dada2_input | filtered | denoised | merged | table | no_chimeras | perc_reads_survived | |
---|---|---|---|---|---|---|---|
ERR1018543 | 6525 | 4002 | 3727 | 3629 | 3629 | 3076 | 47.1 |
ERR1018546 | 2421 | 1513 | 1276 | 1229 | 1229 | 1095 | 45.2 |
Total counts: 4,171
|Kingdom | n|
--- pvec.h 2018-12-09 12:08:14.727171805 +0100 | |
+++ pvec_mod.h 2018-12-09 12:09:36.186071505 +0100 | |
@@ -539,22 +539,26 @@ | |
static inline double gap_posterior( double v1, double v2 ) { | |
- assert( pgap_model.is_valid_ptr() ); | |
- //return v1 / (v1 + v2); | |
+ assert( pgap_model.is_valid_ptr() ); | |
+ //return v1 / (v1 + v2); |
cat SRC_sample_ids.txt | parallel -j 16 esearch -db sra -query {} | efetch -format runinfo > stats |
processor : 0 | |
vendor_id : GenuineIntel | |
cpu family : 6 | |
model : 60 | |
model name : Intel Core Processor (Haswell, no TSX, IBRS) | |
stepping : 1 | |
microcode : 0x1 | |
cpu MHz : 2294.684 | |
cache size : 16384 KB | |
physical id : 0 |
Program call: | |
search QUERY DB results tmp --num-iterations 2 -e 1e-5 -c 0.4 | |
MMseqs Version: 199d9b81f8cd6af9e66f97ef4dc0bd53c8fce12b | |
Sub Matrix blosum62.out | |
Add backtrace true | |
Alignment mode 2 | |
E-value threshold 1e-05 | |
Seq. Id Threshold 0 | |
Seq. Id. Mode 0 |
library(Nonpareil) | |
library(tidyverse) | |
f <- list.files(path="/scratch/antonio/nonpareil/out/", pattern = "npo") | |
f <- list.files(path="~/tara_nonpareil/", pattern = "npo") | |
sample.names <- sapply(strsplit(f, ".npo"), `[`, 1) | |
Nonpareil.curve(f[[1]]) | |
results_np_tara <- lapply(file.path("~/tara_nonpareil/",f), Nonpareil.curve) |
# Let’s get the non-merged reads ------------------------------------------ | |
purrr::map_df(merged, tidyr::extract, col = "sequence", into = "sequence" ) %>% | |
filter(accept == FALSE) %>% | |
select(nmatch, nmismatch, nindel) %>% | |
skimr::skim() | |
concat <- mergePairs(dada_forward, derep_forward, dada_reverse, derep_reverse, justConcatenate = TRUE) | |
get_nonmerged <- function(X, merg = merg, conc = conc, fn = fn){ | |
m <- merg[[X]] |
detachAllPackages <- function() { | |
basic.packages <- c("package:stats","package:graphics","package:grDevices","package:utils","package:datasets","package:methods","package:base") | |
package.list <- search()[ifelse(unlist(gregexpr("package:",search()))==1,TRUE,FALSE)] | |
package.list <- setdiff(package.list,basic.packages) | |
if (length(package.list)>0) for (package in package.list) detach(package, character.only=TRUE) | |
} |
Not related to the niche breadth analysis, we just use those that are found everywhere.
super_cl <- read_tsv("/Users/ufo/Downloads/all_cluster_components.tsv", col_names = TRUE, trim_ws = TRUE) %>%
filter(component %in% clstrs_comp_eu_ubi) %>%
select(clstr_name) %>%
#!/bin/bash | |
# 1. We read a folder and take all fastq files | |
# 2. We quality trim and remove short sequences | |
# 3. Run kaiju and generate output | |
#. "${MODULESHOME}"/init/bash | |
set -x | |
set -e | |
main(){ |