJL0G/WGdvSx78XA8tr2cuCSZhUlSepbvaGdwAMR8VREXFNr68jMboDM\n3AacPBQFSpJ+o94318zMzJ9HxO8CD0bEixx8Cd/L5pI0xOoK7cz8ee3f/4mIlcDZQHdEdGRmd0SM\nB35xqOO7urp6tyuVCpVKZTA1SyrQ+PET6O7e2uoy+tTRcRrbtm1paQ3VapVqtdrvfv2u046I44Gj\nMnNXRIwBHgS+BMwDXsvMmyJiETAuMxf3cbzrtNU0rtMul33XmEOt065npN0B3BcRWdv/zsx8MCKe\nBu6NiKuBrcBlTa1YknQQ3xGpojhaK5d91xjfESlJI4ChLUkFMbQlqSCGtiQVxNCWpIIY2pJUEENb\nkgpiaEtSQQxtSSqIoS1JBTG0JakghrYkFcTQlqSCGNqSVBBDW5IKYmhLUkEMbUkqiKHdj5tvvpnJ\nkyczZcoUli5dytatWznzzDO57rrr6Ozs5KKLLuKtt94CYPPmzcyfP58ZM2YwZ84cNm3a1OLqJY04\nmTmkt55TlOmZZ57JKVOm5Jtvvpm7du3Kzs7OXL9+fY4ePTo3bNiQmZmXXXZZ3nnnnZmZOW/evHzp\npZcyM3Pt2rU5d+7cltU+UgEJ2aa3cp/rw8G+a0ytpoMytZ4P9j1iPf744yxYsIBjjz0WgEsvvZTV\nq1dz+umnM3nyZAA+9KEPsWXLFnbv3s2aNWtYuHBh72fN7d27t2W1SxqZDO0GvB3GxxxzTG/bqFGj\n2LNnD/v27WPcuHGsW7euVeVJOgI4p30Ys2bNYuXKlezZs4fdu3ezcuVKZs+e3eenNo8dO5aJEyey\nYsWK3rYNGzYMZ7mSjgCG9mFMmzaNq666ihkzZnDeeedx7bXXcuKJJxJx0KfaA/CNb3yDZcuWMXXq\nVDo7O1m1atUwVyxppIu+Ro1NPUFEDvU5dOToecFs1+dT9PlXmHrYd42JCDLzoBGiI21JKkjdoR0R\nR0XEuohYVbs/ISK+HxGbIuLuiPCipiQNsUZG2l8AXtjv/k3AVzPz/cAO4HPNLEySdLC6QjsiTgU+\nDnx9v+a5wLdr28uBBc0tTZJ0oHpH2rcAf0XtKkJEvBvYnpn7al9/GTil+eVJkvbXb2hHxB8B3Zn5\nLLD/lcy+171JkoZMPRcPZwKfjIiPA8cBY4GlwAkRcVRttH0q8LNDPUBXV1fvdqVSoVKpDKLkwRk/\nfgLd3Vtbdv7D6eg4jW3btrS6DEktUK1WqVar/e7X0DrtiJgD/GVmfjIi7gG+k5n3RMRtwHOZ+Y99\nHNNW67RdK1o2+69c9l1jhmKd9mLgLyJiE3ASsGwQjyVJqsMR945IX+3LZv+Vy75rjO+IlKQRwNCW\npIIY2pJUEENbkgpiaEtSQQxtSSqIoS1JBTG0JakghrYkFcTQlqSCGNqSVBBDW5IKYmhLUkEMbUkq\niKEtSQUxtCWpIIa2JBXE0JakghjaklQQQ1uSCmJoS1JBDG1JKoihLUkFMbQlqSCGtiQVpN/Qjohj\nImJtRKyPiOcj4oZa+4SI+H5EbIqIuyNi9NCXK0lHtn5DOzPfAj6SmdOAqcD8iDgHuAn4ama+H9gB\nfG5IK5Uk1Tc9kplv1DaPAUYDCXwE+HatfTmwoOnVSZLeoa7QjoijImI9sA14CPgvYEdm7qvt8jJw\nytCUKEl6W13z0LVwnhYR7wLuAz7YyEm6urp6tyuVCpVKpZHDJWnEq1arVKvVfveLzGzogSPieuBN\n4K+B8Zm5LyLOBW7IzPl97J+NnmMoRQQ9szvtKGinn1U7sv/KZd81JiLIzDiwvZ7VI78TESfUto8D\nPgq8AHwPWFjb7TPAd5tXriSpL/2OtCNiMj0XGo+q3e7JzL+JiInAN4FxwHrgTzJzbx/HO9KuW/u9\n2rcb+69c9l1jDjXSbnh6ZAAnNrTr1n5PnHZj/5XLvmvMgKdHJEntw9CWpIIY2pJUEENbkgpiaEtS\nQQxtSSqIoS1JBTG0JakghrYkFcTQlqSCGNqSVBBDW5IKYmhLUkEMbUkqiKEtSQUxtCWpIIa2JBXE\n0JakghjaklQQQ1uSCmJoS1JBDG1JKoihLUkFMbQlqSCGtiQVpN/QjohTI+KRiPhhRDwfEX9eax8X\nEQ9GxIsR8UBEnDD05UrSkS0y8/A7RIwHxmfmsxHx28AzwMXAZ4FfZubfRcQiYFxmLu7j+OzvHMMp\nIoD2qeedgnb6WbUj+69c9l1jIoLMjAPb+x1pZ+a2zHy2tr0L2AicSk9wL6/tthy4pHnlSpL60tCc\ndkRMAKYC3wc6MrMbeoIdOLnZxUmS3ml0vTvWpkZWAF/IzF0RceDfEof826Krq6t3u1KpUKlUGqtS\nkka4arVKtVrtd79+57QBImI0cD/wH5m5tNa2EahkZndt3vt7mTmpj2Od065b+82rtRv7r1z2XWMG\nPKdd88/AC28Hds0q4Kra9meA7w6qQklSv+pZPTITeAx4np6XyQS+CPwAuBd4L7AVuCwzd/RxvCPt\nurXfq327sf/KZd815lAj7bqmRwZ5YkO7bu33xGk39l+57LvGDHZ6RJLUBgxtSSqIoS1JBTG0Jakg\nhrYkFcTQlqSCGNqSVBBDW5IKYmhLUkEMbUkqiKEtSQUxtCWpIIa2JBXE0JakghjaklQQQ1uSCmJo\nS1JBDG1JKoihLUkFMbQlqSCGtiQVxNCWpIIY2pJUEENbkgpiaEtSQfoN7YhYFhHdEbFhv7ZxEfFg\nRLwYEQ9ExAlDW6YkCeobad8BXHhA22Lg4cz8APAIsKTZhUmSDtZvaGfm48D2A5ovBpbXtpcDlzS5\nLklSHwY6p31yZnYDZOY24OTmlSRJOpTRTXqcPNwXu7q6ercrlQqVSqVJp5WkkaFarVKtVvvdLzIP\nm7c9O0WcBvxbZk6p3d8IVDKzOyLGA9/LzEmHODbrOcdwiQj6eY1poaCdflbtyP4rl33XmIggM+PA\n9nqnR6J2e9sq4Kra9meA7w6qOklSXfodaUfEXUAFeDfQDdwArAS+BbwX2Apclpk7DnG8I+26td+r\nfbux/8pl3zXmUCPtuqZHBnliQ7tu7ffEaTf2X7nsu8YMdnpEktQGDG1JKoihLUkFMbQlqSCGtiQV\nxNCWpIIY2pJUEENbkgpiaEtSQQxtSSqIoS1JBTG0JakghrYkFcTQlqSCGNqSVBBDW5IKYmhLUkEM\nbUkqiKEtSQUxtCWpIIa2JBXE0JakghjaklQQQ1uSCjKo0I6IiyLiRxGxKSIWNasoSVLfBhzaEXEU\n8PfAhcAfAldExAebVVg5qq0uQANWbXUBGpRqqwtoicGMtM8GfpyZWzNzL/BN4OLmlFWSaqsL0IBV\nW12ABqXa6gJaYjCh/XvAT/e7/3KtTZI0RLwQKUkFGT2IY38GvG+/+6fW2g4SEYM4zVBodj1fatoj\ntd/Pqh0182fUvL4D+69//u4NVmTmwA6MGAW8CMwDfg78ALgiMzc2rzxJ0v4GPNLOzF9HxJ8BD9Iz\nzbLMwJakoTXgkbYkafh5IXKAIuKSiNgXEe9vdS1qTET8OiLWRcSzEfF0RJzb6ppUv4joiIi7I+LH\nEfFURNwfEb/f6rqGi6E9cH8MrAauaHUhatjuzJyemVOBLwI3trogNeQ+4JHM/IPMnAEsATpaXNOw\nMbQHICLGADOBz2Fol2j/ZQInAK+1qhA1JiI+AvxfZt7+dltmPp+ZT7SwrGE1mCV/R7KLgf/MzJci\n4tWImJaZ61tdlOp2XESsA44DxgNzW1yP6tcJPNPqIlrJkfbAXEHP2/YB7gGubGEtatwbtemRScB8\n4F9bXZBUL1ePNCgixtHzlv1fAAmMAjIzJ7SyLtUvIv43M9+13/1tQGdmvtrCslSHiJgL3JCZc1pd\nS6s40m7cQuBfMnNiZp6emacB/x0RF7S6MNWtd0679j9THgX8snXlqF6Z+QjwWxFxzdttETE5Ima2\nsKxhZWg37nJ6rl7v7zt4QbIkx9aW/K0H7gb+NP2TsyQLgI9GxEsR8Tzwt8C2Ftc0bJwekaSCONKW\npIIY2pJUEENbkgpiaEtSQQxtSSqIoS1JBTG0JakghrYkFeT/AWJASalUk4w/AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48adc72160>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"values = [40, 60, 50] # значения\n", | |
"labels = ['one', 'two', 'three'] # надписи над столбцами\n", | |
"tick_labels = ['A', 'B', 'C'] # подписи под столбцами\n", | |
"\n", | |
"positions = np.arange(len(values))\n", | |
"width = 0.35 \n", | |
"\n", | |
"figure = plt.figure()\n", | |
"axes = figure.gca()\n", | |
"\n", | |
"axes.bar(positions, values, width, tick_label=tick_labels, \n", | |
" align='center')\n", | |
"\n", | |
"y0, y1 = axes.get_ybound() # размер графика по оси Y\n", | |
"y_shift = 0.1 * (y1 - y0) # дополнительное место под надписи\n", | |
"\n", | |
"for i, rect in enumerate(axes.patches): # по всем нарисованным прямоугольникам\n", | |
" height = rect.get_height() \n", | |
" label = labels[i]\n", | |
" x = rect.get_x() + rect.get_width() / 2 # посередине прямоугольника\n", | |
" y = y0 + height + y_shift / 2 # над прямоугольником в середине доп. места\n", | |
" axes.text(x, y, label, ha='center', va='center') # выводим текст\n", | |
" \n", | |
"axes.set_ybound(y0, y1 + y_shift) # меняем размеры графика, чтобы надписи поместились" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(-1.0220474171821168,\n", | |
" 1.0000000328673935,\n", | |
" -1.0000000246505483,\n", | |
" 1.0091699670167189)" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADtCAYAAAAcNaZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVOX5xvHvM3VnZncpClJEQURBpAkogooo2CkqNhQs\nUSMmGo0m8Zee2IPGEktUTFURrGA0ih0UbAgKKiCIEKkiwu7Ozu7Mzry/P86giLQtM+/MOc/nuvYC\n1mXmXnf25ux73iLGGJRSSuWHz3YApZTyEi1dpZTKIy1dpZTKIy1dpZTKIy1dpZTKIy1dpZTKo4Dt\nAEqJiAC7AXsB+wExYA+IdYBwB5A2YGL1eEgD8iUkl0HVUjArgS3fNhqdK6ksEX3tqXwRER/QGeiF\nj4MIM4gMnUnRCh+GEgxJX5jkWdXQvgTa+GEPoDVOD8suPlMa+BKnX/+XhmU1sLwOVvrgyzCkBaIb\nILgazAqoXACpt4G3jTFrc/G5K7WZlq7KCREJAX2A3oQ4GD8DSNKZMHW0Ic2elNIGH7sD5UAJTk8+\n4DMk07varg1UiVPIq7K/LkzD63GYGwZfFYTeha9fBvMOMMcYE89tHuUlWrqqSWSHCLoDw4hwCkn6\nU04texKgPVHa4Fy0RnbwIDXAn4BMGju3GwzwKfAOMKsWXq+BT2MQ+wLSM6FyBvA2sECHJ1RDaemq\nBhORdsBQwowkw9GECNAFP10ooRMQbcCDXgukl+MM7xaCWuBDnK6dGYcZBipTIE9B1WPAq8aYWrsZ\nVTHR0lX1IiId8DGGIBeRYU86kmI/SukMtGyCJ7gVQ+VUgRFN8GC5YIBFwNQMPFoFn4Qg8ipsfBiY\nZoyptBxQFTgtXbVTItISGE0Jl5CmGwdg6E2EvWn6UYD7SLP6Rj9c08QPnCvrgGeBf1fCrBBEXoGN\nE4H/GmMSlsOpAqSlq7ZJRCLAcEq4mBSH0Zk6+hCjC7mdaDiZOj75QQAm5vBJcmUD8CQwsRLmBSD8\nLFT82Rgz23YyVTi0dNV3iEgHAvwUuJi2pDmIMrrhzC7Ih+kYZg0VeDFPT5grq4FJGZiQgMQy2PRH\n4CljTJ3tZMouLV0FgIj0I8yvyXAsfRAOJUwLC0HeBl7skqZusd/Cs+dAGpgGXFsJi2ug5iZITzTG\nVNhOpuzQ0vUwEfEDwwnzW/zszyBK6Isvb1e12/IxMLV5HbVfu3C15DvAjdXwPOD7G1TfYoxZbjuV\nyi8tXQ8SkRDChQT5Dc0oZTCldAMK4dryC+DfwQy1SRfvC7IcuC0JD2Qg8BJUXGeMedt2KpUfWroe\nkl2GexohbqctZRxNjA7s+urafNgE/AWo88LrsgJ4MAM3JaBmEVRcbIyZYzuVyi0tXY8QkSGEuYcy\n9uQEStnHdqLtSAPXASZB/u7e2VYH/MPA1TWQeRoqf2qMWWM7lcoNF/8IpwBEpKeUyAxKeYaT6Mql\nBVy44AxxhADmWw6STwHgQoEVEbjwVIgsFQn/n4iEbSdTTU9L16VEZE8Jy2TCvMUQBnEFMXpQHF/x\nGBln6a3XlAN/DsEHURj8KyhdJiIjs/taKJcohm9BVQ8i4hO/jCfAQvpzMlcSYQC+oto5uZyMs9TW\nq7oA02PwRFvY+2Eof1NEDszHM4vIKBHJiMh++Xg+L9LSdRER6UKYt2nFBC4mxjCCRTks2gKBz2yn\nKADH4Oxydu0hUPquSOkDIrJbjp/0TGAmcFaOn8eztHRdQEQCEpBrCPIBR9KHHxKjte1UjdACP7Jc\n7/ACEAQu98GyEhgzFqJLReTEXDyTiMSAQcAP0NLNGS3dIicivQgxn3b8mvFEOBR/0X9Vy4HAyrTt\nGIVld+D+MDzfDFpNESm9Nwc32kYCzxtjlgDrRaRPEz++Qku3aIlIQIJyPSFmcxz7cwGxJtlasRCU\nAb6NevNomw4HFkbhyHFQNl9Eujbhg58FPJr9/WRgTBM+tsrSebpFSET2IMRU9qAHpxGl3HaiJrYO\nmJiPY3uKmQHuy8BVNVB7OaT/1pjTLESkBc56wHXZB/cDxhjTsUniqm/olW6REZHDCfIxB3MQ57uw\ncMEZXqjLiPO9r7ZNgEt88E4UOt4BZU+LSPNGPOBpwL+MMZ2MMfsYY/YGlonIYU2TV22mpVskREQk\nKL8gzAucTkuGEnTtVy9MdmnySstBikF3YH4MzjoGYotE5NAGPtAZwFNbve9J9IZak9PhhSIgIs0J\n8SjNOYwxxGjM9UyxuAVD1TMCJ9lOUkSmAmMTkLoZaq4zxujNyALk1msl1xCR3gT5mB4M5mKPFC5A\nGRlnn0e160YCH0fgwJ9B2X9EpCFHg6oc09ItYCJyEkHeZDhtGE5JUa0qa6xmGOc4dFU/ewJvxOD4\nwVD2togU84xtV9LSLVDil/GEmcI4ovQsqM0X86MFPmffWVV/YeDRCFy+P8Q+EJH9bSdS39LSLTAi\nIhKSCcS4hYuJ0MF2Ikua48O/XMckG0yA64JwZ2uIvisiR9hOpBxaugVERAKEeIiWjOcSouR6lX0h\nKwMC6/Qub6Nd4IOpZVD6XxHRu5IFQEu3QIhICSGeoQ2juIAYMduJLCsDiOvrs0kMBV6OQvkUkcA5\nttN4nb6oC4CIlBLiVToxmHFE0a2rnQUSmZS+PpvMwcCsCDS/TyR8me00XqYvastEJEKIl+hKb84g\n4qkZCjtSinOKDTWWg7hJd+DdKOx+k0j0d7bTeJWWrkUiEiTEs3SmJ6Mo0a/GFr45tmeB5SBu0wl4\nLwqtfi4SvsJ2Gi/Sb3NLRMRPiMfpwCGMJqJfiW2IkfHWWWn50haYEYXSG0R8Z9hO4zX6rW6BiPgI\n8S/2YChnEsVvO1GBKicDC22ncKm9gVcjEPu7iBxlO42XaOnmmYgIQe6mJSM5hyhB24kKWHM9tie3\negLPRCA6VUR6207jFVq6+RbkRpoxlnOJ6SyFnWiBT4/tybUjgX/EIPqKiHSyncYLtHTzSPzyI6L8\nmPOJEbGdpgiUIwS+0FVpOXeawI3lEJshIq1sp3E7Ld08EZEjCDCBc3Xhwy4rB3ybvLfvhBWX++HH\nraHs1ewBlSpHtHTzQET2Isg0ziDimnPM8qEMMDX6Gs2bG0MwsjOUPSsierchR/QFnWMiEiXEiwyh\nlM620xSZMrLH9qj8EODvJXBIfyj7m+00bqWlm0MiIoR4mC504FCdGFZvJZt/o8f25E8AeCoKLU4W\n8elpwDmgpZtLfq6hGcMYRcSDO+I2ngBRDMyzncRjSoGnYxC5X0T2sZ3GbbR0c0REjiPIbziHmM7F\nbYRSPbbHjj7AdSVQNk3Hd5uWlm4OiEgbgkzmLCI0s52myDXXY3vsucIPB3eC2E22k7iJlm4TExEh\nzEMcQoS9badxAT22xyIBJkUhNF5EhtpO4xZauk1NuIBSBnCkDio0iWb48H+uCySsaQU8FoHoFF04\n0TS0dJuQiHQiwB2cTkz3xW0i5UDgS10KbNXRwKUx5+QJ0VvCjaSl20SyO4c9xpGUsIftNC5SBlCl\nr1PrbgjB3v0hpHvwNpK+mJuKn6vYna46H7eJlQGZOhe8Tr8AjsI5vaEH8Jfs+88EDsq+dcr+CvAm\n0AvnmJ2l2fdtAo7NU96tBYGnYhC8XkT6WArhCmKM/uTWWCLSnSDvMJ6oLvNtYmngOsDUQFFvy7Ym\n+9YbqAL6AlOBrlt8zNVAC+BXwKnAXcAy4EngFuBnwHDA5mnqfzdwxUKoONAYk7EYpGi54ArCLhHx\nEWYSx1KihZsDrjm2pw1O4YKz+KAb319pNwU4K/v7EE45x7O//wznatlm4QKcK9CpA8hYy0GKlpZu\n442hnE4cpP8vc8Z1x/Z8jrPK7pAt3jcTp5g3LwC7BhgH3AT8GOfq97r8RdwuH3B/KURuF5Ey22mK\nkRZFI4hIKUHuYASl+n8yh8owsMh2iiZSBYwG7sC54t1sEt9e5YIznjsbeBlnTLcdkMEZAx4HfJmP\nsNtxMDAyDLHfWwxRtLQqGiPIr+lCCR1sB3G5FuD8aF3s6nAKdywwcov3p3HGbbd3RuR1wG+APwAT\ngItwStumWyNgxouI7p1XTzqbtIFEpCNBLudYPQOiyRhgQ2dY3ZfAmkOIbhiE2bQntV+19GcCIVq0\ngFatoEULCAadt0wG6uqgpga+/BLWr4eqKgiHv/3vVVW2P7HNLgAOAH6y1ftfxBnjbbeNv/Mv4ESg\nOZDAWSUm2d/b1Bb4VRBuvgd7UyqKks5eaCApkWc5lGM4Uv/hajADfHkAsngkZV+cQu0XBxArzdC7\nT4bBh8bo19dPx47Qti00bw67Oi2/rg7WrYNVq2DRIpg9G954AxYudIrYGIjHc/mJbcubODfBevBt\ncd4AHAecDxwKXLzV30kAJwHTce4ovgFcijOL4xGgSz6C70AN0Kka1ow0xrxkOUzR0NJtABEZTIzn\nuEJP8623tB9WHE5wyWhCS06lxFfGqBF+Th5eQv/+0Lp17p46k4HFi+HNN2HSJKeIw2GoqMjdc7rf\nU8C5n0NlF2NMne00xUBLt56yK88WMpIudLedpohUtsE/9xLC8y6jfTs/Y0bHOHlUgJ49d/0Ktqkl\nEvDKKzBlCkyd6pRyZaWdLMXLAIPi8O41xqTusp2mGGjp1pOInEIr/smllOrG5DthgOVHEJ33czJL\njub00w0/vTxCr162g31fKgXTpsHNN8OCBZBMQlq32dlF84EBlVDd0RizwXaaQqelWw/ZbRs/4WT2\n/85CIvV9nw0hNuMuWvg68LMrYpw7zkezItlb+JNP4Pbb4aGHnOKtrbWdqBhcUAOT7jQm8QvbSQqd\nlm49iMixNOdxLtd5udu1qg+xGXdSVt2b224u5fTTwVek/682bIA//hHuv9+5OZdK2U5UyD4Duseh\npq0xRgdpdqBIvx0sCXMDR2nhbtOm9kSenkqzJ9/g5h8PZPmnpZx5ZvEWLkDLls4V76efwhlnQElJ\ncX8+ubUPcLxA4BLbSQqdXunuIhE5jFKe50piuo/YFgww9wIir9/BlZeF+eU1QWIx26FyY9Ei+MEP\nYN48G1POisFc4LCvobqtMUYHZbZDS3cXSYm8zjAOp5/ePvvGpvZEn3+EPX0H8dgjpfTsaTtQ7hkD\nEyfClVc6CzL0ZtvWBlfBzCuMyTxoO0mh0h+WdoGI9EboT28t3G/MG0fkbwu56vQBLJjrjcIFZ3rb\nRRc5N9sOPRTXXtU33O9LofT3esLE9umV7i6QEnmGwZzAQP1HirSf0Mt302r1OTz3dMwzZbstxsC9\n98LVVztzfhU44037VsFnJ+sqtW3TEtkJEWlFmmG6dSNQ3YLo5BkcEjmHBe97u3DBueq99FJ46SVn\nmbJfx/pxljf/IgbN/892kkKlRbIzwli6kqbEdhDL1nUj+o8F/OCEvrz6QozmzW0HKhwDB8KHH8K+\n+zozHNTZAqmBItLJdpJCpKW7AyIihLicfkRtZ7Fq+SAiD7/NXTe14c7bwnpFtw0dOsD778OwYRD1\n9qsFiAEX+SB6ue0khUhLd8f6E2R39rYdw6LPhhB98gWenlLG+efry2VHolF4+mlnTq8W72UhyFwk\nIrr16Vb0u2hHQvyIgynx7JyFZUcSm/YMz02NccwxtsMUB58PHnwQzj/f68W7D9Azje61+z1autsh\nIlEyjKa3R5dCLB9EdOozPPt0jMGDbYcpLiLwl7/A2LFeL96xZVCuB1huRUt3+0azJxnKbcewYP1+\nRJ78L09NLtXCbSARZzrZ6NFeLt5TBJLHiUjIdpJCoqW7PSX8hIO/c3KgNySaEX38JW6fENUhhUYS\ncYYaeveGkCdrpx2wfx1wtO0khURLdxtEpBV1HMh+tpPkWcZHdOo0zjmlFRdf5M1RlaYWCMAzz8Du\nu9tOYsu4Mig7x3aKQqKlu23H05Gk104/C75yG71aH8Tdd+hk06bUsqWzgMKbS4ZPFUiNEBGPfTdt\nn5butpRwJt09NrSw4DR2X/ED/vNUKQH99mhy3brB5MkQ8dwEqr2BjhlA7w5kaeluRURCpBjCvraT\n5FFVayIvTeTpx2K0bGk7jHudeCJccIEXi3dcKZSOsZ2iUGjpft9htCRJme0YeWIg8sI/GX9hmIMP\nth3G/SZMwIP/sI32QeZUEdG+QUv3+4KcTHe8M/q24Axa1xzG9deGbSfxhEjEOX3YW1e7XYA2PmCg\n7SSFwDWlKyJpEXlfROaJyHsiMqBhD8Sp7OeRBRFVrYm8fD9THirVjVryaOBALw4zjI1C9CzbKQqB\na0oXiBtjDjLG9AZ+CdxU3wcQkf3w0Yy2TR+uEIVnTOAH5+qwgg0TJkCZV4awADjeD6HjbKcoBG4q\n3S13SGgGbGjAYxzDfogn9lpYvx+BxaP5w291WMGGSARuvdVL08h6AfEOIuLZ9Xmbual0I9nhhU+A\n+4Fr6/0IJRxDJzzxQ1905p+55mchD97UKRxjxsAee9hOkS8lwL7VwEG2k9jmptKtzg4vdAOOB/5d\n70fIcCgdmjxX4VnZj9CqIfz0Cp2Qa5PP52yM452r3SNKAM8PZrmpdL9hjHkL2F1EdnnxpYi0x1DG\nbjkMViBiM+/khj+UeHgjlsJx/PGw//62U+TLoDC08Pw+DG4q3W9GYkWkK87n9lU9/v4A2lPr+vHc\nNT0JbejJhRe66UtfvEScm2qlnlj/eDCQ6m87hW1u+vmyRETe59vyHWfqc9Sxn0PY2/1Lf8Nzr+TH\n40MEg7aTqM2GDHEOtqyqsp0k17oA6XIRaW2MWWc7jS2uudwxxgSzY7p9sm/P1+sBQgymnXv+f2xT\nTTl8dDrjf6iNW0hEnGPc3T/c4wP61ODxcV13l8wuEhEhRXfa5fiJMsBfgUeyf/4aeAC4E3gcSGff\n/zZwD/DwFu9bAbzQyOf/YBxHD83Q1iPzkIvJeedBJmM7RT4MLoVgwxYuuYSWrmMvAkjO91t4G2i1\nxZ9fwlkYeTnOjJq52ffPBy4FOgBLs+97HTiiEc9toPTDq/n5Fa4fQSlKzZrBaac5MxrcbYAfyjx9\nM831X+Jd1JXdSOX0GTYBn/LdWYrLgG7Z3/cCFm7x3+qAFM5X6AOc4bDGzCBedyAlZjeOaExxq5y6\n5BIvTB87GIj3FBG337LeLi1dxz60IrcDnS8Aw/j2Nl81ztXt5q9AOVCR/X1/YGL2zx2AeTR6FEwW\njeKUkQG8+1IvfIccYjtBPrQhe/XghRnx26SlC+CnC7uRu9sYi4EY0BbYlfkUvYBLgJOBt4BDcK6S\np9Dgcd3Sz8dw2im6q00h8/vhhBNsp8iHtimgve0UtmjpAoToToscPv4KYBFwO/AEzrDCf4EanJtr\n4FzVbn3ycAWwEugKzAJOA8LAZ/V8/so9qPuykw4tFIEzz/TCRjh7CR4uXTfN0204Q+eclu7Q7BvA\n5zgFeirwGPAxcCDOuO3WK5NeBY7K/r4u+6tAvUefF5/EUUNThEJ6pVvohg2DZNJ2ilzrFMbDpatX\nugAp2uW0dLdnKDAbZ8pYgu/eZFuNU7Btsn/ugTON7H9Q36OEYiuHc+pw118+uUIsBj162E6Ra3uH\nIby37RS2eP5KV0RaEMCft73FOmbfAFoAF23n49oCI7b484DsWwPI6v7069ewv6vy74gjYM4cqMd6\nyiLTHoh1tp3CFr3ShU6UUePaPRdqyqj9ene6ddv5h6rCcOihbt+LoT0ge9lOYYuWLnS0MrSQL2v6\n0KVbtR6rXkT69oV0eucfV7zaAak2O/0wl9LShebEXHwm2qp+DDxEb6AVk44dbSfItfZA9W5eXSCh\npQvllLh3bDu64VAG9NPSLSYi0LWr7RS5VAb4Dc6xWp6jpQtllBCyHSJXglUd2duz94mL1z772E6Q\na61q8ei0MS1dPy0Iu/Y2GpnKNrqrWBHq1Ml2glxrn0FL16MC7IaLD8St3dhSS7cIdegAYRe/LqG5\nQM739StIWro+mrt2cCEZIZMK0cLNszNcql07t5duUPDoOgEtXWjm2ivdqrY03z2hO4sVobZtcfnX\nLQhaup7VzLVXurVllJZ74jgC12nWzM0r0iB7pevJc6O0dKHEtV/6TICA39Xfua4VCLi9dEM+PHql\n68lPeitJ3Lr6JxPA595lH64WCADmS5o5d/ldx1AXqfDo7AUtXaj9ZttEt/GlMa78lnW/TAZakmYK\nKVf+NPoHSD4HnjyGXUsXal17peuro86tn5vLpVIQkbRrzypv6ewQ7dbLnR1y5b+i9VTj2i+9P0lt\njX6Ji1FtLYSl1naMnEk7B1d58pJAvyPdfKUbW8vGr9w6NcPd1qyBPcS9P33XOqWb2xO4C5SWriHh\n2tKNfkVtIkBNje0gqr5Wr4a2qf/ZjpEzG5yr3I22c9igpWtIuHZ4QaCk+UbWrLEdRNXX6lUZ2tXU\n9wTS4vGV88vXdlPYoaXr5itdIFD+JatW2U6h6mvVZ7W0zXxhO0bObHROANTS9aQU60jg2mnomdJV\nWrpFaPXyJG1ZbTtGzlQ4q9G0dD3J8AUbSdiOkSvV5e8zf4GLL+Vd6qNPhP1ZZDtGzsQhhI7petZK\nNrr3Lmq6zTvMeKvKdgxVDxUV8MX6Errxie0oOZGAzT9auvZiZ0e0dGElFe7dxJy2c/hgrq6BKSZz\n50LPyBICLr3ZsAEIQ5Ux7t5dYnu0dGElcdfuMwYtllFdDWvX2g6idtWcOdC35k3bMXJmOVACnp1T\no6UL60kRdO0Ag0C4w0fMmWM7iNpVc16vpF/SvaW7zPllid0U9ni+dI0xGYJsxMXDnlWtX+LlV5O2\nY6hdYAzMfMPHAN6yHSVnloKphAW2c9ji+dIFwM9aKmyHyJ1Ml6k89pQuSysGH3wAodpKV89cWAjV\nKb3S9bwVbi5d2r3L+q8MSzz7Mi8e056sY0TycRff2YVFzu5i7l1utxNaugA1vMNal94qBvAZzH7T\nmDpNN9ctdM9MjjMi9bjtGDm13NlSVkvX0wxz+R9x2zFyqabzFB55vNJ2DLUDK1fCZ8sDDMK9N9Fq\ngY1QArh3jfNOaOk6PmCdyzd07/QyH30YYrV7V5YWvScey3CC73mCrt2Bybl7VgpfGGPc+0nuhJau\n43OSiKuvdUMJ5MDJ/PV+t86NK27GwL23xrkocYftKDmVnbn4jt0UdmnpAsYYQ4hPcfkCgpo+t/GX\ne5LUefYao3C99hr4N37F4cy0HSWnZkNiEy7/JHdCS3ezOma7fo1Mmw+pK1/CM8/YDqK2ds+fqri0\n6k+unrUAMNs5LcLTS3W0dDdL8S4rXT3AAEBlz5u5+TY3z48rPqtWwcuv+TiHh2xHyakk8BlEgXm2\ns9ikpfutD1jl4mljmx3wBB8uyDDP0y/7wnLHhFrOMpMox92zSxYAUVhljKm2ncUmLd1vLWATJbh9\n4VYgSc2A33L51S5e91xEVq6Eifel+WXtb21Hybk5gMC7tnPYpqWbZYypIcwHfG47Se6Zvn9lzvwq\nXn/ddhL1x/9LcGHdfbTH/cd7vAjxjTDddg7btHS3VMOTLKHWdoycC6SoPuwqfnRlFd7c0bQwLFoE\nTz6W5prUH21HyTkDTHf65kXbWWzT0t2S4UUW443tuA6cxOfr1/L007aDeNevr4xzVfJGWnjg1JqP\ngAxUGmOW2c5im5bud82jGh+bbMfIA58hPng8l1wWp0qHd/Nu+nR45/VqLs/cZjtKXkx3Lnb/aztH\nIdDS3YIxJk2AGXjl3+J9X6SizX/4yVVuv3tYWDZtgovOjvNA9dlEPXJM2DSorIT/2M5RCLR0t1bD\n0yx2/3zdzWqGXsKkx+O88ortJN5x9Y8SHFv5BMd4ZHgzCbzlbHKjrzK0dLflRZbiwys3mCIbSRw3\njrPG6TBDPkyfDtOfquKW2h/bjpI3s4EIfG6M2WA7SyHQ0t2KMWYZhk2uXxK8pf2eo6LNM4y/TIcZ\ncmn9+m+HFdy+EGJLj0EyDpNt5ygUWrrbkuER5rv2qMptqhl2MU9OX8Pd97h/UZ4NqRScdkKcMzfd\n75lhBYAM8AjUpeAR21kKhZbuttTxT+aRxEsHLZRUUn3qUH72q7gumsiBK8fXEF3wDjekrrYdJa/e\nADKw1hiz0HaWQqGluw3GmA9Js57/2U6SZ7stJTH8FEacWs0yr8zgyIP77knz8qS1PJIYhd9T/5LD\nw1BTDX+znaOQaOluT4oHmOf6nRi+r/PLVB38a4aeUEWFbkbWaK+9Br+9Os606qE0c/Xpp9+XBiaD\nScGjtrMUEi3d7cnwEB+Bi09O2a7MwbexsvmjDB6qMxoa46234PST4jySOJkuHjxx/HVAnKN5vPfJ\n74CW7nYYY5bjYzFLbSexQKD2mItZaKZy9PFxqj29EV/DzJkDI4dV8/f46Rzt0emp/4aaSnjQdo5C\no6W7IzX8lbneWSjxHT5DzQlj+TDxH444uopK78xwarS33oLjj6zmvqoxnMhztuNYUQFMAdK4fGf2\nBtDS3bHHWELAgyO7Dl+GmhPPYkHmCQYNqWL9etuBCt/LL8OIoXH+UTWaUUy1Hceaf4MJwqvGmJW2\nsxQaLd0dMMasx8/LfOCZ9Wnf5zPUHn8eC0vv5cA+cT780HagwmQM3H1HHWcP38SU+Imc4OG9XQxw\nC8Q3wQTbWQqRlu7O1HIjbxL32Eyf7xJIDfk5aw+5kEOPiPPUU7YDFZZkEn54boK//nIFsxJ9OBJv\nT3SeCXwFG4HXLEcpSFq6O/cmtazx5A21rfV4lOrTB3PORev5ze+SZLz8D1HWunVw9IA46x6fyazq\nXuzjmS3qtu/PEI/DBGN0i/xt0dLdCWOMoZbreQOdPAXQfg7V5/Xgtoc+ZtCRVSxfbjuQPVOnQp/9\n4xy54C6eTBxHmb5EWAO8AL4M/NN2lkKlpbtrHmUVadbajlEgytYQP7sf75bcwAG9qrnn3rSnjv3Z\nsAHOOaWaq8as4tGNx3Ft6hoPbUu3Y3dDXRAeM8Z44SiABtHS3QXGmBoy3MpMdMbqZv406UE3Un12\nP37+p08YOLiKzz+3HSr3pk6FHp2r2f3Zf/Jh9b4czhu2IxWMTcDtkKqEa21nKWRaursqzV0sRDxx\nlE99tP7beuyyAAAOeUlEQVSE+NjevBu5gQMOrOaqn9by9de2QzW9uXPhuMOq+NmYlTy68VhuT17q\nmVMfdtUdUOeDZ3UF2o5p6e4iY8zXCH/jTQ+cFlxf/jTpXjdi4vux5N4p7Nchwc3X17liJduSJXDW\nyDgnDNrIiFm/YEF1J7263YZKYALUVcCvbWcpdFq69ZHiBt4n44HDW+st8CiZY1iZnlozjpnxPrx7\nw4vst2ecO2/PsKkIfzpYuBAuOS/BgB5VdH/2T3ya2JNLzT2EvLXN8i77C6R98IIxZpHtLIVOdFZH\n/UhQbqIrlzOaiO0sBWMFRP4GC4G9tnj3O/Tn1uhvmZ4ZyhmnGy69KkLPnrZC7lwqBdOmwT03V/DR\nAsOFqb9yRd0Educr29EKWhXQHhIV0N8Y85HtPIVOS7eeRKScAF9wIWW0sZ2mMEQnkL4yjly3nZ+c\nVtOGif4fcl/4cjruG+CCn5Rz0knQunW+k36fMTB/PjwxuY6J9yTpnF7EpZU3cwpP6lXtLroZ0jfA\n85uMOcl2lmKgpdsA4pOfsDfXcx4x21msext2+y+sAKI7+dA6/ExjBJNiF/Fi3ZF075JkxJhSho/0\n060biOQjsLOC7PXXYdpjNUx7Mo2/poqRqce5IPlXerAgPyFcYgPQERKVepW7y7R0G0BEQoRYzlm0\noZPtNBbVQewGzMQMcmY9/2otIV7jSKaFT+MZ/ygkUkL/vhn6HVlK334++vaFli0bH9EYWLrU2Wpx\nzlsp3ptRzfsfh+kWWsqIykcYYZ7mAD4mT33vOpdB7T9hUoUx59vOUiy0dBtIRM6gFRMZT6lXb0fK\nU5heH2DeB19jSssAi9mPOfTlveBA5kQOY25NV1qW19GxfR1t9/TRrlMJbfcO0a4dtGgBgYDzZgzU\n1UFtrbMkd/WqDKs+q2HV5ylWrzYsWhGhXKro659H36rX6GfepR/v6ThtE1gM9IbqBHQyxqyznadY\naOk2kIj4CPMRw+nKgbbTWLARIrc7m5v0zcHDZxCW0pkv2JNVtGM1bVkV7MjqcEc2+ltSR5AUAXxk\nCJIiaFK0qltNu8RS2pqVtGMVbVlNZ5bSmi9zkFANg/gMuKHWmBtsZykmWrqNICJDiPEffkKUkO00\n+RW6l/TotfAw+G1nUfn3LHAmrKyCzsYYnbteDx79wbhpGGNeJcXzvOSxBRNLILAW/61auJ5UC1wM\n8Sq4UAu3/rR0GyvJD5lLjZeOa48+Tvo3kNEZc950LaSqYJYx5nnbWYqRlm4jGWPWk+KHPEHcEycH\nz4BmNfiu1NeOJ80F/gy1FXCe7SzFSr9xmsYUEsxihstn0ych9irmryBh21lU3iWB0yFeAz8yxqyy\nnadYaek2gexG5+cxiyRrbKfJHd8TmF4GM9x2EGXFHyC1Dt428G/bWYqZlm4TMcasIs2VPEGctO00\nOfAlhBch9zdyTq4qTu8DtznDCmP1GJ7G0dJtSoaJVDCfWe6r3fAk0mMh3d12kAJQCxwC9AF6AH/I\nvv9CoHf27XT4Zsf7u7IfdxJ8M+z/JnBVnvI21hbDCpfqsELj6TzdJiYiexNkPudQxt620zSRj6F0\nCiwHmmBlritU4+w1kQYGAXcCBwCl2f9+FbAH8HPgUGA2cD1OIZ8IHAc8CjTPa+qGuQJq/wYzK+EY\nvcptPL3SbWLGmOWkOJNHSbjinMIMxJ4icwMYLdxvbd7cpxbn6lX4tnANkMi+b7MkTlEHgYeAEyiO\nwn0SmAgVlXCmFm7T0NLNAWPMc9RxJ5OpptiPKX8ZWqWQ8eieMFvK4AwvtAGGAf2z778AaAssAi7L\nvu9HwADgC2Ag8I/s+wrdp8A4SMThRGOMblbRRHR4IUdExE+YmfSnL0OLdJFwAqJ/wkwzyNG2sxSo\nCmAUzrjtAdn3GZzC7cf3J7NeC/TC+RfsXzibvt+aj6D1VA30hvjncE3SmLts53ETvdLNEWNMmlpG\n8TZVLLadpmH8U8gMMmS0cLevHBgCbLk0S4AzcH4039Iq4F1gBE7RTgGaAS/nPma9GOAiSKyB6Sm4\n23Yet9HSzSFjzDpSjOBxEhTbCbmrILQM3726v8L3rIdvDoVOAC8C+wNLs+8zwDSg61Z/77d8ezZ5\nTfZXH9/OcigUEyEzDdZVwjgdx216Wro5Zox5kzS/5WHiJG2n2XWRR0mPh0xn20EK0Gqcq9veOFPH\njsW5MXYuztBBL2ANTsluNg/nCrhX9s9n4Uwjm4Uzk6FQvAZcAdVVcLwxxg23gguOjunmgYgIIR6m\nPSM5h2jBXzu+D82nOUfwlNnOovLmI2AAJKpguDGm0EY9XEOvdPPAGGNIMo6VvM3T1FDI/86lIfYs\nmT+D0cL1jlXAUc4pEJdo4eaWlm6eGGPqSDKcRXzKiwU80PBf6JCGc3WKmGdUAkdDvBL+VGfMv2zn\ncTst3TwyxsRJchTvsZa3CnCpcCVE3oMHwacvDG9IASOg+gt4MgF/tJ3HC/R7K8+MMetJcjgvs4kF\nhTXQEHyUzHGQHmg7iMqLDHAe1MyB96rgAp2pkB9auhZklwoPYSpxPrOdJms5BFbiu1OniHlCBjgX\nap6B+ZVwgjHGC1vwFwQtXUuMMR+S4iQmUf3NBE+LopNJ/wwye9oOonJuc+FOdQp3iDEmbjuTl+iU\nMctE5HCCPMeplH5vNn2+vAWtnnd2EYtYiqDyQwvXPr3StcwYM5MUQ3iCCuZbGOOtg9h0zN1o4bqd\nFm5h0NItAMaY90gxiGlsZE5+9yWTpzH7ZzCj8/mkKu9SwNlauAVBS7dAGGMWkOJgnuervJ088TWU\nLEAm6hE8rlYBHA3Vz8IsLVz7tHQLiDFmCSn68SpreJVUrgcbQpNIj4Z0n9w+jbJoJdAf4nNhciUc\nq4Vrn5ZugTHGrCBFP2azjMdJ5OxQ908huA7/LTpFzLXmA32gegXcWAU/0GlhhUFLtwAZY9aQpA+f\n8iIPEKei6Z8j9jjp30GmddM/tCoArwADIbEeLkoYc70ufCgcWroFyhhTTZJRbOAm7iHBiiZ88Feh\neS2+n+jX33UMcA9khkNlFZyQMeYR25nUd+k83SIgIicQZDLHEaVvI4uyFmI3YSYb5MQmyqcKQxVw\nPiRegJWVzn64S2xnUt+npVskRGR/QrxID1pxAiUNHYn1PYIZtBjzus5YcJVPgBMhvh6mVTrjtwnb\nmdS26Y+XRcIYs4gkPZjPbB4k3qDjf76E8GLkPi1cV5kEpj9U/w9+UmHMGC3cwqalW0SMMZtIMoy1\nXM89JHgfU59pZeFHSJ8H6W45S6jyKQFcArUXwZo4DEoZ86DtTGrndHihSIlIT0I8SQfacjJRSnfy\nF+ZD2RPO/got8hFQ5dQs4EyIb4KXKuA8Y8xG25nUrtEr3SJljPmQJN1ZwT38hQSf7OCDMxCbRuYm\nMFq4xS0BXAHJYbDpf3DuJmNGaeEWF73SdQERGUiQx9mf5pxEhJKtPuAF2Gc2ZjGIroQoXrNxrm43\nwisVzs2yL21nUvWnV7ouYIyZRYr9WMwk7qSaj+Gbsd5qiM7GTNTCLVpx4EpIHg0VK+C8TcaM0MIt\nXnql6zIiMoQQf6cNuzOcWOA/ZIYtxzyny32LjgEeA34E1Ul4ocI5qXed7VyqcbR0XUhEgvi5HPhD\nME3sXaCX7VCqXj4Efgjxj2BNpXN+2QzbmVTT0OEFFzLGpEyduZU0XcLw/BGQuBcyuttJ4VsNjIOa\nAVD5HvyiErpq4bqLXul6gIj0Lof7WkD3myE2Gh1rKDRfAbdC6g6oE7g/Dr/XWQnupKXrESIiwLHN\nYEJz6HgDlJ6Blq9tXwITIHk3ZPzwWCX8zhizzHYulTtauh6TLd+h5TChHPa9HmJjgIDtYB6zFrgJ\nkvc5ZftIFfzRGLPcdi6Ve1q6HpUt3yObwYQodP01RMeClNkO5nKfArdD8u+Q8cG/407ZfmE7l8of\nLV2FiBzRHH6ZhMHnAJdDSXfboVykDvgPcAtUve/MBJuYgFuMMasa+pgisgdwO9AP2Ihz8XyFbudY\n+LR01TdEZM8SGO+DS7uD/2ooGwWEbAcrUmuA+yF9J9SmYelGuBl43BhT29jHFpFZwN+NMQ9k/9wD\nKDfGvNnYx1a5paWrvkdEgsCo5vALAweMBf/ZEDoE0C0hdywOPAv8A6pehUAQplTCbcaYeU31HCIy\nBOeG25FN9Zgqf7R01Q6JSNcQnBOG80qg+VgIjYHgQWgBb5YA/gv8E+LTIRCB97+GicATxphNTf18\nInIZ0NEYc1VTP7bKPS1dtUuyN956lMDZARhXBmVjIXwSBAYAQdsB8+wrnMMfp0D1s+AvgflfwwPA\nU7neF0FLt7hp6ap6yxbwQSVwZgmMqoG9BkLNcCg7BqQb7rsKrgHeBF6AumlQvQzCpfDu1/Coca5o\n1+Qri4gchTO8MDhfz6majpauajQR2R04qhxGZODYIESHgTkCYn1x9n2IWM5YX2uBOcB7kJkOVe9C\nSQyWxGFqEp4H3jLGJG3lE5HZwIPGmInZP+uNtCKhpauaVPYquDNwdDkc7oMBcdhrT0gMgMBAiPYF\n9sc5wcL2FXEaWAnMxynYN5xpXYE4SCl8FIeZNTATeLWQluWKSBvgDqAvzrDy5zhTxpbazKV2TktX\n5ZyIhIEeQN9yOMwPh8RhLz9Ie0jsC74DILIvBPYB2uAUcguglIYXcxpnAuvX2bcVwGfAIkgshOQy\n8K2DaBgqS+DTKphRC2/jXOQuM/rNoXJAS1dZkb0ibgl0AvYB9imH7kHomoZWKShPQiwNgSgkyyDV\nDDLlOPtF+HCWLmeyb2kghVOymyBQBcFaCISgJgRVAajwwYpq+DgBi3D69zNguZ6eq/JJS1cVNBEJ\nAc2zby2AMr7tXT/OCq80Tvdu7t3NF7gVxpiMhdhKbZeWrlJK5ZFuYq6UUnmkpauUUnmkpauUUnmk\npauUUnmkpauUUnn0/ws4UDBnr5RIAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48adb76c88>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"from matplotlib.patches import Circle\n", | |
"\n", | |
"values = [40, 60, 50] # значения\n", | |
"labels = ['A', 'B', 'C'] # подписи\n", | |
"\n", | |
"figure = plt.figure()\n", | |
"axes = figure.gca()\n", | |
"\n", | |
"axes.pie(values, labels=labels,\n", | |
" autopct='%.0f%%', # расставить проценты\n", | |
" pctdistance=0.7) # проценты чуть подальше от центра\n", | |
"axes.add_patch(Circle((0, 0), # круг посередине\n", | |
" radius=0.5, # радиусом 0.5\n", | |
" facecolor='w', # с белой заливкой\n", | |
" edgecolor='b')) # и чёрной окантовкой\n", | |
"\n", | |
"axes.axis('equal') # чтобы круг был круглым" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEdCAYAAABZtfMGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+wnFWd5/H3J4mBVQyI8RchhNEgsOAU4A5mXRcuA5qA\nQGaHRYmFE9iIjDPIrpa14NSUJEO5JVrKgDgKDhNBxCioCCoOKFwwYiBFCGLkRxCM+cHGIYCIri6b\nfPeP59yk07m3u2/6dPfpvp9X1VN5nu7T5zlP7vc8335+nVZEYGZmVppJvW6AmZnZaJygzMysSE5Q\nZmZWJCcoMzMrkhOUmZkVyQnKzMyK5ARlA0fSNknX1ixPlvRvkm7uZbt2l6RZkh7qdTvMus0JygbR\n74DDJe2Rlt8OrO9he7aTNHk3P+oHFm3CcYKyQfU94J1pfgHw1ZE3JP2ZpHsk3S9puaSD0usLJX1D\n0q2SHpX0ifT62ZIurfn8+yR9un6Fkhalz62QdJWky9PrSyV9XtIK4JIm679J0p2pno/VVD8l1fkz\nSd8fSb6Szpe0RtJqSddn/R8067WI8ORpoCbgeeBw4AZgD+AB4Bjg5vT+XsCkNH88cGOaXwg8nt7f\nA/glMAN4WXp9cir3Y+CwunW+DngS2BuYDNwNXJ7eWzqy7hbWvxHYB9gTeAg4CpgFvAi8KZX7GvCe\nNL8ReEman9br/3tPnnJOU3IkObPSRMTPJB1IdfT0XUA1b+8DXJuOXAJ26gc/jIgXACT9HJgVERsl\n/RA4WdIjwJSIWFO3yqOB4Yj4TfrsDcBBNe/f0OL6b4+I51Id3wTeBnwbeCIiRq5D3Q8cmOYfBK6X\ndBNwU9P/GLM+4lN8maQL869P80sl/UOv22TcDHyKmtN7ycXAHRHxJuAUqqOVEX+smd/KjuRxNXB2\nmpaOsT6N8TpU18VaWX/9taaR5bHa9U7gCqojrZWSiunT6eaObSW1yfqLAycfX8Qux0ii+BdgyShH\nO3tTnRqDKuE0FRH3ATOpu55VYyVwjKS9JU0BTmtQ3bQG63+7pH0k/TvgL6hOJ8LYye+AiLgLuDDV\nu1fTjeku9wvbbU5Q+TT69mzdFQARsTEirhjl/U8Cn5B0P437QP3O9evAj0dO4+1UMGIT8L+A+4Af\nUV2PGilXX8+nGqz/PuCbwGrghohYNUYdpER4naQHqU77XRYRzzfYHrP+0uuLYCVOwP7AN4BfA//G\njovd/w34ObAFuJXq2+vIZ7YBr0/zS4F/6PV2eMoeF7cAxzV4/2Xp38lUpxfnj7P+hSOxVuI0Wr+g\n+mL291Q3lPxv4EukmzWobu7Yyo4bQs4CfkF1E8svgAU1270c+CzwXOpjf16z3rPSa89T3azy/pr3\njqV6hODDwGaqI9Ozev1/5SnP5COoOul8+XeovgHPorqLa5mkU6lOo/wF8Cqqb8mjneqxAZNO2z0K\n/C4i7mxQdLGkB6juvnsiIr7dnRZ23lj9gip5/BVVong98HKqa2L1n38pcBkwNyKmAW+lOkoc8RZg\nLfBKYDHwTUn7pPc2Ayelz50NXCrpiJrPvjatdz/gfcDnJO3d9kZbzyl9C7FE0hyqu6ZeFxHbal7/\nHtUpl6VpeRLwW+CQiFgvaRswOyKekLQUWB8RHxtlFWZ9p0G/+AHVbfJfSMtvBH5GdePHTOAJ4CVp\neQOwCLg1Iv5QU8dC4OMRsX/Na/dSHU1+ZZS2fIvqJpPPSjqW6pm3l4+0S9Jm4JSorhtaH/MR1K5m\nAutqO2EyC7hM0jOSnqE6zRdU3yTNBt1Y/WI/YF3N8jqqOwxfU1soIn4PvBv4APCUpFskHVxTZCM7\nW5fqRtKJkn4iaYukZ4ETgek1ZbfUtev3lHeziO0GJ6hdrQcOGOXW2F8B50bEvml6RUTsFREretBG\ns24bq19sovryNmLkoeLN9RVExO0R8Q6qU3KPAlfVvF3/Re8AYJOkqcCNVDe2vCoiXkF1/dc3JU0A\nTlC7ug94iuouq5dK2kPSW4Ergb+T9O9h+3WJ/9rLhpp10Vj94qvAhyQdKGkv4OPAspojGgFIerWk\nU9O1qBeBF6huLBrxakkflDRF0unAIVQPWE9N09MRsU3SicA7urC9VgCPJFEndYJTqO4o+hVVJ7o+\nIv6HpJdR3TBxANUtxLdTfbsDP+9hA6xJv9iPaminPYDvA+fXfjT9O4nqTrtr0murqU73jbiXauSN\np6nuBjwtdoyocT5wQzqauoXqWljD5u7udlpZmt4kIelq4GRgc0T86RhlLqc6L/w7qls8V49WziYG\nx4yNR7pJYlFEHNPrtlhZWjnFtxSYO9ab6ZD7DRFxEHAu8IVMbbP+5Zgxs7Y1TVARsRx4tkGR+cC1\nqey9wN6SXtOgvA04x4yZ5ZDjJokZ7PxjcBvxrdfWmGPGtouIa3x6z0bT1ZskJPniZaEiorjbdh0v\nZoNjd/YxOY6gNlI9xDdif3Z96G67nOM0XXTRRdnHfspdZz+0sQdajpnc/3fdnjrx93f7J9Y29Hv7\nI3Z/H9NqghJjPxh3M9VYXCPDoTwXEbs8pGcTjmPGzNrS9BSfpOuBIeCVkn4FXET14FxExFUR8T1J\nJ0l6nOqW4ZZ+X8cGl2PGzHJomqAi4j0tlDkvT3PGZ2hoqPg6+6GNuZUcM91W+t+qmX5vP/T/NvR7\n+9vR1dHMJUU312etkUQUepOE48Ws/+3uPsZj8ZmZWZFaSlCS5kl6RNJjki4Y5f2Zku6QtErS6jRS\ngE1Qjhczy6GVsfgmAY8Bx1MNrb8SOCMiHqkpcyWwKiKulHQo8L2I+JNR6vIpmwLlPMXneDGzep08\nxXc0sDYi1kXEi1Q/8zy/rsw2YFqa34cGz0HZwHO8mFkWrYwkUT8szQaqnVCtJcBtaVj8lwIn5Gme\n9SHHi5llkWuoowXA0oi4ND14eR1w2GgFFy9evH1+aGhoQt9C2SvDw8MMDw/3sgmOF7MBlmsf08o1\nqDnA4oiYl5YvpHrg8pKaMj8D5kbExrT8C+AtEfF0XV2+plCgzNegHC9mtpNOXoNaCcyWNCv9ouUZ\nVEPV1FpHOk2TLnrvUb+zsQnD8WJmWbTye1BbgfOA24A1wLKIeFjSEkknp2IfAc6RtBr4CrCwUw22\nsjlezCwXjyRhHknCzDrKI0mYmdlAyTKSRCrzLklrJD0k6bq8zbR+4ngxsxxyjSQxG/gacFxEPC9p\n+mgXvX3Kpkw9GEnC8WI2gfR6JIlzgM9FxPMAviNrQnO8mFkWrSSo0UYGmFFX5o3AwZKWS7pH0txc\nDbS+43gxsyxyjSQxBZgNHAMcANwt6fCRb8i1PDJA7xUwkoTjxWyAlTaSxOeBFRFxTVr+AXBBRNxf\nV5evKRSoByNJOF7MJpBejyRxE3Bcash04CDgifE2xgaC48XMssgykkRE/CuwRdIa4IfARyLi2Q62\n2wrleDGzXDyShHkkCTPrKI8kYWZmA8UJyszMipRtqKNU7jRJ2yQdla+J1m8cL2aWQ9MElYauuQKY\nS/WrpwskHTJKub2A84EVuRtp/cPxYma55BrqCOBi4BPAHzO2z/qP48XMssgy1JGkI4H9I+LWjG2z\n/uR4MbMs2h7qSJKAz7Dzr6KOeTuhh67pvV4OdeR4MRt8xQx1JGka8DjwAtWO5rXAFuDUiFhVV5ef\naylQN4c6cryYTTy7u49pJUFNBh6l+n2fp4D7gAUR8fAY5e8EPhwRD4zynnc4BcqcoBwvZraTjj2o\n28rQNfUfocEpGxtsjhczy8VDHZmHOjKzjvJQR2ZmNlCyjCQh6UOS1khaLel2STPzN9X6hePFzHLI\nNZLEKuDNEXEE8A3gU7kbav3B8WJmuWQZSSIi7oqIP6TFFdQ9mGkTiuPFzLLIMpJEnUWARwiYuBwv\nZpZF2yNJ1JJ0JvBm4NixynhkgN7r5UgStRwvZoOpmJEkasqdAFwGHBMRW8aoy7cNF6ibI0nUlHO8\nmE0QnbzNfCUwW9IsSVOBM4Cb61Z+JPAFquFqRt3Z2ITheDGzLHKNJPFJ4GXADZIekHRTx1psRXO8\nmFkuHknCPJKEmXWUR5IwM7OB4gRlZmZFyjXU0VRJyyStlfQTSQfkb+quOnGrdO46+6GNuZUaL71Q\n+t+qmX5vP/T/NvR7+9uRa6ijRcAzEXEQ8I9UF8E7rh92/v3QxpxKjpdeKPlv1Yp+bz/0/zb0e/vb\nkWWoo7R8TZq/kerH6mxicryYWRa5hjraXibdZvycpH2ztND6jePFzPKIiIYTcBpwVc3ymcDldWUe\nAvarWX4c2HeUusJTmVOzOGh1crx48uRptGl39ietjMW3Eai9iL1/eq3WBmAmsEnSZGBaRDxTX1GJ\nz9pYdo4XM8siy1BHwC3AwjR/OnBHviZan3G8mFkWTY+gImKrpJGhayYBV48MXQOsjIjvAFcDX5a0\nFthCtVOyCcjxYma5dHWoIzMzs1Z1ZCSJ3A9qtlDfhyStkbRa0u2SZrbbxppyp0naJumoduuT9K7U\nzockXddOfZJmSrpD0qq03Sc2qe9qSZsl/bRBmcvT32S1pCMa1ZfTIDzY24kY7abc/aHbcve/Xsjd\n57utI/uYXHdv1dx5NYnqrqxZwEuA1cAhdWU+APxTmn831YjX7dR3LLBnmv/rRvW1WmcqtxdwF3AP\ncFSbbZwN3E91QwDA9DbruxI4N80fCjzZZJvfBhwB/HSM908Evpvm3wKsyB0b3YiXXkydiNHS2p/K\ntdQfSmz/ePpfwdswrj7fg23Ivo/pxBFU7gc1m9YXEXdFxB/S4goa/8R4q20EuBj4BPDHDPWdA3wu\nIp5PbX66zfq2AdPS/D7seqfcTiJiOfBsgyLzgWtT2XuBvSW9plGdmQzCg72diNFuyt0fui13/+uF\n7H2+2zqxj+lEgsr9oGYr9dVaBNzabhtV/aje/hHRrK5W2/hG4GBJyyXdI2lum/UtAd4raT3wHeCD\nLbSzkfp1bhxlnZ0wCA/2diJGuyl3f+i23P2vF3rR57tt3PuYVp6D6oZcPzd+JvBmqtMp7dQj4DPs\nuBUa2m/jFKrTDMdQPSd0t6TDR77R7YYFwNKIuFTVz6xfRzX23UTQt89H5YrRbupQf+i23P2vFyZc\nn+/EEdR4HtREDR7UHEd9SDoB+ChwSjpEbqeNL6f6ww9LehKYA3y7wYXhVrf55ojYFhG/BB4DDmqj\nvkXA1wEiYgWwp6TpY9TXio2kv0mDdXZC7njphU7EaDfl7g/dlrv/9UIv+ny3jX8f04ELZZPZcbFv\nKtXFvkPryvwNOy56n0HjmyRaqe/IVOYNudpYV/5O4Mg22zgX+FKanw6sA17RRn3fBRbGjgumG1rY\n7gOBh8Z47yR2XMCcQ/duksgaL72YOhGjpbW/rnzD/lBi+8fT/wrehnH3+R5sR9Z9TKcaOQ94FFgL\nXJheWwKcnOb3oPomsJbqgvGBbdZ3O/AUsAp4ALip3TbWlb2DJncttVIf8GlgDfAgcHqb23wosDwF\n8irg+Cb1XQ9sorrA/SvgbOBc4P01Za5IneTBZttbcrz0YupEjJbU/rqyTftDie0fT/8rcRvG2+d7\n0P7s+xg/qGtmZkXyT76bmVmRnKDMzKxITlBmZlYkJygzMyuSE5SZmRXJCcrMzIrkBGVmZkVygjIz\nsyI5QZmZWZGcoMzMrEhOUGZmViQnKDMzK5ITlJm1TNKTkv58jPfeJunhLrfnIklfTvOzJG2T5P3a\ngCjlF3XNrM9FxHKqn4To+qrHmLc+N/DfNNIvsJqZWZ8ZyASVTkP8T0kPAi9IOlzSnZKelfSQpFNS\nuQMlPVvzuS9K2lyzfK2k89P8WZJ+Ien59O+C9PpCScslfVbSc5J+XnsKJH3u5+lzj0t6f817x0pa\nL+nDkjZL2ijprM7/D5m15WhJayRtkXS1pKmwI55HCkk6StIqSb+R9HVJyyT9w1iVSjqnpq/8TNIR\n6fXXSbpR0q9T3/tg5zfRSjCQCSo5AzgReBXwLeD7af584CuSDoqIXwK/kXRk+sx/Bn4r6eC0fCww\nLOmlwGXA3IiYBryV6lctR7yF6lcwXwksBr4paZ/03mbgpPS5s4FLRzpe8lrg5cB+wPuAz0naO89/\ngVlHvAd4O/AG4GDg72veCwBJLwG+CfwLsC/wVeC/jFWhpNOBjwFnpr5yKrBFkoBbqH6F+HXA8cB/\nl/T2zNtkBRrkBHVZRGwCjgReFhGXRMT/i4g7ge8AC1K5u4FjJb0mLd+Ylg8EXh4RP02vbwXeJGnP\niNgcEbUXgzdHxOURsTUivk71s83vBIiIW1MiJCJ+BNxGlQhH/F/g4vTZW4EXqDq9Wak+GxGbIuI5\n4OPs6Eu1/iMwOSKuSLH9LeC+BnUuAj4ZEasAIuKJiFgP/BkwPSI+nur5JfDPVF9AbcANcoLakP59\nHbC+7r11wIw0fxdwHHBMmh8GhqiOnn4EEBG/B94NfAB4StItNUdZABtHqX8/AEknSvpJOh3yLNVR\n3fSaslsiYlvN8u+Bvca1pWbdtaFmfnus13kdu/aL+n5Yaybwi1FenwXMkPRMmp4FPgq8ehzttT41\nyAlq5G6eTVTBX+sAdnSeu6iOaI5N8z8G/lPNclVZxO0R8Q6qU3KPAlfV1DeDnR0AbErn5m8EPgm8\nKiJeAdwKqK0tM+ut2v40i6qP1XuKXftFfT+stZ7qlOForz8REfum6RURsXdEnDKuFltfGuQENeJe\n4PfppokpkoaAk4FlABHxOPB/gDOBuyLit1TXjf6SlKAkvVrSqela1ItUp+Fqj3peLemDqf7TgUOA\n7wJT0/R0RGyTdCLwjs5vsllH/a2kGZL2Bf6O1Jfq/ATYKulvJU2WNB84ukGd/wx8RNJRAJLeIGkm\n1WnB36b+u2eq6zBJ/2GMevzlb4AMaoLa/ixERLwInAKcBDwNXAG8NyIeqyl/F1USqT2qAliV/p0E\nfJjqqOtpqtOBH6j5/L3AQem9i4HTIuK5iHiB6qaMGyQ9Q3Xe/Nuttt2sQAFcT3Ut9XGqm4M+vkuh\nqt/9JdWNP89S3VhxC/DHUSuNuDHVc72k56lubNo3nf4+GTgCeBL4NfBFYFqD9tmAUETjv6ekq6kC\nZHNE/OkYZS6nurbyO+CsiFg9WrlBJGkhsCgijul1W0rhmLHRSFoBfD4irul1W6w/tHIEtRSYO9ab\n6bTVGyLiIOBc4AuZ2mb9yzFjSDpG0mvSabmFwJuoHvcwa0nTBJWGL3m2QZH5wLWp7L3A3jW3bNsE\n5Jix5GDgQapY+BDVqe/NjT9itkOOa1Az2Pn20Y3sevfOwIqIa3x6b9wmdMxMFBHxxYh4bURMi4gj\nIsJHTzYuXR0sVpIvYBYqIoq7+8nxYjY4dmcfk+MIaiM7P9+wP7s+oLddRGSbLrrooqz1daLOfmhj\nD7QcM7n/77o9deLv7/ZPrG3o9/ZH7P4+ptUEJcZ+vuBm4K8AJM0BngufZzbHjJm1qekpPknXUw39\n80pJvwIuonr4NCLiqoj4nqSTJD1Odcvw2Z1ssJXPMWNmOTRNUBHxnhbKnJenOeMzNDRUfJ390Mbc\nSo6Zbiv9b9VMv7cf+n8b+r397Wj6oG7WlUnRzfVZayQRhd4k4Xgx63+7u48Z1KGOzMyszzlBmZlZ\nkZygzMysSE5QZmZWJCcoMzMrkhOUmZkVyQnKzMyK5ARlZmZFcoIyM7MiOUGZmVmRnKDMzKxITlBm\nZlYkJygzMyuSE5SZmRXJCcrMzIrkBGVmZkVygjIzsyI5QZmZWZGcoMzMrEgtJShJ8yQ9IukxSReM\n8v5MSXdIWiVptaQT8zfV+oXjxcxyUEQ0LiBNAh4Djgc2ASuBMyLikZoyVwKrIuJKSYcC34uIPxml\nrmi2Pus+SUSEMtXleDGznezuPqaVI6ijgbURsS4iXgSWAfPrymwDpqX5fYCN422IDQzHi5llMaWF\nMjOA9TXLG6h2QrWWALdJOh94KXBCnuZZH3K8mFkWrSSoViwAlkbEpZLmANcBh41WcPHixdvnh4aG\nGBoaytQEa9Xw8DDDw8O9bILjxWyA5drHtHINag6wOCLmpeULgYiIS2rK/AyYGxEb0/IvgLdExNN1\ndfmaQoEyX4NyvJjZTjp5DWolMFvSLElTgTOAm+vKrCOdpkkXvfeo39nYhOF4MbMsmiaoiNgKnAfc\nBqwBlkXEw5KWSDo5FfsIcI6k1cBXgIWdarCVzfFiZrk0PcWXdWU+ZVOknKf4cnK8mA2GTp7iMzMz\n6zonKDMzK5ITlJmZFckJyszMiuQEZWZmRXKCMjOzIjlBmZlZkZygzMysSE5QZmZWJCcoMzMrkhOU\nmZkVyQnKzMyK5ARlZmZFcoIyM7MiOUGZmVmRnKDMzKxITlBmZlYkJygzMyuSE5SZmRXJCcrMzIrU\nUoKSNE/SI5Iek3TBGGXeJWmNpIckXZe3mdZPHC9mloMionEBaRLwGHA8sAlYCZwREY/UlJkNfA04\nLiKelzQ9Ip4epa5otj7rPklEhDLV5Xgxs53s7j6mlSOoo4G1EbEuIl4ElgHz68qcA3wuIp4HGG1n\nYxOG48XMsmglQc0A1tcsb0iv1XojcLCk5ZLukTQ3VwOt7zhezCyLKRnrmQ0cAxwA3C3p8JFvyLUW\nL168fX5oaIihoaFMTbBWDQ8PMzw83MsmOF7MBliufUwr16DmAIsjYl5avhCIiLikpszngRURcU1a\n/gFwQUTcX1eXrykUKPM1KMeLme2kk9egVgKzJc2SNBU4A7i5rsxNwHGpIdOBg4AnxtsYGwiOFzPL\nommCioitwHnAbcAaYFlEPCxpiaSTU5l/BbZIWgP8EPhIRDzbwXZboRwvZpZL01N8WVfmUzZFynmK\nLyfHi9lg6OQpPjMzs65zgjIzsyI5QZmZWZGcoMzMrEhOUGZmViQnKDMzK5ITlJmZFckJyszMiuQE\nZWZmRXKCMjOzIjlBmZlZkZygzMysSE5QZmZWJCcoMzMrkhOUmZkVyQnKzMyK5ARlZmZFcoIyM7Mi\nOUGZmVmRnKDMzKxILSUoSfMkPSLpMUkXNCh3mqRtko7K10TrN44XM8uhaYKSNAm4ApgLHAYskHTI\nKOX2As4HVuRupPUPx4uZ5dLKEdTRwNqIWBcRLwLLgPmjlLsY+ATwx4zts/7jeDGzLFpJUDOA9TXL\nG9Jr20k6Etg/Im7N2DbrT44XM8tiSrsVSBLwGWBh7ctjlV+8ePH2+aGhIYaGhtptgo3T8PAww8PD\nPVm348Vs8OXaxygiGheQ5gCLI2JeWr4QiIi4JC1PAx4HXqDa0bwW2AKcGhGr6uqKZuuz7pNERIyZ\nJMZZl+PFzHayu/uYVhLUZOBR4HjgKeA+YEFEPDxG+TuBD0fEA6O85x1OgTInKMeLme1kd/cxTa9B\nRcRW4DzgNmANsCwiHpa0RNLJo32EBqdsbLA5Xswsl6ZHUFlX5m/ERcp5BJWT48VsMHTsCMrMzKwX\nnKDMzKxITlBmZlYkJygzMyuSE5SZmRXJCcrMzIrkBGVmZkVygjIzsyI5QZmZWZGcoMzMrEhOUGZm\nViQnKDMzK5ITlJmZFckJyszMiuQEZWZmRXKCMjOzIjlBmZlZkZygzMysSE5QZmZWJCcoMzMrUksJ\nStI8SY9IekzSBaO8/yFJayStlnS7pJn5m2r9wvFiZjk0TVCSJgFXAHOBw4AFkg6pK7YKeHNEHAF8\nA/hU7oZaf3C8mFkurRxBHQ2sjYh1EfEisAyYX1sgIu6KiD+kxRXAjLzNtD7ieDGzLFpJUDOA9TXL\nG2i8Q1kE3NpOo6yvOV7MLIspOSuTdCbwZuDYscosXrx4+/zQ0BBDQ0M5m2AtGB4eZnh4uNfNcLyY\nDahc+xhFROMC0hxgcUTMS8sXAhERl9SVOwG4DDgmIraMUVc0W591nyQiQpnqcryY2U52dx/Tyim+\nlcBsSbMkTQXOAG6uW/mRwBeAU8fa2diE4XgxsyyaJqiI2AqcB9wGrAGWRcTDkpZIOjkV+yTwMuAG\nSQ9IuqljLbaiOV7MLJemp/iyrsynbIqU8xRfTo4Xs8HQyVN8ZmZmXecEZWZmRXKCMjOzIjlBmZlZ\nkZygzMysSE5QZmZWJCcoMzMrkhOUmZkVyQnKzMyK5ARlZmZFcoIyM7MiOUGZmVmRnKDMzKxITlBm\nZlYkJygzMyuSE5SZmRXJCcrMzIrkBGVmZkVygjIzsyI5QZmZWZFaSlCS5kl6RNJjki4Y5f2pkpZJ\nWivpJ5IOyN/UXQ0PDxdfZz+0MbdS46UXSv9bNdPv7Yf+34Z+b387miYoSZOAK4C5wGHAAkmH1BVb\nBDwTEQcB/wh8MndDR9MPO/9+aGNOJcdLL5T8t2pFv7cf+n8b+r397WjlCOpoYG1ErIuIF4FlwPy6\nMvOBa9L8jcDx+ZpofcbxYmZZtJKgZgDra5Y3pNdGLRMRW4HnJO2bpYXWbxwvZpZHRDScgNOAq2qW\nzwQuryvzELBfzfLjwL6j1BWeypyaxUGrk+PFkydPo027sz+ZQnMbgdqL2Pun12ptAGYCmyRNBqZF\nxDP1FUWEWlif9TfHi5ll0copvpXAbEmzJE0FzgBuritzC7AwzZ8O3JGvidZnHC9mlkXTI6iI2Crp\nPOA2qoR2dUQ8LGkJsDIivgNcDXxZ0lpgC9VOySYgx4uZ5aJ0rt/MzKwoHRlJIveDmi3U9yFJaySt\nlnS7pJnttrGm3GmStkk6qt36JL0rtfMhSde1U5+kmZLukLQqbfeJTeq7WtJmST9tUOby9DdZLemI\nRvXlNAgP9nYiRrspd3/ottz9rxdy9/lu68g+JtfdWzV3Xk2iuitrFvASYDVwSF2ZDwD/lObfDSxr\ns75jgT3T/F83qq/VOlO5vYC7gHuAo9ps42zgfqobAgCmt1nflcC5af5Q4Mkm2/w24Ajgp2O8fyLw\n3TT/FmBF7tjoRrz0YupEjJbW/lSupf5QYvvH0/8K3oZx9fkebEP2fUwnjqByP6jZtL6IuCsi/pAW\nV7Drcze700aAi4FPAH/MUN85wOci4vnU5qfbrG8bMC3N78Oud8rtJCKWA882KDIfuDaVvRfYW9Jr\nGtWZySDCp0F5AAACTElEQVQ82NuJGO2m3P2h23L3v17I3ue7rRP7mE4kqNwParZSX61FwK3ttlHS\nkcD+EdGsrlbb+EbgYEnLJd0jaW6b9S0B3itpPfAd4IMttLOR+nVuHGWdnTAID/Z2Ika7KXd/6Lbc\n/a8XetHnu23c+5hWnoPqhizPu0g6E3gz1emUduoR8Bl23AoN7bdxCtVphmOonhO6W9LhI9/odsMC\nYGlEXCppDnAd1dh3E0HfPh+VK0a7qUP9odty979emHB9vhNHUON5UBM1eFBzHPUh6QTgo8Ap6RC5\nnTa+nOoPPyzpSWAO8O0GF4Zb3eabI2JbRPwSeAw4qI36FgFfB4iIFcCekqaPUV8rNpL+Jg3W2Qm5\n46UXOhGj3ZS7P3Rb7v7XC73o8902/n1MBy6UTWbHxb6pVBf7Dq0r8zfsuOh9Bo1vkmilviNTmTfk\namNd+TuBI9ts41zgS2l+OrAOeEUb9X0XWBg7LphuaGG7DwQeGuO9k9hxAXMO3btJImu89GLqRIyW\n1v668g37Q4ntH0//K3gbxt3ne7AdWfcxnWrkPOBRYC1wYXptCXBymt+D6pvAWqoLxge2Wd/twFPA\nKuAB4KZ221hX9g6a3LXUSn3Ap4E1wIPA6W1u86HA8hTIq4Djm9R3PbCJ6gL3r4CzgXOB99eUuSJ1\nkgebbW/J8dKLqRMxWlL768o27Q8ltn88/a/EbRhvn+9B+7PvY/ygrpmZFck/+W5mZkVygjIzsyI5\nQZmZWZGcoMzMrEhOUGZmViQnKDMzK5ITlJmZFen/A+7ucCJnNBeKAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f48adc7e630>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import matplotlib.gridspec as gridspec\n", | |
"\n", | |
"figure = plt.figure()\n", | |
"grid = gridspec.GridSpec(3, 3) # сетка 3х3\n", | |
"\n", | |
"figure.suptitle('Many graphs') # общий заголовок\n", | |
"\n", | |
"axes0 = figure.add_subplot(grid[0, 0]) # ячейка в 0 строке и 0 столбце\n", | |
"axes0.set_title('cell')\n", | |
"\n", | |
"axes1 = figure.add_subplot(grid[0, 1:]) # ячейка в 0 строке с 1 столбца и до конца\n", | |
"axes1.set_title('colspan')\n", | |
"\n", | |
"axes2 = figure.add_subplot(grid[1:, 0]) # ячейка c 1 строки и до конца в 0 столбце\n", | |
"axes2.set_title('rowspan')\n", | |
"\n", | |
"axes3 = figure.add_subplot(grid[1:, 1:]) # большая ячейка\n", | |
"axes3.set_title('big cell')\n", | |
"\n", | |
"figure.tight_layout() # чтобы не налезали друг на друга" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"\n", | |
"\n", | |
"<style>\n", | |
"\n", | |
"</style>\n", | |
"\n", | |
"<div id=\"fig_el61091399501281672321158216663\"></div>\n", | |
"<script>\n", | |
"function mpld3_load_lib(url, callback){\n", | |
" var s = document.createElement('script');\n", | |
" s.src = url;\n", | |
" s.async = true;\n", | |
" s.onreadystatechange = s.onload = callback;\n", | |
" s.onerror = function(){console.warn(\"failed to load library \" + url);};\n", | |
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n", | |
"}\n", | |
"\n", | |
"if(typeof(mpld3) !== \"undefined\" && mpld3._mpld3IsLoaded){\n", | |
" // already loaded: just create the figure\n", | |
" !function(mpld3){\n", | |
" \n", | |
" mpld3.draw_figure(\"fig_el61091399501281672321158216663\", {\"plugins\": [{\"type\": \"reset\"}, {\"button\": true, \"type\": \"zoom\", \"enabled\": false}, {\"button\": true, \"type\": \"boxzoom\", \"enabled\": false}], \"height\": 288.0, \"axes\": [{\"axesbgalpha\": null, \"paths\": [], \"xscale\": \"linear\", \"zoomable\": true, \"xdomain\": [1.0, 3.0], \"id\": \"el6109139950128258352\", \"ydomain\": [0.4, 1.8000000000000003], \"markers\": [], \"bbox\": [0.125, 0.125, 0.775, 0.775], \"ylim\": [0.4, 1.8000000000000003], \"collections\": [], \"xlim\": [1.0, 3.0], \"lines\": [{\"yindex\": 1, \"dasharray\": \"none\", \"xindex\": 0, \"alpha\": 1, \"coordinates\": \"data\", \"color\": \"#0000FF\", \"linewidth\": 1.0, \"data\": \"data01\", \"zorder\": 2, \"id\": \"el6109139950130487872\"}], \"texts\": [], \"yscale\": \"linear\", \"axes\": [{\"position\": \"bottom\", \"scale\": \"linear\", \"fontsize\": 10.0, \"grid\": {\"gridOn\": false}, \"tickformat\": null, \"tickvalues\": null, \"nticks\": 5}, {\"position\": \"left\", \"scale\": \"linear\", \"fontsize\": 10.0, \"grid\": {\"gridOn\": false}, \"tickformat\": null, \"tickvalues\": null, \"nticks\": 9}], \"sharex\": [], \"axesbg\": \"#FFFFFF\", \"images\": [], \"sharey\": []}], \"width\": 432.0, \"data\": {\"data01\": [[1.0, 0.5], [2.0, 1.8], [3.0, 0.7]]}, \"id\": \"el6109139950128167232\"});\n", | |
" }(mpld3);\n", | |
"}else if(typeof define === \"function\" && define.amd){\n", | |
" // require.js is available: use it to load d3/mpld3\n", | |
" require.config({paths: {d3: \"https://mpld3.github.io/js/d3.v3.min\"}});\n", | |
" require([\"d3\"], function(d3){\n", | |
" window.d3 = d3;\n", | |
" mpld3_load_lib(\"https://mpld3.github.io/js/mpld3.v0.3git.js\", function(){\n", | |
" \n", | |
" mpld3.draw_figure(\"fig_el61091399501281672321158216663\", {\"plugins\": [{\"type\": \"reset\"}, {\"button\": true, \"type\": \"zoom\", \"enabled\": false}, {\"button\": true, \"type\": \"boxzoom\", \"enabled\": false}], \"height\": 288.0, \"axes\": [{\"axesbgalpha\": null, \"paths\": [], \"xscale\": \"linear\", \"zoomable\": true, \"xdomain\": [1.0, 3.0], \"id\": \"el6109139950128258352\", \"ydomain\": [0.4, 1.8000000000000003], \"markers\": [], \"bbox\": [0.125, 0.125, 0.775, 0.775], \"ylim\": [0.4, 1.8000000000000003], \"collections\": [], \"xlim\": [1.0, 3.0], \"lines\": [{\"yindex\": 1, \"dasharray\": \"none\", \"xindex\": 0, \"alpha\": 1, \"coordinates\": \"data\", \"color\": \"#0000FF\", \"linewidth\": 1.0, \"data\": \"data01\", \"zorder\": 2, \"id\": \"el6109139950130487872\"}], \"texts\": [], \"yscale\": \"linear\", \"axes\": [{\"position\": \"bottom\", \"scale\": \"linear\", \"fontsize\": 10.0, \"grid\": {\"gridOn\": false}, \"tickformat\": null, \"tickvalues\": null, \"nticks\": 5}, {\"position\": \"left\", \"scale\": \"linear\", \"fontsize\": 10.0, \"grid\": {\"gridOn\": false}, \"tickformat\": null, \"tickvalues\": null, \"nticks\": 9}], \"sharex\": [], \"axesbg\": \"#FFFFFF\", \"images\": [], \"sharey\": []}], \"width\": 432.0, \"data\": {\"data01\": [[1.0, 0.5], [2.0, 1.8], [3.0, 0.7]]}, \"id\": \"el6109139950128167232\"});\n", | |
" });\n", | |
" });\n", | |
"}else{\n", | |
" // require.js not available: dynamically load d3 & mpld3\n", | |
" mpld3_load_lib(\"https://mpld3.github.io/js/d3.v3.min.js\", function(){\n", | |
" mpld3_load_lib(\"https://mpld3.github.io/js/mpld3.v0.3git.js\", function(){\n", | |
" \n", | |
" mpld3.draw_figure(\"fig_el61091399501281672321158216663\", {\"plugins\": [{\"type\": \"reset\"}, {\"button\": true, \"type\": \"zoom\", \"enabled\": false}, {\"button\": true, \"type\": \"boxzoom\", \"enabled\": false}], \"height\": 288.0, \"axes\": [{\"axesbgalpha\": null, \"paths\": [], \"xscale\": \"linear\", \"zoomable\": true, \"xdomain\": [1.0, 3.0], \"id\": \"el6109139950128258352\", \"ydomain\": [0.4, 1.8000000000000003], \"markers\": [], \"bbox\": [0.125, 0.125, 0.775, 0.775], \"ylim\": [0.4, 1.8000000000000003], \"collections\": [], \"xlim\": [1.0, 3.0], \"lines\": [{\"yindex\": 1, \"dasharray\": \"none\", \"xindex\": 0, \"alpha\": 1, \"coordinates\": \"data\", \"color\": \"#0000FF\", \"linewidth\": 1.0, \"data\": \"data01\", \"zorder\": 2, \"id\": \"el6109139950130487872\"}], \"texts\": [], \"yscale\": \"linear\", \"axes\": [{\"position\": \"bottom\", \"scale\": \"linear\", \"fontsize\": 10.0, \"grid\": {\"gridOn\": false}, \"tickformat\": null, \"tickvalues\": null, \"nticks\": 5}, {\"position\": \"left\", \"scale\": \"linear\", \"fontsize\": 10.0, \"grid\": {\"gridOn\": false}, \"tickformat\": null, \"tickvalues\": null, \"nticks\": 9}], \"sharex\": [], \"axesbg\": \"#FFFFFF\", \"images\": [], \"sharey\": []}], \"width\": 432.0, \"data\": {\"data01\": [[1.0, 0.5], [2.0, 1.8], [3.0, 0.7]]}, \"id\": \"el6109139950128167232\"});\n", | |
" })\n", | |
" });\n", | |
"}\n", | |
"</script>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"from matplotlib import pyplot as plt\n", | |
"import mpld3\n", | |
"\n", | |
"figure = plt.figure()\n", | |
"axes = figure.gca()\n", | |
"\n", | |
"x = [1, 2, 3]\n", | |
"y = [0.5, 1.8, 0.7]\n", | |
"\n", | |
"axes.plot(x, y)\n", | |
"\n", | |
"mpld3.display()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment