Skip to content

Instantly share code, notes, and snippets.

@ggggggggg
Created March 17, 2015 22:50
Show Gist options
  • Save ggggggggg/212033d6e58706c011f5 to your computer and use it in GitHub Desktop.
Save ggggggggg/212033d6e58706c011f5 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"language": "Julia",
"name": "",
"signature": "sha256:748b589b30aad56f706df0d3f39fa35a5b2fed466d322b46da811fad5f2e8a70"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"using GraphViz, Graphs, Mass"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"yay imported Mass!\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"jldname = \"/Volumes/Drobo/exafs_data/20141030_brown_ferrioxalate_1M_calibronium/20141030_brown_ferrioxalate_1M_calibronium_mass.hdf5\"\n",
"jld = jldopen(jldname)\n",
"c=jld[\"chan1\"]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 2,
"text": [
"JldGroup(HDF5 group: /chan1 (file: /Volumes/Drobo/exafs_data/20141030_brown_ferrioxalate_1M_calibronium/20141030_brown_ferrioxalate_1M_calibronium_mass.hdf5),Julia data file version 0.1.0: /Volumes/Drobo/exafs_data/20141030_brown_ferrioxalate_1M_calibronium/20141030_brown_ferrioxalate_1M_calibronium_mass.hdf5)"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"steps = h5steps(c)\n",
"s=steps[1]\n",
"string(Mass.H5Flow.func(s))\n",
"Mass.H5Flow.p_inputs(s)\n",
"Mass.H5Flow.o_inputs(s)\n",
"Mass.H5Flow.p_outputs(s)\n",
"Mass.H5Flow.o_outputs(s)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 3,
"text": [
"(\"pulsefile_lengths\",\"npulses\")"
]
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"label(v)=v.label\n",
"vertex_labels(g) = [label(v) for v in vertices(g)]\n",
"function add_exvertex!(g, name,shape)\n",
" verts = vertices(g)\n",
" vert_labels = [label(v) for v in verts]\n",
" if !(name in vert_labels)\n",
" v = ExVertex(num_vertices(g)+1, name)\n",
" attrs = attributes(v,g)\n",
" attrs[\"label\"]=name\n",
" attrs[\"shape\"]=shape\n",
" attrs[\"fontsize\"]=18.0\n",
" attrs[\"color\"]=\"red\"\n",
" attrs[\"fillcolor\"]=\"lightgrey\"\n",
" attrs[\"style\"]=\"filled\"\n",
" add_vertex!(g, v)\n",
" v\n",
" else\n",
" first(verts[indexin([name],vert_labels)])\n",
" end\n",
"end\n",
"add_p_data!(g,name)=add_exvertex!(g,name,\"doubleoctagon\")\n",
"add_o_data!(g,name)=add_exvertex!(g,name,\"octagon\")\n",
"add_func!(g,name)=add_exvertex!(g,name,\"box\")\n",
"function Graphs.add_edge!(g,label1, label2)\n",
" verts = vertices(g)\n",
" vert_labels = [label(v) for v in verts]\n",
" i1 = first(indexin([label1], vert_labels))\n",
" i2 = first(indexin([label2], vert_labels))\n",
" if i1 < 1 || i2 < 1\n",
" error(\"error label $label1 or $label2 is not in $g\")\n",
" end\n",
" add_edge!(g, verts[i1], verts[i2])\n",
"end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 141,
"text": [
"add_edge! (generic function with 10 methods)"
]
}
],
"prompt_number": 141
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"function add_step!(g, s)\n",
" vf = add_func!(g,string(Mass.H5Flow.funcname(s)))\n",
" for p in Mass.H5Flow.p_inputs(s)\n",
" v=add_p_data!(g,p)\n",
" add_edge!(g,v,vf)\n",
" end\n",
" for o in Mass.H5Flow.o_inputs(s)\n",
" v=add_o_data!(g,o)\n",
" add_edge!(g,v,vf)\n",
" end\n",
" for p in Mass.H5Flow.p_outputs(s)\n",
" v=add_p_data!(g,p)\n",
" add_edge!(g,vf,v)\n",
" end\n",
" for o in Mass.H5Flow.o_outputs(s)\n",
" v=add_o_data!(g,o)\n",
" add_edge!(g,vf,v)\n",
" end\n",
" g\n",
"end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 142,
"text": [
"add_step! (generic function with 1 method)"
]
}
],
"prompt_number": 142
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"g=inclist(ExVertex, is_directed=true)\n",
"for s in steps\n",
" add_step!(g,s)\n",
"end\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 143
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"attrs = AttributeDict()\n",
"attrs[\"overlap\"]=\"false\"\n",
"attrs[\"overlap_shrink\"]=\"true\"\n",
"attrs[\"size\"]=\"16,10\"\n",
"gdot = to_dot(g, attrs)\n",
"gviz = GraphViz.Graph(gdot)\n",
"GraphViz.layout!(gviz,engine=\"dot\")\n",
"gviz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAABgAAAAOfCAYAAAAO5ghaAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3Rk5Xk/8O80zWg0KqNRl0ZdWhVgi7axhcXYB2KbLDYOtomXaoiPY4LB2CHgE/zLL+YcOHYcYxIwyTGdsC4QirGxfz5OFlZg7a522aLey4zKSJqu6Xd+f2zumxlJuyt2RxqV7+ecOZp6573S1ZTned7nVUSj0SiIiIiIiIiIiIiIiGhNUSZ7AERERERERERERERElHjqZA+AiIiIiIiIiIiIiNYgiwXRlhZEPvwQUm8vsNaa0SgUUOTmQr1rFxQ7dgAbNgDKlVVzr2ALICIiIiIiIiIiIiK6JB4P8NFHkI4eRaStDRGXCwG9Hp4NGzBbX49AVRWgUCR7lAmn9Hig6+5Genc39D090Ph8UJrNUG3fDsXevUBlZVLHxwQAERERERERERERES1eOAx0dZ0N9h8/jsj4OMLRKLw1NfDW1cF3+eWIajTJHmXSqCcnoe/ogKGrCzq7HepQCKqaGqi2bwd27ways5dtLEwAEBEREREREREREdG5Wa2IHjuG8KFDiPb1ISJJ8JWXw3XFFZjduBFSamqyR7iiKSQJKf39IimQ4vVCpddDvWkTlNu2AVu3Ajrd0jw3EwBEREREREREREREBABwOBA9ehTSe+8h0tUFye1GID8friuugLepCWGTKdkjXBOUPh90HR1I6+xEWl8fNH4/lDk5UO3dezYpUF+fkPUEmAAgIiIiIiIiIiIiWo+8XuDEibOtfE6cgOR0ImgwwHXZZWu6b/9KpfJ4kHrmDDJOnYJuZATqUAjKsjKo9u2DYt8+ID//Y2+TCQAiIiIiIiIiIiKitS4SATo7ET12DJEjRxCZmkJYqYSnouJs3/7LLkM0JSXZo6Q55PUEMk6fhs5qhUqthrKx8ex6Anv3AllZ5308EwBEREREREREREREa83/9O2Xjh5FuLsbEZ8P/vJyuGtrMbt5MyKZmckeIV0ERSSClIEBpHV2wtDXhxSnE6qUFKiams62Dtq+HYhJ5DABQERERERERERERLRGSM8+i8Drr8NfWgp3XR1mL7sM4by8ZA+LlpDS40FqezvSOzqg7+9HSkEB1P/6r2dvS/LYiIiIiIiIiIiIiChBpK4uDN9/Pyx//ddwXXPNigv+Hz9+HPfccw9cLteiHxMOhzEwMIB33nkHTz/99CVtay2SDAZ4t2/H+G23of8f/gHhqSlxGxMARERERERERERERLQstmzZgo6ODkQikUU/5o033kA4HMZnP/tZbNy4EZIkXfS21hsmAIiIiIiIiIiIiIjooo2PjyMYDKKzs1Nc19/fj5GREUSjUXR3d2NkZETcplarxXmHw4FTp07B7XYDAILBILq7u0WQ3+l04t1330U0GsX4+DgKCgrg8/kW3Nbcx57P2NgYIpEIOjo6EAqFxPWBQABnzpxBbOf8mZkZSJKE/v5+sW2LxRK3vYWee+6+JQMTAERERERERERERER0UQ4ePIibb74Zr7zyCp5++mnceeedAACr1YqHHnoICoUCQ0NDePjhh+c9dmhoCG+88QY0Gg0OHjwIu92Op59+GiMjIzhw4ABsNhscDgeGh4dhs9kwPDyMr3/963HJBNlCjz2Xt956CzfffDN+/vOf46WXXsLzzz8PABgdHcUjjzyCoqIi3HfffQgEAnjvvfewf/9+vPbaa3jppZdw++2349VXX8UvfvELfOMb3zjnc8/dt2RhAoCIiIiIiIiIiIiILsru3buRkZGBO+64A0888QSsVit6enqQF7P2QElJyYKPHR0dxRtvvAGTyYQvfOEL+M1vfgOj0Qi/34/CwkJ8+OGHKCsrg1arxRVXXIHt27ejoKAASuX8sPZCjz2Xq666CgDwl3/5l7j33nvx7rvvAgC0Wi1uvvlmAGdnNQwMDGDPnj2QJAk33XQTvve976G9vR0333wz7r//fvT39yMQCCz43HP3LVnUF74LEREREREREREREdHCYgPyjY2NmJmZgdFovODjdu3ahf379+PGG2/EI488gpaWFtxyyy3Ytm0bPvvZz36sMVzsY1NSUkRLoczMTLz++uuQJAnZ2dlxrYFkaWlp4rxGo4HP51vwuaPRaNy+XXvttR9rfxKFMwCIiIiIiIiIiIiIKCGsViu2bt2KlJQUBINBAEAoFFqwL/+JEydw55134sUXX8S//uu/YtOmTXj77bchSRKi0ShaWloAIK4f/7mc67EXErvtl19+GaFQCFu2bEEgEFjweRe6bqHnnrtvycIEABERERERERERERFdNJvNhrfeeguPP/44vvSlL0GlUqG8vBxarRbf+c530NraitnZWYyOjuL06dOYmppCc3MzhoaG8Nhjj8HhcOALX/gC9u/fD5fLhRtvvBGPPfYY6urqMDg4iImJCRw6dAgjIyMYHR3F4cOHASBuWws99lyOHDkCl8uF3t5efPDBB5iamsLQ0BCqq6vx9ttv4/nnn0dWVhZee+01fPDBB/B6vejs7MSpU6dgt9tx6NAh9Pf3Y3JyEkeOHFnwuefuW7IoootJnxARERERERERERHRihd+8EH0XXstQvn5y/J8IyMjuPfee3Hw4EEoFAqkpKTE3R4MBqFWqxfs2x+NRhGJRBCJRKDVasX1fr8fOp3uosYT+9jR0dF5t+t0OuTk5Jzz8eFwGGr12c75kiQtOO7FPPe59m05VP/jP0L3858D4BoARERERERERERERHSRAoEAZmdnzxnknpsQiKVQKKBWq0XAXXaxwf+5jz106NC82wsLC3HNNdec8/GxY/k4wf+5z32ufVtuTAAQERERERERERERrVCBQAAzMzPnPE1PT2N2dlb0pt8wPIyvarVw79yJYGnpko+vr68Pn//853HixAls3rx5yZ/v4/jKV76S7CEsK/XMDPRnzkDpdovr2AKIiIiIiIiIiIiIaBnY7XZYrVbY7fYFT36/f95jAoEAMjMzYTQaz3kqKir63wc4nYgeOgSppQWRri5EIhH4zWa46+owe9llCGdnL+Me01JR+nxI7ehAWlsb0vr6oIpEoCwogHrXLij37QP+J/nDBAARERERERERERHRx3AxgXy/34+srKzFB/ITyWpF9NgxhA8dQrSvDxFJgq+8HO7aWsw2NSGSnr40z0sJoZAkpPT3Q9/RAUNXF1K8Xqj0eqg3bYJy2zZg61bgHG2TmAAgIiIiIiIiIiKidcfv92NmZuacQfwVGchPlHAY6OqCdPQoIsePIzI+jnA0Cm9NDbx1dfBdfjmiGk2yR7luqScnRbBfZ7dDHQpBVVMD1fbtwO7dwMeYxcEEABEREREREREREa1aSxXILyoqgtFoTMIeJYnHA3z00dmkQFsbwsEggioVPLW1mK2vR6CqClAokj3KNUfp8UDX3Y307m7oe3uh8XqhLC2Favt2KPbuBSorL2n7TAAQERERERERERFR0vl8vvMG8S82kF9cXIysrKwk7NEaMDaG6NGjZ5MC3d2I+P3wl5fDVVMD38aNCK+nBEkCKMJhpAwOIv3UKRja2qDx+6E0GKDauxfKvXuB+npAqUzsczIBQERERERERERERIlyMYF8n88HAOetxi8qKoLuHH3OaRlZrYgePozIoUOQLBZEwmF46+vhuvxy+BsbIWm1yR7hipEyOoq0Eydg6OqCdmYGKqUSyu3bobrqKqCpCUhNXfIxMAFARERERERERERE8zCQT4sSCgHd3ZDefx+R5mZILhdCGg28tbXwbNoEX11dwqvaV6K4vv1WK9SRCFSXXXa2b/+VVwI5OUkZFxMAREREREREREREa1iiA/lFRUUoLCyEyWSCltXetBC7HTh6FOEPPoDU3o5IMIigyZTUhYUHXC5UZGQkdqPRKFJsNqgAqMrLobrySih27ABKSxP7PJeACQAiIiIiIiIiIqJV4OMG8n0+H3w+H1JTUxnIp+SzWoEF1nBItDPd3TjU0oJv3HJL3PXf/L//F9+++26YCwsT92RKJWA2AypV4raZYOpkD4CIiIiIiIiIiGg9SXQgv7GxkYF8WvmKipblaSJuN/wGA1BZGXf9Lffcg5f/3//DQw89tCzjWCmYACAiIiIiIiIiIroIHyeQ7/P54Pf7EY1GFwzkFxUVoampCUajkYF8oiWwdetWPPbYY4hGo1AoFMkezrJhAoCIiIiIiIiIiNa1pQrk5+TkICUlJcl7R0SyHTt2oKWlBTt37kz2UJYNEwBERERERERERLQmLDaQLwfxAUCSJOj1+nlB/MrKSnGZgXyiteHWW2/F97//fSYAiIiIiIiIiIiIkoWBfCJaCvn5+ZiamhJraqwHTAAQEREREREREdGSSEQgv6ioCIWFhQzkE1FCfO5zn8Nbb72FL33pS8keyrJgAoCIiIiIiIiIiM5rMYH82D75wOIC+bm5udBoNEncMyJab2644QZ89atfZQKAiIiIiIiIiIjWlosJ5EciEaSlpTGQT0Rrgk6nQ1paGiYnJ5GXl5fs4Sw5JgCIiIiIiIiIiFaZCwXyx8bGYLfb4x4TG8iXg/hGo5GBfCJad2666Sb853/+J772ta8leyhLjgkAIiIiIiIiIqIkYSCfiGj5XXPNNfjZz37GBAAREREREREREV3YpQTyY4P4DOQTES09lUqFvLw8WCwWFBcXJ3s4S4oJACIiIiIiIiKi/3G+QP7Y2BisVmtcf3wACIfDMBgM5w3k5+XlQa1mGIaIaKX44he/iF/+8pe47777kj2UJcV3HiIiIiIiIiJacxjIJyKi89m9ezeefPJJJgCIiIiIiIiIiJLlXIF8OYhvt9sXDOTn5ubGBfEZyCciolgKhQJlZWXo7e1FdXV1soezZPhOR0RERERERERLLtGB/KamJgbyiYjoknz5y1/GL37xCzz88MPJHsqS4TskERERERERES3aQoH82CD+QoF8tVqN3NzcuCD+3EB+fn4+VCpVkvaKiIjWoy1btuCxxx5L9jCWFBMAREREREREROtQIgP5DQ0N2L17NwP5RES06lRUVKC/vx+VlZXJHsqSYAKAiIiIiIiIaBX7uIF8nU4HtVqN9PR0BvKJiGjd+9znPoc333wT999/f7KHsiSYACAiIiIiIiJaAeYG8ucG8RnIJyIiSrwdO3bgJz/5SbKHsWSYACAiIiIiIiJKoEQG8uX++EajEQUFBVAqlUncMyIiorVHqVQiOzsbNpsNubm5yR5OwjEBQERERERERLSA2ED+QkH82EC+TqdDamoqgsEgMjIyGMgnIiJaRa6//nr8+te/xh133JHsoSQcEwBERERERHRhU1MIP/YYotFoskeybBRZWVD//d8nexiUAIkM5FdWVjKQT0REtMZcc801uOuuu5gAICIiIiKidWp0FI5IBLabbkr2SJZN+Q9+wC9MK4wcyD9XEF8O5MtBfAAM5BMREdEFabVaqFQqeL1epKWlJXs4CcXPs0REREREtChRnQ6RjIxkD2PZRNX8urRUGMgnIiKilea6667D7373O9x4443JHkpC8RMtERERERERXZTFBPIBiCA+AAQCAWRmZp43kF9YWAiFQpGs3SIiIqJ16Prrr8cDDzzABAARERERERGtLT6f77xBfAbyiYiIaK1LT0+Hx+NBJBKBSqVK9nAShgkAIiIiIiKiNYKBfCIiIqKLt3XrVrS2tmL79u3JHkrCMAFARERERES0SE6nE08//TRuv/12FBQULNnz2O328wbx/X7/vMcwkE9ERER0aa677jq8/vrrTAAQERERERGtVJIk4b777sM//dM/QaPRJGSb3d3d+N73vocjR45gbGwMO3bsWFQC4GIC+X6/H1lZWecN5BcVFSVkv4iIiIjofzU2NuLRRx9N9jASigkAIiIiIiJaU5RKJW6//fZLDv5HAbz77rv4wQ9+gI6ODoyNjQEAFAoF3nzzTbS2tmJ6ehrT09Pw+XzzHq/T6ZCdnQ2TyYTs7GxkZ2ejtLQUmzZtEtfFtuIhIiIiouRLT0+H0+lEZmZmsoeSEEwAEBERERHRJXE4HBgeHkZFRQXS09PR398PjUaDkpIS9PT0IDU1FWazGTMzM8jKysLg4CDKy8uhVCphsVhQXFwstrWY+wQCAfT09KCxsVG0s5mcnERGRgampqZQUlKCiooKhMNhBAIBTE9Pi8empaXBZDIhGAxicHAQ1dXVUCqVC+7Xs/39eOgv/gJKpRJut1tcH41GoVAocN1114nAPgP5RERERGvDNddcgz/+8Y/4/Oc/n+yhJMTCn3SJiIiIiIgWYWhoCG+88QY0Gg0OHjwIALBarXjooYegUCgwNDSEhx9+GO+99x7279+P1157DS+99BJuv/12vPrqq/jFL36Bb3zjGwCwqPuMjo7ikUceQVFREe677z4EAgG8+uqrOHDgAJ577jn827/9G7q7u/HpT38aTqcThw4dwsDAABwOB2677TacOXMGdrsdTz/9NEZGRnDgwAHYbLYF9+2rlZVwOBx45513cM8992Dr1q2orKyEVquFWq3G5ZdfjuLiYgb/iYiIiNaQa6+9Fn/4wx+SPYyE4QwAIiIiIiK6aKOjo3jjjTfwmc98Bl/4whcAAHl5eeL2kpISAMCePXsgSRJuuukmAMDWrVvx4osvAgA+/elPIxAILOo+Wq0WN998MwBgfHwcAwMD+MQnPoFnn30WX//618XzGo1GAMDVV18NvV6Pp556Crt27cK+ffvwyiuvwGg0wu/3o7CwEB9++CH279+/4P6p1Wrs3bsXe/fuBXC2p/+7774bNyOBiIiIiNYOo9GIqampZA8jYZgAICIiIqI1ZXZ2FoFAQFwOhULweDzicjQahcPhiHuM2+1GOBwWl/1+f1xP90gkApfLdd7nieX1ehEMBhe8zePxIBQKLXjb3HEsxGAwXHJv+7n7tygOBx5tbJx39a5du7B//37ceOONeOSRR3DttdcuanNpaWnivEajgc/nm7dfC90nMzMTr7/+OiRJQnZ2NkKhEFQq1Tmr8PV6PXp6evDmm2/il7/8JQCgpaUFt9xyC7Zt24bPfvaz5xzjgNeL5n/7NxiNRkSjUQwNDeG9997D6dOnUV9fP+9vrFarkZ6ePm87GRkZUKlUcddptVro9fp595UTF0RERESUPBs2bEB3dzdqa2uTPZRLxgQAEREREV1QbNBcDmAHAgHMzs6e9zYgPlDu8/ng9/sBxAehg8EgvF4vMjIyIEkSPB6PCKS63W4YDAaoVCo4nU6kpaVBo9HA4XAgNTUVOp0OdrsdOp0uLgg897JKpUJGRkbcfmVlZYke8sDZgHNKSoq4nJKSIoLQOTk5UCgUyMrKmvf7WWjbsnMFhYGzQW2DwbDgbckQDofhdrvhcrkwOTmJsbExTExMYGZmBlPt7UhLScHclMeJEydw55134uqrr8b999+Pa6+9FikpKSI4HgqFIEnSvOeKRqMXHM9C93n55ZcRCoWwZcsWBAKB824nGo1CkiT8/d//PR5++GFkZGSgt7cXmzZtwttvv42mpiYoFAocOXIEO3bsmPd4JQCLxYIXXngBo6OjcLlc4livqKiA3W4HADidznn7uFCSZaHkE7Bwwkj+WwBnkxharVY8l1qtRlpaGlwuF5RKJQwGg7hveno6PB4PJElCRkYGvF4vwuGwWMROqVSK83OP59jkQ+z/RmZmplgnITaZkZ6eDrX67FfK2MTU3P8jIiIiotXm2muvxe9//3smAIiIiIho+ciBdLlK3Ol0IhKJwOFwiAp1OZAuBx/lwKJ8PXC2hUlGRgZ8Ph/UajWUSiX8fj8yMjJgt9uRmZmJ2dnZebcB/xsIlAPvscFt+Ta9Xg+j0XhRgUZaHI/HA5/PB7fbfc7zNpsNU1NTmJ6ehsPhELf5/X5IkoRAIIBAIACVSoVoNIpoNAq1Wg21Wg2FQoHU1FRoNBqo1WpotVqovF5E8/PnjWVoaAi///3vce2114oWQOXl5dBqtfjOd76DhoYGzM7O4le/+hW8Xi86OzsRDAZht9tx6NAhmM1mTE5O4siRIzAYDBe8T3V1NR599FEYDAZkZWXhtddeQ0NDA6xWK06cOIHNmzejra0Nk5OTeO+99+B0OsX/wiuvvIKRkRHcdddd+P73v48bb7wRO3bswF//9V8v+Hv+0/Q0Hn/8cUiSNG/WxsTEBJ555hloNBoYjUaYTCbk5uaioKAAGRkZKCkpQUZGhjhlZmYm/VhfTDIu9rycyHM6nXGvIbGzamITFbEzZSRJgtPphF6vR0pKikjYqVQq+Hw+pKenw+FwICsrC263GzqdDpFIBNFoFHq9Pi6pJv/e5MSCPHsi9j7y68/c+5xrpgURERHR+ezcuRM//elPcc899yR7KJdMEV1M6Q0RERERnZPL5RIBxrnnQ6EQnE6nCJLJATU5+ObxeKDT6TA7OwuDwQCXyyWqdnU6HYLBoKi21el0IrglV+FmZWVBpVIhMzNTBOPlgJccpJd/nq9KnZaeHISXA/VOpxMulwsej0dcb7fbxWWFQoFIJCIqyyORCPx+P7xeL6LRKBQKBUKhEILBICRJglKphEqlEgvUZmVlIT8/HwaDASkpKUhNTUUkEkE4HIbf78fs7CxcLldcGyOlUon/+q//AgDU1NTgiiuuQElJCaLRKIKDg7g7PR0TX/lK3H5Fo1FEIhFEIhFRpS4LBoMikZRI4XBYVJ7L+34x/H4/dDrdOW/X/t3f4dXt29HW1ob3338fDodDBMerqqpQV1cHrVYrfq/BYBCBQABKpRKSJInkWygUQigUgkKhgEajQUpKCtRqtTiv1WqRlpYGk8mEnJwcZGdni8SB0WiMSyRkZWWt+YC2nGCInTEhJz7l187F3Cc2IQqc/R9KSUmB3++HXq+H2+1GZmYmXC4XDAYDfD4fDAbDvNdQeXaD/Lobm+CUZ/HMfQwRERElz8mTJ/GHP/wBDzzwwCVt55ZbbsFzzz0nPneuVqt79ERERESLFFvJ6vP5LnheDrS63W5otdqzAdBgcMHzqampyMzMhF6vh06nEwE6rVYLk8mEvLw8ZGRkiECRHJSPbetBK48cWHQ6nSJo7/F44HA4xGW32w232y2C+/KXA7mSWalUiuC0wWCAwWCA0WgUx4HcLkmu2perr+V1AOSgPnB2YV2j0Qi9Xg+1Wi2SA+FwGC6XCxMTE6KiX2a328WMjfT0dOTk5CAnJwcmkwkmkwl6vR5jY2MYHh7G0NAQhoeH4ff7YbPZMDIygsOHD4vHmk0mfGLHDsxtZqRQKMTMgbmWqg1M7HNdSnLhQoHa4tRUPPLII+Ky1WrF448/jl/96lf427/9W9xwww2w2Wyw2WwYHx8Xsy4mJibg9XrF3z8cDkOr1SIrKwtpaWnQ6/Xi76hSqRAOhzEzM4OJiQn09PSIVlpygicUCiEcDkOpVIrjKiUlJe4kbz8nJwdZWVkwGo1xP2NPl7qGxFKTZ1UAQHZ29rI+97lmUcnJBYfDgZmZmfPOvJITu4FAAAqFAikpKZidnYVWq4VCoRCzquT3gszMTJHglZO4GRkZSEtLE3/X2PsmOqFGREREC9u4cSNOnjyJpqamZA/lkjABQERERCuSHFiJDb663W44nU44nc644KvT6YTX64VCoYBKpYJCoUAgEEBKSoo4n56ejrS0NOh0OmRmZs47bzKZRBA/NqDPAP3q5fV6xfHidDpFMN/pdMJut4vr5PYlc4NqCoUCmZmZSE9PR3p6OrKysmAwGJCeni6Ol4yMDHGd3Ms/Go1ifHwcw8PDsFgssFgsGB8fh8VigdvtxsjICFQqFTQajWgTYzAYkJ2dDZVKhdnZWUxPT8Nut4uAot/vx9TUFGZmZpCZmQmj0YiioiIUFhbCaDTCaDTCbDbPm+ExOzuL/v5+DAwMYGBgAB9++CEmJiZEGxqdTofi4mLodDoxq6CkpAQ2mw3A2WBoOByGwWDAFTU1KDAY4F3qP9wKVlRUhCeeeAI/+tGPAJxd+yF/gbZICwkEArDZbGJthcnJSVitVkxMTMDhcECSJJEQMJvNyM/PR0FBAQoLC5GXl4fi4mKkp6fD5/PBbrcveLLZbOjt7YXb7RazMoLBIPx+f1wySqVSiaSBnMgMh8MwmUzIzs4Wx9RCp7y8vFVfBXc+ckJlqckzGDweDwKBAJxOp2jRZLfbMT4+LmbpyLPF5Pv6fD4olUpoNBqRWADOHmM6nU60S0pLS4PRaERaWhoMBkPcZfk6+XWNazYQERHNt3v3bjQ3NzMBQERERBRLDk7JgcvY4NRC1wFAampqXD9qnU4HpVIJrVYLnU4XF3xKTU1Ffn4+6urq4q5jVeTac75AZ+yxJB83sceQJEliLYK5J5PJFHdc5efnx1XNX8js7CwGBwcxMjKCEydOYGRkBMPDw6LFSyQSEVXzKSkpIhArVwErlUrRvmd4eBh5eXnIz89HRkYGcnJykJ+fj7y8POTk5MQtYrwQSZIwOjqK/v5+HDlyBP39/RgZGREzCPR6PSorK2E2m2E2m1FQUACHw4G2tjaMjY0hEAjA4/GgrKwMlZWV2Lt3LwKBAE6cOCGSAXv37sU///M/I89qhe3nP19XCYCgJKH31Ck0NDTEBb0/zvEi02q1KCkpQUlJyQXvOzs7K5ID4+PjaG1txW9/+1tYrVZRVR6JRESlfGFhISorK3HllVeiqKgIeXl5yMvLi1tvwOFwwOFwzPtfir1uZmYGIyMj6OvrE7NTQqEQNBqN2FYkEoFOpxOBcnktEDmJlZ2dLRIJc08rfebBcpL/drHroSSKPHvJ4/HA6/XC6/XCbrfD6/WK2SnyZa/XG9d2TKPRIBqNxrWsikajYnZCZmamSCbIl+VkgnxZfu0jIiJa7bZu3Ypnnnkm2cO4ZEwAEBERkRAKhUSQKPYkB4nkk9x3OTa4JAff5WppuTpavlxcXIysrKwFK6ZpbXK5XJiZmZl3iq3AlxcSBeIr8OV1DeSFU5oMlf4AACAASURBVOXzxcXFaGxsFK1M5LUPEkmSJFgsFvT396Ovrw/9/f0YHBzE7OwsZmdnAZxNWsntWCRJgsFggFKpRCQSQXZ2NvLy8lBQUICCggLk5eWhsLAQubm5F9W73e/3w2q1or+/X5zk5FkgEEBBQYEI8ldWVsLv96OzsxPt7e2w2+04fvw4PvroI9TV1aGxsRFNTU348pe/fM71IGw2G0wmE2644QY8/vjjyMnJOXuD1Xpxv9BVLChJ+M1vfoMf/OAHiEQiKCgowLZt27B9+3ZUVVUt2fPq9XpUV1ejurr6gvednJwUswrGx8dx+vRpWK1WzMzMIBQKiUWes7OzUVxcjMLCQpSUlKCxsRFmsxlpaWkXfI7YZNzY2BisVuu8RII8W6u7u1skllQqlUiWRCIRkdhVqVQiEZaamjovSRc7u8VkMnEm1sekUCgSnlxwOBwiYSC3PfN6vZiensbg4KB4PZfXv/H7/YhdblB+fVcqlWJR7Nh1LmIvy7fLC8wTEREli0ajEQVGqxkXASYiIlpjzlc1PbeCWu4pLAsEAqK9SGx1/dwq/IKCAlbbryMOhwPT09MLBvPl00IfKTMyMhasAo4N6CcrCSRJEoaGhtDa2opjx46ht7cXExMTYhaBQqGIS1TJASk5MBkboCwsLIxLhl0Mm82Gnp4e9PT0oLe3F0NDQ4hEIlAoFMjKykJlZSUqKipQXFyMaDSK4eHheckAvV6P+vp6VFZWorKyErW1tRcVQJPbjYjAv+yjj2D7+c/nLQK8llX+wz9A/8tfissOhwPHjh3D4cOH0dvbi9nZWZjNZuzZswd79+5FQUFBEkd7fj6fTwTvx8bG0N/fLwL5snA4jNzc3LjjXE4uXUz1vt1uXzBZEPs+JC+eLCcQ5DUlVCoV1Go1FAoFFAqFaFUkJ5+ZOFidJEkS7dfkNn8ul0uc5ASxy+USx0Ps66u8KHpaWppIBMcmDWLPL9UMCyIiWvkStQgwADz88MO4++67UVFRkYCRJQcTAERERCuQx+PB9PQ0pqenMTU1JYKv8nUOh2PBgKtKpZq32ONCp8zMzCTsFSXbuZJDsRW9cytc5P7vc/vNx55yc3NXVGuPSCSCiYkJ0Zrn+PHj6OzsxODgoOiNLgf4S0pKUFtbi7q6OlRVVYl+63l5eQkfl91uj6viHxkZgcvlwuzsLEwmkwjcl5SUQKVSYWhoKC7Ir9PpoNfrUVFRIe5bV1e3qAruhGACYEFWqxWtra1obW1Ff38/gsEg6urq0NTUhF27dsFkMi3TaC9dOBwW/zvj4+MYGRkRrw+RSATA2fYyGRkZKCgogNlsFjMKiouLExJsld//ZmZmxLoXse+BMzMzYqx+v18k7OSZBQqFQiyOLScK1Gq1WDw5JycHeXl5yM3NFYtiy9fxvXH18Hg8cUkDl8sl1nmRr5NnMC5kbmHDQqesrCwWOxARrVKJTAC88847sNvtOHDgQAJGlhxMABARES2hcDgsgvaxAXw5sDE9PR0XcJUr3QwGg+ihbDKZFjxP69di2nHEHldyj+709PRVv7iny+XC6OgorFYrrFarCFROTU2JxXOdTickSRIVwrW1tdi6dSt27tyJmpqaJd3HxQb5a2pqoFKp0NPTg66uLvT29oq/mdFoRHV1NWpqalBdXY2KioqV0U+bCYBFiUQi6OzsFEmBsbExaLVabN26FU1NTWhqarrg2g4rndfrFckBi8UCq9WK0dFRTE9PQ6FQQKlUQqfTwWw2o6ysDKWlpSgpKYHZbF6Sqny/34+ZmZlzvi7GLqat0WjEOgoajUYEeAOBAAKBALRaLbKzs+Hz+TA7Owu9Xr9gArSoqAglJSUr43+TLspiZkwu1PbB7/cjKyvrvO+nOTk5PDaIiJIokQkAu92O7373u3jqqacSMLLkYAKAiIhokT5O9bTcWicYDIr+tgudSkpKWHG4zsmJoKmpKXF+cnJSXJYkCQqFQrS+0Gg0opWO0WhccMHNc/V2X+nk4LncokT+6fP5AJz9H5T3W5KkuOpOpVKJ+vp6NDU1obGxERUVFZfcludc/H4/urq60NXVhc7OTvT19YlFd/Pz80Xv9urqamRkZGBoaAhtbW1ob2/H9PQ0AoEAwuEwSktL0dDQgMbGRtTX11/U+gDLqqMDoZtuQqi8HADgDofxwcwMrluC2RJzDfl8KFuCoLk9FEKH241d50iqpoyOQv3RR5f8PKFQCN3d3WhubkZLSwvcbjf0ej02b96MPXv2YNOmTRe1sPBKFggERHJAbjnU398Pn8+H1NRUeDweGAwGVFZWxrUbKisrW5bfxULtieTXHZ/PB4VCAZ/PB6/XC7/fj7S0NOh0OtGCRqlUQpIkBAIBAGcT+PIC9rHtZ+YmDxLRMoySKxAILPh5cO4i2/KsGQBiBopc4DH3JM9I4boHRESJkcgEAADcfPPNePXVVxOyrWRgAoCIiNYtl8uF8fFx2Gw22Gw2jI+Pi8Crw+EQgVf5lJ6efs6q/JycHGRlZSV7lyjJ5iaJFqpCle8n977Ozc1dsLJUXjR2JbXWuViL6T0eCoWQl5cngoByQFCv1+P48eNoaWlBb28vAMBkMmHjxo3YuHEjGhsbl6yaWk5IyMH7mZkZ+P1+hEIhbNiwAY2NjaLXvs1mi7uvz+dDNBqFXq8XQX65j/9qD/51d3fjqaeewvT0NO644w5cc801S/6ct912G1544YWEb9fr9eLJJ5/E8ePH8bWvfQ2f/OQnE/4c52K323H06FEcPXoUHR0diEQiKC0txc6dO7Fjxw4UFRUt21iSRQ7CxyYIpqamEAwG4ff7oVarUVpaGpcgqKqqSsr77fT0NGw2m0jO2mw28ZlBbksUiUQgSRKCwSDUajVSUlJEW6JoNIpgMAhJkkSCQ14IOSsrCzk5OTCZTCgqKkJubi7y8/NRWFi4fC2+aFksVEwy97MCgLj3tbkzDuYmlfLz89dcApGI6FIlOgHw9a9/HY8++uiqnYnPBAAREa0ZgUAA09PTC36hGhsbEz205cpDlUoV9yUq9jwXuSXg7DElB3kmJibikkU2m01U5cvJovT0dBHEkftK5+bmIjc3FyaTaeVXeF+EYDCI0dFRjIyMYGhoCENDQxgZGRFV+5IkIScnB0VFRaJlRmFhIcxm87zAVjgcRldXF1pbW9HS0gKbzQa9Xo9du3Zh9+7daGhoSHjwPBwOiwV1Y4P3kiQhLS0tLnhfUFCAzs5OtLe3o62tDRaLBZIkISUlBdXV1WItgZqamjW3+KgkSfjjH/+IgwcPIiUlBffeey/q6uqW7fmXKgEgCwQCeOGFF/D222/j1ltvxV/8xV8kJVEzdz2BQCCA+vp67NmzB7t27VqTryHnEwqFYLFYxOvLyMgIRkZG4Ha7IUkSlEol0tPTUV5ejoqKCnFaCesueDwe8f4hv4eMjY3BZrPBbrdDkiRoNBqEw2GoVCoYDAbodDqoVCoxsyAQCMDr9YokQjgcRkZGBvLz88VizfKaJYWFhUlbVJ2Wls/ni1sXymazicvyulAyeYZKSkqKmFkQO9NA/oySm5ubrN0hIloWiU4AvPTSSzCZTPjMZz6TkO0tNyYAiIhoRYutHJ4b2I/t6Rs77X5uZVRRURHMZvOaqKSmS8dj6uORf1+xfe1jK3RVKhXKysriqvZramoW1YbIZrPhv//7v/HBBx9gYmICKSkp2LhxI3bs2IEtW7ZAp9MlbD8cDgc6OzvR0dGBrq4usaipHLzfsGEDNmzYgNraWigUCvT09MQF+gOBAFQqFerq6kRSoLy8fM0nCt1uN1599VX89re/xdVXX4277rorKRXJS50AkAWDQRw8eBBvvvkmbrjhBnzlK19JamVtbFLsT3/6E6ampuJaB23evHnNH4MX4na7MTAwEHeanp4Wt+fl5YmFs+UEwUpbgyG2gCF2tpTcjkhe7FhuQZSVlQWdTidew0KhEFwuF1QqlUi+pqamwu/3o7CwcMFCB7YiWtuCwaBoKyif5MTB1NSUSELJiTSlUinWAiooKBDFC/JsxJX2P0NEdCGJTgD09/fjZz/7GR599NGEbG+5MQFARETLzul0wmq1Ynx8HBaLRfycmZmJq6aWv4zEfgHJyclBQUEB8vLyOC2eAJytdpMrLK1WKyYnJzE+Pi5mfUQiEdF7d+4XXLlCXz6m1mN1rc1miwvwxyZCYheuTUSPbqfTiUOHDuGPf/wjJiYmkJubi6uvvhq7du1CQUFBQvbJ4/Ggo6MDZ86cQXt7O6xWK5RKJTIyMtDY2CgC/SUlJQgEAujt7b1goH8ttO35uHp7e/Hss8+ip6cHt956K66//vqk/g6WKwEgC4VCePXVV1dMIiCW2+3GyZMn0dzcjFOnTsHn88FsNmPPnj3Yt28f8pZhTYbVZO7C3P39/WJGoEKhQGFhoVicu7KyEqWlpSt6MXR5weO5sxxjX7tlkUgERqNxXrJgdnYWkiTFJRbk3wWTBevX3AKJuWtczU0uZWVlLTiTNi8vb0X/DxHR+pDoBAAAHDhwAC+//HLCtrecmAAgIqKEkQP7c6vXZmZmEA6HoVarEQ6HkZ2djYKCAhQXFyM/Px8lJSViOju/YJLsXF9EY9s5ARB99GO/fMo/13tf3MVW78cG9xdbvb8Ys7Oz+OCDD3D48GH09/cjEolg3759+PSnPw2z2XxJ25YXVZWD96OjowgGg/OC95WVlZidnUVbWxtOnTqFjo4OjI2NQalUihY/8n0LCwsTst+rldzm5/nnn0dubi7uvfdeVFRUJHtYAJY/ASCTJAmvvfYaXnjhBezfvx933nnnigxsWa1WNDc34/DhwxgbG0M0GsXWrVuxe/dubN26NaGzadaacyUIgLM9+svLy+MSBKtp5o/X68XY2BgmJiZEklxuY+d2u6FWqyFJEqLRKAwGA1JTU6HVaqFSqRAOh8V7hdvtFoUZ4XAYBoNBVInHtiEqLi5mccY6ISeiFlrDYGxsTCz2LS+knZOTs2Byqbi4mGtoEdGSWIoEwGpeCJgJACIiuqC5C3jKP6enpxEIBABALHYZG3yVf7KfPsn8fr84fuZW7Hu9XqjVaoRCIahUKlGpLwcXCgoKRKX+emi9sxgOh2Ne6wu5F3A0GkVOTg5KS0tRWloKs9mMsrIyFBQULGmibWhoCG+++SY+/PBDpKWlYc+ePbjmmmtQWlp6UduTe/TL/fl7e3vhdDqhUqmwYcMGNDU1iSr9aDSKgYEBnDx5EqdPn0ZfXx/C4TDS09PR0NCAyy+/HI2NjcjPz0/wXq9uLpcLBw8eTHqbn/NJVgJAJkkS3nnnHbzwwgvYu3cvvva1r63ooLqcIGtubkZLSwvcbjeys7Oxa9cuNDU1Lcl6GmuRz+eb9xo7MTEhbs/OzhbthWpqalBVVbVq1//weDywWCyw2WxivYLJyUlYLBaEw2FRyKFQKMSMOXnmgDybYHJyEi6XSxR8aDQa5OTkoLi4WBR+yD9X2msMLS15DSX5+JqYmMDU1BQmJibgdruh0WgQCoWg0WhgNBpFcZB8zBQVFSEzMzPZu0FEq8hSJAAefPBB3HPPPZdcyJQMTAAQEa1jDOxTogSDQUxMTGB0dBTj4+Pip7xIqtxjVqvVori4OC6wLx9L7C87n7zAbmxlqlzpLi9oHVuZWllZCaPRuOzjbGtrw69//WucOXMGJpMJ119/Pa6++uqPVSkdiUTQ19eHM2fOoK2tDT09PYhGo1Cr1diwYQMaGxvj2vE4nU6cPn1azAAYGxuDWq1GaWkpGhoa0NTUhLq6unU9A+RCenp68Nxzz62YNj/nk+wEgCwajeLXv/41XnzxRezZswd/9Vd/tWpeuyYmJtDS0oIjR46gr68PSqUS9fX12LFjB7Zv387g2kWYmZnBwMAA+vr60Nvbi76+PgQCAUSjUaSnp6O6ujrutJKTRh+H3W4Xnxnl1nHy7DyZUqlEfn4+jEYjMjIyoFQqEYlEEAgEMDExEXffSCQiFouP/ZzJ6vD16VzfT2ZmZuD3+wGcPWYMBgO/nxDROS1FAuDgwYPQ6/XYv39/wra5XJgAICJag6LRqAjCjo6OYmRkBCMjI5icnEQ4HIZKpYIkScjOzo5rwRPbiodIFvtFP/Zn7Jf3UCgkgvqx/eLXy0K5l8JqtYrA0cDAAIaHhxEOhwEAWq1WLFopn1ZCm5pIJIL3338fb731FiwWCzZu3IgbbrgBjY2Ni3q81+vFqVOncPLkSZw8eVJUjFZXV4tK/aqqKtGGoqurSwT6+/r6oFAooNfrUV9fj6amJmzatAkGg2GJ93ptmNvm55vf/CbKy8uTPawLWikJgFiHDx/Gv/zLv6Curg7f+ta3EtY6a7lIkoSOjg6RFHA4HMjKysLOnTtx5ZVXYsOGDcke4qrmdrvR29srTn19ffD7/YhGo0hLS4tLDNTU1KyaRNJiBYNB8Vk0tkDAYrEgGo2Kz6NyYUBGRgZSUlKgUCgQiURgt9tFqyKlUglJkqDRaEQ1uNlsRlFREUpKShjwXac+biHT3FaRF7ueERGtDkuRAOju7sZ//Md/4P/8n/+TsG0uFyYAiIhWofNVXul0OqhUKmRkZMwLxvKDLsVyOBwiQWSxWGCxWDA2NgaPxyOqgFUqFfLz81FUVBR3KiwsXDOVjEtNbmHT19cnqkTHx8fF7UVFRaiqqkJVVRUqKytXdNLk+PHjeOWVVzA6Oop9+/Zh//79KCkpOe9j7HY72tra0NrailOnTsHtdiMtLQ2bNm1CY2MjNm/eDJPJBOBsNe3x48dx/PhxtLe3ixYSdXV1uOKKK3D55Zdf8PloYauhzc/5rMQEgOzw4cP42c9+hvLycnzzm99c1RXLsQsMnz59GqFQSCTarrrqKs4SSBCv1xuXHOjt7YXP54MkSTAajairq0NtbS1qa2tRVla2poPbgUAA09PT8z7TWiwW8VlEXuunqKgI+fn5iEQikCQJkUgE4+PjcZ+B51aGy5+DS0tLkZ6enuS9pWRwuVywWCyYmJgQP0dHRzEzM4NQKCRaVmVkZIgWVSUlJTCbzTCbzasuuUtEZy1FAkCSJNx222146aWXErbN5cIEABHRCuN2uzE8PIzBwUEMDw9jeHgYY2NjCIVCUCqVUCqVyM3NFR9Ki4uLYTabWf1EcWZmZmCxWDA8PCyC+8PDw4hEIgDOVnCbTCYUFxejuLgYpaWlKCgoQElJCfR6fZJHv/os1KpHniHh9/tRWFi4aheRtNlseO6553DkyBFs3rwZBw4cQFlZ2YL3tVqtaG1tRWtrq2iFUVhYiMbGRjQ0NGDbtm2iP7bVasWJEydw/PhxdHd3i1lJW7ZswebNm9HY2LhiEyGrSU9PD55++mmMjY3hq1/9Kj75yU+u2DY/57OSEwCy5uZmPPXUUygtLcV3vvMdZGdnJ3tIlywSiaCzsxOtra3405/+hKmpqbi1BBY764cWz+FwoK+vT7yX9PT0wOVyiUXb5feRyy67DAUFBcke7rIIh8OYmJjA8PAwrFarmOFqs9nEukHRaBQmk0kEbLVaLcLhsGg5JLfPi0QiUKlUSE1NFYFeeUZBSUkJk1zrmNfrhcViwfj4OIaGhjA6OgqLxSLWVpJbWZrNZpSWlqKkpATFxcUoKyvjZ2eiFWgpEgAAcODAAbz88ssJ3eZyYAKAiGiZ2e32uAon+bzf74dOp4NerxfTm+UveaWlpR+rlzatbfKU57nHkc/nAwDMzs7CZDLNq34rLy9fVRW/K004HMbAwAB6enrQ1dWF7u5uuFwuKBQKaLVaVFZWikr+6urqpPTiT6T33nsPzz//PNRqNe644w5ceeWV4rZgMIienh4R7B8bGxOL8srB/thFRmMTA729vQgEAigqKkJTUxN79S8Buc3PCy+8gJycnFXT5ud8VkMCQHby5Ek88cQTyMzMxIMPPrjmgrROpxNHjx7F4cOH0d/fj0AggC1btmD37t3YunUrZ4ctEUmSMDw8jO7ubnR1daGzsxN2u120RKutrUVDQwPq6+tXVZI5kWw2G6xWq5jZaLVaMTw8LIpootEocnJyUFZWhvz8fGg0GigUCni9XlitVlgsFpG8VyqVSE1NRUlJCcrKykSCwGw28xhfxwKBgDi2Yj+L2+128V1OoVDEFX5wBgpRcixVAuDuu+/Gj3/841X3vZoJACKiBIpEIrBYLBgcHBSnoaEhBINBcZ+8vDyUlZWhvLwcpaWlKC0tXRNVgpQYLpcrbgbI6OgoxsbGEAwGxdoNOTk5cbM/zGYzCgsLWS2dIHKSrq2tDe3t7aINQewXOrlP/VqrFAyFQjh48CBef/11XHXVVbjtttugVqtx7NgxHDt2DG1tbQiHw9Dr9bj88suxceNGbNq0Ke73EBvs7+/vh8fjgdlsFsH+2MQAJdbcNj933333mqlKXE0JANnp06fx1FNPITU1FQ888ACKi4uTPaQlIa/T0dzcjJaWFoRCITGbZ9++feecMUSJMzs7K5ICbW1tGBoagiRJUKvVqKmpQV1dHRoaGlBTU7PuPyvMbaPZ39+PqakpBINB+P1+sZh8YWEhcnNzYTAYIEkSQqGQuP/cgovYdpss3CG/3w+r1TrvOJOPG5/Ph+zsbBbqEC2xpUoA/OhHP8K+ffvQ1NSU0O0uNSYAiIg+pvHxcQwODmJgYAADAwMYHBzE7OwsgLP90ouLi1FRUSEC/GVlZawUIkGewj40NCR+Tk1NiQBzRkaGOG7kBFFBQQG/SCaY3W5Hd3e3qKSUgyUKhQLFxcWoqakR/ZfXWvXuQrxeL5555hm899572L59OwwGA06ePAmfz4eMjAxs3boVW7dujWvLE4lE0NHRgaNHj+LEiROYnp6GUqlEbW0tNm/ejC1btqCoqCjJe7Y+dHd346c//emqb/NzPqsxASDr6+vDj3/8Y3i9Xnz3u99FVVVVsoe05MbGxnDs2DE0Nzejv78fOp1OJAG3b9+OlJSUZA9xXZDXoJGT2t3d3XC73XC73SgtLRUztriQ+v8Kh8Ni5sDw8DBGRkZEv3j5s1pqairMZjPKysqQlZUFtVotWgHKix2Hw2EAgFqtFi0W5QKgsrIy9pVf55xOJ0ZGRkSxj9yqMxwOi4Wwc3JyUFpaCrPZjPLyclRUVCA3NzfZQydaNZYqAfC73/0OExMTuPXWWxO63aXGBAAR0Ryx7VXkk9yiR16ELLaXd01NDT/EkyBXj889dnw+Hzwez7zjp7CwEIWFhWsuWLdSjI6OorOzEx0dHejo6IDL5UI0GkVWVpZYZLGmpmbdLpDd1dWFRx99FB9++CGKi4uRl5eHpqYm7N69G1u2bImrHrdYLDhy5AiOHDmCoaEhKJVK1NfXY/v27diyZYtYyJeWR2ybH5PJhPvvv39NV1qv5gSAbGBgAE899RScTie+/e1vo7a2NtlDWjahUAinTp3C4cOH0dXVBafTCbPZjN27d+PKK69ETk5Osoe4rkSjUQwNDaGzsxPt7e3o6uqC1+sFAJjNZlx++eVobGxEfX09kzUL8Pl8GBoaEgHcwcFBscYAAKSkpMQVc+j1eoRCIdFbfnBwEG63G9FoFNFoFHl5eSgvLxfJgfLy8lW9mDglxvT0NEZHRzE8PCwKz2w2m7jdZDKJorOKigpUVFTwOylRjKVKAIyOjuLJJ5/E448/ntDtLjUmAIho3YlGo7BYLOjr6xOnkZERRCIRKBQKGI3GeR+m+CGcgLN9PwcGBuIq+OUvfAqFAhqNBkVFReILn/wlLjU1NdlDX9PmVji2t7fDbrcjEomgpKQEjY2NqKysxBVXXIG8vLxkDzdpYlvzWK1WdHZ2YnJyEl/84hfxN3/zN3FVZR6PBx999BFaW1tx+vRpBINBGI1GtvFZAVwuF5577jkcOnQIf/Znf4YDBw6smTY/57MWEgCy4eFh/PjHP8b09DQeeugh1NXVJXtISdHX14cPPvgALS0tmJmZQXp6Onbt2oW9e/eisrIy2cNbt6xWK9rb2+NmDASDQZSXl6OhoYHrtixCKBSCzWabV1Akry8gtxmSC0EMBgM0Gg3sdvu89cEkSRJthmJbDVVUVPB9eJ1bqJ2V3W6Hz+eD2+1GXl5eXNFRbW0t1yGgdWWpEgDA6lwImAkAIlqTYgOC8slisSAQCCAUCiEvLw8NDQ0iMLheq39pvtgP0XKLJ7miS6vVxlVnlZaWori4eN33010ufr9fVCq2t7djaGgI0WgUSqUS1dXVqKurE1X9Wq022cNNKqfTidOnT6O5uRknT55EIBBASUkJmpqakJWVhZdeegnXXXcd7rzzTkSjUXR2dqK1tRUfffQRpqamoFKpsGnTJrbrWEHmtvn51Kc+lewhLbloNIrBwUFEo1F8+9vfxg9/+EOkpqaisLAw2UNLiImJCTzxxBPo6+vDgw8+iC1btiR7SEnl9Xpx4sQJNDc348yZMwgEAmhqasKnPvUpbN68eV0uartSRCIRDA0NiSR7T08PXC6XWPy9qakJjY2NDEovUjgcxujoqJgNELtmmEKhgEqlQlFRkZgVYDKZEIlE4h4zNTUFAKJ4Sf5sWlFRgaqqKhYv0bxZyXKCYO5CxXJSqaGhgUVLtKYwARCPCQAiWrWCwSD6+/vR1dWF3t5e9PX1wel0AgA0Gg3KyspQXV2NqqoqVFVVIT8/P8kjppUgEAjAYrEsusVTfX39uqiuXUnC4TB6enpw5swZnDlzBoODg2LhWXkhw7q6OpSVlTEghLOJkWPHjqGlpQWnTp1CMBhEbm4utm3bhm3btmHDhg1QKBQIhUL4x3/8R4yOjuJTn/oUuru70d/fj2AwiLq6OjQ1NWHPnj0wGo3J3iX6H3Pb/HzrW99CaWlpsoe1bKanp1FTUwOtVotoNAqFQoH09HR0d3cne2gJZbPZ8PTTT6Onpwf33nsvtm3bluwhrQjhcBgnT57E5MMGBgAAIABJREFU4cOHcerUKXg8HtTX12PPnj3Yu3fvuk/0rgRyYv7MmTNoa2vDyMgIlEol8vPzsXHjRmzcuBENDQ0slPiYIpEILBYLhoaGMDAwgL6+PgwPDyMUCgEA9Hp93GdVk8kEl8uFwcFB9Pf3o6+vDw6HAwCgVCpRXFwcd3+z2cy1peicCQLg7Lp2ZWVlcccNC+ZotVnqBMCLL764qr6LMgFARCtaNBrF8PAwenp6xIKdcu/DlJQUVFVVoaamBjU1NaiqqkJmZmaSR0wrwfk+0CqVSpSXl8d9oGXFWvIs1GogEAigvr5eLE5YX1+/qj5cLbWxsTF8+OGHaG5uhtVqFYtrXnnllbjiiiviAi2hUAitra14++238dJLL6GyshI7d+7Ejh07sH37dhQXFydxT+hcnE4nnn/++XXX5mch27Ztw7Fjx8TlBx54AD/84Q+TOKKlMz09jSeffBLt7e341re+hZ07dyZ7SCtKJBJBZ2cnmpubcfz4cbhcLpSWlmL37t246qqr+BlwBbHb7Whra0NraytOnTqFUCgErVaL6upqNDQ0YMeOHeu6Jd+lOl8xizzTOfZzblFREaxWq7ivvNgscHYGQUVFhbgvZw8QcPYYkxNQg4ODGBgYgNVqhSRJiEajyM7ORnV1tThVVFRwtiitOEuZAPi7v/s73HPPPSgpKUn4tpcKEwBEtCLMDdjKU4tDoRBKS0tFqx75ROtbKBTC4OCgSAz19vaKSieFQrFgpROrz5JrbGxMVPR3dnbC4/GI6qLLLrsMl112GWpra/l3mkMOeLW2tqKlpQU2mw3Z2dnYtWsXrrrqKpSXl8fdP7aFRnd3NwKBAJRKJSYmJvDcc8+hqKgoOTtCi9LV1YVnnnkGVqsVd91117po83MhP/nJT/DAAw8gHA6jsLAQzc3NqKioSPawlpTb7cazzz6L999/H7fddhv+/M//PNlDWrH6+/tx+PBh/OlPf4LH40F2djZ2796NT3ziE1xYeIUJhULo7u4Wa9HY7XYEg0Hk5+eL9WWY8L908lpnsd+rYgP+aWlpcZ+RCwsLMTU1Je4bO6NaqVSipKQk7v6lpaX8G9GCxVY+nw+pqanzkkp1dXVIS0tL9pBpHVrKBMC///u/o7a2Fvv27Uv4tpcKEwBEtGzC4TD6+vrQ3t6Ozs5O9PT0IBAIAABycnLw/9k787Aor7Nx37Oxgwtx340sooCsKiC4RTRxX9qYxuxfs9umTdombdN++bqlV9sk/b42vzZNmq2NSZpo1LhFUZRVRRZXFhEFAVG2gYGZYZbfH8eBGRhgWAYGmfu6ciUZZt458z7vec5znu0EBATg5+eHv78/U6ZMcRqXwxyDwdBa/WH6p6qqChAtnmbMmNFa/eHn5+fMVnIQdDod+fn55OTkkJuby/Xr1wGYOHEic+bMITg42NlWqQvUajWZmZkkJyeTn5+PRCJh7ty5xMbGEhkZ2aE3q1Kp5OTJkxw+fJji4mJcXFyIiooiLi6O8PBw/vznP3P16lX+8Ic/OHWqA3Dr1i2KioosMrsNBgNff/01O3bsYOrUqTz99NPDqs1Pd9TV1REaGsq1a9cICwvjzJkzgz2kAUOlUvGPf/yD1NRUtm3b1iEQYGqL5KSNyspKTp06RWpqKsXFxXh4eBATE8M999xzxweOhiJGo5Hi4uJWm6G4uBiDwcDEiROJiIggMjKSWbNmOZ/zfkSlUlk4bc2TaNzc3Fqrq01tVOvq6iyCA9euXcNgMLT2kDfZ4bNmzWLy5MlOWTmhvr6eoqKi1ha9ly9fRqPRYDQa8fLyaq0aCAgIYNasWc7KASd2w54BgKSkJEpKSnjsscf6/dr2whkAcOLESb+j1WopLCzkwoULrdn8pkOtJkyY0Hr4rtMJ6ATaMkhMB8uZDmt2tupxfBoaGigoKGgt86+oqEAikTB79uzWAwGdFTtd0/7QS4lE0tqLPzw8vMPzXl5eTmpqKikpKVRUVHRZDfDjH/+YgICAIWWY3slcu3aNlStXYjQauXjxYoc2P9u2bXMevtcJixYtIjU1lddee42f/exngz2cAUej0fDBBx+wZ88eHnroITZv3oxEIuGZZ56hrKyMXbt2OQN8ndDQ0EBmZiYpKSkUFxdjNBqJjIzsVMc6cQzKy8tbKwVM+whTUMBZKWA/WlpaKC0tbXX4nz9/noqKCkBUAwQGBrbadgEBAbS0tFi8t6ioCK1Wa7WC22nDOwFobGxsDQ7k5+dz+fJl1Go1AOPGjSMgIAB/f3/8/f2HVGsVJ46JPQMAJSUl/OMf/+BXv/pVv1/bXjgDAE6cOOk17R23tbW1NDc3I5PJCAwMZObMma2HdToPDBredNbiyXTorikoNHPmTKZPn+7c1Dkg5r36z549i1KpxMPDg7CwMCIiIpg3bx5eXl6DPUyHp7GxkYyMjFZnlMFgID4+ntjYWObMmdPh/ab2FpmZmVRVVTFx4kTi4uJYtmwZo0eP7vR7XnvtNSZOnMgTTzxhz5/jxEYuXLjA6tWruXLlCiNGjGDZsmWMGDGCJ554gpiYmMEensPz4Ycf8swzz3D58mXGjRs32MMZNDQaDe+99x6HDh1i06ZN/PznP6eyspIVK1awc+dO59ppA01NTZw5c6a1TZpWq22tsoqOjnZmojow7YMCGo2GSZMmtQYFgoKCnA5mO6LVaikrK+uw93Nzc8PDw8Oi5cvs2bPRaDQdEnwkEglSqZTx48dbJPg4k0WcgOV+8fz581y+fBmJRNKaRGjyLYSEhODj4zPYw3UyBLBnAKClpYWnnnqKd999t9+vbS+cAQAnw5PCQjh4EHJywNEd03o9zJsHiYng5zcoQ2hqauLcuXOt5bkNDQ3o9XrGjh1LYGAggYGBBAUFMWbMmEEZn1UuX4b0dMjIgJaWwR5N/6HXw5w5sGABhIeDq+tgj6gVg8FASUlJq6Gfn5/f2uJpzJgx+Pv7t5YJD3j/0OJiOHAAzpxx/Dnv6QkrV0J8PLi5DcoQSkpKOHXqFKdOneL69esYjUamTZvGvHnzmDdvHrNmzer/oF5jI+zYIeatXN6/1+4OvR6CguChh6AXPaOTkpLw8/NjypQpHf7W3NzMiRMnOHToENevX2fUqFHExsaSkJBgNbOpqKiIgwcPkp6ejtFoJCgoiPj4eKKionCz8Xn429/+RlNTEy+88EKPf8uAkJ8Pqalw8iQMdTNUpxM6OTZW6GQrZ1ikpaVx//33U1pa2vpabGwsKSkpAznSweHKFfjsMygo6NO8btLp+K/jx/nX0qV9G4/BIGS1bh2MGtW3aw0iLS0tbNmyhT179mAwGHBzcyMxMZEvv/yy87VVrYYjR8RaqNUO7IBtwWiExYth1aoBlY3poPSUlBRycnIwGo2EhoaydOlSwsLCBi+B5dw52L9f6EtHtlv0epg7V8gtIGDAv760tJTTp0+TlZVFcXExAH5+fixYsIAFCxYwaqDn+bVrsGePsDcH2paxBZkMli8X+8p+7MmuVCopLCykqKiIwsJCLl++jFarxWg0MmHCBGbPns3cuXMJCgrC09OTq1evtr63oKCAW7duAeDq6tpaZRAUFMT06dOdQR0n6HQ6rly5QkFBAZcuXaKgoIDGxkYARo0aRXBwcOt5YoN+GHxNDZw4AceOQVPT4I6lt7i7i/U4Ph66SDYaCtgzAACwbds2PvroI7tc2x44AwBOhgdNTZCWBklJUFoKkyYJ4yc+Hhw900evF4GKw4eFU1uhEAp5xQroxQJXX1/PI488QlxcnFVFWFdXR0ZGBmfOnOHSpUvo9Xo8PT2ZO3cuoaGhhIaGOl6vdZUKsrMhK0vcK6USJk+GuDhxrxwpMNFXdLo251lmJjQ0iI1ybCxERAhHVB9obm7mpZdeIjExsctDB69du0ZeXh7nz59vdfSbDnQ1tXcKDAzEdbACFM3N4h4dPgzl5TBx4tCZ81VVkJwsxl5bK+S6fLn4dy/QaDQ8//zzxMbG8vDDD3f4e21tLWlpaZw6dYqCggIApk+fTlRUFFFRUfYvv83Kgn/8A27cgK1bYcOGwdk0Z2XB+++LQMTGjXDvvd06XfR6PS+88AIff/wx27Zt46233gJE1v7hw4fJzs5Gq9Uyf/58EhMTmTZtWodrNDU1kZaWxuHDh7l8+TJ33303y5cvJz4+vleZqBkZGbz77ru88847Pf6sXdDr4dIlMR+zs6G+HqZOFTpr0SJwtPWkp7T/fUolTJkifl9cHDuPHeO5556jvLzc4mMjR44kNzf3zuz1X1oKX34p1qixY2HzZnE/HMGJo9eLIOPOnSIwvHgxfOc7vQr8DSYNDQ2EhoZy5cqV1tc8PDxYtWoVn3/+eZvDrLpa2L5Hjgh7ISEB1q6F8eMHaeRdYFq39+2DsjKx5q1fPyhOZZMOz8jIoKGhgcjISJYvX05YWJjVAMvvf/97Nm/e3LcsZtNeZd8+KCkBf39YvRpiYsCRKzsMBqH72u9TEhNhkDJ0CwoKyMjIIDMzk5qaGry9vVmwYAGLFi3Cz0oy1bJly3jggQd4/PHHe/eF58/D3r3i36NHC7klJFgNCA86KpXQCXv2QF2d0M0bN4p1y07U1ta2JgeZWgoZDAZ8fX1bK4BDQ0MZM2ZM60HRpveaWgrJZDICAgJaAwPOFlBOTNTU1HD27NnWCuWGhgaMRiOTJ08mODiYiIgIAgICrD4vv/rVr8jKyuK9997rfbCwoUHYO4cPC7vC0xMWLhTJXEPVxjPtRVNSoKJC6LVly2DJkiFnLzkDAJY4AwBO7lyKi4Vxk5kpnDiLFsGaNTBhQtt7amvFP47M6NGWDhLTZu7oUeHYnDdP/K6wsG43CDt37uRHP/oRxcXFxMbGcvToUc6fP09GRganTp1CpVIxatQooqOjiYyMJCAgALkjZq+Ul4tNomlRcnGBqCixWYyOtnTw6nTCGXGnqLr2zwNAZSWcOiUcmMXFoNHA7NkiABIbK6L4NvDZZ5/x6quvUlxczIYNG/j0009bD3TNzs4mJyeHiooKi2zwoKAgAgICHKNkvrhYGF9nzojsxgULhBPX3IFdVycyMxwVmUwYiybnjXkA8Px5YVQuXWrzxjotLY3HH3+cy5cvs2jRIo4cOcLVq1c5ceIE6enpVFdXM3r0aBYuXEh0dDT+/v4Dk2mlVIps/6+/Fs/qM8+0GcmDISNv77ZAYX09fPqp2MwHBVmOzYwbN26wYcMGsrOzUavVBAQEsGjRIhoaGggODmbFihVERERY3XCcP3+evXv3kpubi0wmY9GiRaxevZqJEyf26WfU1NTw2GOPsWPHDpurBfodU0A2NVVU22k0Ijs0NrajflarhT4fyowa1TFb+fYa1ZKayopPP0UvkTB6wgTG+vszbtYsJk6cyMSJE1m6dCne3t6DM+7+pqwMvvhCVN2NHw+bNlk6/auqRHBtsBkzRsx3EPr16FEx35ubRWLF+vWD5rTsCQUFBTzzzDPU1dWhUqlobm5Gq9WiVCpJjIvji1WrhP3r7i6cEPfe25btq9fD1auD+wOsMX48mM6FMjmV9+yBCxdEEH/z5kFxhuv1enJycjh8+DC5ubkoFArCw8NbzxAwGAzMmDEDvV7P9u3b+dGPfmT7Otp+r3LPPcJ5bJ5xeeuWWDMdlZEjO4736FGR/XrzZp+TGPqDhoYGTp48SXJyMgUFBXh4eLBw4UISEhIYO3YsISEh1NfXExUVxY4dO7irOweXWi32IPv2CRma9mLmv9FR95iTJ7etw6aA6N69UFQEs2aJ52+AAraVlZUWgQGVSoXBYGDChAmEhIQQFhbG7NmzkcvlqNVqLl682Pre0tJS9Ho9Xl5eBAQEMG/ePMLCwrpsjdhnSkvvrKry9nh5iaD9HcL169fJy8sjKyuL/Px89Ho9EyZMaD1c3M/Pj9jYWDIyMpg2bRovvvgizzzzTPf6u73D39dXOPyXLLEMpBkM4pnR6+37Q/sbqVTse8zX2qoq8ZtTU8VvHkIBAWcAwBJnAMDJnYO5wVlWJhzia9aIknxzZ1pmJrqvv0Z/4QJab2+0jpgFZYZLZSUuDQ3IgoKQr14tHCjmWanWAh2rV4vN0m1qa2v57ne/y9GjR6murgZg4sSJLFmyhLlz57JgwQIiIyMds3+3eXZ/bq5wDk6Z0nl2/40bGNPT0aekYCguRieRoJ46FaMjZuH0ApeKChQNDchGjkS2cCHS2FjhpDRfpK1VCYweLTbOVqoELl++zOOPP05eXh61tzcrfn5+REZGIpfLCQwMJCwsjHnz5jHBPIA22HRW2WOedWUwQFYWur170eflofXyQutIv6EdEo0G92vXkI8YgXzFCiQrVlgaVp1trM31HKBWq3nuuefYvXs3N2/eBGDq1KnExMQwffp0YmNjiY2NHfjS+M6y7A0GjEeOoPvgAzR6PRo7ZqJZQ3HjBm4qFYqtW5GsXdv2/GRlwbvviiCbWXXCvn37+P73v09hYWHrNcaPH09SUhKzZ8/ucH21Ws0333zD3r17USqVhIWFkZiYSEhISL8GXB5//HF++MMfEhQU1G/X7BZTADI1VTi+XVzEOmXSTea/r7oaY2oq+uRk9CUl6ORyNFOnYnSEzPBeorhxAxelEpmvL/L4eCRxcdA+C1ipFO2OTJtFV1eIjBTrmA3Be4fl+nX4z3+EA2nChI5O/9JS9Dt2oEtJQX3XXeh8fQd3vIDrtWu4GI0o1qwRc93k7Ndo4NAhYU+pVCLIOkSCARgM6LOyqPjkE67m5FDl4cGGn/zE0lne0IDxwAF0e/eiq6+n+e67MTpSWxmjEbeSEhQSCfLly5GuWwfmZz2Y27qmoMaqVcJhNcCo1WrS09M5evQoBQUFNDc3c/z4cerq6vD09CQ4OJjPP//cevWcSiXmS1dZ/jodpKUJu6WwEM3o0bQ4wNzpDEVVFa719chmz0a+Zo3lPsW8OqCoSKwPg1wdAKLaNSMjg2PHjlFYWMiXX37Z2rJy2rRpvP7663z729+2/JC1apr2iWX5+eh37kSfmYnGAe1NicGAW3ExCnd35CtXIrnvPsvgjWmenTwp1qkNG0RgdICreSsrK8nNzSU7O5sLFy6g0+nw8fFpdfIHBwfjcTtY2NzczMWLF8nOzubdd9/lwoULrTZueHg4YWFhvTs35soVjKdPo8/MxFBSgk6vp+WuuxxLb/YzUo0GRV0dMoUC6ezZyKKjkURF3VFBgYqKCrKysjh9+jSFhYWkpqZy9XZA3NPTk4CAAD7++GNLW/7mTZHcYHJ+d+Xwz81Fn5SEPjMTXUuL8EE4ULteW5BoNLhdu4ZcoUAWHY1s6VIIDbX0P3V2T5YutUy8cwDsHQD47ne/y1tvvYW7jQmXg40zAOBk6NJZZmz71jg3bmA4dgzdwYPob96kMSAAZXQ0zQPpIOkHXMrK8Dl5Eu/z51EYDMiXLUN6772Wmakmh6jJyTBzJu8bDLz84YfcqKrCfLqPGTOGpKQk5s6dOwi/pgu6yu6fP9+ynPa2o9tw4gT61FQMSiVaLy+Uc+fSNHs2mlmzBu932BlpczNuFy/ieekSXpcvo1CpkAQEIE9IQBIT0zEab6VKwBgYyHPZ2Xyamkp1u4zrGTNmUFhY6HiHN5uy/E1nO1ir7Ll1C2NSErrDh9FXVtLg7y/m/OzZjtGCwgakajUeOTmMPHMG95s3kU2bhnzlyo7BDdPG+tw5MVdWruSElxdP/vCHFBUV0WKWqTR27FiSk5MJDAwc2B9TVyd6gH/zjXB6Pvpo22aishL9e++hT06mPjiYW+vXox+kljASrZYRycn4pqSgmDAB+dNPtwXLmptFhtzevfy0sJA3srORyeUYjUaampowGo1IJBJ+/etf8/LLLwOitc+RI0fYu3cvjY2NJCQksH79esbaaSO1d+9eLl26xIsvvmiX67dSXCz0c2am2ACYsoASEjpuEsvLMaakCId/WRlab28a5s6lMSwM7aRJ9h3nACNtasIjLw+fvDzcy8uRGwxIIyORxcd3rHxoahKVSqmpkJcndFlQkAgIxMUN2tkfNnHrlnBe7t8vMn+/8x1L5+X16+g//RR9SgrNI0dSvXgxTWFhDqV7JVot3unpjE5NxaWlBcXq1Ug2bGhzSKrVQl+ZBwM2bGirHHAEmpuF7t+/X8jEWrucqioM+/ahO3AAXUsLtZGRKJcsQe+IyR63kRgMeOTmMvroUdwqK5FHRCBbv94ys7qmRjhhHaSt0bPPPstf//pXi9emTp3K9773PX7wgx9YBi+kUrFPWbPGsnKoqgrD0aMWe5W6+Hg0Q+hgVNM+xaugABdAHheHdM0akZxhwuRE7yaJYSDZsGEDu3btsnht1KhRJCQk8OFrr+GdlCQc4m5u1qtpcnLQ79qFLi+P5gkTqImJoWnePIcO7Eo1GjyysxmVno5bdTXy6GhkGzaIikwTJl2flCTWqEGeZw0NDeTm5raeMXbz5k3UajVBQUFEREQwf/58vvOd73D48GEmTJiAv78/Dz30ENeuXaOiooL6+nrGjRtn/cDo8nKMp09jOHUKfX4+hsZGNGPH0hgQIPaTd9/tUGvYQCCvqhJ7zPx8XGtqkLe0IPPzQxYdLfbjd0BQoKioiLi4OG7cuGHxuo+3N88kJvLbu+/u2rl9uwWk4cQJdCdOoG9ooHn6dJQhIagiIoZ88qHEYMDt0iW8cnKEr0GjEQGB+PiOPhlbgySDgL0DAK+++iqPPvooM2bMsMv1+xtnAMDJ0KKyUmRoJSWJTVlkpDCizZ35ajXGEyfQHzyIvrAQrZcXtTExNCxYMOQisJ0h0etxz81ldFoabuXlyMaMQb5uncgWNnccFBfz0a9+RWZ6Olfr66l2dUXr5UVjSwu1tbX893//N0899dTg/RBr2f3+/iKDcOFCq05s48mTGE6dQldQgKG5uXWhbQoLw3CHyLe3yKuq8MrNxTs3FxeVCpm7O/KwMKRRUVaDJ8ZLl/jgj3/kdEYGl2pqqDMYaJTLaQJUWi3Hjx9nTh/PFOgztmTLmTZgBw+iy81Fq1BQFx5OQ0wMBgd2dPSE1gBgUZEIAFrbWN92ivzqD38g+coVmtzcaPLwoBlxDoBSqeR//ud/eOaZZ+w/YKNRGIGffSZa6mzbJpzEEklrtn/Lhx+i1Wq5dc89NC5YYP8x9QDXq1cZs2cPnpcvI9u0CelDD7W2pihPTqbigw/QlpaiWrgQdXg4TVotN2/exM/Pj8rKSo4cOYLBYOCee+5h48aNdq+uamlpYfPmzfznP/9B0Z8bDp1O6OaUFPHv2lrhYIyNFedpmAfbzTZC+rQ0DLW1qH19UYaE0Dh/PvrBPpRtgJHo9bjl54uNU1ERCpUK6ezZyBMSOr13rVVb9fVibsfFiQ3nYGf/VleLdl1Hj4o5vGGDyL42tQi8dQvD3r3oDh8Wc3rFChqjox3aAWZCotHgnZFhGQzYuLHN2W8KBuzdK5zNK1eK6qXBWFvMHXJarRhLe0fy+fPov/oKXXY2WhcXYf/GxAxZR4RrURGjUlPxvHJFBGbXrbMMhJu3Yrl8WVTUfOtblvsCOzNnzhzKyspwc3NDoVAglUhw1etR1dfzXmgoK+PjO7ZVaec4vtP2KiYH88jTp3GvqEDm52dzEkNvzzjrLQEBAeh0OlxcXHB1dcW1pQW3hgZG6fW8snw50f/1X5aya2rCePgwuj170FdU0BAYSN2SJWisnPEzVHAtKsI3KQmPkhLkU6ciX79eVGqYdLwtLY8GAa1Wy7lz58jOziY7O5uDBw9SVFQEgEQiYdq0aTzxxBP85Cc/QSqVUlhYSHZSEme++YZr+fl8a+RIVo0cieauu4a1s98WJAYDLsXFeFy82BoUkCkUSIOCRFBgwYIhd+beJ598wvbt27lr5Eg8AR+tlmlSKYHjxhG9ZAlLnnvOcp9l7vBPSUGvVN5RDv/uMD0D3nl5IiFVq0UaGSns2vaJLu0rXwcxIGDvAMCbb75JfHw84eHhdrl+f+MMADhxbMwP8iwuFm1tVq8WWb/mBnJxMYZDh9ClpKBTqaifNw9lbCwtDt7ep7+QV1fjdeYMI0+fxqWpCVlUFLLEREvDzOTIMfVTHT0a49KlSFatGrisNvPs/tpasVAEB1tvg2Ce3Z+WhqG+fthk9/cX1qoEpNOmIUtIQLJkidX2SZw8SXNmJsX5+cxSKHD19+/xWQJ9xnSYWl6eMMI7yZYzHjsmMhtv3aLRlOU/xCp7eoP5xtqtpgbZlCkoVq3qeMCxeSm3REJdXBwua9fi0cc+811SWQkffCDmeFwcPPFEm/Py+nV077+PPiOD2qgoahITMZiy6BwUSUsL3mlp+Kal4eLhgeK550QZLIiWIbt3w+7dpGo0/G9DA+P8/Vm7di0JCQkDen7KX/7yF6ZNm8bq1av7dqHGRpHBk5IinGlarcjMjI3tGES8ncWuP34cfXY2erWa5hkzxEYoLOyOcGL1Ny5lZXhmZ+Nz4QIuSiXSu+4SbYOWLu24IWpfDefhIQKfy5d3bDFkD2pqhB5OShJl3+vXWzr9q6sx7NmD7ptv0La0UJOQQENc3JBuj9AaDEhLw0WjEW2CNm1qc/absu737hWb21Wr7B8MMM8eHzFCZB+bt+S43cNbt2sX+gsXUM2aRW1c3JCqeLMVRUUFPmlpjDh3DoVMhnzVKiTr11s6i8+fh88/bzs3YPVqS0emHTh58iT60lJGnzmDb34+vm5uIiGnvd1y4waG/fvRHTqEXqmkMTCQuoQENEMka7AvWFQx6/WizdPq1ZbZtObVAbduibVnIKoDTIfiHjggbJj4+I6H4l67JqppkpPRabVDopqmt7iUl+OTkYHPuXOiJde991pWSIFDHnqsUqmYPXs2paWlFq97uLpy94gRnFy0CDQaNL6+bc7+mTOHRKDaUbEaFJDLkc6ZI4IC1pL5HIHb/exetGZTAAAgAElEQVQNKSkYi4uR+fpa72ff3uFfX48qMBBlcDDNISEYHfGcxAHEIiBw7hyKlhZkc+ciMyW6mO9JB/GgZHsHAN5//32mTp3K0qVL7XL9/sYZAHDieJhafGRnCweLtYM8VSqMaWno9+xBf+UKzZMmURcZiSoy0qmMb5drjTh1Cs8rV5B7eCBfvVpsRsxba5if7l5bK1pd9Keh3dgoWjSZsvvNM0ed2f2DhnmVgGtNDTJ3d2QLFogqgfbRe1NWalaWZbsP01kC7ft79xZTOX/7g63bn9/RLluuLiKChrg4DKZDA4cpLtev45OZKYwvQL50acf2YLZUUvQWg0Fsnj/6SATuHn1U6BIAvR5jUhItH3+Mxmjkxpo1qK30yB8KKG7cwPfAAbwvXkSxejXSBx9sdfw15+Xh9u9/I8nLE47SBx9sO8zSzuj1ejZv3syXX37Z8/MEKirEGmByMpsM8tjYDmeFUFWFMSMD/fHjGIqK0MlkNAQE0DhvHs2Bgc5NdC+Q37qFx/nz+Jw9i2t1tajaiolBumhRR/1q2jylpAg7CYQe7s9zBKw5/VeubHPq1NRg2L0b3aFDaPV6auLjh7zTvzOkGg3emZmMSk3FRa1GsXat9WDA11+Lio1Vq8QZCH0NatpyKKdKJc5M2bkT3c2bKENCqFu+nJY7oCWDrUjVarxPnmRkRgautbVi3duyxXKvUFIiqobT08XznJgonuf+SHoxOY337xe6MzS0U7tFt3Mn+rNn27L8Fy7EaG5rDTMkGg2etiQxmJzMZ8+KgFd/VgdcvQoHD4q2qTqd9QPATdU0ubmoPTyojY0ddvtMaXMz3qdOMSolBZemJuQJCUg3b+4QHOHAARGwNhjEQdbr1g1oFQfAufR0Vq1bx1hXV0Yajfh7eREyZgxTgoMZu2ABHg7elulOQaLX43LlimVQQCZDOneuCArExAx8VeONG3D8eJuta2pd2b7C8rbONhw/ji4ry+nw7ykGA67mAQGdDtmcOd0HBMrLhZ05f75Yp/u5msreAYCvvvoKnU7Hpk2b7HL9/sYZAHAy+NTXi/Lqw4fFf8+ZIwyxyEjLhfq2IabPyUGn01EbFYUyPn7YtRXoKdKmJrxPn2Zkejou1dXiMOH16y0dfwYDnD4tjOHz50XG0rJlQg62HtJ144bYCGVmilY+3t7Cobxwoegp2V12v6cnyuBgZ3b/AGNRJVBUhKK5GenUqZ1XCVRViQzh9HS4ckVk1YWGigy7qCjbvtRoFOcRHDggsvR8fcWGYdkyy415ZSWGAweGZbZcb+m0PVhiomXV1Llz4v6fOSMc1UuXCqOrJ0Z5eblw+p86JXTF1q1t8issRP/hh+iysqiZP5/ae+/FMEQOR+oWgwGvkycZc+QILt7eKJ58sq3aSquFr74SlQHe3vDkk20VA3Zi9+7dVFdX8+ijj3b/5qIisd6eOiUcmFOntlX4mB8ECK39+3UnTqC/cYMWhQLl3Lk0RkTQYs8qkmGMSR/7nD2Le1kZCoMBaUiIKK+OirKcw2q1kGNKili3QdhPCQlifbeV2lqRYX7kiNiArVvXvdM/NnZYbYRNwYCRqam4moIBmze3OfvNgwF1dSJpZfNm24OAjY3Cfjp4UFTWxMUJZ7K5k+3qVZE9fvw4OrWa2qgo6pcsuWPa3PUFicGAe04Oo9PScC8rQxYYKOxc86BJba0IgH/zjbBBFy8W/cx7EjTJyRFyyssTzs3ly4Xt0v7csdtZ/galkvqQEOoWL3bqzC6wSGIwGsUZZ/fdZ/n8V1cL2R05IoIvYWFinvWkTeXJk2J9LiyEGTPEHFu4sO1gS1ML2T170BcWovLzE9U0w6Cy1BYs5tn168gCAjrOM6VS6LEDB9p02dq1/d/yo74ezp4VPfsvXECn0aBTKGjw80MVGOjM7HcwTEEBz0uX8Lx0SQQFpFKkwcEiKBAXZ1kt1Veqq8VzeOKEWJPHjxfZ/YsWWX6PucP/zBn0tbWoZs92Ovz7kdbqr9sBAWlQEPLFizt286itFfI6dkwEaUaOFM9FYmKfq0jsHQBITk6mqKiIxx9/3C7X72+cAQAng88TT4jJfc89lhnqN29iPHq09SDPxoAA6qOi7siy5oHEXBG7yGTIEhI69hKvrW07a+Fvf7Ptwq+8AiEhwnHQ/hDPigqMp05ZZPerAgJQBgejnjPHmd3vYHSoEvDwQDZ/vvUqAZ1ObIZfeUUY/LZw5gz88Y/ws59ZHjim00FGhmhlUFiIxteXmpgYVOHhwzpbri/Iq6vxSU9nRFYWCq0W2fz5HQ96M2Uy/utfsGOHbRdOTYU33xQyNGuJY/zqK1r+/W/UHh5UbdmC2s+v/3+UAyG/eZO79u3DJy8P+eLFSJ98ss2RXlwMf/iDcDBs22a3MTzyyCP8+c9/xseWYO2mTfD97wtnsvl5MeZlzqdOoa+pQTNuHPVz59IUHo7e1kCwk37FvLzaq7AQRVMTshkzRECg/YbZYBCBgBdeEI5oW9fVRYvEPF62rK1NSm0thq++QnfwIFqjkZpFi4ad078zzIMBbmo18rVrkWzZ0ubsr68XAcBvvoEPP7Ttog88IM5VSEx0ZiD3Ay5lZYxKScHrwgXko0cLGa1c2Wa7aLXCyfD668KhbAtFRfDSS/DLX1oGddvZLc4s/75hUR1QXt7Wj948e9RoFHbkyy/Dv/9tm3No/37YtQtefBHM7RJTK7NDh9A1N1M/bx718fHohlgv88HAYp55eiLfssUy2USvFwHqV14RNmNvUSohL084+3NyMNTVoVMoaPT3RxUYSHNw8B3fe/1ORKLT4VJS0hoUcFGpkHl4iKSH+fNFkK+3FXXf+54ITLXvfmCqJk9OFq0rbzv866OinJWsA0SrH+rsWdGaOChInA/TPiBQVycSK44dg//7vz59p70DAHl5eRw6dIgXX3zRLtfvb5wWpJPBx2AQvRZlMkhORv/11+gKC9GMGkVtVBSq734Xg7mjwkmf0E6ezK3Jk7m1cSNStRrPU6cY+dOf4lpXh2zWLBRr1wpDe8MGoXh7wqJFYqHNysKQnIz+9Gn0TU1ox4xBOWcOqsWLafn2t+3zw5z0G7qxY6m75x7q7rkHEFmp7hcu4LVrF55/+hNyQDJrFvK4OCSmtlHjxtn+BXq9aO01ezaUlmLYtQt9SgotRiPK0FDq7713WLUysCc6X19qVq+mZvVqJDodHjk5jHzrLdwrK5FNntzWHmzNGvjPf2y/cH29cCaHhkJ+Prq//IWWa9eoTkig/he/GDabMd2YMVQ+/DCVBgPeGRn4/td/4TJiBIqnnkISHQ2PPSZaDNiJlpYW9Hq9bc5/EO1LFi0STqtvvhGboEuX0Esk4hyN4GDU27ffkS1dhiJGqRTNrFloZs3i1u3XXK9exTM3F+9//xuFRoNs/HjkixeLeRwcDHffLRxktjJzpnA8NzRg+PRTdAcOoHF1pWbxYhp/8hPns9AOg6sr9fHx1MfHI2tsxOfYMUY9+CAKHx/kmzYhWb1aBPx6Yj8pFLBlCxiNGPftE07/24kvtfHxaNautd8PugPRTp7Mjfvv5wYiSDvi+HFG/POfyD08xCHP69YJx9C//mX7RfV6UZkcGiqqE3fuRH/8ODqdjvrgYOpXrqTlkUfs9ZOGDUZXVxoXLKBxwQJAVAeMOHEC77/+FZmLC4ply5Bu2CCq7ubNE3KxBZ1OVGz4+UFREfpPP0V/+jQaHx9qYmJofPFFZ8Cmh1jMs5oaRpw4wYgPPkDu4oJ8xQqkmzaJirSeVHXrdHD8uHD25+aiV6tp8fKiMTBQZPYvXepck+4QjHJ5q31Tc/v8KqlGg1t+Ph4HDuD1f/+HXKtF5uODLCIC6YIFPas0T0wU1VkZGei/+UY8TxIJDQEBKMPDUS9f7nT4DwLmfigMBtwuX8b76FG83n4bOSANDkaRmNh2PsDRo4M95G7x8fGhoaFhsIdhM84AgBPHobaW5tdeo/RHP0L70EODPZphgcHNjYZFi2hYtAgQhvaUX/4S9507+3Tgq+bZZ7m+fTvNL700bByBdzIGd3dUERGozA6VdikrY9Tu3dxVV4ekD/O15cUXKb3vPppfecVp1NsZo1yO6vZZKSAcI5P+/Ge8p04V/cZ7ifbHP6bk6afRmlcRDTekUhpiYmiIiUFeXc2MV17BtacB1F6Qm5tLWFhYzz+YlUX9O+9Q9fDDaO6/v/8H5sRuaKZNQzNtGjW3ncLymhp8jhxhXH4+sp//vNfXNfzrX9y4fp2an/3MmWFuI3ovL2pXr6Z29WpkDQ1M/v3v8Z49u2cOL3OKilD9/e+U/fCH6PqzHcIwRjdmDNWbNlG9aRPS5mbu+vhjxgCSrVt7f82f/pSyBQtQ/fjHzrliZ7STJnFzyxZubtmCRKvF5/hxJvz2t8j/+MfeX/MHP6B02zaa1651VpT3E7rRo6let47qdeuQajSM+uorxr3/PtLt23t2ofR06v/f/+Pmt76FJjHROb+GGQZXV5pCQmgKCWlNepA2N+N26RKTvv99XI8csaxe7Q6dDs0PfkDpSy+hXr/eOd8dDakUtZ8faj8/bgIYjbhdvszkF1/ELSlpsEdnMy4uLmi12sEehs04w15OHAejkZbp04eUE8lgMLB9+3ZaWloGeyj9gnbSJFqmTetZ9qAVdJMn0xQSMuyc/0eOHOE3v/lNjz93/PjxHn3OEZ477eTJqMLD+/ysGKVSmsLDHc7531NZ9lQmPZW5PdCNGSPO2+irDN3cHEZvnzlzhueeew6lUjloY9D5+mJo30/fTpw5c4bI2wGdHmE0op49G00/H7TVVxxBfkMN3ejRqKKjMdqaCdsZBgPNAQF2c7jYY91yhLXQhN7bm5bp0/umT41GNDNm2NX570j3bKAxuLuLNqJ9XfMMBlQREQ7nnOytDWoLjqCbjS4uqMLCMBoMfbuOh8egtJMdqLk32LIyuLrSNGdO79Yko5Gm4GDUgYEON79M9Pb+6nQ6rly5wtdff83bb7/dp2vZU8aHDh3ijTfe6Pfr9haDuztNYWFoe7O+Go20TJ0q2pEOMef/sFyrJRLUs2ah66stNcA4AwBOnNyBnD171urrUqmURx55BMUwc3TfaXQm354ye/ZsMjIyevw5Pz8/Tp06ZfP7nc+d/empLHsqk57K3IlthIeHc/HiRfR9dYYOEUpKSpg5c+ZgD6PfGG7yG07057plWrOda6HtDMQ96y9byknv6K0NagtO3dx3BkpfOWVlX3p7f3ft2oVOp+O+++4jNDQUg8HQ62vZQ8Ym/T1z5kyysrL67bpOusbpYxr6OAMATpw4KJWVlWi1Wi5dumTxelVVFWq1mrKyMgC0Wi0FBQUYbmeYZGZm8pvf/IarV69aff+MGTPQ6XSt1yspKaGiosKmMZlfq6amBoPBQHFxcet3X79+3eL9dXV15OXlDak+YwNBZ7K9ceMGarXa4rX297C9fDu7VvvnAkCj0XDu3DlMZ6mbL9Ll5eVcu3aNxsbGTsfd0tJCXl4e9fX1SMwyE6x9V2fP3ZUrV7h48SLV1dW0tLS0/reTgZUlWOqCiooK9Ho9Fy9etMjesCbz9uOpqqri2rVrVFdXU1FR0Srz4YC1+2ZNjsXFxZSWlmI0GikoKKC0tLT1b3KzrLH2892a7IeyXq2qqmKsg5+XYW/5dUb7Od2VrrRF57a/nglra35Pxnkn05W91FvZtl+z29tgtthSw00+Xd2z3t6v7mwpa/PFlu/qbN0eLgyk3dKZTuxM15l0c2f6e7jNq/bY8nzbYidawykr+9N+7vXWToGO97e+vp4DBw5gNBqprKxk/PjxNDc3d7hWT+TS3ee6er7a2y3m+tt0XZ1O16rPu/qtThzTx9Tbtd2aTumJrhqOOAMATpw4IDt27GDr1q3861//4u233+axxx4D4JNPPuHBBx/kn//8J3//+9+pra3l7bffprS0lAcffJCbN29SXV2NWq2mrq6uw/sLCgpYtWoV9fX1APz617+mvr6el19+mWeffZaioqJOx2R+rQcffJC1a9fyxRdf8NFHH/HII4/wySef8Nlnn/Hss88CcPXqVXbt2oVCoWDHjh32v2lDBGuybW5u5vXXX0epVPLpp5/yzjvvANbvobl8O3tOrD0XZWVlvPrqq0ycOJHvf//7aDQai3Ht2rWLK1eu4NLJoWIajYZf/OIXyOVyjh071uoMtvZdXT13er2ehx56CA8PDxQKBbt378bT09Net3vIMJCyBCxksnv3brZu3cqnn37KRx99xPvvvw9Yl7m18chkMp5++mny8vLYuXPnsGmHYu2+dSbH8vJyXn75ZSQSCVevXuWVV17pcL32893avR7qelWv11tsAh0Ne8uvM6zN6c50pS06tzMdYW3N78k472S6Wrf6IlvzNbu9DXb8+PFubanhKJ/O7llv71d3tpS1+WLLd3WmL4YLA223WNOJtbW1XV4XrOvv4TivzLHl+bbFTuwMp6zsi7W51xs7BazP17q6Oq5du8bNmze5du0aTz/9tEVAobPP2YK1z3X1fFmzW8z1Nwh9/uGHH/LOO+/w1ltvdfpbnTimj6m3a7u1daWnumo44gwAOHHigMTGxuLj48Ojjz7KW2+9RXl5OYWFhSxZsgSj0cjTTz/Na6+9xr59+xg1ahRqtZoJEyaQnp7OjBkz8Pb2JjQ0tMP7/f39GXW7V+v169fJyckhNDSUBx54gLFjxzKri4PgzK+VlJSEwWBgy5Yt/OIXv+DChQts3bqVF154geLiYjQaDWVlZezatQtfX182bdo0ULfO4bEm27/+9a8oFAr8/PzYtm0bH330EUql0uo9NJdvZ8+JtefC1dWVrbcPkausrOTKlSuA6Nn33nvvsXHjRhISEjrdfCUnJxMUFERQUBBr1qxpfd3ad3X13M2aNYtly5aRlJSERqNh5syZuPXkgKQ7lIGUJWAhk/j4eAAeeOABtm/fzoEDBwDrMrc2Hl9fX371q1/x5ptv4ufnR1AfDugdSli7b53J0TzrffLkyVav136+W7vXQ12vKhQKhzY67S2/zrA2pzvTlbboXGvX62zN78k472S6Wrf6IlvzNdv8mgBxcXHd2lLDUT6d3bPe3q/ubClr88WW7+pMXwwXBtpusaYTR4wYYfW65ljT38NxXpljy/Nti53YGU5Z2Rdrc8/keAXb7RSwfn+nTZuGq6srISEhREdHM378eKRSSzdcb+Vi7XOdPV+d2S3m+hvA29ubxx57jOeff55vvvmm09/qxDF9TL1d262tKz3VVcMRqVQ6pKqpHDdtzImTfsZ8oZ0zZw41NTWMHDkSd3f31tczMzPZtm0bUVFR3HfffQBcvHix9e8ymczi/eZMmDABiURCZmYm1dXVrFu3rsvxdHUt8wxuhUJBc3MzMTExrF27lo0bN/Lqq6+yYsWK7n/0MKG9bA8dOsRDDz3U+reAgADy8vKIjY3t9h5ae06sPRdarZYvv/wSg8HA6NGjW0viNBoNe/bsISIigvHjx3c65uTkZGJjYwEhY1MFgLXvunnzZqfPCsDWrVv505/+hEKhYOnSpTbds+HAQMmyK1xcXFrLfK3J3Np4gFYnSvsMoeGC+X2zJsdRNhyS2V5nWrvXRqNxSOvVsWPHUlVVxdSpUwd7KJ1iT/l1xogRI6zOaWu60hada+16na35PRnnnUxXNk5fZNsTrNlSTvl0jq33qzu92dn86+67wLq+GE4MtN3SXid6e3t3KztrOOeVJdaeb1dXV6vvNbd3usIpK/vSfu7Z0k7V2t68t/e3Pz9nyuQHy+erp74KV1fX1iQTpx+icxzNx9QeW9f2ztYVE7bqKieOjbMCwMmwpLy8nMjIyA6vz5s3jz179mAwGDAajWRmZiKVSrs9ZMdoNLYe1iKVStm4cSPz5s3r9fja93IEyM7O5rHHHuPDDz/kL3/5S6+vfadTXl7Oj3/8Y86cOdP6mlqtJjIy0uo97Eq+pufE2nPx8ccf09LSQnh4OBqNplVm7u7uvP7667z88stUVlZ2Os7Zs2eTmpoKiD6Lpsixte/qDNN3hoaG0tzczMWLF/H19e3B3Ro+2FOW5rSfu+b/b03mncn7yy+/5De/+Q2ff/651ayuOx1rOhDa5GhebtnS0mI186L9fLd2r4e6Xp0yZUqHHq2OTH/LrzM6m9PWdKUt17V2vc7W/J6MczhiNBr7JFtra3Zn+sLa68NRPrbeM1vvV3e2VGfzr7vvak9ntvpwYSDslvY60RbZWdPfw3FedUVXz3dXdmJXOGU1cJSXlxMTE9NjOwU6X2O6k3Nv5dLd58y/tzO7xVx/m7/f/L+Hur08UDiij8nWtb07nWKrrnLi2DgDAE6GDaaeeK+//jrf/va3kclkJCcnU15eTnZ2NgBr165FqVSyceNGfve73xEYGMikSZNoamrivffe49ChQxbvP3/+PFVVVRw/fpzGxkbeeOMN/va3v/HSSy/x97//vctyIPPvzsjIQKVScenSJfLy8qitrSU5OZni4mKqqqo4efIkV69e5Xe/+x11dXXO0rt2tJdtQkIC48aN4+jRo3z22WesWrUKNzc3q/fQXL4ajcbqc2LtuZg1axZ79uzh/fffZ+TIkXzxxRckJye39nC/5557eOqpp8jLy7M65vvuu4/m5maefPJJvvzyS9RqNRcvXrT6Xe2fU/PnzsT999/P/Pnz7X+zhxADJUuwlMnJkydRKpUUFRWRlpbGrVu3uHr1qlWZ+/v7dxjPiRMnWluWrFixgpdeesnmAMRQprP7Zk2O06dPx9XVlZdeeomsrCyampooKyvj7Nmz3Lp1i9TU1A7z3Zrsh7peDQkJITc3d7CH0SX2lF9nWJvTpk1We11pi861dr36+nqra35Pxnkn09W61RfZmq/ZZ86csVgLbbGlhqN8zO9ZdnZ26z3r7f3qzpaaNm1ah/mSlpbW7XeBdX0xnBhIu8WEuU7sTHea62Zr+js8PHzYzStzbJlLttiJ3eGUlf1oP/dmzZrVYzsFrNsUJSUl3Lhxg+TkZEpLSykrKyMlJcXiWj1Zm7r7XGfPV2e+CnP9fezYMa5fv87Vq1dJT0/n1q1bFBcXD3l72Z44mo+pt2u7NZ2Snp7eK13lxHGRGJ2hHCeDzWOPwTvvQH09ypde4toLL/T7V5SWlrJ9+3Z27NiBRCLpsicmiIxx8z7qOp0OmUzW2qbFGvn5+ZSXlxMQEIBKpeLMmTMEBwfj4+PT4b1ubm7cddddPfoNRqMRvV6PXq/vtIy0P5j6xz/i88Yb4OEBzz4rZGMLr7wi3j9pEqrNm7nyy1/abYzmdCXbxsZGJBJJa+lbZ/fQJN+ysrIunxNrz4XpAE6DwdChnyOInontMZe/RqNBoVAAliWE7b+rOzr7fnvilZHBNIUCycMPw8MPwwcf2PbBU6cgIwOefx7t1q0U/PSn/T627uZ8b2QJ3cvTFqzJvKfy7i/Gf/ABdz3yCMyZ0zMZ7tsHSiXcfz+a+++n8Gc/s8v4upOjVqtFLpdblVdn8938XttLr9792mu4f/YZnD4NaWmwfXu/XducpqYmnn/+ed59913bPmCScUYGN/bv5+aWLXYZlwl7yw86n5MjR460Oqc7m9/dzcH2OqKwsNDqmm86s2Mg57Tr1avMOHUK+S9/CU8+CW+9BbZ+9+1nwvDXv1Li40NTH6oXbaU/ZNudTdYd9pDPxHffZfQzz4CfX8/0qem9BQVUv/02FY8/3q/jAtvs2K6wRW+af4eta6o5PbXVe4N3SgpTfXyQPPBAz2SUnw//+Q/89Ke0PPooBc8/j7GfxzdYdkv7z9p6XWv62956T15dzd27dqF44w340Y/ghz+EceO6/+CePaBWw5YtdrVZ+sqdIiv38+eZXl6O7IUXejbPjh+nIjmZ6g0b7DKuzuhq7vXGToHe31/zz/Vkz2HL93XmqwgKCup2jRgoP0RnTPvtb/H+xz+gi5a4rWzfDv/zP+DhQeO2bZTYcb4PdR9Tb9cVezL9t7/F6913QaeDH/8Y+lhxkpuby+HDh/nhD3/YTyPsyMMPP8wHtuq5QcZ5BoCTYYFGo6GpqcnmBav9AmpShF2xf/9+NBoN48ePp66uDq1Wy6xZs/j88887vHfChAk97tUukUiQy+U2jWU40ZVsvby8LP6/s3to+v/unpOunovOFsjk5OQOr5nL39bv6o7BWKAdGXvIErqXpy1YG5Pz4GbrdCfHrgztzua7+b0e6nrVw8MDlUqF0WjskzPUXthbfmDbnDSf053N7+7mYHsd0dmab+v1hjP9KdveMtzk01cdZ4veNP9/W9dUc3pqq99pDJbd0v6ztl7Xmv4ebvOqv3HKanDoau71xk6B3t9f88/1ZA205fu6slu6WyOGur1sL4a6j6m364qToYtzBjtxHNzdcS8tZcqbb1IXHY0qIgJDP20CLl++zIYNG8jOziYsLKxfrtmeZ555hszMTHJycoiMjGTBggVIJBK+853v2OX7+hOpRoNnVhYjMzNxv37d9szBTnDVapnx2ms0+vvTGByMOiAAo50Mhv6UrT2ek6Eg/56gqKjAMy8P73PncKushJ/8pE/Xk86ezYz//m+U8+ZRv3AhurFj+2Wc9przd4I8JXo9Hjk5jMzIwLOoCGw4kLUrpOPGMfnNN7m5di2amTP7aZSCgdDd/YmispK7du9G0U1Pz/4kIiKCkydP9qwF2NixjMrIwP3qVZTBwajCwmjpp7lnzkDIb7DmZGdr/kAhbWzEMzcX77Nn8SgpQbptW5+uJ7n7bia8+Sa1165Rv3gxeiuZZQPNUNG3LtevM/rwYbxzc6Fd4kGPGDkS77w8JH/7G7Xx8TQHBoIDBvbshT31hUtpKSOPH8fn9GnoY9WhNDiYGb/+NfWhoShjYmix4bBdW3DaLZ3jcv06I9LS8M7JQbZmTYNgE/MAACAASURBVJ+uJZswgem/+Q218+fTsHAhBg+Pfhpl3xnqslJUVDDyxAlGnDqF9Mkne36B8ePxTUvD+8IFVP7+NAYEiD2knYOCjmpr9vfzMNh2S0+QNTbidv48Xvn5eBQX49LUBLerp22/iAzX+nqm/fa3KENCaIyMpMWWiqEe4PQx9Q+Kqiq8Tp/GJy8P1+pqkMtFBYCTfscZAHDiOLi7ozh0iBFVVfgcO0bLu++iv3mTxmnTUEZH0zx7dq83QomJif082I64uLiwaNEiu39Pf+FSVobPyZN4FxWhMBqRx8Yi/eUvYcoU8YbbBx/1Bvnu3chbWvDMy2PM8ePov/4afW0tGl9fGgMCUEVEoJ04sV9+R3/KdiCek6GERKfDraAAr5wcPIuLUTQ1IZsyBVl0NJJf/hKmTevzd8hffRW5TodHejpjvvoKfWEh6tGjqY2NRRUe3usSe6csLZFXV+OTns6IrCwUWi2y+fORbd8Os2f3/qK3Owgq3nqLkWVleH3wAfq//Y2a6Ghq770Xgy1lut0wFOQoMRjwPHmSMUeO4OLtjeKppyA8XPxxALos3n///fzpT3/qWQBg5kxcDh7ERanEOzMTfVIS+sJC9DodDQEBNM6bJ5yPfcz+GQry6y0DvebLb93C4/x5fM6exa2mBpm7O7KFC5E+/TQEBfXZUSxJTMR9+XLc0tIY++mn6AoKqA8Lo2bVKvR9DBLeiSgqKxl19CjeFy6gmDQJ+f33w+9/3zc5jB2Ly5EjjC4uZsSuXeg/+wytREJNQgINCxf2e8sZR6O/9YVrURG+SUl4lJQgnzoV+fr1oi1EHxNSZD/4AR7bt+ORkcGYXbvQFxai9fKiNiamT3K6k/VlT5FoNHhmZzPy9Gncysvb5PfTn0If54H8jTfwUqnwPHIE3dtvo7t1C2VwMHVLl/ZbMGc44VpUxKjUVDxLSlCMGyfk9POf99xZC+Dvj8v+/bhotXidPSv2kPv3Y1AqaXFxQeXnhyowEPWcOf2WJAjDZ+45qq9C2tSE26VLeF66hOflyyjUaqReXsgiI5GuXQuRkb1LTpRKUezfj6KxEa/0dPEsFRWhk0qpDw2lYcECtJMm9WnsTh9T75DfuoVXdjYjzpzBRalEetddyBMTkTzxBIwePdjDu6NxngHgZPD5+9/h6FEIDobERAgLa3M6GAyQnY3+4EH0ubm0SKXURkfTMH++Q2SnDSWkzc14nTzJqIwMXGprkQUGIl+5EhIS2oy02/ebgwchLw+WL4cnnrDtC957D/bvF3JcuBDmz4f2Miovx3j6NPrjxzEUFaHX61EFBqIMDqZ57tw7fnPr6MirqvC4eFE4mMrLkUmlSKOjkcXHQ1QUmBvbej2cOwfp6aLPeWMj7Nhh2xeVlcELL8DYsXDPPbBsGXh7t/29shLDgQPoDh3CoFRSHxJC3eLFtPRT0Gg4INHrcc/NZXRampDlmDHI161DkphoKcdz5+DAAThzRjitX3zRti+4fl2c++HuDo88AgsWiNf1eoxJSbR89BEaoGrNGhG8vQNRVFbie/CgcACuWSMysG+fN8KFC/Duu+I+/ehHbQEBO7F161bee+893LsLurz4Ity8KcYTFwehoZbOsJYWyMsTa252NnqNhubp01GGhKAKC7N7Fp6TNlzKyvDMzsbn4kUUarWYwwkJSJYsgTFjLN9cVASpqUIfl5XBrl22Ozm/9z2oroYVK2DtWhg5Urx+ey7r/vUvWpRK6qKjRWVAXzLchziKGzcYlZSE9/nzKKZMQf7tb0NsbJvTv6QEPv8cTp4U69pTT9l24f/9X0hJEU6OtWshIKDtb7duYdi7F92hQ+iamqgPC6N+8WJ0vr79/vuGOian8aj0dNzLy5FFRiJ74AHLQHdFhegHn5wsnAz/+7+2XfzWLXjmGfGZ5cuF7TJiRNvfb9zAsH+/027pAy7Xr+OTmYn3uXMiMWnZMqSrV8PkyW1vqq6Gb76BI0fEOUT//Kc4s6w7Ll0STunx42HNGrH3Ma1nej2kp6PbtQt9fj7NkyZRExNDU1jYsKrAsRXzeeZWXo48MhLZ+vUQEdH2pps34euvISlJ3MP+6I3d2Ag5ORhOnUKfnY2hvt4iKNA8Z47TRhkCWDj7i4pQaDRIvb2RRUQgjYrqvbPfnHfeETpizhxYvBiioy33PioVxrQ09MnJIvmlpaXfAgJOrCO/eROvnJw2h7+vL/KVK5Hcc49lJbpWK2yoY8fEHnXJEnG2VR9wngFgiTMA4MRxKC6Gw4fF4aAtLbBoEdx3H5gr4sZGsSHdswdDeTnNU6ZQFxmJKioKo0w2eGN3RAwG3C9dYsSpU3gWF4u+fffei2TtWktFe/OmULLHjokNTni42NyEh/fO8C0uFhvZrCyx0fL0hHnzhLPJPLgDorQrNxfD8ePC2VRXh2b06H6vEnDSEfPsfo9r11BoNMjHjkWWkIAkIaHjoWpKpViQU1Lg8mXQaETWaUSEmKsmp1FPqKkRBtrRo1BeLp6TNWssnz29HnJy0O3cif7s2bYsuwULnIZ+O1yuX8c7IwOf8+dRqNXIlyxBunGjZaWGSiWchPv2CWeVvz+sXg0xMb3L9r5xQwR+TpwQQaLHHwfT4VPl5ej++U90GRnUBwdTs3r1kA/cSlpaGHHsGKMPH0YxfjyK730PQkLEH9Vq4VjavVs4LJ54Au6+e0DGtW/fPq5du8ZTtjgcb+tdUlIgJwfq68VzEBvbcS7r9XDpEoYTJ9CnpbVWcilDQmiMjkbfm3nvpAMSvR63/Hy8cnLwunwZRUMD0qAgEaSPjbU89O62TEhNFYG7hgZRuRcbK/7pTeaUXi/08KefQnOzCAasW9fm4NRoMB48iG7nTlrq66mNiqJ+yRIMwyAY0Or0P3cOxdSpHZ3+paXw5ZfCdh0/HjZtsvx7Tzh/HvbuFf8ePVroZvMkjeZmjCkp6PfsQXf1Kg1+ftQlJKCZMaP/fvAQQ1ZXx4iUFFHdBsJpvH69kIWJ4mKhm0+eFIkp994rEo56k3SiUgmn5v79wsYNDbXdbhkGVRw9wSLLv6YG2ZQpKFatgvh4S9mY5sXZs8KJt3Kl0FHmARhbuXVL2D9JScLRtHixCLq1e170u3ahT09HK5VSEx8/7GVndZ6tWwcTJrS9yTTPMjPFmrVyJaxa1be2aN3R0CD2keZBAYUClb+/CAo4k8sGFYlOh0tJCV75+XgWFeFSX4/MxaXN2R8RYduhvr3F5FvKzBR7zoAA4eOIi7MMMtwOCBiOH0dXUNAaEGgMDUVjdraTE9sxd/grNJq2JJb2Dn/TnuTwYSgoEHupkBAhp/Z+o17iDABY4gwAOHFMmpogLU0og/JymDhRKIL2RmFxMYZDh9CdOEGLWo0yJARlXFy/93cbKshravDKyhL905qakIeGIktMtLoxYc8ekaXq6wtLl4rNkD2cc7czNkhNFVUFKhUEBooNckyM+H5zuqoScGZ39Jr22f1Sd3fRBiY62np2/6VLIoiTkSE2TB4eQl6xsf3SbsIqpk1eXp64/ooVYmNtbihUVWE8dgzdwYPoqqpoDAigbtEiNAPkaHUkpBoNHtZK5K3oyVbnh+m+rl7d/yWWWVkiy0uphAcfFBmwEgkYDBiPHEH33ntom5u5uXo1jaaKgSGCa0kJY/buxbOoCPmWLUgeeqht03LhAnz8sQiMbd4M69f3rvS9DxiNRjZu3MgXX3zRu0O7TIFb03wfPVrM98WLYepUy/eWlwsnZHIy+rIyWhQKGoKDnRulHiBVqfA4exafvDzcKyqQ63RIo6JEtdX8+ZbPj0olKvNSU4UDTKMRWW1xcSJg099rokYDhw4JndHUJPTF+vVt9oFajfHQIREMqKujNjqa+qVLMZiqX+4AZLW1jEhNZVRGBooxY5A//LBlkLSsDL74QgRTJ0zom9O/M65eFdWYaWlig9xeDqYK2V270OXloR49muolS2iaN69fNsyOjEtZGSNPnMD7wgXk3t7IN2+2rG67ndHN3r1QWAh+fmLN628ZgaXTUyq1breYVQfolUoaAwOHbeCmtf3o+fMo9Hrky5dbz/JPSuq/xKTOUKvFurdvn1i/w8LgW98SNq7ZWAx79ogKnOZm6ufNoz4+Hl37Kqw7EJeyMkalpOB14QJyL6+u59nlyyLhwV7zrCcolZCX13lQIDgY4wDbaMMBk7PfPLNfLpUinzdPOPvDw22r1rEnnQUE2idatA8I6HTUh4Q47dwukFdV4ZWb2+rwl48diyw+HsmKFZaJReYO/7w8kfQbEWEfHX8bZwDAEmcAwMnQ4MoVUfKZni6i/VFRImPDvKzXlBl18GC/9RF3dExZg6NTU3G/ckVEVxMTkaxaZdlSxZb7N5D0tEogP78tA1WtRuPpSaO/P6rwcGepnhUseveXlor2Eabs/sWLResdc+rr4dQpIZPr14UDaOZMsSDHx/cuy6qvmGfZVVZaz1S/HczSHzyILjcXrUJBXXg4DTExd2xmqmnz7FVQgItEIs7uaL95tqWywp7U1cFnnwmdExkpWgSZgrKVlej//W90x46h9Pfn1rp1DttfXKLRMPLECUanpKCYMQP5U0+1ZfQ3NMAnn4j7PGOGaPUxffqgjvfdd9/F19eX9evX9/1iN26IgFFqqtDXLi5i3YiL6/gcNTRgzMho3SgZmppoDAigISSE5pAQux0AP5QwbYy8c3NxralB5uODLC4O6aJFwplvTk/uvb1Rq8U83rNH6OTERNiwoc2+MAUDdu2ipaaG2vnzh2wwoDXD9cwZXFxdRaDv3nvbWinduiUy/ffvF9nC3/lO7yuneoppPdyzB2prxbOwebNlheyVK+h37kSfmopWoRDtMuPiHOqA015zu6J1VEoKniUl/H/27js8yip94/h3JpNKKNJBQIWEkhg6oiY0ASkiSCCCiCJIWUHWsuu6tgV+ugr2XXZFVEDwQrEhAuKqSJMQEUIJhhoiCCSQAOllkszM74/XhARCT/Jmwv25rlzKtPeelHdmznPOczxatjSK3cUHGrOzjfPx//5nvGfo3h3Cw8/sa1URLud9yx+Fm6q+qrH4RAXfxEQ8AgPP33509Wqj5YOX19XN8r9SsbFGC6/du42JZ2evwMnNxfXTTzhWrMBx4ABZgYGkhIWRU7xg4MYsTie+O3ZQe9MmfI8dw6NVqwv/nZ04YRShhw49d6JAZVO8KLBjB87UVAo8Pcls2ZLM9u3Jbd0aVxUvnJalEoP9e/ca72usVixdumDr0cP4LO8O7wMKxyM2bzbGI1q2LL0g8MfEVMf69SoI/KH4gL9XWpqxR2CPHhcf8LfZzrQhraD3tCoAlKQCgLifS53BXqyPeNGMmyowU7ho9syvv55p8zF0aMnBp5wcY/DgYisoKoviqwR27jTyt2p1/lUCiYm4tmzB8csvOA4cwJmdfU2vErAlJVFt716qx8QY/d79/PDo2tWYcXHLLSV/5sVn92/ebLSAKpzt26lT+c3uv1qltQi7++6Sy49PnjRahK1ejeP4cTJatrzqDcTNZs3NxW/HDmpGR+N78iS2G2648Ifn4kvk+/a9stZMZSk62uiFn5gIo0YZAzKF7dqio8n/4APyTp4kuV8/Mrt2rRQ/J++DB6n7v/9R7cQJPEeOxDJ06Jnv9dnPZ+jQq95QsqzY7XZGjhzJ0qVLsZT19/FyZqEXa+1WEB2NIzOT3BtuIC0khOwOHcp0475KyenEOz6e6jEx+MfG4pmTc+aDUe/e576eXc7qCzMVFgNWrjQKYP37lywG5OTg+uGHksWA3r0r9QB04aB/rW3b8PTxMWa4Fh/0P3XK6GO9dq1xbho61GhpYebffPFZt/v2ld6C5vRpXKtXU/C//+E4cYK0du1I6dvXrWYtW+12/H/+met+/hnv9HRjxeLw4cYATaGkJGMg8scfjdfBvn1Ltq4yW2mrA85efZeUhHPtWgq++w5HcrKxqrF7d+zNm5uX+yqVmKgA2MLCsN59d8mCVfFZ/snJ5T4D9LKVtgLn7N+t2FgcX39Nwc6d5Pr5GZPOOnd2q6K3NSeH6lu2cN3GjXhlZ2Pr0QPr8OElC2fFvxcOR+X7O7tSaWmwa5dRFNi9mwK7nQJPTzL+2FPA3rx5lV9NdSksDgdev/12zmC/NSTEWEV+pa0HK6PiBYHjx43VY6Ghxmeu4mNM2dmwbRsF69fjjImhoHhBoEWLynEOK2NFA/7bt+OVmoo1MNBo6dOjR8lzQU6O8Vmp8POC1Wqc382YxPIHFQBKUgFA3N+l9LA/z0zhzNtvr/Qb2hUOAJ4ze6a0Nh+FA6QFBcaJ9uw9FNxJ8VUCKSnGcw0JueRVAnn+/sabuA4dyCs+O9rNWXNz8dm9m2p79+IfF4dnTg7WZs0ufXZ/bq4xizkszBhkqsSDM+dV2CJszRqj//L11+Ps3Rtrz57nDIoXbiCeB6R07eoWf/NeR49Sc8sWo8hnseDRsyfWwYONQl6hkyeNQanK+uH5bOnpxl4B33xjrDx65JEzexOkpuJcsoT8VavIaNWKk3ffTUEFf5iwZmVRa+1aam3bhlezZtgeffRMUTUtzeiN/sMPxqD3ww9X7KzSyzBv3jz8/f0ZMWJE+R7ocvvQx8fj+uknCiIjcaSmkufvT9rNN5PVpQsFlXQFyKUqXHFVIyYGvz+WvXvcfDMePXqc22f2cvZfqMxKKwaEh5/p9VxYDPj6a/JPniTl1ltJ69MHZ3n2+r1EHmlp1Pzpp4sP+q9ZYxQr77nH/EH/CyneH93f33jfV7y/fUEBrqgoHJ9/XulnLdtSUqgRGWm0EHA48Bw8GMuQISX/Lgqf76+/GjNM77rL+P2r7C09LmX/nVJWB6R26lTpV3KUmOWfkGCs0LjQRIWDB43Le/Ysv/ajZalwZceFVpf8/jvOVasoWL+egrw8Ujp3Jr1Xr0r5ftMzIYGaP/9MjT/eY9oGDjQmOhT/OVxsP5KqKjUV165dxgSzPXtw2O3k22xktmxJdps2Vb4oUDjY77dnD/779hmD/R4eWG++2RjsL21SXlVWvCBw4gQEBFywIODYsAHHzp3kFxSQ2aoVme3bu+0kNK+jR6m2fTs19uzBKyXFWBHUo8e5nQGKD/j/+qvxXE0e8D+bCgAlqQAgVc/ZfcS7dz93g6fkZGNDux9+wJWWZl7WS2CpWRPbnXcaS6qKz94qnD2zdi0kJvLYkSPUbd+eiS++SIPis6KrisJVAtHRxs+2sHdfaCjcdtuZjUcLJSTgioqiYMMGXL//DlXkVGepUcOY3R8WBjfffGY2Nbjv7P6r8PvvvzPnlVc4HRvL3KAgY1O3W281Nvk7q6es6/vvKfjuO1ypqeYFvhiLBWu7dtgGDTLeOJ01MMDq1cY5rlq18t27ozzFxsLixaX3zI+MJH/+fFynTlVoJIu/P7ZRo7D073/me36+PQ0qMafTSUREBIsXL8an+MBzRUhIMD4AREWV3Deke/dz2yMdO4Zrwwbj/JyYWLE5y5ilenU8brsNa48e555ji69ui4szPiiFhBivW2evznJXOTnGeWnlSuNvZcAAoyd+4fL/jAxcy5dTsHIlrpwcc7MClvr1sd17L5Zevc68fp4+beR3l0H/87nYjHiXC6KjKfjyS5x79pibtRSW66/Hds89xmSGwteEwhUPX35pDJwXrnjo1MnMqFevcHXAzz8bv2fdup37WSUxEec33+BYuxZXVpZ5WS/CUr06tr59jdfP4pNQik9USEoyWgL26ePeP7viK3Di4owBwbP73mdk4Pr2Wwq++aZSfsa0tmiBbehQ47NT4TmwtP0QqsLfWVkoturcefgwruKfu6oYi8OBR1AQHl27Gp9B3GVSQkUpfJ+7bl3JgkBpg+JRURT8+CPO3bvdbwzCYsHapg223r2N80TxAvQfxY7KPOB/NhUASlIBQKq24jNufv/dOFH36eOesxiKDwAW75FZrM3Htm3bWLBgAenp6UycOJHQ0FCTQ5ezwhfijRsvvkqgKio+uz8hwXjD4e6z+y9RdHQ0c+fOxeFw8PjjjxMSEmJc4W7try4kKQnWrzeeS0rKmVn+VeUDWW6uMQCyYoWxUmnCBGPvCTOlpBg9gAv3Lxg3rmTh1Q2sWbOG6OhonnrqKXODpKcbvew3bjQGu1wu43talc/Px48b5+TISOP84+VlDPSX5+bplUlhMeCbb4y9QAYOLFkMqEwKB/1//NEYgL3nHveYSX6pCnt1f/ut8VrSrVvF98S/Uikpxu/R6tXGZJdu3SAiouQquKqkcFXjqlVGu5XCTYsrao+JslJ8lr+7T1S4VIWFnF9+MVZ79e9vnPcq4znvbCdPGr9za9YYrTV79Di3CCUi51c4DrF2rTHprnFj4z1uZWjBWlaKD/jHxhrv5bt1M97Xnr2HVSWlAkBJKgDItWXfPmN21C+/GB/yOnUq2bu4MrLbjZmoBQXGQEK/fsbM9wtISkpiwYIFbN68mf79+/PAAw/gWwmW3pe7jAxj8GXTJtizx/gw0rKl+7ZBKk12ttFCIjfXmGl1663Gh8TCdipVmN1u59NPP2XZsmV07dqVCRMmUPtirWLi442/+U2bjJlOnTqVbMlRGcXHGzMdGzc2Pkx27175M1+t2NgzvfVDQyu+WON0QlQUiU4nr+Tm8q/PPiv7PvoVaNSoUfz73/+m7tkro8yUk2O89v70k7FSCYxVTO7eOzY398zeNddfb3z4Cw09d1XatSY9HZYvN3pHe3sbxZ/KMJiZk2OskKtZ0xgQ79XL/Wb6X66CAqMQt2KF0TYvKKhyDqanpRnvd2vWNAZR+/at0hMZzis21ijcbNtmPP+OHSv372h+PmzdaqzAvOUWY/VM8b0arhXJyUZRce1a499dulTOz5hJScZK6gYNjEJTz56VM6eIu/ntN2Pi1saNxiTUG2+Em24yO9WVOXTIeD5+fsb72h49zJ+kdYVUAChJBQC5duXmGm9Yc3PNTnJhvr5XPGjpdDr55ptvWLJkCU2bNmXKlCk0dYfZX2Vp/35j9Uc5mzJ7NrMffRRreQ8a+vtD+/ZVf0C4mMTERObOncvOnTsZNWoUQ4cOxXYlH4btduNvvhK0obiggIBzW6ZcK3Jzz+xjUpEsFuPDeo0afPXVV3z//ff897//xVoZBiyvwP79+5k1axbz5s0zO8r5ORzGarbkZLOTXB0/P2NFw7VQZL9ShQO7TqfZSYyf0y23VJ2Z/ldi925j5mJlU7Om8X7XTc+75SIz03jfUtGviZfDy8so8F2LxZrzyc01JiTZ7WYnOVf9+tC2rdkpRKq+Q4eMVmHuqEUL9y1enEUFgJJUABC5RuzYsYMPPviAzMxMRo8eTZ8+fcyOVKWMHTuWefPmue2AYWV03jY/IuVs6dKl/PDDD7zzzjtuuxLgrbfeomnTpgwfPtzsKCIiIiIiIhVKBYCSKvF6QhEpS+3bt+c///kPaWlpfPjhh7zzzjv079+f0aNH46dZO1JJnN3mZ+bMmRdv8yNSxsLDw3G5XDz66KP85z//ccsiwGOPPca9995Lt27daNCggdlxRERERERExCSaqipyjalZsyaPPfYYX3zxBc2bN2fSpEk8/vjjHD582Oxocg1LTExk+vTpjBw5El9fXz777DOefvppDf6LaYYNG0avXr149NFHccfFklarlZkzZ/L000+bHUVERERERERMpBUAItcoq9VKnz596NOnD/v27eNf//oXiYmJPPzww/Tu3dstZ7yK+zm7zc/06dPNjiRSZPjw4bhcLp566ilef/11s+NctoCAAMLCwvjPf/7Do48+anYcERERERERMYFWAIgIrVq14s0332Tu3LnEx8cTHh7Ov/71L7Kzs82OJlWQ3W5n0aJFhIeHs3r1ambOnMm8efPU418qpYiICG655Raeeuops6NckfHjxxMXF8e3335rdhQRERERERExgQoAIlKkRo0aTJw4kS+//JLg4GAmTZrEE088waFDh8yOJlWA2vyIu7r33nvp0qULf/vb38yOckXeeOMNFi9ezIEDB8yOIiIiIiIiIhVMLYBE5BzF2wMdOHCA9957jwMHDvDggw8yaNAgtQeSy6I2P1IV3HvvveTk5DB9+nS3+x328PDg3//+N2PHjmXhwoXUqlXL7EgiIiIiIiJSQbQCQEQuKDAwkJdffpn58+eTmJhY1B4oKyvL7GhSianNj1RFY8aMoX79+rz55ptmR7lstWvX5vXXX2fs2LGkp6ebHUdEREREREQqiAoAInJJqlevXqI90GOPPcbkyZPZu3ev2dGkElGbH6nqJk+eTFpaGvPnzzc7ymULDAxk1qxZjB07loyMDLPjiIiIiIiISAVQAUBELkthe6APPviAJ598kkWLFnHvvfeyYsUKXC6X2fHEJNHR0UycOJHnn3+eYcOG8dVXXxEREYHNpk5zUvXMmDGD3bt38+WXX5od5bK1bNmSl19+WUUAERERERGRa4QKACJyxQICAnj55ZeZN29eUXugWbNmkZqaanY0qQBq8yPXsldffZVvvvmGDRs2mB3lsrVq1Ypp06bx0EMPkZKSYnYcERERERERKUcqAIjIVStsD/TVV18RGhrKX/7yFyZPnszu3bvNjiblQG1+RIzVUO+++y6zZ89mz549Zse5bCEhIbz22ms88MADHDhwwOw4IiIiIiIiUk7Um0FEylRYWBhhYWHEx8fz/vvvEx8fz/DhwwkPD8fDw8PseHIVoqOjmTt3Lg6Hg8cff5zp06ebHUnEVF5eXsybN49Ro0bx7rvv0qRJE7MjXZbmzZuzaNEixo8fz5NPPklYWJjZkURERERERKSMaQWAiJSL5s2b88orr7Bw4UJycnKIiIhg1qxZnD592uxochnU5kfkwmrUqMF7773H1KlTyczMNDvOZatduzYff/wx8+bN44svvjA7joiIiIiI7mv9dwAAIABJREFUiJQxFQBEpFz5+Pjw4IMPsnTpUkJDQ/nrX//KlClT+PXXX82OJhegNj8il65x48a89NJLTJw4kYKCArPjXDYfHx/mz5/P/v37+ctf/kJeXp7ZkURERERERKSMqAAgIhUmLCyM+fPn89xzz/HFF19wzz338Pnnn+NwOMyOJn+Ijo5m4sSJPP/88wwbNoyvvvqKiIgIbDZ1jBO5kODgYMaNG8cTTzxhdpQrYrFYePbZZxkyZAjDhw/n4MGDZkcSERERERGRMqARHRGpcI0bN2b69OnY7XY+/fRTIiIi6Nq1K+PHj6dOnTpmx7vmFP4cli1bRteuXZk5c6Zm+otcgT59+nDkyBFmz57N1KlTzY5zRbp3707r1q2ZOnUqERERDB8+3OxIIiIiIiIichW0AkBETOPt7V3UHqhPnz4888wzPPzww8TExJgd7ZqgNj8iZW/s2LHEx8ezatUqs6Ncsfr16/PJJ5/w+++/M3bsWJKTk82OJCIiIiIiIldIKwBEpFLo1KkT7733HomJicydO5dp06YxatQohg4dqvYzZSw6Opq5c+ficDh4/PHHmT59utmRRKqU119/ndGjR3PjjTcSFBRkdpwrYrVaefLJJ/ntt9945JFHuPPOO5k4caLZsUREREREROQyaQWAiFQqjRo1Yvr06SxZsgSAkSNHMn36dE6ePGlystIdOHCA6OhoTp06RXR0NNHR0eTn55sd6xx2u51FixYRHh7O6tWrmTlzJvPmzSMkJMTsaCJVjoeHB++88w5PP/00qampZse5KjfddBOff/45+fn5PPDAAxw+fNjsSCIiIiIiInIZLC6Xy2V2CBGRCymcse50Opk6dSrt2rUzO1KRDh068Pvvv+NyubBYLLhcLmJiYmjSpInZ0QCKVlTs3LlTKypEKti+ffuYNm0aixcvxsPDw+w4Vy0hIYEZM2ZQu3Ztnn32WapXr252JBERERERkXPs3LmT1atX85e//KXcjjFmzBgWLlxYbo9fllQAEBG3cfz4cRYuXEhUVBTh4eHcd999eHp6Fl3vdDo5evQozZo1q7BM//rXv/jrX/9KQUEBYBQEtm3bVmHHT0lJIT8/n/r165e4/Ow2P5rpL2KOVatWsWnTJl566SWzo5SZyMhIXn/9dUaOHMm9996LxWIp/4PGx8P69VDZVljVqgV9+8J115mdRERERERE/qACQEmaBioibqNhw4Y8/fTT5OXl8fXXXzNq1CiCg4OZMmUK9erVY+nSpUyaNIlFixZx1113VUimBx98kDfffJPff/8di8XC8OHDK+S4AEePHqV///40a9aMVatWYbfb+fTTT1m2bBldu3Zl5syZ2tBXxGQDBw5k8+bNLF26lPDwcLPjlInQ0FBuu+02FixYwPDhw5k0aRJ33nknAKdPn+bPf/4z8+bNw9vb+8oP4nJBdDR8/TXs2wfNm0OPHlCs6FsppKbC3/8OaWkQGgqDB8MNN5idSkREREREpIhWAIiIW9u8eTPvv/8+Hh4e/Pzzz8TExNCgQQNefPFFJkyYUCEZunXrxsaNG2nSpAlbt26lQYMG5X7MuLg4BgwYQFxcHE2bNmXo0KGcOHGCUaNGMWjQIKxWbfEiUlk4nU7uv/9+XnrpJVq0aGF2nDKVl5fHhx9+yPfff8+UKVNYuXIls2fP5pZbbuGHH37A19f30h/M4YCoKPjySzh0CNq1g3vvBXfYSNnphO3bYcUK+PVXCAiAQYOMokBFrJAQEREREZEiWgFQklYAiIhb69q1K127dmXjxo18/fXXAJw4cYLnnnuOo0ePMmPGjHLPMGHCBLZu3UqTJk0qZPB/y5Yt3HvvvRw6dAgwVgJkZmYWbZwsIpWL1Wrlv//9L+PGjePjjz/Gz8/P7EhlxsvLi4kTJzJq1CjeeOMNPv30U/Lz84mKiqJbt26sXbv2wnsFZGfDjz8aA+cpKRAWBk89BY0bn7nNnj04li6lYMsWXE5n+T+py2D19cXWpw/WIUOgUyfjC4yWRStWwJw5UL063HUX9O9f+VYwiIiIiIhIlacCgIhUCW+++SYnTpwo+ndycjKzZ8/m9OnTzJ49u1yPPXz4cKZOncqDDz5YrscB+Oabb5g0aRLHjh0ruszlcvH999+Tn59fYk8EEak8ateuzXPPPcfUqVOZN2+e2XHKnL+/P/7+/iQnJwPGqoft27fTvXt3fvzxx5LtyJKT4dtvYfVqo9VP377w+utQowZ/3Bmio3EsW0bBzp3kNG7M6dtvJ3vw4Eo3m97idOK3cye1n3kGn4QEbJ074zFqFLRpA489Ztyo8PmOH288t7594Z57zjxfERERERGRcqQWQCLi/jIzmdO7N1GnT3MyN5f0/HzynU7yHA5O5ObySqdOjGzevFwjPLN1K8+0a0eNchyAT87NJfSbb6jl5YWvhwdeVivXeXtT18eHxj4+/P2FF6hWgXsQiMjlmzNnDj4+PowdO9bsKGXu1ltv5dixYzidTrKzs8nKyqKgoIDmzZuz+bPPqPPTT7B5M9SsCQMHQr9+4OVl3Dk3F9dPP+FYsYKCQ4fIaNmS1J49sd94o6nP6XJ5x8VRZ80a/A4dwtasGbaRI+H226GwLVvxFQ+nT0O3bhARUXLFg4iIiIiIXBW1ACpJBQARcX/Hj5M6bRpHp041O4lpvH/7jZu2b8f2j3+YHUVELmLcuHE8/fTTtGrVyuwoZS4vL4/k5GQSjx3j+KZNHPr+ew4cOMCIW2/l9kmTSvbET0nB9cMPFPzvf+SnpJDWvj1pPXpQULeuuU+ijHgdO0atDRuovns3turVsQ0fjqVfPyjcHLlwz4OlS42WQe3bw4gRxuoBERERERG5YioAlKQWQCIiIiIV6I033uDhhx9myZIleBXOgK8KcnPx2riR61et4vqjR41++G+/DS1bnrnN4cM4v/2Wgp9+Is/hIOWWW8j4059wVqF9EQrlXX89SffdRxLgkZpKzY0bqfnRR3g6nXgOHoxlyBBjz4OwMOMOsbHw6aewe7exImD48JKrB0RERERERK6ACgAiIiIiFei6667j8ccfZ9q0abzyyitmx7k6KSlGL/8ff4SMDOjRA55+GopviB4bi+PrrynYsYPcatVICQ0l629/w+XhYV7uCuaoVYvTgwZxetAgrHY7/j//zHVTp+KdloatVy+sEREQHGx8Afz2GyxfDu+8A76+xp4Bd955ZvWAiIiIiIjIJVIBQERERKSCde/ene+++47Vq1fTp08fs+NcmSeegJwcuOsueOstY6AajNY2GzdSsGwZjt27yQoIICUsjJzBg83NW0k4vb1J79GD9B49sDid+O7YQe2XXsL3yBFsHTvicc89xuqJwk2Ek5KMPQMefBAGD4b77zf3CYiIiIiIiFtRAUBERETEBDNmzGDEiBG0b9+euu7Y9/70aSjseZmTg2v5cgpWrMCRkEBau3akDhhA/kMPmRqxsnNZrWR37Eh2x46AsYnwdUuWUO2VV/Bs1AjbkCHGqoqHH4bevWHBApMTi4iIiIiIu1EBQERERMQENpuNWbNm8de//pUPP/zQ7DhXLiaG3D//mZN33036ww/j9Pc3O5HbsgcEcDwgAADPxERqrVtH7WnT8IyMNDmZiIiIiIi4K+0qJiLXvG3btvHoo4+Snp5udpQL2rBhAy+//LLZMUSkDAUEBNCxY0e++OILs6NcubQ0Uu64g9R+/Uwb/HeX8/jlyG/UiOSRI8lv3NjsKCIiIiIi4sZUABCRa17Hjh3Zs2cPDofjsu63a9euckpUusDAQLZs2VKhxxSR8vfoo4/yySefkJSUZHYUt3Wl53EREREREZGqTgUAEanSUlNTiYmJISMjo+iyvLw89u/fj9PpLLrMZrNd8HqHw8Hu3bs5ffo0AJs3b+bll1/m8OHDF81w6NAhEhMTz7n8xIkT5ObmXvTy/Px8YmJiSEtLw2KxXPR4IuJerFYrr732Gs8995zZUSqV48ePk5eXx969e4sui4+P58iRI7hcLvbv38+RI0eKrit+Hj/73F/aef18kpKSyM3N5ejRowCcPn0ap9NJfHx80f2PHTtW4j6lvdaIiIiIiIhUBioAiEiVdfjwYZYtW4anpydLliwBICUlhTlz5nDkyBFGjx5NcnJyifuUdr3dbue1117D09OTF198kbVr13Lq1Clyc3NJTU29YIZ//vOfpKWl8cwzzzBlyhTi4uLIyclh1qxZpKen8+mnn/L+++8DlHq53W5n2rRp2Gw21q1bpwKASBXVvHlzWrduzdKlS82OUiksWbKE++67j8WLFzNnzhzGjRsHQEJCAs888wwWi4XDhw/z7LPPnnPfs8/9FzvvF/fJJ58wevRoFixYwHvvvceGDRsYPHgwX375JR999BEPPfQQn3zyCZ999hlTpkwp9XgiIiIiIiKViTYBFpEq6+jRoyxbtoyBAwcybNgwAFatWsV1111Hbm4ujRo1IioqisGDBxfdp7TrbTYbnTp1IjAwkL///e/Y7XaysrKoXr067dq1O+/xjx07xo4dO3juuecYNWoUUVFRBAQEsHz5cjw9PQkMDKRFixb07NmTESNGsG7dunMuv+666wgKCiIoKIiaNWvyww8/lPv3TUTM8cQTTzBixAh69uxJ7dq1zY5jqtDQUD755BPGjh0LQP/+/Tlw4AD169cvuk2TJk1Kve/Z5/6LnfeL69WrF/Pnz+eRRx4BwOl04nQ6iYiIAKBz584sWrQIgAEDBmC320t9rREREREREakstAJARKqs22+/ncGDBxMeHs7WrVsBo3VPmzZtuOuuu3jjjTfOGQQq7fr169fj6+sLQIMGDWjWrNklHb9Ro0ZYLBY2b97MqVOnGDJkCADR0dE0aNAAMFp/tGrVipiYmFIv//e//100EOjp6akVACJVmNVq5f/+7/944YUXzI5SKVitZ96mBgcHF7Vgu5izz/0XO+8X5+HhUXS+L021atWK/t/T05OcnJxSX2tERERERMRcGj85QwUAEamytm/fzrhx41i0aBH//e9/AWjfvj0rVqzA6XTicrnYvHlzifuUdn2XLl347LPPyMnJweFwEBMTg9Vqvehmk1arlYceegir1Up4eDjt27cH4I477mDbtm1Ft8vNzaVz586lXv7ggw8SGRkJQEFBwSX1rxYR99WmTRtq1KhxzrnpWpeQkEDnzp3x8vIiLy8PMPZHKe2cePa5/2Ln/cvhcrkuejwRERERETFXRkYG/v7+ZseoNFQAEJEq6/Dhw8ycOZPU1NSitgyDBw8mPT2d8PBwZs6cSevWrdm1axcnT54kMjKy1Ov79++Pp6cn99xzD//+979p3rw5119/PdnZ2cyfPx+73V7q8TMzM3nrrbeYO3cuTz31FO+99x5Op5OwsDAaNGjA2rVr+eyzzxgwYAA+Pj6lXj5s2DBycnKYNGkSS5cuJTc3lz179lTkt1FEKtgLL7zAq6++etEiY1WXnJzM8uXLmTVrFiNGjMDDw4Mbb7wRb29vnnrqKaKjo8nOzubo0aMlzuNnn/tLO6+fz/r160lISGD79u0A/Pzzz2RlZbF3715iYmJISUlh/fr1xMfHk5SUxC+//FLqa42IiIiIiJgnKSmJunXrmh2j0rC4SpvKJCLiTo4fJ3XaNI5OnVriYpfLhcPhwOFw4O3tXeK63NxcfHx8zvuQpV2fn5+Pp6dn0b8LCgrw8PDg2LFj59zfx8eHU6dOkZCQQKtWrcjKymLbtm2EhIQQFBQEGAUCi8VSoqXE+S632+1Fxy7eFqOQ92+/cdP27dj+8Y/zPicRcR+ffvopaWlpTJw40ewo5zdmDCxcCD/9ROLatZwKDy+zhz5y5Ah//vOfWbJkCRaLBS8vrxLX5+XlYbPZSj0fnu/cX/y8fvTo0XPu5+Pjc0UfEi70WlMWms+Ygd/nn8OhQ7BgAcyYUebHEBERERGpSl566SWGDx9+wck/V2vMmDEsXLiw3B6/LGkTYBGpsiwWCzabDZvt3FPdhQb/z3d98cF/oOhx169ff85tGzVqRExMDHa7nYYNG5KamkpeXh4BAQFFtznfcrTSLi+PQSURqbxGjBhBREQE4eHh1+TMFbvdTnZ29nnPfWcXBIo737m/+Hn9fOftO+6447KzXui1RkREREREKl5sbCzPPvus2TEqDX1SERG5Svfff3+pl4eFhbF582Z27NhB586dufXWW7UJjYhcshkzZjBjxgxmz55tdpQL8/SkenQ0mW3bYi9W5LwaBw8eZOjQoWzfvp0OHTqUyWMWd77zdmVicTjwi47GMz7e7CgiIiIiIm7j1KlT1KhRo9TVwtcqFQBERMqJl5cX3bp1MzuGiLipoKAgfH19y20QvMzceiv+M2bQfOlSHB9+SE79+pwKCyOnfXtcV/imu1+/fmUc0j1Yc3KovmkTtaKi8MrPx/OOO7AuX252LBERERERt7Fw4UJGjx5tdoxKRQUAERERkUrq2WefZcqUKSxevNjsKOey2+Gtt2DIEGjfHo/27fEAvH7/neqrVlEwcyZ5Ticpt9xCRlgYTj8/sxNXSh6pqdTcuJGa0dF4Op14Dh6MZe5cqFnTuIHTCZs3w+LF0LSpuWFFRERERCqx3NxcNm7cyJNPPml2lEpFBQARERGRSqpWrVqEhISwZs2aK+pPX64+/hi2b4dFiyA6Gpo3h4gICA3F+qc/4fWnP+GVkkK1H36g4N13yU9NJa1dO9J69KDgGtzXoDivY8eotWED1Xfvxla9Orbhw7E88QQU7nlQUAAbN8LSpXDwIHToAJMnQzluYiYiIiIi4u7efvttpkyZYnaMSkcFABEREZFK7LHHHuP++++nV69elWsfEasVOnUyvgDi42HFCpgzxxjIHjoU+vXDcu+9eN57L565ufj+9BP1li6l4PBhMgIDSe3ZE/uNN5r6NCqKd1wcddaswe/QIWzNmmEbORJeegkKf6ZZWfD997ByJZw6Bd26wVNPQaNG5gYXEREREXED8fHx7N+/n7///e9mR6l0VAAQERERqcR8fX3p168fy5YtY+jQoWbHOb/mzeGxx4z/P3kSVq2CSZMgNxcGDIAhQ7D07Yutb19sTic+27dTe9kyCt5/n5xGjTh9++1kd+hwZkDczVkcDvxiYqi9bh2+CQl4dO6MxyOPQJs2Z26UlAT/+x+sWWPM+r/zTnj9dahe3bzgIiIiIiJuJicnhyeffJL333/f7CiVksXlcrnMDiEiclVSUykYMICCevVMixCdmkrHWrUwa9jKYrfjGRGBdfx4kxKISHlyOBwMGzaML774ApvNzeZvZGfDjz8aA93Hj0P37jB8OFx//ZnbxMfjWLaMgshI8nx9SbntNjJuvx2Xp6d5ua+ANSeH6lu2cF1kJF4ZGdh69cI6cmTJWfyxscYs/127wN8f7roL+vcHN3uuIiIiIiKVxbhx43jkkUfo0qVLhR1zzJgxLFy4sMKOdzVUABARKQNjx45l3rx5WK1Ws6OISBX12WefkZmZybhx48yOcuUcDoiKMgbA9+6F9u3h7rvPtBECOHkS58qVOFasID83l5SwMNJ79cLh729e7guwnT5NjU2bqBUdjafVim3gQCzh4Wdm8TudsGmT8ZwPHICQEOM5d+xYZVY7iIiIiIiY5dVXX6Vx48aMHj26Qo+rAoCIyDVGBQARKW8ul4vw8HC++OILPDw8zI5TNgpnw8fGQu3aMGgQ9OwJhascMjJwffstBStXUpCRgcPPz9S4Z7NlZGC78UZs4eFGz/7Cn0tODqxeDd9+C8nJEBYG4eHQtKm5gUVEREREqpC33noLu91uSt9/dyoAuNkachEREZFrk8ViITw8nKVLlxIREWF2nLIRHGx8ARw+DN99B4sXGwPp/frBgAFnNhE2N+nFnToF33xj9PPPyzPa+rz8MtSqZXYyEREREZEq59VXX8XT01Ob/l4CFQBERERE3MTIkSOJiIhg+PDhWKpa+5gbboCJE42vU6eMlQGTJxttcvr0Mb58fMxOWVJyMqxYAb/8AnXqGK195s4Fb2+zk4mIiIiIVElOp5NnnnmGwMBAxmsfxEuiAoCIiIiIm/D09KRnz56sWbOG3r17mx2n/NSpA2PGGF+F7XRmzzb66ZehD3buZFzbtlivtJji52esVHjiCVALOBERERGRcnXq1CkeffRR7rvvPgYPHmx2HLehAoCIiIiIG5kwYQITJkyo2gWA4nx9jZn1d99d5g99dPp0Dt5/P4GBgWX+2CIiIiIiUna2b9/O//3f//Haa68REBBgdhy3oqlKIiIiIm6kWrVqBAQEsG3bNrOjuL22bduya9cus2OIiIiIiMh5uFwu3nnnHebMmcPixYs1+H8FVAAQERERcTNTp07lnXfeMTuG2wsJCVEBQERERESkkoqPjyciIgKbzcZ7772Hn5+f2ZHckloAiYiIiLiZevXq4XK5OHnyJHXr1jU7jttq0aIF8fHxZscQEREREZFinE4nH3zwAVFRUcyZM4d69eqZHcmtaQWAiIiIiBt64IEHWLx4sdkx3JrVasXhcJgdQ0RERERE/hAZGUl4eDiNGjViwYIFGvwvAyoAiIiIiLihnj17EhkZaXYMt+fr60t2drbZMURERERErmlHjhzhT3/6EytXruSjjz7i7rvvNjtSlaEWQCIiIiJuqlOnTvz888/ceuutZkdxW8HBwezevZvOnTubHUVERERE5JqTmZnJm2++SVxcHC+++CI33HCD2ZGqHK0AEBEREXFTDz30EIsWLTI7hlvTRsAiIiIiIhUvPT2df/7zn4wfP5677rqLRYsWafC/nKgAICIiIuKmGjRoQEZGBunp6WZHcVtt27ZVAUBEREREpIJkZGQwa9YsRo8eze23386SJUvo1KmT2bGqNBUARERERNzYiBEjWLp0qdkx3Fa9evVISkoyO4aIiIiISJWWlJTECy+8wCOPPEKvXr1Yvnw5vXr1MjvWNUF7AIiIiIi4sb59+zJ+/Hgeeughs6O4LafTaXYEEREREZEqKSYmhjlz5lBQUMDkyZPp0KGD2ZGuOSoAiIiIiLgxb29vPDw8yMrKolq1ambHcUsNGzYkKSmJ+vXrmx1FRERERMTtOZ1O1qxZw8KFC6lTpw7PPvssTZs2NTvWNUstgERERETcXL9+/fjuu+/MjuG2tBGwiIiIiMjVS05O5o033mD48OEcOnSI999/n7fffluD/yZTAUBERETEzQ0cOJBvv/3W7BhuSwUAEREREZEr43Q6Wb16NRMnTuSvf/0r7dq148svv2T8+PH4+PiYHU9QCyARERERt1ezZk0yMjLIz8/H09PT7DhuJzg4mPfee8/sGCIiIiIibuPo0aMsWLCAnTt30qdPH15//XVq1KhhdiwphQoAIiJXYfr06ezdu5e4uDhGjRqFzWbjjTfeoEGDBmZHE5FrTM+ePdmwYQO9e/c2O4rb8fX1JTs72+wYIiIiIiKVWlpaGkuXLuW7776jYcOGjBkzhhdeeMHsWHIRKgCIiFyFX375pajtRnR0NE2bNsXf39/kVCJyLRo0aBBvv/22CgBXyGKx4HA48PDwMDuKiIiIiEil4XA4WLt2LZ9//jlpaWkMGzaMjz76SCuP3YgKACIiV+Gxxx4jMjKS9PR0AFq3bk21atVMTiUi16ImTZpw7Ngxs2O4rYCAAOLj4wkMDDQ7ioiIiIiIqQoKCli3bh1fffUVKSkpDBgwgDfeeEMTHt2UCgAiIlehb9++NGjQgPT0dPz8/Jg8ebLZkUTkGlbYysbPz8/sKG6ncCNgFQBERERE5FrkcDiIiopi6dKlHD58mO7du/P888/TqFEjs6PJVVIBQETkKlitVjp27MiBAwdo2LAhAwcONDuSiFzDbrnlFrZu3Ur37t3NjuJ2QkJC+PjjjwkPDzc7ioiIiIhIhcjOzua7775j5cqV2O12+vTpw/PPP0/t2rXNjiZlSAUAEZGr9Pjjj/O///2Ptm3b4uXlZXYcEbmGhYaGsnLlShUArkCLFi2Ij483O4aIiIiISLk6duwYK1eu5KeffsJms3HnnXfy1ltvUaNGDbOjSTlRAUBEqrasLMjLK9dDdG3ZEm9PT/48diykpJTrsQC47rryP4aIuKXg4GBeffVVs2O4JavVisPhMDuGiIiIiEiZi42NZeXKlfz6669Uq1aNu+66i/nz52sS4zVCBQARqToKCmDXLvj5Z9i6FbKzjcHycq5iW4Av+/Xj9shI2LSpXI9FQQEkJBj/37o1dO1qfNWqVb7HFRG3YLVacTqdOJ1OrFar2XHcjq+vL1lZWdrMXURERETcWkpKCqtXr+bHH38kNTWVjh07MnjwYJ5++mmzo4kJVAAQEfeVmGgM9EdHG4PiOTnQogV06gT33Vehg+JhFXakYuLjYeNGmDbNWHng5QUhIcbzv+UW498ics1p1aoVBw4coFWrVmZHcTvBwcHs2bOHzp07mx1FREREROSSORwOduzYwerVq/n111/x8vKif//+vPLKK1ynLgLXPBUARMQ95OdDTIwx4B0TY/y7dm3o2BEiIiA4uOTts7Jg/XocmzbhOnXKnMzlwdMTjw4dsNx2GzRvbnw9+KBxXVYWbN9uFEQ+/hjS06FOHaMg0L073HijqdFFpGIEBQURGxurAsAVCAkJYdeuXSoAiIiIiEilFx8fz48//sjGjRvJz8+na9euDBkyRLP85RwqAIhI5ZSQYAxkR0YaM91dLujcGUJDYdIk8PE5c1uXC/buxRUVhSMqCsfJkxR4e5PRqhWZISHkN2pk3vMoY9bsbPxiY/H/v//DJzkZD29vrO3bYwsLMwb6w8KMr0KF38d33zW+j2DcLjTU+K+vrzlPRETKTVBQEEuXLiU8PNzsKG6nbdu2fPPNN2bHEBERERE5R0JCAmvWrGHDhg2kp6fTvHlz7rjjDh544AHy6sabAAAgAElEQVR8io+RiJxFBQARMV9mJuzYYQxU79wJaWnQpIkxkP3kk1C/fsnbp6fj2rIFx4YNOHfswJmRQe6NN5J2881kP/AAjiq8vM1RowZpDRuS1rs3ABanE6/4eKpFRlL9vffwSk/H6u+PR7duWLt1gzZt4O67jS8w9hDYt88orCxYABkZxkqK2283CgJBQWCxmPgMReRqBQYGEhcXZ3YMt1SvXj2SkpLMjiEiIiIiwsmTJ1m3bh3r1q3j5MmTNG7cmDvuuIPXX3+dGuW816FULSoAiEjFK+xdHx1t9PGvVg3atzcG/KdOheIbVzocEBuLc8sWHJGROJOSyPf0JCMkhMx27bDffXfJ219jXFYr9oAA7AEBnB40CABrZia+Bw5Q/cMP8YuLw2a3Yw0KwtajB9x2m9EuKTgYJk40HiQtDbZsgc8/h4MHwW43CgGFKwqqcEFFpCry9PSkoKDA7Bhuy+l0mh1BRERERK5BcXFxREZGEhUVRVpaGnXr1qVHjx5Mnz6dunXrmh1P3JgKACJSvgoHlzduNAaX8/KMWemdOhmb19auXfL2iYm4tmzBuWULBb//jiMzk9zrrye9bVuyJ03CqWVtF+X09yerQweyOnQouszr6FGqbd+O/5df4pWVhYefH7b27bF26WJsGNynj/EFRtFl716jQPPii3DyJHh4nCnSdOhwTRddRKRqa9iwIUlJSdQ/e/WZiIiIiEgZKSgoYN++fURGRrJ9+3bS09Np2rQpoaGhvPzyy9Q+e6xE5CpYXC6Xy+wQIlJFFG8v8/PPRmufC7WX+WNjX+eGDTi2b8eRm4u9WjUyW7Yku00b7AEB5j2XKs6ak4PPnj1U27uXakeP4pmTg0f9+njccguWHj3O3TC4eJummBhISYGmTY2CQI8e57ZpEhFTjR8/ntmzZ+OrfT4u24IFC2jWrBm9/2i1JiIiIiJytTIzM9mxYweRkZHExcWRk5NDSEgIoaGhdOnSBW9vb7MjymUaM2YMCxcuNDvGJdEKABG5eitXwuLF4OVlzBLv2hUefLDkRr0ACQm4tm6lYP16XAcPUmCzkdW6NRktW5Lz2GO49IJXYZy+vmR37Eh2x44k/3GZLSkJvz17qDFzJj4JCXh4eGDp3NloHVTaBsMHDsDmzcYqgVOnoHFjeP11U56PiJTUrFkzjh49SmBgoNlR3E5ISAg//fSTCgAiIiIicsUSEhKIjIxk48aNJCYmUq1aNW677TYGDRpEUFAQFu29JxVIBQARuXpRUfDaa8bGvYUyM2HjRhy//IJj2zacp09jr1+f9LZtyRoyhAItZ6t0CurXJ71+fdJ79ADA4nDg9dtvVF+zBv/Zs/HMzcVaty627t2xdO5srOgIDITRo40HGDPGxPQiUlzdunU5efKkCgBXIDg4mLlz55odQ0RERETcRGZmJtu2bWPr1q3ExMSQm5vLjTfeSGhoKP/4xz+oU6eO2RHlGqcCgIiUqYLJkylITCTf15fM4GAyg4Ox9+mjnvFuyOXhUbTB8MnwcABsp0/jt2sX1f/7X2OVgJcXns8/j6VtW5PTikhxderU4fTp02bHcEu+vr7k5OSYHUNEREREKqH8/Hz2799PdHQ0O3fuJDk5GQ8PD9q3b88tt9zC5MmT8dHehVLJqAAgImXKnpTEby++aHaMErZt28b8+fN5+eWXqVGjxmXf3+l08vjjj/PGG2/g6elZJpm+/PJLBg8eXGaPV2jDhg1s3LiRZ599tkwft1BB7dqk9+hRtErAf9Mmbti5E1QAEKlU6tSpQ0JCgtkx3JbFYsHhcODh4WF2FBERERExSeFGvdHR0URHR5OYmIjL5aJz586EhoYyfPhw/Pz8zI4pclEqAIhIldexY0eeeuopHA7HZd1v165dhISEYLVaeeihh8p0sP7gwYNlPvgPEBgYyFtvvVXmjysi7qVmzZrs3bvX7BhuKyAggPj4eLVQEhEREblGOBwO9u7dW2Kw32Kx0KZNGzp16sS0adOorVbG4qZUABARt5aamsrvv//OTTfdRPXq1cnLy+PQoUMEBARgLdZ2yGY7c7or7TYOh4N9+/bRsGFDateuzebNm3n77beZOXMmN9xwAzfddBMFBQVFj3PixAlq1qxZYmlfYmIi9evXZ//+/QQEBBQN8J+d8dChQ9xwww1F9zt06BDe3t40atSoxHMr7Rjnuzw/P589e/bg5eWlzYREBC8vL/Ly8syO4bZCQkKIiYlRAUBERESkCiqc2b9z5062bt3K8ePH8fDwoE2bNnTu3FmD/VLlqCm3iLitw4cPs2zZMjw9PVmyZAkpKSnMmTOHI0eOMHr0aJKTk8+5T2m3sdvtvPbaa3h6evLiiy+ydu1aTp06RW5uLqmpqezfv58BAwaQlpZGTk4Os2bNIj09nU8//ZT3338fgOXLl3Pffffx6aef8tFHH/Hhhx+WmhFgzZo13HHHHQD885//JC0tjWeeeYYpU6YQFxd33mOc73K73c60adOw2WysW7dOBQARwdvbG7vdbnYMt9W2bVt27dpldgwRERERuUqnT59mzZo1vP3220yYMIH777+fcePGsXz5cmrWrMnf/vY3Pv74Yz766COeffZZ7rzzTg3+S5WjFQAi4raOHj3KsmXLGDhwIMOGDWPVqlVcd9115Obm0qhRI6Kiohg8eHCJ+5R2G5vNRqdOnQgMDOTvf/87drudrKwsqlevTrt27QC47rrrAPjhhx/w9PQkMDCQFi1a0LNnT0aMGEH37t158803GTVqFMePH2fKlClMmDDhnIwAycnJ1KtXj2PHjrFjxw6ee+45Ro0aRVRUFAEBASxfvrzUY6xbt67Uy3/++WeCgoIICgqiZs2a/PDDDxX7gxCRSsfLy0sFgKvQvHlz4uPjzY4hIiIiIpfI4XBw+PBhYmNjiY6OJi4uDqvVip+fX9HM/gkTJlCtWjWzo4pUOBUARMRt3X777QwePJjw8HD+8Y9/sHnzZh544AG6dOnCXXfdVep9SrvN008/zd133w1AgwYNANizZ0+p94+OjqZly5YAWK1WWrVqRUxMDDfffHPRbby8vMjJySk1Y0hICA0bNgSgUaNGWCwWNm/ezKlTpxgyZMgFj3G+y9evX09oaCgAnp6eWgEgIlitVlwul9kx3JbVasXpdJodQ0RERERKkZaWxq5du9i9ezexsbEkJiZitVpp3bo1wcHBREREEBQUpM/GIn9QAUBE3Nb27dsZN24cPXv25IknnmDIkCGsWLGCTp06YbFY+OWXX+jatWuJ+7Rv3/6c23Tp0oXPPvuMTp064eXlRWxsLN7e3udsGuxyubjjjjtYvnw5999/PwC5ubl07tyZ3NzcErc7X8aIiAh69+4NULS5sNVqJTw8HG9vb4DzHsPhcJR6+aFDh4iMjGTgwIEUFBRo0EpEpAz4+vqSlZWlWWIiIiIiJsnLy+PAgQPExsYSExPDoUOHAKhVqxbt2rWjffv23H///Xq/JnIRKgCIiNs6fPgw33//PXfeeSfDhg1j4MCBvPTSS4SHh9O1a1cmT54MwK5duzh58iSRkZEMHjz4nNsEBwcTFRXFPffcQ//+/ZkwYQIA2dnZzJ8/nw4dOpCUlMSGDRsYMmQImzdvZu3atSQnJzNgwAB8fHzYsGED6enpxMXFsWfPHk6ePMnhw4fPyXj06FGaNGkCQGZmJm+99RY33HADfn5+3HzzzYwfP56wsLBSj3G+y++66y62bdvGpEmTCAkJITc3lz179tCmTRvTfjYiIu4uODiY3bt306VLF7OjiIiIiFRpdrudvXv3smfPHmJjYzl8+DBOpxNPT09atmxJUFAQDz/8MDfddJPZUUXcksWl9eEicrWeew4eeQSaNCFr+HB+mz69Qg7rcrlwOBw4HI6i2fNgzIz38fG54H1Lu01+fj6enp5F/y4oKMDDw6PUZYOZmZlYLJaLzjQ4O2NSUhL169cHYN++fSQkJNCqVSuysrLYtm0bISEhBAUFXfAY57vcbrcX5bdaK2aPd/9Nm7jB1xfLAw/AmDGwcGGFHFdELuzQoUMsWLCAGTNmmB3Fba1Zs4ZDhw4xbtw4s6OIiIiIVAmFM/oLW/ccPHgQu92Oh4cHrVq1Ijg4mKCgIFq3bo2Hh4fZcUUuaMyYMSx0kzEQrQAQEbdlsViw2WzYbCVPZRcb/D/fbYoP/gPnPG5x/v7+V5SxcPAf4Ntvv8Vut9OwYUNSU1PJy8sjICDgosc43+XFiyAiInJ12rZty4oVK8yOISIiIuJ27HY7cXFxRQP9R48eJS8vDw8PD1q3bk3z5s2JiIigTZs2FTZ5TeRapgKAiJQpa1oa1sxMnJc4QH4tmzx5Mps3b2bHjh107tyZW2+91a02KbI4nXieOAE33mh2FBGRMle3bl2Sk5PNjiEiIiJSaR0/fpx9+/axf//+ohXuFosFf39/2rRpU9S6p2nTpmZHFbmmqQAgImXKZ8wYWn7wAY7Tp8n38SGzTRsyb74Ze4sWuFTZL8HLy4tu3bqZHeOS2U6exG/XLqrHxuKdmIjN2xtr27ZY+vY1O5qISLnQpuoiIiJyrUtPT2f//v0cOHCAffv28dtvv5Gfn4/FYqFRo0YEBgbSsmVLBg0aRKNGjcyOKyKlUAFARMpGcjI0aYJl9Ghso0djA7wzM/HfsQPnli0UfPklzpQU7PXqkd62LVmdOlFQp47ZqeU8LA4HXr/9RvWYGPxjY/HMzcVaty627t2xTJ0KQUFQfLVCdjZkZpoXWESkHDRq1IgTJ07QoEEDs6OIiIiIlJv8/HyOHDlCfHw88fHxxMbGkpiYCICfnx9t2rShefPm3H333QQHB19S210RqTxUABCRqzdypLH566uvgqcntGsHXbtCp04QFoY1LAyvP27qk5BAja1bcaxYgTMuDofDQVbr1qSHhJATHIxLfexNYUtKwm/PHmrs2oVPQgIeHh5Yu3TB44474G9/g+Jv8Fwu2L8fR1QUS5cs4SaXi5vq1aPOPfeY9wRERMpBSEgIu3btUgFAREREqoSUlBRiY2PZvXs38fHxnD59mtzcXAoKCmjWrBlBQUF06tSJ++67j+rVq5sdV0TKiMXlcrnMDiEiVUhBAezbB9HRsHmzsTLAzw9uvx1CQ8+dOf7H7Z0//YRj0yacaWnk+fuTfvPNZLdpg71Fi5K3l6tmzc7GZ+9equ3di//Bg3hmZ2Nt1gyPHj2w9OgBZw90ZWTAzp0QGQkxMcZs/1atyL/1VlZlZHDo9Gni4+M5depU0V3q1avHTTfdVOKrWrVqFfxMRa5dhw4dYsGCBcyYMcPsKG4tOjqaDRs28MQTT5gdRUREROSi8vPzOXz4MPHx8Rw8eJCDBw9y/PjxouubNm1Ky5YtadmyJa1ataJu3bomphVxb2PGjGHhwoVmx7gkWgEgImXLZoPgYOPrwQeNy9LT4Zdf4PPPIS7OGPRv3dpYIXD77RAcjDU4GOuf/gSA9/Hj+P/yC84tW3B89RWO7GxyGjUio2VLsjt1wqGZCJfF6+hRqm3fjv++fXhnZ+Ph64tH+/ZYBw40Vmp4ep65scMBsbFGAWfnTqOAY7VChw7Qpw889ZTxb8ATGHKeY6akpBQtH/3xxx9JTEwkJSUFgLy8PBo0aECjRo1o3LgxzZs3p02bNvj5+ZXvN0JE5DIFBQXx7rvvmh1DREREpIjdbufYsWNFn7fi4+NJSUkhJyenaCZ/8+bNCQwMpF+/ftx4441YtR+fyDVNKwBExBzx8bBxozHQnJICXv/P3r2HN1ne/wN/59QkPaTnkvTctNDSI1AOSougMhFE/AI6LQKederm0MkuGE6Zmw6/isw5ZegAx0FwfGH8cMLmcTgQcSCHAgqFHkN6pm2aNufk90eXrKUtFGj7NMn7dV252rTN87yf9IIm9+e+P3cAkJPTURToaVD6++/hOnQI9sOH4aipgd3pRNuIETCOGgVTRoZnUNrfiY1GBJ44AdXx41DodJACEGdmQjphQkex5eJ9F2pqgH//u+P3oNcDZjOg1Xb8HiZNAsLCBiRn5wJB5xetACCRSJCUlAStVuu5JSUlQSKRDEgWIl/EFQD9Z/78+di0aZPQMYiIiMiPXPx+qbKyEna7HQAgEomQkpLiea+UlpaG0NBQgRMT+R+uACAiuhyttuPmXiVgNAJHj3YMRK9b17FqIC4OKCwEbrgByMqCKCsLsvvugwwAWlsRfOwYor78Eo5t2+A0GmFOSoIhJwftubmwh4cLeXWDwr1Rb/Dp0wg+eRIBLS0QBwdDMmkSxI891nO7pZMnO1r5HDzY0donPLyjNdNdd3Ws2hgk4eHhyM/PR35+frfvdd6ASq/X4/Dhw6iqqoLNZgPQ8YJXrVZ7Vg9otVqkpKRAxFZRRDQAxGIxHA4Hi5BERETUb0wmE8rKylBeXo6ysjKUlpaitrbW832NRoPU1FRotVrceeedSEpKglTKITwiujr834OIhobg4I7B/sLC/35Nr+8oCKxa1bFiAOiYmV5QAIwdCxQWQlJYCAkAuFxQlJQg9MABODZvhqOuDvaAABjT02H1odkQIpsNQWfOQNHYCIlCAfHo0ZAWFgJPPQUolV1/2P387d/f/flbuLDrxr5DiEwm8wzs9+TiJa+ffvopzp8/D4vFAqfTicjIyC6rBzgjhoiuRVpaGs6dO4cRI0YIHYWIiIi8RFtbG8rLyz23iooKVFdXe76vVCqRlJSE5ORkjBkzBnfeeSeGXbwXGxFRP2EBgIiGrtjYjtvtt3fcd28wvH8/sH59xwz2iIiO1jb5+UBmJkQjRkB6332QApC3tyPo8OGONje+QqEA5s/vWB3RmdH435ZKx44BLS1AfHxHQeXpp7tv7OvF5HL5JQsE7uWy7tUD27Zt87QXMhgMUKlUXQoEGRkZ3KCYiHqVk5OD4uJiFgCIiIjIw2w2Q6/Xd2nT09jY6Om1b7FYoFarodVqkZ6ejunTp7OtKREJhnsAEJF369zD/vx5wGL5bw/7wsKOFje+6Er2UKAuLrX/gFQq9Wya5b4lJiZyuS15He4B0H/Onj2LTZs2Yfny5UJHISIiokFiMBhQUVHRZRZ/bW2tp+1ocHCwZwa/+6NGoxE4NRENJu4BQEQ0WNTqjhUC7lUCDgdw4gTw9dfAz3/esUrA6bzqwztdLnxaV4dbhsoMepEIkEqBkSOB664D/ud/AJVK6FRepS/7D+j1elRXV2Pbtm2e/QdMJhOsViuSk5O7FAiSk5M9M32IyPdotVqUutuoERERkdezWq3Q6XSoqqpCZWUlKisrodPpYDQa4XQ6IRaLoVKpkJiYiOTkZIwfPx533XUX1Gq10NGJiK4KCwBE5FskEiAvr+P22GPXfLit778Pu93+382Kyaddy/4DLpcLERERXYoDqampCAsLG+SrIKL+JBaL4byGQjIRERENrs4tQaurq7u05zGZTLDZbEhKSoJGo0FsbCxuvfVWvm4nIp/GAgARUS/sdjs++OADbN++XegoNET0Zf8B9xuNzvsPmEwmtLa2IiYmpkuBID09HcHBwYN8FUR0pQIDA9HW1sb9QoiIiARmMpk8g/qdB/mbmpqgUCggkUigUqkQGxsLrVaLzMxMTJ06lat2icivsQBARNSLtWvX4v7772f/d+qz8PBwhIeHIysrq8fvd95/4NNPP8U777zD/QeIvEBWVhZOnTqFcePGCR2FiIjIJzkcDtTW1kKn06G6uhqVlZWorq5GdXU17HY7RCIR7HY7oqKikJCQgPj4eGRlZWH69OnQaDR8zUxEdAn8H5KIqAdmsxl///vfsWPHDqGjkA+51P4DdrsddXV1nhlN7v0HDAYDzGYzxGIx9x8gEkhOTg6Ki4tZACAiIroKZrMZer3eM1u/80ez2QygYzJMdHQ0YmNjodFoMHLkSNx2221ISEiATCYT+AqIiLwbCwBERD34wx/+gCeeeAIikUjoKOQnpFIpYmNjERsb22OBwL1ZWU/7DygUCiiVyi7FAa1Wi/DwcAGuhMj35Obm4sMPPxQ6BhER0ZDTuQVm5577JpPJ8zMikQgajQZarRYajQaFhYXQaDTQaDR8v0VENAhYACAiuojRaMTBgwfx7LPPCh2FyCMgIOCS+w+4Z1aVlpZ69h9wz6qy2+2Ijo7uUhwYMWIEQkJCBvkqiLxTVFQU6uvrhY5BREQ0KNwrU90D+p1vRqMREokEdrsdMpkMUVFRiI+PR1xcHFJTUzF58mRoNBoEBAQIfRlERPQfLAAQEV3ktddewzPPPCN0DKIrolAoLrtBcU/7DygUii6zstwzs7RaLZRK5SBfBdHQ5XK5hI5ARER0TaxWKxoaGjyz9Zuamrp87uaePOJux6PValFQUIC4uDiEhYUJeAVERHQ1WAAgIuqkubkZJSUlWL58udBRiPrVpfYfALoWCA4fPozS0lLPG0HuP0AEqNVq1NbWYtiwYUJHISIi6qK1tRV6vd6zn1R1dTVqampQXV0Np9MJh8MBqVQKiUSC+Ph4xMTEIC4uDmlpaZg8eTLUajXkcrnQl0FERAOEBQAiok7efPNNPPnkk0LHIBp0lyoQ9LT/gE6ng1gs9qwS6Lx6IDY2tteVCETeyr0RMAsAREQ0GIxGo2dQ3z2wX1dXh5qaGhiNRkilUjgcDgAdr+Oio6OhVquh0WgwceJExMbGYtiwYZBKOexDROTv+JeAiOg/2tracOrUKfzyl78UOgrRkHIl+w+cOnUKf/vb3zz7DzgcDkRFRXVZPTB8+HCoVKpBvgqia5OTk4Mvv/wSU6dOFToKERF5KZPJ1K3tjvtzs9ns2TjX5XJBJBJ5WvCEh4cjPT0dU6ZMYRseIiK6YiwAEBH9x+rVq/Hoo48KHYPI61zN/gMmkwlKpRIWiwVqtbrL6oGRI0ciMDBwkK+C6NIyMzOxZs0aoWMQEdEQ4nK5UF9f77nV1tairq7Oc7+1tdXTMtHhcCA0NBQxMTEYNmwYNBoN0tLSUFhYCLVazdc+REQ0YFgAICICYLFYcODAATz77LNCRyHyOVey/0DnDYoBQCKRICkpqcsKgqSkJEgkksG8BCIolUq0t7cLHYOIiAZYT7P0O993M5vNkEqliI6ORnh4OMLDwxEbG4vRo0d7Pg8PDxfwSoiIiDqwAEBEBGDt2rV46KGHhI5B5JeudP+BhoYGTwFAJBIhJSWly94DKSkpEIlEg30Z5AfEYjEcDgcLUEREXqS1tRWNjY2oq6tDQ0MD6uvr0dDQgOrqatTX10MkEsHpdMLpdEIsFiM0NBRRUVGIjo6GRqNBSkoKxo8fj2HDhnFAn4iIvBILAETk92w2Gz755BPs2LFD6ChEdJEr2X/AXSBw99F1Op2IjIzk/gPUb9LS0nDu3DmMGDFC6ChERH7JaDSisbHRM4jf2Njo+djY2IjW1la4XC7Pz4vFYoSEhCAyMhKRkZGIiopCfHw8xowZg+joaERFRXGTXCIi8nn8S0dEfm/Tpk2YP38+ZwwTeaEr2X9g37592LZtm6e9kNVq9fTgda8e4P4DdCk5OTkoLi5mAYCIqB+4W+10vl3cdgfoaMEGAG1tbRCLxZ72Ou7NcZOSkjwteDQaDV/TExERXYQFACLyaw6HA7t27cL27duFjkJEA4D7D1B/io2NxaZNm3Ds2DFIpVI8//zzQkciIhoSehrMv3hAH/jvYH57eztEIlG3wfzMzEwUFBRwMJ+IiKgfsQBARH7tb3/7G26//XaIxWKhoxCRAC5VILDZbKiqqkJpaSn0ej0OHz6Mqqoq2Gw2AB37D6jVas/qAe4/4Lt0Oh0mTJgAoKNoZDKZUFBQwAIAEfkks9mMCxcuXHIw32w2Q6FQQKlUwmQyAUCXjXA1Gg20Wi3y8/MRHh4OtVrN19tEREQCYQGAiPza5s2bsWHDBqFjENEQJJPJLtleyGKx4Pz5811WEJw/fx4Wi6XH/QfS0tIQGho6yFdB/SE+Ph4pKSnYv3+/52vZ2dkCJiIiurzm5mY0NTXhwoULXQb03Z9fuHABVqu1y2NcLheUSqWnP767d356ejomTpyImJgY7qVDRETkZVgAICK/deLECYwcORIKhULoKETkheRyeZ/2H3CvHui8/4DBYIBKpepSIMjIyEBQUNBgXgJdgbVr1+Kmm26CXq+HWCzGxIkThY5ERH6gt9Y6F9/MZnOXx9ntdgQHB3tm5btn5mdlZXnuR0RE8HUwERGRH2ABgIj81ptvvsn2DUQ0YK5l/wGpVIrExMQuBYLExERIpXzpJpT09HQUFhZi27ZtCA8Px6hRo4SORERepC8D+WazGSaTyTOY756N33kQ333TarWez9leh4iIiC6F7yKJyC/V19fD5XIhLi5O6ChE5Kf6sv+AXq9HdXU1tm3b5tl/wGQywWq1Ijk5uUuBIDk5mQNAA2z16tX45ptv4HQ6MWLECKHjENEgcrlcaG5u9rTVubiVjvujxWLp9lipVNpl1r37Y0ZGRpev8f9wIiIiGggsABCRX1qzZg0efvhhoWMQEfXoWvYfcLlckMlkqKurw7Zt26DVapGamoqwsLCrzlNRUYGkpKSrfryviIiIwLx58/DnP/+ZbTOIvExbWxtaWlrQ0tKC5uZmz+ctLS1oamryfL21tRUAug3Gi0QihIaGIiwsrMtgfmZmZpdBfP7fQEREREMNCwBE5HdsNhuKi4vx3HPPCR2FiOiqXG7/gWPHjmHNmjUIDw/vsv+AyWRCa2srYmJiuqweSE9PR3BwcK/nmzJlCkJDQ/Gb3/wGM2fO9Hzd/stfwlZR0e/XN5QtdjgQqtHAtHCh0FEEJW5pgXzJEuD664WOQn7iUi103K1zOvfC79xKx+l0IjAwsMdWOpGRkVAoFJ77w4YNg0QiEfJSiYiIiPoVCwBE5Hf+8pe/YO7cuULHICIaMKGhoYiOjsbUqVN7/L5er0dZWXcG+JoAACAASURBVBnKysqwZ88evP322562FTKZDAkJCUhJSUFycjISEhLgdDpx7NgxzJs3D0lJSVi+fDnmzp0L59mzOLds2WBe2pAwA8A5oUMITPXJJ0isqxM6BnmJzoP3nQfrL7WZrUKhgFKpBABYrVaoVCoolcoug/UX98KPjIyEXC4X8lKJiIiIhhwWAIjI72zfvh0ffPCB0DGIiAQTGxuL2NhYFBQUdPue3W5HVVUVysrKUFpaiu3bt3sG5FpbW3HixAk88MADWL58OV6JikLiYIcnokHhcDhgMBg8bXE635qamrp9zWQyweVyQSQSeWbQO51OuFwuhISEdGmfExoaitDQUAwfPhxhYWGe+0FBQQJfNREREZHvYQGAiPzKwYMHMX78eMhkMqGjEBENSVKpFCkpKUhJSQEAfPHFF1i/fj2Ajhm5kZGRCA0NRVRUFM62trIAQDTEuFvfXDzLvrevXfw4oOPfulgshlwu7zbjXqlUQqPReHrfu/vfs/c9ERER0dDEAgAR+ZX33nsPL7zwgtAxiIi8ht1uR3p6OiZOnIgZM2ZgwoQJiIyMBABYi4pwRuB8RL6gpaUFbW1taG9vR0tLC1pbW9He3o7W1lbPRrWdZ9vbbDY4HA4AgEQigUgkAtDx79U92z40NBTBwcEICQlBSEgIwsPDkZyc7LkfEhIClUol5GUTERER0SBgAYCI/IbJZILJZIJarRY6ChGR1/jBD36AH/zgB0LHIBoy3AP17sH59vZ2tLW1oaWlBUajEW1tbWhra0Nzc7PnZ61WKxwOB2QyGUQiEWw2G4COPTdcLhcCAwOhUqmgUqkQGBiIoKAghIWFQaVSIS4urssgfkhICKRSvo0jIiIior7hK0ci8hvbtm3D7NmzhY5BRETkk2pra7Fq1SpERkZi8eLFQscBABiNRpjNZhgMBrS3t6O9vR0GgwEGg8EzON/c3Ayj0Yj29nYYjUYYjUZIJBJIJBI4HI4uA/dWqxXBwcEICwvzDNSrVCqEhIQgKCjI0xInKCgIgYGBntn4YrFY6KeCiIiIiPwUCwBE5Dc++ugjbNq0SegYRET0H99++y3WrVuHl19+2e9bkfTnc+HeyPnUqVOorKzE448/3u/ncHM6nfj444/x+uuv49y5cygvL8eNN954RQWAzoP0bW1tMJvNnpn1ZrMZzc3Nnv717s/dM/DlcjlcLhesVisUCgUcDgdsNhuUSiWsVisCAwMRGhoKhUKBoKAghIaGegbuNRoNgoODERQU5JlxHxQUBLlc3i/PDRERERHRUMACABH5hfLyciQmJnLzXyKiIWTMmDFYvHixp5e5P+vP52Lnzp3Iy8vDbbfdhq+++gpOpxNisbjbOYqLi5GTk3NV52g1m/HMunX46Oc/R01NDQwGg+d7tbW1WLRoEUwm02UH6d0fw8LCoFAoPK1wFAoFgoODoVKpEBMTg5CQEAQHB0OhUEClUiEoKAgBAQHX/FwREREREfk6FgCIyC+sX78eCxYsEDoGEZHfcDgcOH36NNRqNSIiIgAAFosFJSUlyMrK8mxa2rmXeU+P6c3FxyorK4PZbEZMTAxUKhXOnj2LmJgYREZGwmq1ory8HGlpaZ5WLHV1dVCpVGhoaEB8fHyP2YCOArJcLodGowGAHo/Vm5qaGkRERKC0tBQZGRkAgNLSUshkMsTHx6OkpARKpRIJCQndnovm5mZUVlYiJSUFISEhfT5vS0sL/v73vyM3Nxc1NTVQq9UwmUwICgrqco6DBw/id7/7HVasWIGkpKQ+PUedmW02NBgMkEgkUCgUXQoAgYGBeOGFFzhIT0REREQ0BLAZJRH5PJfLhdOnTyM3N1foKEREfsFiseDVV1+FTCbDr3/9a3zxxRfQ6XR4/vnnERsbi0WLFsFisVz2Mb3p6VgOhwMLFy5EYGAgZDIZdu3ahaCgIDQ1NWH16tWoqqrC/PnzUV9fjy1btmD+/PlYv3493nnnnV6zvfTSS2hpacHSpUvx5JNP4ptvvul2rN5s3boVRUVF2Lx5M1avXo0HH3wQAKDX67F06VKIRCJUVFTgF7/4RbfHVlRUYOfOnZDJZNi6dWuP19Abd+Ggvr7e0/6nqqqq2881NjZ62uv05Tm6WHRICDYsWoRTp07hyy+/xJIlSzB27FgkJyfDarUiPDycg/9EREREREMACwBE5PM+++wzTJ48WegYRER+47PPPkN+fj6GDx+OJUuWIDU1FXK5HEVFRQA6ZsaXlZVd9jG96elYaWlpuPnmm/H555/DYrFAq9VCoVBg9+7dCA8Ph9lshkajwYEDB3DjjTfC5XLh8ccfx4svvtjj8c6fP4+jR48iLy8P8+bNQ0xMDEpKSrodqzcFBQVQqVR44IEH8MYbb0Cv16OkpAQxMTGen7l4Vr2bTqfDzp07ERkZiblz5/Z4Db1JSkqCXC5Hbm4uxo8fD7Va3eOKAffKgry8vD49R5eSnp6O3/72t/j3v/+Nb775pseCARERERERCYMtgIjI523ZsgWvvfaa0DGIiAaVy+US7Nx79+7F7bffDgAYNmwYgI7WOTt27IDT6URERARsNttlH9Ob0NDQHo9VVFSE119/HTKZDDfddBOAjlY3CxYswLhx43DbbbcBAOrr66FUKi95PI1GA5FIhIMHD6KxsRF33HEH1q1b1+1Yl9J54D0rKwsXLlxAeHj4ZR83ceJEzJo1C3PmzMHzzz/f4zX0p748R30VHR2N6Ojo/o5IRERERDRkCPle62pwBQAR+bSWlhYA6NOACxGRr5BIJHA6nYKdf9y4cfjLX/4Ck8kEh8OB48ePY9OmTbDZbBgzZgwsFku3F809PaY3vR0rLy8PJpMJ3333HSIjIwEAo0aNwocffgin0wmXy4WDBw/26XhisRj3338/xGIx5syZg1GjRvXpWL3R6/UYO3YsAgICYLVaAQA2m63H39ORI0fw4IMPYsOGDXjrrbeu+Lx9eUMiFos9mwFfy3UREREREfmb1tZWhISECB2jz1gAICKftn37dsydO1foGEREg0oqlcJutwt2/ltvvRUymQz/8z//g9///vfQarVIS0vDhx9+iPfeew9hYWHYvn07jh49ioaGBuzfv7/Hx/Smp2O5B7PvueceTJgwwfOzs2bNgsFgwJw5c7BixQpkZGRg79690Ov1OHLkSK/Ha2lpwapVq7BmzRosXrwY77zzDmbOnNntWJdSX1+PXbt24ZVXXsHdd98NiUSC5ORkyOVyLF68GIcPH0Z7ezt0Oh2Ki4s9z0VFRQVWrFiB5uZmzJ07t8dr6E15eTlqa2uxd+9eVFVVQafTYd++fQDQ5RxxcXFob2/HunXrMG3atMs+R0RERERE1KGmpqZLa8+hTuTytjULRERX4O6778bGjRu5ESER+ZW6ujq8+uqrePXVVwf0PNaiIpxZtqzX79tsNshkMs99u90OqbSjA6XT6eyxN33nx+h0um7fVygUiIqK6vVYvR3XbDZDoVD0mvXi45WUlECv1yM9PR1tbW349ttvkZOTg8zMzG7H6ilnfX09XnzxRWzduhUikajb3yGr1QqpVNpjVpfLBYfDAYfDAblc3uM1XOq56Su73Q6JRAKRSNTt+Jej+uQTJGq1wB139Pl8RERERES+YNu2bZ7JS96AewAQkc9qaGhAeHg4B/+JyO8IvQLArfPgPwDPADuAHge+L37M3r17u31fo9Hgpptu6vVYvR33cgPbFx9vz549sFgsUKvVaG5uhtVqRVpaWo/H6ilnW1sb2tvbuwzgd3apv00ikQhSqbRLpovPe6nnpq8udXwiIiIiIurZF198gRdffFHoGH3GAgAR+awdO3Zg9uzZQscgIhp0Q6UAcK3uvfdewc79xBNP4ODBgzh69CjGjh2L6667zjNT/mI95fzHP/6B2bNn48iRIxg9enS/5xPyuSEiIiIi8lc2mw1NTU1XtPJWaCwAEJHP+vzzz7Fx40ahYxARDTqFQgGTySR0DK8WEBCASZMmXfXjp02b1o9piIiIiIhoKNi+fTvu8LI2mNwEmIh8UmNjI8LCwrq1nyAi8gcBAQGw2WxCxyAiIiIiIvIZDocDW7Zswdy5c4WOckVYACAin/TRRx9h5syZQscgIhKMy+USOgIREREREZHPePfdd7FgwQKvm2zKAgAR+aRPP/30ijZCJCIiIiIiIiIi6kl5eTn27duHO++8U+goV4x7ABCRz3G3vQgMDBQ4CREREREREREReTOLxYJnnnkGb7/9ttBRrgoLAETkc/75z3/ihhtuEDoGEZGgBqMFkGT0aAx/7bUBP483Mdrt+LCyEkVardBRBpSovR3g31oiIiIi8gOLFi3Cz372M6jVaqGjXBUWAIjI53z00UdYvHix0DGIiAQlFovhdDohFg9cx0fJz38OyYAd3TvJAXw8bx5uX7kSkZGRQschIiIiIqJrsGzZMkyaNAkFBQVCR7lq3AOAiHxObW0t4uLihI5BRCSo6OhoNDQ0CB3DLy1duhSvvvqq0DGIiIiIiOgquVwu/PKXv0RSUhLmzZsndJxrwgIAEfmUyspKJCYmCh2DiEhwarUa1dXVQsfwSzk5Oaivr0dVVZXQUYiIiIiI6ApZrVY8+uijyMzMxKOPPip0nGvGAgAR+ZRPP/0UN998s9AxiIgEp9FooNfrhY7ht5577jm88sorQscgIiIiIqIr0NTUhKKiIixcuBBFRUVCx+kXLAAQkU/517/+5dV92YiI+ktqairOnTsndAy/lZKSArFYjO+++07oKERERERE1AdHjx7FfffdhxUrVmDSpElCx+k3LAAQkc9wuVywWq0ICgoSOgoRkeDS09Nx5swZoWP4teeeew6vvfaa0DGIiIiIiOgSXC4X3njjDbz11lvYvHkzhg8fLnSkfsUCABH5jBMnTiArK0voGEREQ0J4eDiampqEjuHXYmJioFarcfDgQaGjEBERERFRD2pqajBv3jzExMTg3XffRUhIiNCR+p1U6ABERP1l3759PrVEi4joWrlcLqEj+L2f//zn+NGPfoQtW7YIHYWIiIiIiP7D6XTiT3/6Ez777DO8/vrriIuLEzrSgOEKACLyGYcOHUJ+fr7QMYiIhoywsDA0NjYKHcOvhYaGYvTo0fjss8+EjkJEREREROgYP7rrrrugUCiwdetWnx78B7gCgIh8iMlkQmBgoNAxiIiGjHHjxuHQoUOYNm2a0FH82lNPPYV58+bhpptugkgkEjoOEREREZFfamxsxIoVK+BwOPDee+/5ZLufnnAFABH5hLq6OsTExAgdg4hoSBk/fjy++eYboWP4PYVCgVtvvRV//etfhY5CREREROR3mpubsXz5cjz99NP40Y9+hNdff91vBv8BrgAgIh/x1Vdf4frrrxc6BhHRkJKeno7Tp08LHYMAPPTQQ5g7dy5mzZoFqZQvwYmIiIiIBprRaMRbb72Fw4cP49lnn8X48eOFjiQIrgAgIp/wzTffYMKECULHICIaUsTijpd6NptN4CQkkUgwb948bNiwQegoREREREQ+zWg0YsWKFXjooYcwadIk/OUvf/HbwX+ABQAi8hHl5eVISkoSOgYR0ZBz/fXX48CBA0LHIAB33XUXPvroI5hMJqGjEBERERH5HJ1Oh6VLl+KRRx7BxIkT8cEHH2DixIlCxxIcCwBE5BNEIhE3ViQi6sGMGTOwZ88eoWMQOv5WPfbYY1i9erXQUYiIiIiIfMaRI0fwyCOP4IUXXsC9996LLVu24IYbbhA61pDBBqRE5PUaGhoQHR0tdAwioiEpJSUF586dEzoG/cctt9yCtWvXoq6uDm+99RbUajUef/xxoWMREREREXkVm82GXbt24YMPPkBOTg5efvlljg31ggUAIvJ6x44dQ15entAxiIiGrJEjR6K4uBg5OTlCR/F7DocDiYmJGDt2LGpra1FYWMgCABERERFRH5WUlGDt2rUoKyvDrFmzsHHjRsjlcqFjDWksABCR1zt27BimTJkidAwioiFrwYIFePfdd/HKK68IHcWvORwOpKenQ6/Xe/YBuHDhgsCpiIiIiIiGNovFgl27duH//b//h+joaDz00EPIzs4WOpbX4B4AROT1vv/+e4wcOVLoGEREQ1ZaWhrKysrgcDiEjuLXJBIJli9fjtDQUM/XDAaDgImIiIiIiIYml8uF/fv346mnnsKDDz4IiUSC9evXY9WqVRz8v0JcAUBEXs9kMkGpVAodg4hoSJs2bRp2796N22+/Xegofm3+/PmIjIzEww8/DL1eD7PZjJqaGqjVaqGjEREREREJ7uTJk9i2bRuOHDmCiRMnYsmSJYiNjRU6llcTuVwul9AhiIiuxYIFC7Bx40ahYxARDWkWiwULFy7EBx98IHQUAvDVV1/hnnvuQWNjI3bv3o3JkycLHYmIiIiISBBlZWXYsmULjhw5gpycHBQVFWH48OFCx/IZXAFARF7NYrFAoVAIHYOIaMiTy+XIycnBgQMHcP311wsdx+9NnDgRu3fvxpQpU3Do0CEWAIiIiIjIr5w8eRJ//etfcfz4cSQnJ6OoqAi/+MUvhI7lk7gCgIi82vfff4/t27dj2bJlQkchIhryLly4gEWLFmHDhg1CRxl66uuB4mI4jh+Hs7gYToMBDrEYCAgY0NNWGI2oaGvDDcOGDeh5rprDAbHNBrFUCnFGBiS5uRDl5gIpKYCY24kRERERUd+52/ucPHkSqampmDlzJgoKCiASiYSO5tO4AoCIvNq5c+eg1WqFjkFE5BUiIiKQlJSEr776ChMnThQ6jjAMBqCkpGOQ/8QJOHU6OBwO2GUytCcnoy0jA+ZHH4UzKGjQIsUDKB20s10dkcMBWXU1FOfOIfCrr6DU6SBtb4dYJoN45EhIxo8HsrI6CgN8A0dERERE6Nizce/evdi9ezdqa2sxbtw4LFy4kOM4g4wrAIjIq61ZswZZWVkoLCwUOgoRkVcwGo1YsGABduzY4dszbWw24MwZuE6ehLO4GI7KSjhNJtidTphTUtCWlARTdjbsUVFCJ/VqIrsdAeXlUJSWIqi8HPKGBkjsdkhkMojz8yHJzQVycoChusKBiIiIiPpVWVkZ9uzZg/3790MqlWLKlCmYPn061Gq10NH8FgsAROTVfv3rX+Puu+/GiBEjhI5CROQ1Vq9eDbVajdmzZwsd5do5HEBFBVwnTnTM6D99Gg6TCU6HA+a4OLSOGAFLWhqscXGcmT6IxEYj5JWVUJaWIrC8HPLGRkhsNogiIiDJyYF43Dhg1CggOFjoqERERER0DSwWC/71r39hz549qKqqglarxfTp01FQUACplM1nhgIWAIjIqz311FN48cUXERYWJnQUIiKvYbfbMXfuXGzevBnB3jQAq9cDp051zOj/7js4mpvhNJthjY1FW1IS2keOhFWrhYu96YcsicEA+dmzUJaVIbCsDAFtbZA4nRCr1ZCMHw9RdjaQmQkolUJHJSIiIqIeuFwuHDt2DJ9++im+/fZbSCQSTJo0CdOnT0dCQoLQ8agHLAAQkVdbuHAh/vznP/t2GwsiogFw9OhRbNy4EStXrhQ6SndNTcDJkx0z+ouL4WhogNNigTUsDMb0dJhTU2FJTYVTLhc6KfUTaV0dFKWlHSsGdDrIzGZIHA6IUlIgycmBaOxYICMDkEiEjkpERETkd6qrq7Fv3z7885//hE6nw8iRIzF16lRMnjwZMplM6Hh0GSwAEJFXW7hwITZs2CB0DCIir7RkyRLMnDlTuH1UOm3I6yguhlOng8tkgi04+L8b8mZkwBkYKEw+EpTI6YRMr+/YeLi8HIqqKkidTkjEYoiHD+fGw0REREQDpLKyEl9++SX27duH5uZmpKSkYOrUqZg4cSKUXKnpdVgAICKvxgIAEdHVM5lMuPvuu7F582aEhIQM3IkusSGvKSMDbcnJMA8fDntk5MBlIJ9xyY2Hs7IgyckBxo0DuNEcERERUZ/o9Xrs378fX3zxBYxGIyIiIlBQUICbb74ZERERQseja8QCABF5NRYAiIiuzYkTJ7By5UqsX79+YE5w4QJsU6ei+ZZb0KbVwpKWBltMzMCci/ya2GiE4tw5KM+dQ8ihQwicMwfi++8XOhYRERHRkOJwOHDy5Ens27cP//73v2E2mzF8+HDccMMNuP766xEUFCR0ROpn3IqZiIiIyI9lZ2fjuuuuw5/+9Cc8/PDD/X8CqxVt48ahdv78/j+2H/v222+xbt06vPzyy1CpVNd8PLvdjqqqKpw6dQqVlZV4/PHH+/0cA80ZHIz2vDy05+XBpNUi2WAQOhIRERGR4FpaWnDgwAF8/fXXKCkpgUgkQnZ2NgoKCvDQQw9Bzn21fB4LAETk1bj5LxHRtXvsscfw4IMPIj8/H6NHjxY6DvXBmDFjsHjxYjgcjn453s6dO5GXl4fbbrsNX331FZxOZ4/nKC4uRk5OTr+ck4iIiIj6l8vlwpkzZzwD/i0tLQgLC8N1112HefPmYcSIEUJHJAGwAEBEREREeOutt1BUVIS33noLcXFxQscZEBaLBSUlJcjKyoJIJEJZWRnMZjNiYmKgUqlw9uxZxMTEICQkBOXl5UhLS4NYLPY8vq6uDiqVCg0NDYiOju5yLLfy8nLI5XJoNBrP16xWa4/H60lNTQ0iIiJQWlqKjIwMAEBpaSlkMhni4+NRUlICpVKJhIQESKVdX8o3NzejsrISKSkpCAkJ6fN5W1pa8Pe//x25ubmoqamBWq2GyWRCUFBQl3McPHgQv/vd77BixQokJSX1ePzOz1F8fHwffitEREREdLVKS0tx+PBhHDp0CFVVVQCAESNG4Prrr8crr7yC0NBQgRPSUHDpdyBERERE5BeUSiXefvttPPHEE2hvbxc6Tr/T6XR4/vnnERsbi0WLFsFiscDhcGDhwoUIDAyETCbDrl27YLFYsHr1alRVVWH+/Pmor68HAGzZsgXz58/H+vXr8fzzz3c7FgC89NJLaGlpwdKlS/Hkk0/i7NmzaGpq6vF4Pdm6dSuKioqwefNmrF69Gg8++CCAjk3Zli5dCpFIhIqKCvziF7/o9tiKigrs3LkTMpkMW7duvaLzugsH9fX1nvY/7jeQnTU2NsJsNqO5ubnH43d+jt55550r+v0QERER0aXp9Xp8+OGHWL58ORYsWIA5c+bgjTfegMlkwsKFC7F582a8//77WL58OaZNm8bBf/LgCgAi8lrcw5yIqH/Fxsbiueeew5NPPom1a9dedra6N5HL5SgqKgLQMcu+rKwMGRkZuPnmm/H5559j6tSp0Gq1+OKLLxAeHg6z2QyNRoMDBw5g1qxZuPHGG7Fu3To8/vjjuPPOO3H+/PkuxwoJCcHRo0exbNkyzJs3DwcOHEBaWho2b97c4/F6UlBQgC1btuCBBx4AANx6660oKSlBTKdNk3ubVa/T6bBz507MmDEDc+fOxe7du/t83qSkJMjlcuTm5iIkJARqtbrH3717ZUFeXl6P19X5OSIiIiKiq6fX63H48GEcPnwYZ8+ehclkQnx8PPLz83HXXXchMzOTLZGpz1gAICKvxj94RET9a9y4cZgzZw6efvppvPHGG0LH6TehoaHYsWMHnE4nIiIiYLPZAABFRUV4/fXXIZPJcNNNN+FXv/oVFixYgHHjxuG2227zPF4ikUCpVPZ6LI1GA5FIhIMHD6KxsRF33HEHgI62OT0drzedB96zsrJw4cIFhIeHX/ZxEydOxKxZszBnzhw8//zzV3zeK9XT8evr6z3PERERERH1zcWD/WazGXFxcRzsp37DAgARERERdXH77bejpaUFL7/8co/tZrzRpk2bYLPZMGbMGFgsFs8qsry8PJhMJnz33Xe45ZZbMGrUKHz44YfIz8+HSCTCN998gwkTJlz2WGKxGPfffz/EYjHmzJkDuVwOAH06Xm/0ej3Gjh2LqqoqWK1WAIDNZoPT6ez2s0eOHMGDDz6IKVOm4Omnn8Ydd9xxRefty6o6sVjs2RC4p+vSarV9ui4iIiIif2Sz2fDdd9/hxIkTKC4uRmVlJQB4ZvYvWLAAqampAqckX8QCABERERF1M3/+fLz66qtYs2YNHnvsMaHjXLO0tDS89NJLCA4ORlhYGLZv346srCxIJBLcc889iI2NBQDMmjULv/nNbzBnzhxMmDABTzzxBABg79690Ov1OHLkSI/HSkpKwqpVq5CUlITAwEBkZ2fj4Ycf7vV4vamvr8euXbvw3Xff4e6774ZEIkFycjLkcjkWL16MzMxMtLe3Y8+ePWhoaMD+/fsxc+ZMVFRU4OOPP8Ytt9yCuXPnYsaMGX0+b3l5OWpra7F3717k5eVBp9Nh3759sFgsXc4RFxeH9vZ2rFu3DtOmTcOrr77a5fiffPKJ5zkaPXp0//3yiIiIiLyMXq/HqVOncPLkSRw/ftyz+lSr1SIrKwvz58/nzH4aNCIXm2gTkZdyuVx44IEH8N577wkdhYjIZz333HMYPnw47rvvvqs7QE0Nml94Abqf/KR/g10Fu90OqbRj/ovT6fS02+n8uZvZbIZCoejzsUpKSqDX65Geno62tjZ8++23yMnJQWZmZrfj6XS6bsdTKBQwmUx46qmnsHXrVohEIgQEBHT5GavVCqlU2mN/fpfLBYfDAYfD4Vl90NfzRkVF9XqdPV23RCLxvFm93PMklMCjR5FsMEB8mYILERER0bUwGAwoKSnByZMncfjwYTQ1NcFutyM6Ohr5+fnIyspCVlbWkHy9RP6DKwCIiIiIqFe/+c1v8Nxzz2Hjxo1YsGCB0HGuiXvAHujaa7+nAfXLvUm7+Fh79uyBxWKBWq1Gc3MzrFYr0tLSejze3r17ux1Po9EgMTER7e3tXQbwO7u4INCZSCSCVCrtkquv573pppt6Pe7FLnV8IiIiIl9lt9tRWVnpGejX6XSwWq0Qi8UYPXo0srKyMH36dERHXNp5tgAAIABJREFURwsdlagbrgAgIq/FFQBERINn2bJlGDlyJObPn39lD2xqgu3mm2GYPBntKSkwpaXBGh8P9DDo7s2sVisOHjwInU6HsWPHIi0t7YqXdP/jH/9AWVkZJkyYwBY6V0Ha2AjF2bMILC1F8JEjUM6fD9G8eULHIiIiIi9isVhw5swZnD59GqdPn0ZJSQkcDgekUikyMjKQk5OD7OxsJCYmCh2VqM9YACAir8UCABHR4Hr22WeRl5d35SsBHA6gogKuEyfgPHECztOn4TCZ4HQ4YI6LQ+uIEbCkpcEaFwewDypdhthohLyyEsrSUgSWl0Pe2AiJ1QpRZCQkOTkQjxsHjBoFBAcLHZWIiIiGqKamJpSWluLkyZM4deoULly4ALPZDJvNhvT0dGRlZXn69XPFI3k7FgCIyGuxAEBENPj+93//FwEBAVi0aNG1H8xmA86cgevkSTiLi+GorITTZILd6YQ5JQVtSUkwZWfDfgU96sl3iOx2BJSXQ1FaiqDycsgbGiCx2yGRySDOz4ckNxfIyQGGDRM6KhEREQ1B7rY9nQf6TSYTXC4XAgMDkZmZ6RnoT0lJ4Ya85LNYACAir8UCABGRMN58803o9Xr89re/HZgTGAxASQmcxcUdKwZ0OjgcDthlMrQnJ6MtIwPm9HQ4g4IG5vw0qEQOB2TV1VCcO4fA8nIodTpI29shlskgHjkSkvHjgawsICWFK0SIiIiom+bmZpw7d84z0H/27FmIxWKIRCJoNBrPQH9GRgaC+PqR/BALAETktVgAICISzoYNG3D06FGsXLly8GZLNTUBJ092FAWKi+FoaIDTaoU1NBTG9HSYU1NhSU2Fs5dNdEl40ro6KEpLO9r36HSQmc2Q2O0QZWZCkpsLUVYWkJEBSCRCRyUiIqIhpKWlBefOncPZs2dx7tw5nDt3DmazGS6XC2FhYRg5ciTS09ORnp7O/vxEF2EBgIi8FgsARETC2rlzJ3bv3o23334bUqlUuCB6PXDqVEdR4Lvv4GhuhtNshjU2Fm1JSWgfORJWrRYuH9t4eCiTGAyQnz2LwPJyBJaVIaCxEWKnE+KkJEjGj4coOxvIzASUSqGjEhER0RDh7svf+WYymaBUKiESiZCSkgKtVgutVov09HQEc78foj5hAYCIvBYLAEREwtuzZw+2bduGNWvWQCaTCR3nv7jx8KDodUPeuDhIcnMhzs7mhrxERETkcfEgf0lJCQwGA5xOJyIjIz0D/FqtFpmZmVBysgDRNRNwqhYRERERebvp06cjODgY9913H9auXTt03qRJJIBWC5FWC8msWZAAkAGAzYbAM2cQfvIknPv3w1FRAafZzI2HL+OyG/KOHQs88AA35CUiIvJzVqsVVVVVXdr11NbWer4fHx+P1NRUpKamYsKECYiPj4eYqzSJBhRXABCR1+IKACKioePw4cN4+eWX8e677yIiIkLoOFeutbVjf4Fjx+A4fhyu+nrYJRJAyNZGnXxVV4eJMTGCnFtiMkEcHAxxZiYko0YB2dlAbKwgWYiIiEhYVqsVlZWVKC8vR0VFBcrLy6HT6WC1WgEAAQEBSExMhFarxfDhw5GamophnCBAJCgWAIjIa7EAQEQ0tJSWluKnP/0pXnvtNaSnpwsdx6fce++92LRp0+BtuExERER+yWq1QqfTobS0FHq9HtXV1SgtLUVTUxMAQCKRICkpqUurnoSEhKHVCpKIuhgaU5qIiIiIyOtptVps2LABjzzyCJ566inccMMNQkfyGQkJCTh//jzi4+OFjkJERERerKcB/qqqKhgMBpjN5m4D/IWFhUhMTIR0iKyKJKIrx3+9RERERNRvwsPD8f777+OnP/0pTp8+jUceeUToSD4hJycHx48fZwGAiIiIeuV0OlFTU4OqqirodDrodDpUVFSgoaEBLpcLLpcLcrkcSUlJSE5ORkpKCqZMmYK4uDhIJBKh4xPRAGEBgIiIiIj6VUBAAFavXo0NGzbgsccew6pVqxAYGCh0LK+Wm5uL3bt3Y8aMGUJHISIiIoE0NTV1acuj1+vR0NAAg8EAABCLxQgNDUVsbCy0Wi3y8/Nx++23Izk5mRvtEvkxFgCIiIiIaEAsXLgQI0eORFFREVauXIm0tDShI3mtjIwMrFq1SugYRERENEBMJpNnYL9ze56mpiYoFArYbDaoVCpotVpoNBpotVpMnToVSUlJnL1PRJfEAgARERERDZhx48Zh3bp1WLRoESZPnoyHH35Y6EheSSaTwWq1Ch2DiIiIrpDNZkNtbS10Oh1qamo8H8+fPw+bzQaxWAyn04moqCgkJiYiLi4OWVlZmDFjBtRqNXvvE9E14/8iRERERDSgIiMjsXHjRmzYsAE//OEP8cYbb0Cj0Qgdy+tIpVJYrVYEBAQIHYWIiMjvOZ1O1NbWorq6Gnq93nM7f/48zGYzXC4XxGIxxGIx4uLioFarER8fj/z8fMTHx2PYsGH8m05Eg4IFACIiIiIaFAsXLkRhYSF+/OMf45577sFdd90ldCSvkpGRgTNnziA7O1voKERERD7N3Y7n4n77TU1Nnp9xOByIiopCbGyspyVPQUEBEhISoFKpBExPRNQVCwBERERENGi0Wi3+7//+D++++y7mzZuHFStWIDExUehYXiEnJwfHjx9nAYCIiOgq2Gw21NXVobq6GjU1Nairq4Ner0ddXV2XgX2RSISIiAjExcVBo9EgLi4O2dnZiI+PR0hIiIBXQER0dVgAICIiIqJBJRKJ8Oijj2L69OlYunQpJkyYgMcff5w9bi8jNzcXb7/9ttAxiIiIhpSLZ+u7Z+pXV1fDZDIBAMxmMyQSCWJiYjwz9qOjo5GXlweNRgO1Wg2xWCzwlRARDQy+yyIiIiIiQSQkJGDTpk3461//irlz52LRokW48cYbhY41ZCUkJECn0wkdg4iIaMB1HtR3D+a7B/ibmpqgUCgA/LcNT3h4uGdgv7CwEBqNBjExMZxcQEQEFgCIiIiISGCzZ8/G9OnTsXLlSvz5z3/GCy+8gJSUFKFjDUkul0voCERERFfMZDKhvr4etbW1qK+v99xqamrQ0NAAl8sFl8sFp9MJsViMsLAwz2z9mJgYjBkzBrfddhtiYmIgk8mEvhwiIq/CAgARERERCU6hUGDZsmU4f/48fv3rXyMwMBBLlixBTEyM0NGGlLCwMDQ3NyMsLEzoKERE5Oeampq6zdBvamry3MxmMxQKBZRKJcxmM8LCwjyz9CMiIpCamorY2FgkJCRwUJ+IaACxAEBEREREQ0ZcXBz++Mc/4tSpU/jZz36G1NRUPPPMM1CpVEJHGxKys7Nx4sQJFBYWCh2FiIh8SHt7OxobG9HQ0ID6+no0NDR4Pq+rq0NbWxtEIhHEYjGcTidkMhmGDRuGmJgYREdHIyoqCpMnT/Z8LpfLhb4kIiL6DxYAiIiIiGjIyczMxMaNG/H111/jRz/6EVJSUvDTn/7U71cE5OTk4Pjx4ywAEBFRrywWCxoaGjwD+nV1dWhsbPTcb2lpAQA4nU7PY4KCghAVFYXIyEjPx+HDh2PYsGGIjo6GUqkU6nKIiOgasQBAREREREPWddddh+uuuw7FxcVYtmwZHA4Hli5diuHDhwsdTRAqlQoffvghSkpKYDab8fbbbwsdiYiIBpDNZvMM5l88oN/Q0ICmpibPz7oH9OVyuWcmvnswPykpCVFRUYiOjmYbOSIiP8MCABERERENeTk5OXj33XdRVlaGN998EzqdDkuWLMGYMWOEjjYoWltbMXz4cIhEIjQ2NmLPnj3Iz88XOhYREfWRzWZDY2MjLly40OvNaDQC6Lrhu0wmQ2RkJGJiYjyz83Nzcz0D+5GRkRCJREJdFhEReQEWAIiIiIjIa6SkpOD1119HdXU13njjDaxatQoPPPAAbrzxRp8eAAkJCUFhYSF27NjhGRhKSEgQOBURkX8ymUy9bnzrvgHo0jbHYrEgNDQU4eHhnltkZCTS0tI89zUajU//LSMiImGwAEBEREREXkej0WDFihVobm7Gxo0b8Yc//AETJ07E/fffj6ioKKHjDYjVq1fj0KFDqKioAABMmDBB4ERERN7JarV6Buqbm5u7DNx3vm+z2bo8zuVyISAgABEREYiIiEBkZCQiIiKQkJCAvLw8z9eDgoIEujIiIqLuWAAgIiIiIq8VFhaGn/zkJ/jJT36Cw4cP41e/+hWMRiPuvfde3HzzzT41kzI6Ohp33303Vq1aBZlMhuuuu07oSEREgnHPwr/4Zjabu3zPbDZ3e2xPs/HDw8ORmJjYZXa+XC4X4MqIiIj6l8jVubkcEZEXcblceOCBB/Dee+8JHYWIiIaQpqYmbNiwAV9++SUKCgpw7733YtiwYULH6hdWqxU5OTkwGo349ttvfea6iMi/mEwmGAwGtLS0wGAwoLm5Gc3NzV2+5v5os9ngcrk87c/chd3AwECEhYV1G8S/+Gu+VAgmIiK6GiwAEJHXYgGAiIguZ9++fdi6dSsaGxvxgx/8ALNnz0Z4eLjQsa7J+vXrsWjRIrS0tAgdhYj8kHt2/cUz7Xuahe+efd/5c5fLBaVS2WWQXqlUQqFQdBvM5yx8IiKia8cWQERERETkswoLC1FYWAiHw4EDBw5g2bJlqKurw6xZszB79myEhIQMyHntzz8Px7FjA3LsIgCtycmw3HHHgBz/YiKnE9Lbb4f40UcH5XxENHAubo3T2wB+T5vYmkwmtLW1ISgoqNtAvXtAX6vVer4WHR0NmUwm1KUSERHRf7AAQEREREQ+TyKReIoBZrMZu3fvxo9//GOIRCLceuutmDZtWr+uDHCWlKDkpZf67XgXuwlAyYAdvStpfT1S//Y3iAfpfETUlcViQVtbG5qbm2E0GmE0Grvcb2trQ2trK1paWtDU1IT29nYAHa1yOre/cblcCA0NhUqlQmhoKMLCwhAaGorQ0FCkpaV1+Z5KpRLqcomIiKifsQBARERERH5FoVBgzpw5mDNnDoxGIz7++GMsWbIELS0tGDt2LGbOnImMjAyhYxKRlzKbzTAajTAYDDAYDGhra0NbWxtaWlrQ2trqGbR3329ra4NIJILdbofT6YRMJutyPzg4GMHBwQgKCkJwcDDCwsI89xMSEhAeHo6goCDPwH1QUJDQTwERERENISwAEBEREZHfCg4O9hQDnE4nDh06hPfffx/ff/894uLiMGPGDEyaNAkKhaLHx3///fcIDAxEYmLiICcnov50qdY4Pd13P8ZsNkOhUECpVMJkMsFkMnna4Vzc116pVCI6OhojRozo8n22yiEiIqKBxAIAEREREREAsViM8ePHY/z48QCA8+fPY/fu3di8eTMsFguysrJw4403Yvz48Z7BumXLluHrr7/G/fffj1/96leQSvnymmigGAwGWCwWzyx6i8WClpYWz0B8U1MTLBYL2tvbYTAYPDPxjUYjAgIC4HK5YLPZIBaLIZVKPfeDg4MRGhrqmWEfEhLiuZ+QkACVSgWVSuWZdc/2OERERORN+A6FiIiIiKgHcXFxeOSRR/DII4/A5XLh5MmT+Pzzz/HHP/4RTqcTo0aNwunTp6HX67Fy5Ups374d77zzDm644QahoxMJxj1T3j1rvvPs+ct9DsAzk97NPcPeZrNBJpN1m1nv/lypVEKj0fT4fZVKBYlEItRTQkRERCQoFgCIiIiIiC5DJBIhOzsb2dnZAACn04mvv/4av//97wF0bNJ5+vRp/PCHP8T48eOxhisBaIhxD7K3tbXBarXCYDDA4XCgqakJDocDBoMBVqsVbW1tnoH75uZmzwa0ra2tUCqVsFqtcLlckMvlMP9/9u48Lqs67//469rYERAXwAUhFMU1UUshW7TFmpbbpl/ZYmVT3TVZ1j3d1tS0TtlUZrZnk7mMaVrWrWZNOZkGKpUbuFsIiOCCssl6bb8/HK7RBFfgcF28n4+Hj4eec51z3tfFOdcDP59zvt/qaiwWC1arlaqqKtq0aUNQUBD+/v5ERETg7+9PUFAQYWFhnmVdunQhICDguNeKiIiISNPQ/0xERERERE6T2WymtraWQ4cOAeDn50dYWBg2m42MjAzuttl4qYFtHQ4Hu3fvZsuWLeTl5XHfffexbt06pk+fzosvvnjGw4usWbMGk8nEeeedB9Ao+5SmVVpaitPppKSkBIfDQXl5uWcIm8rKSmpqajh8+DB2u73B17rdbs/EsdXV1QQFBVFeXk6bNm04fPiwp2gfHBzsuTM+JCQEm81GWFgYFouF8PBwrFbrMUX7kJAQ/P39CQsL82wnIiIiIt5HDQARERERkTMQFBTETTfdRK9evejduzddu3YlNjaWkJAQaseMYUcD233xxRf079+fq666ilWrVuFyuRg4cCCPPvooTqcTgKysLPr27XvKWXJycpgxYwYXXnihpwHw2302pry8PCZPnsy6dev44YcfGn3/zanuzvi6u9/riusul4vS0lIASkpKcLvdnrvm64rydXfK1xXt65aFhIRQVlZGaGgolZWV+Pv743A4MJlMmM1m7HY7AQEBWK1WwsPDsVgsngZSSEiIZ0ib4OBgIiIiPEPYREREYLFYaNOmDX5+fgQHBxv86YmIiIhIS6cGgIiIiIjIGTh6wuBTVVpaytdff02/fv3Yu3cvUVFRVFVVERwc7JlAOCMjg9dff52XXnqJ2NhYamtrycnJISEhAbPZ7NnX/v37adOmDUVFRXTr1o34+Pjjjnf0pMQ1NTXs3LmT3r17YzKZPMtzcnLw9/cnOjr6hNmrq6uZP38+06ZNIzc3lz179tC9e/fTev9Hqyum1xXe6z4fl8vlKajDf4rvR48TX1xcDOC5S/7oAnzdXfCHDx+mTZs2lJSUEB4eTllZGSEhIVRWVhIQEEBtbS0Wi4WAgADPXe91Bfi6IjvgGZ4mLCyMiIgIQkNDsVqtnuFr6or1KsiLiIiISEukBoCIiIiISDMpKSkhLy+PAwcOUFJSwl/+8hemTp1Kz549Pa85ePCgZ/z1Nm3aMGvWLPr06cMzzzzD1KlTad++PXPnzuWjjz7iv/7rvygsLOS555474XHz8/N58803mThxIhMmTODll1/G39+fF154gd/97ndMmTKF4OBgHn74YRISEo7Z1uV2c9OSJaz6+GOKi4upqanxrKuqqmLs2LHYbDbKy8uJiIigvLwcm82GxWKhoqLCU3z39/fHZDJRVVVFWFgYgKeIbjabPcuCg4Px8/M7pggfEhJCREQEVquV0NBQAE8hvm54GhXgRURERESOpwaAiIiIiEgziY2Nxd/fn379+hEaGkpUVNQxd/UDxMXFERoaSv/+/ZkzZw4RERFUV1cTHR3N6tWrueaaa7j44ouZPn0699133ykd19/fnzFjxgCwd+9edu3aRWhoKBs2bOCJJ57g5ptvZvXq1ccV/wHMJhMPDBhAgNXKhg0b2L9/P0VFRcCRJwxmzZp1lp+KiIiIiIg0FTUARERERERaqIyMDG677TYGDx7MVVdd5VlusVgIDAw85f2EhYWxcOFCXC4Xbdu2xW63Ex0djclkIiMjg4MHD3Lttdc2uH1q585cPHkybrebn376iXfeeYeMjAwOHDhwVu9PRERERESalhoAIiIiIiLNyO12n3C92Wz2TNw7YMAAFi9eTHJyMiaTiR9//NEzye/p+Mc//oHdbmfgwIHU1NTgdrsxm83ccccdmM1mRo8ejb+//0n3YzKZjpn7ICcn57SziIiIiIhI8zGf/CUiIiIiItIYcnJy2LdvHytWrGD37t3k5+eTlpZGVlYWRUVFpKen06lTJyorK5k+fTpXXHEFZWVljB49mpdeeskzV8CKFSsoKChg/fr1nv1u3LiRjRs3eu7KP3qfCQkJLF68mBkzZhAeHs5nn31GWVkZU6ZM4f333+fRRx9l2rRpuFyu03o/3bp1a9TPR0REREREGpfJfbJbkEREWii3282dd97JjBkzjI4iIiJyjNoxY9jxxBNnvL3D4cBisWAymQCorq4mICDgrDI5HA6s1iMPALtcLnbu3ElBQQGJiYlUVFSwbt06+vbtS1JS0jHbWQ8c4JwlS7BNnnxWxxcRERERkeanIYBERERERFqYukJ9nbMt/v92n2azma+++oqamhqioqIoKSmhtra23kmARURERETEe6kBICIiIiLSCt1///1kZGSwYcMGBg0axPnnn+954kBERERERHyDGgAiIiIiIq2Qn58fF1xwgdExRERERESkCWkSYBERERERERERERERH6QGgIiIiIiIiIiIiIiID1IDQERERERERERERETEB6kBICIiIiIiIiIiIiLigzQJsIiIiIhIIzN37073J55otuPlV1VR4XSSGBLS+Dt3OrFcc03j71dERERERJqcGgAiIiIiIo3M+txzzfqLtik7mwUffcTzzz/fjEcVEREREZGWTkMAiYiIiIh4ufj4eLKzs42OISIiIiIiLYwaACIiIiIiPsBisVBbW2t0DBERERERaUHUABARERER8QEDBw5kw4YNRscQEREREZEWRA0AEREREREfkJqaSnp6utExRERERESkBVEDQERERETEBwwYMICNGzcaHUNERERERFoQNQBERERERHyA1WrVHAAiIiIiInIMNQBERERERHxEQkICv/zyi9ExRERERESkhVADQERERETER6SkpGgeABERERER8VADQERERETERwwdOpQ1a9YYHUNERERERFoINQBERERERHxEmzZtKC0tNTqGiIiIiIi0EGoAiIiIiIj4kMjISA4cOGB0DBERERERaQHUABARERER8SHDhg3TMEAiIiIiIgKoASAiIiIi4lOGDx+uiYBFRERERARQA0BERERExKd06tSJvLw8o2OIiIiIiEgLoAaAiIiIiIiPcblczJw5k5tuuonNmzcbHUdERERERAyiBoCIiIiIiI945ZVXSExMZOXKldx9990sXbqUsrIyo2OJiIiIiIhB1AAQEREREfERI0eOpLy8nMLCQux2OyEhIXTp0sXoWCIiIiIiYhA1AEREREREfMS5557LpZdeitVqBcBmsxEVFWVwKhERERERMYoaACIiIiIiPuTdd9+lW7duAAQGBnqaASIiIiIi0vqoASAiIiIi4kOCgoKYPHkykZGRBAUFGR1HREREREQMpAaAiIiIiIiPueaaaxgyZAgBAQFGRxEREREREQPpeWARERERkZbI7YaffoIFC2DvXjjNu/lntGvHkspKuPfexs1VVgb9+sENN0BCQuPuW0REREREGpUaACIiIiIiLcnmzUeK/hs2wIABcM890L37ae+mAzCu8dMdsXkz/OMfkJl5pBkwZgwkJjbV0URERERE5AypASAi0trU1sLWrZCdDQ6H0WlaBqsV4uOhVy/w8zM6jTS1ggLYuRP27zc6ifcKDT1y53e3bkeuHzl7vy3633ILPPPMf9b//DPs2mVYvGMMGgS9ex/5A0eyz52rZoCIiIiISAtkcrvdbqNDiIicCbfbzZ133smMGTOMjtIy1dbCjh24N2/GlZmJKzsbZ20tTpuNqq5dqYyNxeXvb3TKFsFUXU1Qbi6BeXlY7HbMNhvm+HisAwZg6t0bevRQY8Db/LvI79qxA9eOHbjz8nC5XLhcLmojI6nu0oWq9u1VvD5DtoMHCdi9G//CQixuNxaLBVO7dph79sSSmKjmwKmqr+h/9J3+P/+Mc948HDt2UJ6YyOGWUFR3OAhbt46gffuwnHce1jFjIC7uP+vr3pOaASIiIiIiLYIaACLitdQA+DeHA/LycG/ahGvTJlzbt+OsqsLlclEdE0NFt25Ux8dTGx+P26y530+Vdf9+ArKzCczOJig/H1t1NWanE3NcHJa+fTH16XPk7ldNsGmc4mLIzsb1yy+4srJw79yJq7oat92OPTyc6vh4Krp1o7ZzZ+wxMTr/m5ilrAy//Hz88vMJLCzEf9++I82B2lrMwcGYExKwdO9+5Gmb1nztnKzov3nzkaL/2rVUJCRw8PLLqYmNNS7vCfj/8guR331H8C+/YE1OxnLbbUcapnXUDBARERERMZwaACLitVpdA6ChQr/bTU1MDIdjY1XobwZ1jYHgnBwC8vKwVVdjcToxHd0Y6NMH9HRF41CR3ye0+uaADxX9G6JmgIiIiIhIy6QGgIh4LZ9uABQU4P755yOF/m3bcJWWegr9FbGxVJ9zDtUJCbg1LE2LYHK5sBUUEPDrrwT9uzFgrarCYrViio8/0hgYNAh69gSLxei4LY+K/K2azzYHWkHRvyFqBoiIiIiItBxqAIiI1/KJBkBBwZEx+rOycG3bhrOkBFd1NbVHF/rPOQe37ib3SianE1th4X8aA7t3Y3W5MJvNR4qa/fodmWOgNTQGVOSXM+B1zYFWXPRviJoBIiIiIiLGUgNARLyWVzUACgpgyxZcWVk4t27FVVqKs7qa2uhoFfpboYYaAxaLBXNCAua+fY80Bnr1Am8qhKvIL82oxTQHsrJg9mzIyYHBg+H3vz9uUtzWVvRvyEmbAevWHWkG/PILJCfD2LEQE2NcYBERERERH6AGgIh4rRbZADi60L9lC66yMly1tdR07Ogp9Neccw4uFfqlHiaHA9vevZ7GQOCePVgcDixmM+bu3VtGY0BFfvECzdoc+P3v4ZVXVPQ/TSdtBnz/PSxeDJMnG5ZRRERERMQXqAEgIl7L8AZASQnOadNwbdmC6/BhnEBNhw5UxsdT1a0bNfHxGqNfGoWpthb/7GwCc3IIys7Gf/9+LIA5JARzUhKWe+6B8PBGP6574UKcq1fjzsvD6XTicrmwt2tHZadOVHfuTG3XrtijosBkavRjizQVS0kJ/nl5+O/eTWB+Pv6FhVjcbsxmM6Z27bAkJWG+555Tn8j79tth5kwoKcHx17/i2L6dwz17cmjECGo7d27aN+MjAjdvJvK77wjcuxezqcPGAAAgAElEQVRraiqWRx+FoiKYNEkNABERERGRs2Q1OoCIiNfKyuLQ7t3sHz/e8KF7HA4Hu3fvZsuWLeTl5XHfffcBsG7dOqZPn86LL75ImzZtGvWYjbnvJUuWsGvXLsaPH3/McpfLxYQJE5g8eTI2m+2sjvFbK1euJC0tjT//+c+Nut+m4Pbzo7pnT6p79qT4qOWmmho6zJhB+6wsuOCCRj9uzYcfkjthgor8jayxr0tdP6fHGR5OZXg4lf36HXM9wZHmQMw77xB21VVHng44HZs3c8hmY/+kSY2W1du/209VVe/e5PfuDUDcn/9M8MMPN8txRURERERaAz2XLyJyFhzt2xte/Af44osvcDgcXHXVVfTv3x+XywXAwIED2bp1K06nE4CsrKxGO+Zv9302unTpwoYNG45bbjabueOOOxq9eAnQvXt3fvrpp0bfb3Ny+/vjaN++6fYfHIw9OlrF/0bWmNcO6PppTM7wcJzt2p3x9q5GnmfA27/bz4Q7MNCQ44qIiIiI+Co1AEREvFxpaSlff/01brebvXv3EhUVRVVVlWe91XrkYa+MjAxefPFFcnNzG9zXrl272Lp1KwcPHsRut3v+XlNTw6ZNm/jtqHF1+87Ozmb37t243W527NjB7t27AaitrWXHjh2eolVD6vZjt9uPyxcXF4fD4QCgsLAQp9PJ1q1bsdvtJ/1s6ju+3W4nMzOT0tJSTEcVtnNycigsLDzp9iUlJWRmZlJeXn7S40vTqu/nU9850tB5uH//fqqrq8nPzweOPwcKCwvJy8ujtLQUl8tFXl4ehw8fbjDP6Vw/dec8tMzrp6Fj6/ppPr7w3S4iIiIiIsZTA0BExMuVlJSQl5fHgQMHPENE1BVpjnbw4EGqq6spKSlpcF9Op5OxY8cSFBSEzWZj0aJFFBcX89RTTxETE8OECROoqak5bruCggIef/xxTCYTubm5/PnPf6a4uJh3332X3bt3c+utt3LgwIETvo+CggLee+89JkyYwGOPPQbAjh07GDVqFKWlpSxatIgxY8bwySefMHv27JPO/VDf8Wtqanj66aexWq18//33ngLmCy+8QGlpKY8//jh//OMf+eWXX+rdPjc3ly+++AKbzca8efNOeHxpWvX9fOo7Rxo6D+fOncutt97KRx99xLRp0+o9B3Jzc7nxxhvx8/PDbDYzZ86cE2byleunoWPr+mlevvLdLiIiIiIixlIDQETEy8XGxuLv70+/fv0YMmQIUVFRmM3Hf73HxcURGhpK//79G9xXQkICI0aM4LvvvqOmpob4+HjCwsIYM2YMAHv37mXXrl3HbdehQwfP3zv/e9LLpUuXEhERQXV1NdHR0axevfqE76Njx46MHz+eBQsW8OOPP1JQUECPHj2IiIgAYPjw4QDcfPPNPPjgg3z99dcn3F99x1+xYgVJSUkkJSVx9dVXA7Bnzx42bNhA//79ufnmm+nQoQMJCQn1bp+fn88XX3xBZGQk119//QmPL02rvp9PfedIQ+fhxRdfjNvt5r777uPee++t9xw4//zz6dOnDxkZGTidTjp16kRISEiDmXzl+mno2Lp+mpevfLeLiIiIiIixNAmwiIgcY8yYMbz22mvYbDYuueQSQkNDWbhwIS6Xi7Zt257S0DtwZFiK2267jcGDB3PVVVed9PX+/55LwWq10qdPH/bu3UtMTEy9r/Xz8ztmKIxTPf4TTzxBSkoKADabDZPJRHR0NCaTiYyMDA4ePMi1117b4PZut5trrrmG0aNH89RTT3HZZZed0mchja++n8/Rd0DXnSMNnYcWi4XAf4813tA5ADBu3Djef/99LBaLp4h+Ir5w/TR07BUrVuj68WJGnZsiIiIiImIsPQEgIuIDfjt+c33MZvMpTerYv39/qqqq2Lp1K5GRkfzjH//AbrczcOBAampq6j2Wn58ftbW1wJExwl0uFwMGDGDx4sW4XC7cbjcZGRmn/H4cDgfnnntug+/vVN5vfcfv1asX6enpnmO4XC7PRKlms5nRo0czYMCABrdfv34948aNY9asWbz99tun/H6k8Z3s/Ko7R07lPGzoHAAYOnQolZWVfP/993Tr1u2kuXzh+mno2Lp+mp+vfbeLiIiIiEjzUwNARMTL5eTksG/fPlasWMHu3bvJz88nLS0NgKysLIqKikhPT6dTp05UVlYyffr0esd6PtpNN93EeeedBxwZOmLx4sXMmDGD8PBwPvvsM5xO5zH77tatG/7+/jz66KOsXbuWyspKBg4cSFlZGaNHj+all16iZ8+eDR4vKioKh8PB0qVLmTp1KjfeeCMmk4nNmzezf/9+Vq5cyY8//khZWRm//PILq1atoqio6ISTXl5zzTXHHf+qq66iqqqKe++9l4ULF1JdXc3PP//MlClTeP/993n00UeZNm0aLper3u1zc3N56aWXKCkp0RAmBqvv51PfOTJgwIB6z8MVK1ZQUFDA+vXrOXz4cL3nQJ1bb72VXr16nXK2k10/GzZs8Fw7QIu7fur7bAFdP83MF77bRURERETEeCb3qdxaJCLSArndbu68886TTgbbZH74gcLlyzk4erQxxz8DDocDi8XCnj17jlsXEBBAu3btADx39h69ndVqrXfd0Wpra7Farcesr66uJiAgwPPv/Pz8Bo9dUVFBcHDwab2nE+2vvuPDkclMbTYbADt37qSgoIDExEQqKipYt24dffv2JSkp6bjt3W43TqcTp9PpGXLFaJELFxJ98cVwwQWNvu+q//f/+PWppxp9v42pvp/v6b5u+/btJzwH5s+fz1VXXeU5N092zjXV9XOy4zb29dPQZ+ZL1099YqZNo+2ECRAff2ob3H47zJwJ6ensXbaMIgOaGy3hu72xdHv+eULmzIGSEpg0CSZPbvRjiIiIiIi0JpoDQESkFakr9KxYseK4ddHR0VxyySUAxxWB6rarb93R/Pz8jlv22wLRiY59usXLk+2vvuMDxxQfv/rqK2pqaoiKiqKkpITa2loSEhLqzW8ymbBarcd8HmKsUy1Anuh1DZ0DS5cuZcuWLXTo0OGYc9Oo6+dkx23s66ehz0zXT8vTEr7bRURERESkZdL/wEREzoLJSx+iuuWWW3zm2Ge7v/vvv5+MjAw2bNjAoEGDOP/88zGZTI2Uruk15TlocjrB7QYv+jzOREPnQFxcHFarlZEjRx7zeqOun6Y4bmu/fupjOoXx9FsqI7/bRURERESkZVIDQETkTCUk0G7mTCKefRan00lt+/ZUdutGVXw8NfHxuAIDjU4op8DPz48LmmD4nMZmrqrCPzubwOxsgnJy8DtwAIvFgiUsDI6647ox2YYOpcfzz+NyuXC5XNS2b09Vp05Ud+5MbWws9g4dfKI50NA50KtXr9Ma+7818pbr57cspaX45eURkJ9PYH4+/gUFWP49BI65Qwfo0OH0d3rOOUS+9Rahzz/PoZQUylNScLXgoY5aEktJCeHLlxO+bh22yEg4wdMIIiIiIiJyetQAEBE5U9HRWP/+d88XaVBxMeGbN+PatAnnRx/hOngQV20ttWFhVMbFURUXR3WvXmoMyAmZ7Hb8cnMJyM4mOCcH/wMHsDidmG02zElJWPv1gxtvhLi4Ji++W/70JyxH/TuouJjw7Gxcv/yCa/ly3Dt34qquxm23Yw8Ppzo+nopu3ajt3JnamBgV8cRQlrIy/PLz8cvPJ7CwEP99+7C43ZjNZiwWC+aEBCzdu8Mll0BSEpzpd3NtLVRXQ1QUtrlzsVVVEfTttzjeeQd7URHF559P6YgRuIKCGvcNejlLWRlhK1cS/vPP2IKDsV5/PaaJE6FuuKHycmMDioiIiIj4CE0CLCJey/BJgE9VcTHUNQYyM3EXFOCqraWmQ4f/NAaSknBpPOVWxeRw4JeT4yn0B+zZg8XhwBQS8p9Cf+/ezVLobxTFxVDXHMjKOqY5UNuxI1Xx8VRFR6s5II3quCL/nj1Y7XZMQUHHFvnj48+uyH8iX34J8+aBvz9ccw1cdhnUfZ9XVeH+9lsc//d/agbQQNH/iiv+U/QvLoYvvoBlyyA4GO65BwYNMja0iIiIiIiXUwNARLyW1zQAGlJQAFu24MrKwpmVhfvQIZwmEzUdO1IRG0v1OedQc845GkLCy5kcDmx79xLw668E5eQQuGcP1oqKI3f09+qFuW9fTL17Q69evlsUV3NAzkKLKPKfispK+Ne/jjQESkrgyivh+uuPFLKh1TYDTlr0LymBRYuOFP3rmiiXX/6f9SIiIiIiclbUABARr+X1DYCGHN0Y2LoVV2kprpoaaqKi1BhowUxOJ7bCwv8U+vPzsTidngJlqyj0n4mGmgO1tdRGRVEZF0d1TIyaAz7Oa4r8p6qVNwM8Rf+1a7EFBanoLyIiIiJiIDUARMRr+WwDoCEFBbg3b8aVlYVr2zacJSW4qqupjYnxNAaqzzkHtxoDTaqu0F+VmYll1y66FRdjrZs8NCEBS79+Rwr9PXuCxXLyHUrD1BzwKT5X5D9VraQZoKK/iIiIiEjLpAaAiHitVtcAaMjRjYENG448MeB2U3N0YyAhAbeKLKfF5HJhKyjw3NEfkJeHtaoKi9WKKSmJXR068N66deytrSUgMJDBgweTmppKUlISZhWim15dcyArC9emTbh371ZzoAVotUX+U3Do0CE+mT2b7xYs4I34eKJra72+GXDKRf9vvz0yL4KK/iIiIiIizU4NABHxWmoAnIDDAb/+ivvfxVHX9u04HQ5cJhPVsbEc7tKFmrg43Dab0UlbBJPdjv+uXQTl5hKQm4vVZMJssWDq0QNrv36Y+vaFc84Bq7Xe7e12O5mZmaSlpZGZmUlFRQU9e/YkNTWVYcOGEdRCi3c+ye2G/Hz45RdcO3bg2rEDd34+LpcLl8tFbYcOVHXqRFWnTtijorxjguUWyFJSgn9eHoF79uC/Zw+WuqdgIiMxJyZi6dkTEhKOTGLdir9nampq+Oabb/j0009xOp3ceOONjBo1CqvVevInA8rLcS9ahGPJEmpdLg6lpFDVo4exbwjA6SR03TrC1q7FFhmJ9YYbMI0Y8Z+fs4r+IiIiIiItihoAIuK11AA4A3Y77NyJe9MmnL/+itvpPONd7S4tZUp6Oq9deWUjBjSGyWLBcs45mPr0ge7dG6VgmZ2dTVpaGhkZGRw4cIC2bdsybNgwLrroIrp27doIqeW0/bY5UFSEt/waNHPdOm4fONDoGB7moCAV+U9g7dq1zJkzh127djFq1ChuvvlmQkJCGt7gVJoBixfjyM5unjdwAiaTCUtysor+IiIiIiJeQg0AEfFaagAYJysri2eeeYZ3332XDh06GB3HK+zdu5effvqJ9PR0srOz8ff3Z9CgQaSmpnLuuedq2CA5oT/84Q9MnjyZsLAwo6NIA7Zv387cuXNZv349w4YN4/bbbycqKur0d3SyZkBLoaK/iIiIiIhXUANARLyWGgDGWLZsGdOmTePDDz8kNDTU6Dheq7KyknXr1pGenk5mZiYOh4NevXqRmppKSkoKga1obHQ5uXnz5hEQEMB1111ndBQ5yqFDh/j000/57rvviIqK4vbbb+fcc89tvAOUlh4psn/zzZHhqhrhe6HK4cDhdhN6Nk9tlJdDSAhcey1ceqmK/iIiIiIiLZgaACLitdQAaH4zZ85kzZo1vPnmm0fGsJZG43Q62bZtG2vXriUjI4Py8nLatm1LSkoKF110Ee3btzc6ohiouLiYJ598krffftvoKK1edXU13377LYsWLcLtdnPttddy5ZVXYrFYmvrAUFV11rtZ9eOPZG7ezH/feeeZ7yQ0tME5UUREREREpGXRb+4iInJKXn75Zaqqqnj33XeNjuKTLBYLvXv3pnfv3owdOxaAwsJCfv75ZyZPnkxBQQF+fn4MGTKElJQUkpKSMGkC21YjIiKCAwcOGB2j1XK5XKxatYqPP/6Yffv2ce211/L6668T3JzD8gQEHPlzlsK7dKF43TqIiGiEUCIiIiIi0tKpASAiIifkcDh45JFHOO+887jllluMjtOqREdHc/XVV3P11VcDUFFRwfr161myZAlTpkyhtraW+Ph4UlNTSU1NJaARioPScvXp04ctW7aQlJRkdJRWY8uWLcyfP5+1a9eSmprK008/TceOHY2OdVYiIiIoLS01OoaIiIiIiDQTNQBERKRBlZWV3HXXXdxzzz1cfPHFRsdp9YKDgz3FfvjPsEHp6enMnTuX0tJSOnXqRGpqKpdccgmRkZEGJ5bGNGrUKL7++ms1AJpYYWEh8+fPJyMjg65duzJu3DieeeYZo2M1mvDwcIqLi42OISIiIiIizUQNABERqVdJSQl33XUXTz75ZONOaimN5uhhg+655x4ACgoKSE9P57nnnqOwsJDg4GCGDh2qYYN8QHJyMq+//rrRMXxSVVUVS5YsYdGiRfj5+TFmzBgefPBBn7xeAgMDqWqEuQRERERERMQ7qAEgIiLH2bdvH/feey9/+9vfSExMNDqOnIaYmBhuuOEGbrjhBgAOHz7MmjVrWLBgAXv27KGqqoq+ffuSkpLC4MGD8ff3NzixnCqz2UxAQACHDx8mJCTE6Dher25c//nz51NUVMQVV1zB+++/T1BQkNHRREREREREGo0aACIicozc3FwefPBB3nrrLbp06WJ0HDlLISEhjBw5kpEjRwJH5nTYvn076enpzJkzh7KyMrp06UJKSgopKSm0bdvW4MRyIpdccgnLly/3zAshp2/z5s3Mnj2bzZs3M3LkSP7yl7/Qvn17o2OJiIiIiIg0CTUARETEY9u2bTz22GP8/e9/V0HMR1mtVs+wQXXqhg3661//SlFRkWfYoOTk5GNeJ8a7/PLLefbZZ9UAOE179uzh008/5fvvvycxMZE//OEPJCQkGB1LRERERESkyakBICIiAKxdu5ZJkyYxc+ZMwsLCjI4jzei3wwaVl5eTkZHBggUL+Nvf/kZ1dTXJycmkpKQwZMgQ/Pz8DE7cerVr1479+/cbHcMrlJWV8cUXX/Cvf/2L4OBgbr75Zp8d119ERERERKQhagCIiAgrVqxg2rRpzJ49m8DAQKPjiMFCQ0OPGzZo48aNpKWl8eGHH1JaWkqPHj1ISUnhggsuIDw83ODErUvPnj3Zvn275ueoh9PpZPny5cyfP5/y8nJGjx7N3//+d2w2m9HRREREREREDKEGgIhIK/fll1/y+eefM2PGDBXJpF5Wq5Xk5GSSk5M9y7Kzs0lLS+PPf/4zRUVFtG3blmHDhjF8+HC6detmXNhWYNSoUXz11VdqABxl8+bNzJkzh+3btzN8+HAmTZpEZGSk0bFarJCQECoqKggODjY6ioiIiIiINDE1AEREWrGvvvqKL7/8kmnTpmE2m42OI14kPj6e+Ph4xo4dCxwZbuXHH39kxowZZGdnA5CcnExqairnnnuuzq9GNHjwYN566y2jYxhu9+7dfPzxx6xZs4b+/fvzhz/8gfj4eKNjeYXw8HCKi4vVABARERERaQXUABARaaWWLl3Kl19+yVtvvaXirJy1Nm3aHDNskN1uJzMzk7S0NN5++22qqqpITEwkOTmZ4cOHa56Js2CxWPDz86OyspKgoCCj4zSrkpISFi1axNKlSwkPD+fWW29l4sSJRsfyOuHh4ZSUlNC5c2ejo4iIiIiISBNTA0BEpBX68ssvWbp0KW+++aaK/9IkbDbbCYcNOnDggGfYoIsuuoiuXbsamNb7XHTRRXz//fdceeWVRkdpcrW1tfzzn/9kyZIl1NTUcP311zN79mwNWXYW6hoAIiIiIiLi+9QAEBFpZT777DO+++47Ff+l2f122KB9+/bx448/8s4775CdnY2/vz+DBg3SsEGnYNSoUbzwwgs+3QBYu3Ytc+bMIScnhyuuuIJXX32V0NBQo2P5hLohgERERERExPepASAi0op8+umnLF++XMV/aRE6duzI1VdfzdVXXw1AZWUl69atY9myZbz22ms4HA569epFamoqKSkpBAYGGpy45Wjfvj0FBQUcOnSIpUuXcumll9KxY0ejY5213Nxc5s2bx+rVqxkwYAAPPfQQsbGxRsfyOeHh4ezbt8/oGCIiIiIi0gzUABARaSU+/fRTvv/+e9566y1MJpPRcUSOExQURGpqKqmpqZ5ldcMG/elPf6K8vJy2bduSkpLCRRddRPv27Q1Ma5zt27fz/vvvs3HjRgYOHMjBgwf55z//6bUNgOLiYhYsWMC//vUvoqOjGTt2rMb1b2IRERFs377d6BgiIiIiItIM1AAQEWkFFixYwMqVK3nzzTdV/Bev8tthgwoLC/n555+ZPHkyBQUF+Pn5MWTIEFJSUkhKSmoV5/fChQt57733qKqqAqBdu3ZeN6lyTU0N33zzDZ9++ilOp5Mbb7yROXPmYLXqV9PmEBoaSnl5udExRERERESkGeh/WSIiPu6TTz7hp59+4o033mgVxVHxbdHR0ccMG1RRUcH69etZsmQJkyZNora2lqSkJM+TBAEBAQYnbnyPPfYYS5cuJS0tDQA/Pz8iIiIMTnVyLpeLVatWsXDhQgoKCrjyyit55513CA4ONjpaq9OmTRs1AEREREREWgk1AEREfNg333zDqlWrmDp1qtFRRJpEcHDwMcMGOZ1Otm3bRnp6OnPnzqWsrIyYmBhSU1O5+OKLadeuncGJz57JZOKTTz7h/PPPZ/fu3Vgslhb9BMDWrVv55JNPWLduHSkpKUycONFrhyvyFaGhoZSVlRkdQ0REREREmoEaACIiPmrVqlXMmTOH6dOnGx1FpNlYLBZ69+5N7969ueeeewAoKCggPT2d559/nsLCQoKDgxk6dKhXDxsUExPDSy+9xAMPPIDZbG5xd9EfOnTIM+l4x44dufPOO3nmmWeMjiX/FhISQkVFhdExRERERESkGagBICLigzZu3MjUqVOZPXs2FovF6DgihoqJieGGG27ghhtuAODw4cNs2LCBJUuW8Prrr1NdXU2fPn1ISUlh8ODB+Pv7G5z41Nx8880sWLCA1atXN/uxMzMzuemmm/j5558JCgoCoLq6msWLF7No0SL8/PwYM2YMd999t1c2WHydyWTC5XIZHUNERERERJqBGgAiIj5m586dPPvss8yePRs/Pz+j44i0OCEhIQ0OGzRnzhzKysro0qULKSkppKSk0LZt28YPsXkzta++eta7+XtwMLf7+VF7552NEKphlpEjsdxyCwCffvopDz/8MPv372fu3LkkJiby8ccfs3fvXq677jref/99T1NAWi41ZkREREREWgeT2+12Gx1CRORMuN1u7rzzTmbMmGF0lBZj9+7dPPDAA8ycOZPw8HCj44h4rbphg9LS0igsLCQoKIhhw4aRkpJC7969z/4An39OXl4eZSNGnP2+mpjJbqfH1KlYP/qIxx57jOnTp1NUVARA9+7defjhh7nxxhubplEiTWbs2LHMmjXL6BgiIiIiItLE9ASAiIiP2L9/P3/84x/54IMPVPwXOUu/HTaovLycjIwMFixYwN/+9jdqamoYOHAgKSkpDBkypMGnbQoLC9mwYQOjRo1qzviNrsLh4P9dfjmrVq06Zuz4qqoq/uu//kvFfxERERERkRZKDQARER9QWlrK3XffzZtvvknHjh2NjiPic0JDQxk5ciQjR44EwOFwsHHjRtLS0vjwww8pLS2lR48epKSkkJqaSkREBACzZs3ir3/9K6mpqcycOZMOHToY+TbO2HX/+hfbga5du1JTU+NZ7nA4WLVqFaNHjzYunIiIiIiIiDRIDQARES9XWVnJuHHjePnll4mNjTU6jkirYLVaSU5OJjk52bNs+/btrFq1iokTJ1JRUUG7du1YtWoVhw8f5uuvvyY5OZkJEybwyCOP4G2jr397+eXYNNyaiIiIiIiI11EDQETEi9ntdsaNG8fTTz9NYmKi0XFEWrXExEQSExO5898T8h44cIChQ4d61ufn5/P0008zZ84c5tx5J8FGBRUBzGYzTqcTi8VidBQREREREWlCZqMDiIjImXG73TzwwAPcfffd9OvXz+g4IvIbtbW1lJSUYDKZaNOmDdHR0URGRnLo0CFuff11HC6X0RGlFQsNDT1mPgcREREREfFNagCIiHipZ555htTUVEaMGGF0FBGph9VqZfz48cydO5evvvqKH3/8kV9//ZWcnBzWvvoqVvPp/xq2cuVKXnzxxRMu/+abb5gyZcox610uFw8++CB2u/3M3oz4nNDQUMrLy42OISIiIiIiTUwNABERL/Thhx8SEhLCbbfdZnQUEWlAx44defrpp7nxxhsZNmwYnTt3xmo9u9EXu3fvzk8//XTC5fHx8axdu/aY9WazmTvuuAObzdbgvrOyss4qm3iX0NBQysrKjI4hIiIiIiJNTA0AEREv8/XXX7N+/XoeffRRo6OISBOoqalh06ZNuN1uzzK73U5mZialpaWYTKYTLq9rMjgcDnJzcz2vjYuLw+FweP5dUlJCZmYm5eXlZGRk8OKLLx7zevFtegJARERERKR1UANARMSLZGVlMXv2bKZOnWp0FBFpAvn5+Tz11FPExMQwYcIEampqqKmp4emnn8ZqtfL99997Cv0NLQc4ePAgs2bN4oMPPmDq1Kns2LGDUaNGUVpaCkBubi5ffPEFNpuNefPmcfDgQaqrqykpKTHkfUvza9OmjZ4AEBERERFpBdQAEBHxEgcPHuSJJ57gnXfewWKxGB1HRJqAv78/Y8aMAWDv3r3s2rWLFStWkJSURFJSEldffbXntQ0thyN3d48bN47x48fz7bff0qNHDyIiIjzr8/Pz+eKLL4iMjOT6668nLi6O0NBQ+vfv3zxvVAynJwBERERERFoHNQBExKsdPUSGL7Pb7dx77728/vrrhIWFGR1HRJpIWFgYGRkZ5OTk0LZtW+x2OytWrKBt27YA2Gw2z53+DS0/mvo+sHkAACAASURBVL+/P7W1tcctHzZsGNdccw2jR4/m559/PqOsOTk5zJ07ly1btpzR9mIsPQEgIiIiItI6qAEgIl6rvmKXr5owYQLjx48nPj7e6Cgi0oT+8Y9/YLfbGThwIDU1Nbjdbnr16kV6ejpwZFx/l8sF0ODyoxujv22S1v17/fr1jBs3jlmzZvH2229jNptxOp0N5tpbVcXChQv57//+b4YOHUpiYiIXXHABY8eOZf369Y33AUiz0RMAIiIiIiKtg9XoACIicmKvvPIK559/PhdeeKHRUUSkiSUkJPDCCy8QEhJCeHg4n332GePHj2fdunXce++99O3bl+rqarZu3cpVV11V7/INGzawZ88ecnNz2bx5M0VFRSxevJj9+/ezcuVKRo8eTW5uLt988w2XXXYZ119/PZ06daKyspLp06dzyy234O/vf0yuqVu28O5tt1FZWXnM8oiICCIiInC73a2qKesL2rRpowaAiIiIiEgrYHK3lvEzRMQn3X777cycOdPoGE3m66+/ZsWKFUyaNMnoKCLSmD7/nLy8PMpGjDhulcPhwGo9co+Gy+XCbD7ywGZNTQ02mw3As+xEy0/E7XbjdDpxOp2eYr/D4cBisRxXyDfZ7fSYOpW9zz/PxIkTWbFiBQUFBQB07tyZW2+9lfz8fJxOJyEhIfTu3Zs+ffrQt29fOnTocDqfijSj/Px83n33XV544QWjo4iIiIiISBPSEwAiIi1UTk4OH330ER9//LHRUUSkGdUV/+HYgv5v78o/2fITMZlMWK3WY4519N/r06VLFz7++GOys7N5+OGHWbt2LWaz+ZgGZUVFBVu2bCEzM5Mvv/ySvXv3AtCtWzeGDh3K+eefT/v27U87rzS+wMBAqqqqjI4hIiIiIiJNTA0AEZEWqKqqiocffpgPPvgAi8VidBwRaSRbt25l5cqVbPj8cx4fNcroOGckPj6e//u//2PHjh0sWLDgmHXBwcEMHjyYwYMHH7O8oKCAtWvXMnnyZLKzs/H392fQoEEkJydz3nnneZ5gkOYTGBh43JBOIiIiIiLie9QAEBGv5qujmD388MM88cQTtGvXzugoInKGiouLGTp0KHa7nerqamw2Gx06dGDIkCFc0rcvNXa70RHPSo8ePXjiiSdO6bUxMTHExMRw9dVXA1BZWclPP/1EWloa7733Hm63m969ezNy5EiSk5PV+GwGgYGBVFdXGx1DRERERESamBoAIiItzJQpUxg6dCiDBg0yOoqInAan08m2bdtIT09n9erVVFdXU1RUxMGDBz2vyc3NJSsri5+7duWju+4yMK2xgoKCuPDCCz2Tm7vdbrKysli2bBlTp07FYrEwbNgwfve739G5c2eD0/omk8mEy+UyOoaIiIiIiDQxNQBERFqQ1atXe8bXFpGWzel0smHDBtLS0ti4cSMVFRX06tWL1NRURo0axQ8//MDWrVuPaQB07dqVhx56iEfi4o5MAmxg/pbEZDLRr18/+vXrB0BtbS3p6elMmTKF/Px8EhMTufrqqxk0aNBxkxSLiIiIiIhIw9QAEBFpIYqLi5k0aRKffPKJ0VFEpB4Oh4ONGzeybNkyMjMzqa2tZdCgQaSkpHDbbbexbt06li1bxrRp02jbti0jRozgtttuY9OmTQQEBNC3b18WLFhw5I72zz83+u20aH5+flx88cVcfPHFAGzbto3Fixfz8ssv07VrV2644QbOO+88NQNEREREREROQg0AEfFqNpsNu93u9RNIut1uHnzwQV5++WUCAwONjiMigN1uJzMz01PwdzgcDBw4kJEjR3L//feTkZHBsmXLeOONN4iMjGTo0KGMHz+eTp06efaRn5/PCy+8wBNPPMEjjzyigvUZ6tmzJz179gSODKO0YMECJk+eTFxcHLfddht9+/Y1OKGIiIiIiEjLpAaAiHi1iIgIiouL6dChg9FRzsrUqVO57LLLPAUuEWl+lZWVrFu3jvT0dDZt2oTJZCI5OZmRI0cyfvx4z7qpU6ficrkYPnw49913H7GxsQ3us3PnzuTl5RESEnLsijZt6DhvHu2XLWuU7D8WFzMgLAw/s/m4dbmVlfxw6BC3nulY+i4Xphb03RQbG8uf/vQnALKzs5k5cybPPvssF198MTfffDMREREGJxQREREREWk5TG632210CBGRM/Xqq69y2WWXecaN9kZr167lww8/5J133jE6ikircvjwYdasWUNaWhrZ2dm43W4uuOACUlJSSExMPGa4H4vFQmpqKikpKfTu3dvo6Md5+umnueOOO4iLiztu3eLFixkzZgzbtm3z2Ql1XS4Xy5cv5+OPP8btdnPXXXeRkpJidKwWb+zYscyaNcvoGCIiIiIi0oT0BICIeLXo6GgKCwu9tgFQUVHBs88+y7x584yOIuLzysvLPcP2FBQU4Ofnx5AhQ7j99tvp2rWrZ0Lf1157jdLSUgYPHszIkSP53//93xY/dE9UVBR79+6ttwGwbds2KioqGDNmDD/88IMB6Zqe2WxmxIgRjBgxgtLSUmbMmMFrr73G5Zdfzq233kpQUJDREUVERERERAyhBoCIeLXo6Gjy8vKMjnHGJk6cyJNPPqnilEgT2L9/PxkZGaSnp5OdnU1QUBDDhg3zDNuTnZ3NsmXLeO6556ioqDhmuB9zPUPptGRRUVEUFhbWu27nzp0AZGZmMmPGDO64445mTNb8wsLCeOihh3jggQdYvHgx48aNIzExkQcffJDIyEij44mIiIiIiDQrNQBExKtFR0ezZs0ao2OckX/+85/ExMQwZMgQo6OI+IS9e/fyww8/kJaWRmFhIW3btmXYsGE88MADdO7c2VPwnzRpEsXFxcTFxTFy5EjuuOMO/Pz8jI5/VqKjo1m7dm2963JzcwEoKyvjueee49prr20V4+RbLBauu+46rrvuOjZu3Mhf/vIXAgIC+J//+Z9jJmoWERERERHxZWoAiIhXqxsCyNsUFRUxbdo05s+fb3QUEa9VUFBAeno6y5cvp6ioiLZt2zJixAieeuopIiMjKSwsJC0tjUmTJlFYWEiPHj0YOXIkY8eOJSAgwOj4japuCKD6lJaWev6ek5PDXXfdxcKFC5srWovQv39/3nnnHbZs2cIzzzxDUFAQjz32GNHR0UZHM5TZbMblcnndEy8iIiIiInLq1AAQEa8WHh5OSUmJ0TFO25/+9CdeeuklLBaL0VFEvMZvC/7R0dGkpqbywgsvEBERwb59+1i5ciV/+ctfOHz4MG3btiUlJYVJkybRpk0bo+M3qejo6AYbAIcPH8ZkMhEZGen5znQ6na3y+ycpKYkPPviAnJwcnnvuOcLDw5k4cSLh4eFGRzNEYGAg1dXVGoZORERERMSHqQEgIl7P7XYbHeG0zJ49m2HDhtG9e3ejo4i0aL/++ivff/896enpVFZW0r17d4YPH84rr7xCcHCwZ1Lfv/3tb2RnZ3ueAKhrCLQm/v7+VFdX17vuwgsvZNy4caxevZqPPvqIkJCQZk7X8nTr1o13332XH3/8kXvuuYeUlBTuv/9+bDab0dGaVWBgIJWVlWoAiIiIiIj4MDUARMQnuN1uTCaT0TFOqqioiMWLF/PJJ58YHUWkxakbsmf58uUcOHCAc845h5SUFF5//XXatGlDRUUFq1ev5vnnnyc7O5vIyEiGDh3K+PHjNaY7DTdD3377bQBef/11tmzZonlHjjJkyBDmz5/P0qVL+f3vf88jjzzChRdeaHSsZhMUFERVVZXRMUREREREpAmpASAiXi8qKop9+/YRFRVldJSTmjhxIi+++KJXNCtEmlrdpL3Lly8/bsiesLAwqqqqSE9P57XXXiM7OxuXy8Xw4cO5//776dq1q9HxWxy3233C8dz79etHVlaWGgD1uPLKK7n00kt57bXX+PDDD3nllVfo2LGj0bGaXN0TACIiIiIi4rvUABARrxcXF0d2dnaLbwAsXbqUXr16kZCQYHQUEUPUjdG/evVqioqKCAoKOmbInurqajIyMpgyZQrbtm0jODiYlJQUbr/9duLi4oyO3+J169aN3bt3ExsbW+/6fv36sWjRomZO5T1sNhsTJ07kl19+YcKECVx66aWMGzfO6FhNKjAwUE8AiIiIiIj4ODUARMTrde/enZ07dzJs2DCjozSorKyM9957j88++8zoKCLN5sCBA6xZs4b09PRjxuh/8sknadu2rafg/8Ybb7Bt2zb8/f05//zzuemmm+jZs6fR8b1Or1692Lp1a4MNgHbt2nHgwIFmTuV9EhISmDt3LgsWLGDMmDFMnjyZmJgYo2M1iaCgID0BICIiIiLi49QAEBGv16tXL5YvX250jBN6+umnef7551vdBJPSutRNyrts2bJjCv6PPvookZGROBwONm7cyAcffEBmZiZ2u53k5GR+97vf8dRTT2lorLPUq1cvVqxYwRVXXNHga1wuVzMm8m433HADQ4YMYcKECdx8881cd911RkdqdHoCQERERETE96kBICJer3PnzuTn5xsdo0GbNm3CarXSv39/o6OINKrDhw+zZs0aT8G/blLeBx54gM6dO3sK/n//+9+PKfiPHDmS//3f/1XBv5H16tWLadOmnfA1nTp1orCwkOjo6GZK5d1iY2OZO3cur776Kg899BCvvPIKfn5+RsdqNHoCQERERETE96kBICJez2Qy4Xa7jY5RL7fbzXPPPXfSopyIN6ioqGD16tUsW7aMgoICbDYb5513Hn/84x/p0qWLp+A/Z84cFfwNEBQUREVFxQlf07dvXzIzM9UAOA0Wi4WJEyeSnp7O9ddfz9tvv+0zk1BrEmAREREREd+nBoCI+AR/f39qamrw9/c3Osox5syZw6hRowgPDzc6ishpqyv4p6WlkZ2djcvlYvjw4dx3333ExsZ6Cv4ff/yxCv4txMmaoUlJSaSnp3P55Zc3UyLfkZKSwvvvv899993HQw89xCWXXGJ0pLNms9mw2+1GxxARERERkSakBoCI+IQePXqwfft2+vXrZ3QUj/LychYsWMDnn39udBSRU1JZWcm6detIT09n8+bNnoL/7bffTlxcnKfgP2/ePBX8W6i2bdsyf/58Vq1axW233UZycvIx62NjY5k3b55B6bxfTEwMCxYs4H/+53/YtWsXd911l9GRzoqfn58aACIiIiIiPk4NABHxCQMGDGDDhg0tqgHw4osv8uSTT2I2m42OIlKvuoL+smXL2LRpEwAXXHABv/vd75g4caJn/fz581Xwb+Hee+893njjDcrLy5k+fTp2u51LL730uNe1b9+eAwcOGJDQd/j5+fHmm28ydepUHn/8cSZNmmR0pDNms9mora01OoaIiIiIiDQhNQBExCece+65vPTSS4wdO9boKADk5uZy6NAhBg8ebHQUEY+jC/6ZmZlYLJZjCvpOp5ONGzeyZMkSXnzxRRX8vUhqairPPfcchYWFwJFCf1xc3HGva8lzpnibhx56iFmzZvHII4/w6quvemWzV08AiIiIiIj4PjUARMQndOjQgX379hkdw+Ovf/0rjz/+uNExpJU7uuC/fft2ampq6Nev33EF/2XLlvHaa6/hcDgYOHCgCv5eqE+fPlx55ZXMnDkTh8OBv7+/z0xU25KNHTuWsLAw7rnnHt577z2sVu/61VpPAIiIiIiI+D7v+l+KyP9n787Dq6ru/Y+/z5SZhEnIBJmBJAwKDqhUW4xaS4VelGpkUKhtpbVKbe3F9rYqzr/W3mu9rWMVp0eGeqWoONQJWwdUlDIFIfMMATKRnHmf3x+HxIQMBEhykpPP63l8hJN91v7ufdY60fXda31FjsPn8wV80nLPnj3ExMSQmpoa0DgkOLlcLn7+859js9n4n//5n3Y/83q9bNu2jX/9619s376d+vp6zjrrLHJycrj11lsxDKN1wv8vf/kLDoejXUIg0GNHTs2f/vQn3n//fQoKCggPDycqKqrT40JDQ3E4HISFhfVzhMFp3rx5REZG8pOf/IRHH310UK0ECAkJUQJARERERCTIKQEgIkEjKSmJkpISkpOTAxrH3XffzYMPPhjQGCQ4bdu2jWXLlrF7924mTJiA1+tlz549fPjhh3zyySc0NjZy5plnkpOTw89+9jNN+A8xERER3HvvvSxfvpzIyMgujxs3bhxlZWVkZGT0Y3TBLScnh+bmZm655ZYOibmBzGazaQsgEREREZEgpwSAiASNc845h08++SSgCYBPP/2UjIwMxo4dG7AYJPh4PB5+85vf8Pzzz1NZWQnAoUOHuPrqq5k5cybf/OY3+cEPfoDP59OE/xD3/e9/n//93//FMIwujxk/fjylpaVKAPSyuXPn0tjYyG9/+1vuuuuuQIfTI6oBICIiIiIS/Ew+VYITkSBx8OBB7rrrLh566KGAxXD11Vfz+OOPEx0dHbAY+oXbDcXFkJ+Pd+9ejL178dXU4IuICHRkg5vPh9npxDRuHOaMDMwTJvClw8HCW26hqKgIh8PReqjNZmP16tVMnDiRt99+m71797ab8J8+fbom/AOlqgry8jB27cK7Ywe+piZ8Nlu/nb7kyBHeKC/nx5Mmdflzr89H6rBh/RZTZ0wOB+bkZCxTp2LKzIRJkyA8PKAx9YZHH30Uh8PBihUrAh3KcVVWVvLwww9z3333BToUERERERHpI1oBICJBY/To0Rw4cCBg5//3v/9NZmZm8Ez+u1xQXg6FhRj5+Xj37cM4dAhfczOGy4UrNhZ7XBzOhARcl1+OKyEBNOHcKywNDYSUlxO2bRtb33yT7MZGxkRF4QgPx24yUeN2U+d0csfKlaz4xS+4/PLLycrKCnTYQ09lJeze7R8f27djHDqE4fHgjo6mOSUFR3w8jkWL8Iwc2e+hzQb2HeeY4/28P1gPHCCssJCwV14h4k9/wnbkCBaTCdPo0VimTsWcng7TpsFppwU61B674YYbuPXWW3nttdeYM2dOoMPplrYAEhEREREJfkoAiEhQCQ8Pp6mpqdv9r/vK//zP/3D//ff3+3lPicMBBQX4du3CyM/HyM/Hd/gwhmFgAK74eJqSknCkpeFasABvF0VFpXd5o6OxZ2Vhz8piZk4OM9v8zNLQQPOePZxWW0t4dTVhW7di+fxzHGYzFqsVc1oa5vR0TGlpMHEi6DM7NR4PlJbiKyjA2LEDY88ejPp6DJcL59ix2OPisKek4LjuOgytgDlhnjFjODJmDEeOed3S0EBofj7hH35IxPPPE3LoEOaICMyRkZgnT8YydSqkpvr/GYDuv/9+Fi1aREpKyoBOztlsNhUBFhEREREJckoAiEhQOfvss/n888+58MIL+/W8JSUlDBs2bGDu/V9bC4WF/gnM/HyM4mIMlwuv14vX68WZkIA9Lg5XejrOnBxNYg5w3uhoQs8+mwag4ZifmZxOQsrKCCssJPyzzwitqMDa2IjZbMZstWJKScEyZQqmyZMhPR1iYgJxCQOT2w1lZfh27sTYuRPjq6/w2u0YPh+uUaNaE2HOCy/ECA0NdLRBzxsdTfP06TRPn86hNq9bGhsJKSsj/PPPifjb3wg5eBCL2405KgpzdjaWKVMgOxuSk8FsDlT4WCwWHnvsMa699lqefvpphg8fHrBYumOxWLqtFyEiIiIiIoOfagCISFDZvn07r732Grfddlu/nveWW25h+fLlgSuqeXSS38jPx9ixA9++fRgOBz6PB3dMzNeT/ImJONLS8GkCc8gxud3Y9u8npLyc0IoKwquqCGlqwux0YvH5MCUlYcnI8K8cSE2FlJTg3NLJ6YT8fP+qlx078JaUYDgcGE4njqQkmpKTcaSm4kpNxRfACWQ5MSaXi5DSUsIKC4ksLiasogKLx4PZZsOcmYl5yhRM2dn+OgMWS7/FtWfPHu655x6ee+65fjvniWhqauLWW2/lL3/5S6BDERERERGRPqIEgIgEFcMwuPbaa/t1sqWuro6bb76ZZ555pu9OcvTp5NZJ/vx8fBUVGM3NGCYTrrg47HFxOOLjcSUm4oqPD+jTrzK4mDwebNXV7ZIDtpoa/5PVNhskJWGdMMG/H3tqasCfru6Rujpo2bZn506M8nKM5mY8ISE4UlJoSkrCmZ6u2hVBrqVvhxUUEFFcTFhZGdbmZixWK6bU1K9XxGRl9VkB4qeeegqPx8OPfvSjPmn/VNjtdn7+85/z6KOPBjoUERERERHpI9oCSESCitlsxuv14vP5MPXTpN6aNWtYtGjRqTd0IkV3c3I0cSm9xme1+hNHiYkd9mKHNkWJd+4k4pVXCC0rw+zxYPb5MJ12Gub0dCwZGf7kQHY2hIX1X/C1tbBrl3+Sf8cOjIoKvDYbHpsNR2oqTcnJ/vGSmNh/McmA0bZvN7TZGs7k9WKrqiKkvJzIl18m7KGHsNrtrathrBMm+FcMnH76KdfRWLZsGT/4wQ+44IILmDRp0qleUq8ym83aAkhEREREJMhpBYCIBJ077riD3NxcJk6c2C/nu/LKK1m7di2WnmwrcSJFd8ePV9FdGfBakgMh5eWEV1URun8/Fp8Ps9mMxWLBnJ7eO0WJKyth927/tj07dmA0NWG43bhjYmhOScERH49j4kQ8I0b07gXKkGM9cICwwkLCKiuJKCrCduQIZsB82mlYpk71r4SZOhXGjOlxm7W1tSxdupT169djs9n6LvgT5Ha7Wb58OU8++WSgQxERERERkT6iFQAiEnTOO+88Pvroo35JAOzdu5eJEyced/Lf89Of4q6qwhMVhSMhgeb4eFxZWbguvVT78cug5o2Oxp6VhT0ri/pjftZSsDW0rIzwLVv8RYntdkLmzMHcw+1Q3N/7Hm6rFefYsTSnpGBPSsJ1wQUqxCt9xjNmDEfGjOmwGsZ68CChBQVE/POfRDz7LNa6OkK+9z0sy5Ydt80RI0Zwww038N///d/86le/6pvAT4JWAIiIiIiIBL8BvoGviMiJmzlzJh9//HG/nGv16tUsXrz4uMd5Dh6kYNUqSn71K/YvXEjjt76FMz1dk/+94IsvvuDGG2+koaGhV9p79dVXefjhhzu8bhgGN910E263u1fOMxR4hw3DnpVF3aWXUrV0KcX/9V8Ur1iB96uvetyG22aj8I47qFi+nNpvfxtHZmZAJ/89Hg9FRUW89tprPPLII0Dv98G2+qN/q2/3jGf0aJrOOYeaBQso+dWvKLvxRnwFBT1+/7e//W22b99OSUlJH0Z5YpQAEBEREREJfkoAiEjQiY6Opq6urs/PYxgGBQUFA25P56Fm+vTp5OXl4fV6e6W9cePGsW3btg6vm81mrrvuugG1fQfAjh07Ah3CkLJhwwY8Hg9z5sxh2rRpGIbRoQ/25mfSH/1bfbv/3Hfffdx5552BDqOVyWRCu4GKiIiIiAQ3JQBEJChlZWWxZ8+ePj3HBx98wAUXXNCn5+gvLpeLvXv3dngStKqqCq/XS15eXuvTwZ0de+DAARwOB+Xl5a2vFRcXU1VV1a6t0tJS6uvrMQyD0tJSjhzprOQsFBUVkZeXx6FDh3C73a1/BnA6nezcubPdpJXV6t/RrrCwkLKyMnw+H3v37qWsrOy413islrbcbneHJ3VTUlLweDxd3puueL1edu/ezeHDh9u9vn//fhwOR+vfu4u/s/Nt2bKFe++9tzXOuro6tm/fTmNjY7fxyMmpr6/njTfewOfzUV1dTWxsLHa7Hfi63xz7mXRmIPbvtn0bAt+/g7Vvjxs3jtTUVD744INAhyIiIiIiIkOEEgAiEpQuvvhi/vGPf/TpOf7+978zb968Pj1Hf6itreWRRx6hrKyMRYsWUVNTA8DGjRvJzc1l7dq1PPfcc6xevbrTY1988UUWLVrE008/zeOPPw7APffcQ319Pbfddhs//elPyc/Pp6SkhKuuuoqQkBDMZjMvvPBClzF5vV6WLFlCREQENpuNjRs3EhkZSXl5Ob/73e+Ij49nxYoVOJ3Odu+rrKzktttuw2QyUVJSwq9//etur7ErlZWVPProo6xYsYKVK1cC/noPl112GfX19Z3em644nU5+//vfY7PZuOuuu3jvvfew2+088MADNDQ0sHbtWp544olu4+/qfIcOHcLhcFBXV0dJSQkbNmzAZrOxZs2abq9PTk5dXR2lpaXU1NRQWlrK8uXL201iQ/vPpCsDrX+37dvQdX/rTF/172Du2z//+c/5y1/+EugwRERERERkiFACQESC0jnnnMOnn37ap+eoqqoiMTGxT8/RHzZt2sSIESNwOBzExcW11k9oWd1wzTXXcNNNN/HGG290euy3vvUtfD4fy5cvZ9WqVVRUVLBt2zamTZvGNddcw5gxY0hPT2fmzJlMnjyZLVu24PV6SUhIICoqqtOY0tPTueiii3j33XdxOp2kpqYSFhZGaGgoubm5AFRXV1NUVNTufWPGjGn9c9vPpqtr7MrYsWP52c9+xvr16/n000+prKxkwoQJjBgxost705V33nmHGTNmkJGRwcqVK0lLS+Mf//gHNpuNjIwMFi9ezHPPPUdDQ0OX8Xd1vpSUFIYNG8a0adMoLy9nw4YNjBo1iiuuuKLb65OTk5SURGhoKFOnTuXss88mNjYWs7n9f0q1/Uy6MtD6d1RUVGvfhoHRv4O5b0dGRjJ16lT++c9/BjoUEREREREZApQAEJGgZLVa8fl8fVbUcvv27UyZMqVP2u5vW7ZsITMzkzlz5vDggw8yd+7cDseEhIRgt9s7PdZisRAeHt56bFxcHCaTiS1btnDo0KF2qySWLVvG6tWr+eijj467fVJubi7r1q1j8+bNzJ49G4CYmBi2bNlCcXExI0eO7PHn25NrbCv0aJFZq9XK5MmTqa6u7vLYlnvTlc2bN7fen7FjxzJ+/Hi2bt3K2LFjAf/+6xMnTmT79u09upauznfeeecxd+5c5s+fz+eff96jtiRw1L97fr5g7Ns33ngjf/7znwMdhoiIt5WGlwAAIABJREFUiIiIDAFKAIhI0Jo5cyZbtmzpk7Y3btwYFNv/AJx++um88sorGIaBz+fr9J617Efek2NbCoqazWbmz5/P6aef3vqzc889l+bmZt5//32Sk5O7jWvatGnY7Xby8vIYNWoUAM8//zxut5vp06fjdDo7FK8MCQnB5XIB/j3OW/ZD70ncXfF4PJxxxhkd7kVXfz/WWWedxbp167Db7Xi9XrZv387s2bP54osvWo9xOByceeaZXcbf1fnMZnNrcdgvv/ySZcuW8eyzz2pisQ8d7/Nu+5l0ZyD2786uLVD9O9j7dnR0NMnJyXz11VeBDkVERERERIKcEgAiErQuvvhi3n777T5pe8eOHUyePLlP2u5vc+fOpaGhgfnz53P//fczadIkAD799FMaGhrIz8/no48+4uDBg5x++ukdjt28eTOVlZV8+eWXABw5coT//u//5rHHHuPWW2/l8ccfbzfRt2jRIjIzM3sU29VXX80555zT+vf09HReeeUVVq9ezfDhw3nppZfYtm0bBw8e5MMPPyQ5OZnQ0FBuvfVWtm7dSnNzM+Xl5V1eY2diY2PxeDxs2rSJhx56iKuuugqTycSuXbs4cOAAH3zwQaf3pquir9/+9rex2Wx873vf409/+hOpqanMmjWLsWPH8t5777Fu3Touu+wywsLCuoy/q/MlJCTQ3NzMU089xVdffcX9999PXV1dUGyTMhAVFxezf/9+Nm/eTFlZGeXl5fzrX/9ix44drX2w7Wdy7B7+xxoo/Xv37t2tfRs6H/v93b+9Xm/Q9+2WFVEiIiIiIiJ9yeQ73qNdIiKD2MKFC7stNnsyDh06xB133MHDDz/c4/c4rrqK/N/+tlfj6G0Oh4OwsLBTPvarr76isrKSiRMn0tTUxBdffMGUKVPIysoCYN26dcyZM4fIyEgAysvLO7QRFhbG6NGjMQyjwx7rHo8Hq9UK0OnPAVwuF1artcPP2sbd3XkBmpqaWmPsqe7adLvd2Gy2dj87cuQIJpOpw3m6ir8zHo8Hi8UC+IvLer3e1i1eBiJrTQ1pr76K7cEHe3R884IFFN5+ex9H1btaPpOKiooOP2vbxwZT/z5ee33Rvwd63w6prCR182as99xz0m1ceeWVrFmzpvUzD4Rrr72WZ555JmDnFxERERGRvhW4/9sQEekHUVFR1NfXExMT02ttvv/++1x44YW91t5A0dPJ/+Md+/rrr+N0OomNjaWurg6Xy0V6ejqbNm1i9+7djBkzpt2E4ObNmzu0ERcXx+zZszudIGw7UdbVBGJISMhx4+7uvMAJT/4fr81jJ0eBLosgdxV/Z9reD6vVGtCJRPFr+QyO18cGU/8+Xnt90b+HQt++9NJLee+997j44osDHYqIiIiIiAQprQAQkaC2fv16TCYTV155Za+1+bOf/Yzf/va3jBkzpsfvcX/nOxw87zwcCQm4xo/HPWYMmEy9FtNA4nK52LJlC+Xl5Zx55pmkp6djMpnIy8ujrKyMnJycHj3ZLsHD5PFgq6ggpKyMyL17GWG1Yv1//69H73XNnMn+BQtwpqTgTE7GdwLJEZG+YK2tJbSggKjt2xkZGYnlrrtOuq2qqir+8Ic/8GAPV8T0Ba0AEBEREREJbsH3KJWISBuXXXYZP//5z3s1AXDw4METmvwHsD39NHG7dmHs24fx+uv4ysowDAPDMHCPHIkjIYHm+Hhc48bhjo/Hd3Tbi8EoJCSEb3zjGx1ez8zM7PHe/zL4mJxOQsvKCCkrI7SsjPDKSmzNzZjNZkwhIZhTU7FMnIhpwQKYMqXH7YasXcu47dsxdu7E+/e/YzQ1YZhMOEePpikpCUdKCs6UFIyIiD68OhmKbNXVhBYVEV5URHhxMTa3G7PPhzkuDsvkyZjnz4c2BcJPRlxcXKdbRYmIiIiIiPQWJQBEJKhFRUXR1NTUbl/tU3HgwAFiY2NP/I1jx8LYsZhnz+5QfT28tpbowkJ8BQUYX36J8fLLeJ1ODMPA6/XiTEjAHheHKzHRP9EZHn7K1yFyMkxOJyFlZYQVFhJeVUVoRQXWxkbMZjNmqxVTSgqWKVMwXXUVpKdDb2y9lZQESUmYL7+83dgJr61l+K5dGDt3YnzwAd6DBzEMA4/NRnNyMvbUVBzp6XiO7lEv0hXrgQP+Pl1YSERxMbYjR/wT/ePHY5k6FdN3vgPTpsGwYX1y/uTkZEpKSkhKSuqT9kVEREREZGhTAkBEgt6sWbP417/+xTe/+c1TbqtP9v8fMQJmzMA0YwYWwAK07qZdV8ewggJ/ciA/H+ONN/AdPuxfPQA4U1JoSk7GeXRrIW8Xe26L9JSloYGQ8nJCysu/nuR3uzFFRGCxWjGnpWFOT8d04YUwcSIEqs+NGAGzZmGeNQszbf6DpraWYYWFGDt2YLz6KkZ5uX+ljc2GMz6epqQknOnpuBISgnYbLunI5PViq6oirKCAiOJiQg8cwGa3Y/F6v05cXXEFZGZCP68mmTlzJp9++qkSACIiIiIi0ieUABCRoDdv3jz++Mc/9koC4OOPP2blypWnHlRPDR/eITnQyukkoqKCEYWFGPn5eD75BF9FBT67HcNsxhUbiz0uzp8cSEzElZjYf3HLgNYyyR9WWen/p6wMS1MTZsA0ejTm9HQsGRlw4YWQlQWDadXJ0YSaecaMdisGwurrGZafz8j8fBybN5Ofl8eemhrK7XaWXHQR9rg4HKmpOFNTQTUqBi2T201ISUnrKpXwigosHg8WiwVTWpr/if6ZM2HyZAgNDXS4AJxxxhk89thjLFiwINChiIiIiIhIEFICQESCXkJCAiUlJb3S1oEDBxg7dmyvtHXKQkMhNRVSUzHn5NCuNKrbTURZGcOPJgeMt9/GV1GB1+vFAFwjR7ZPDsTHa9IziLQ87RxSXk5oRQXhVVWE1NRgdrsxe72YkpIwTZ6MdfJkmDvXv83OIK470ZXKykq++uor9u7dy969e6mursbn8xEaGkr6WWcxYcIEclJTGR0Whm/XLry7dmG8/DKG3Y7X68WVmMiRpCRciYk40tNVgHgAsRw5QkhpKWGVlUQUFRFSU4PF48Fss2HOysI6YQJceqn/if4B/t2WlJREaWlpoMMQEREREZEgpQSAiAwJU6ZMYefOnUyePPmk23C73dhstuMfOBDYbO2SAy3TXy3RR9TW+pMDO3b4kwNlZRgOBz6PB3dMTGvdAUdqKq6UlEFdlDhYmdxubPv3t5vktx05gsViweJyYUpIwJKRgen88/19ISUlKLe8cTqd5Ofns3v3bgoLCyktLaWxsZGmpiZGjx5NVlYW2dnZXHzxxaSkpGDq4h6YsrPb/0eRx0NkaSnDd+701xl49VWM+nq8Ph+uo1sJOdLScKamYoSF9cu1DkUtq1Va9ucPOXgQs9mMZdgwzGlpWKZM8SexgrR/i4iIiIiInColAERkSJg3bx4bN248pQTAjh07mDJlSi9GFUBdbJMCEHZ0D3VfQQHG7t0Yr7+O1+HA19yMx2ZTUeJ+ZHI6sdXUfL1veduiuzYbpuRk/yT/RRf5tzQZPjzQIfeZysrK1kn+wsJCKisrcTgcREREkJmZSWpqKjk5OWRnZxPWGxPyViukpmJKTcUyd2677bciKisZvns3xo4deFvqcrjdOE87jeaUFOwpKTgmTsSIjDz1OIYIS0MDofn5hBcV+Z/ob2ry9/PISCxTpmA+80y47jo4mSLsg4DFYum1YvUiIiIiIiJt6f8yRGRIOP3007nvvvtOqY0tW7Zw9tln91JEA1h3RYkPH/YXJd63D+/u3fhefRXDbsfwevGEheGNjg5c3EHCdvgwFq8Xs9mMKSYGc0YG5gkTMF1wAaSnD679+E9QbW1t6wT/rl27yM/Px+VyYTabSU5OJjU1ldTUVObNmxfYrbji4yE+vt3qGoCwsjJi8vLw7tiBsXkzRmMjhseDe/hwDG0f1IG1rg6r2+3ftmfcOCyTJ2OaMwcmTQpccekASUhIoKqqinHjxgU6FBERERERCTJKAIjIkBEbG0tFRQUJCQkn9f5t27axePHiXo5qkBk5EkaOxHTWWR1/gTQ3g9MZiKiCS2QkBPFksdvtpqysrHWSf/fu3djtdsKPJjZSU1PJyspiyZIlJCcnYx7g+7e3M24cjBuH5ZJL2q0YCG9oAK83YGENWBERA6YQb6AlJiZSUVGhBICIiIiIiPQ6JQBEZMi48sor+dvf/sbNN998Uu9vamoiaog9lXpCIiL8/4jgf5q/ZYK/sLCQw4cP43A4cLvdJCUlkZWVxaxZs7j++uuJDPatcrQyRo4jJiaG+vr6QIchIiIiIiJBSAkAERkyZs2axZ///OeTSgD4fL7B9SSySD84tgBvWVkZDQ0NNDU1kZiYSHZ2duve/N0V4BUZ6oYNG0ZjY2OgwxARERERkSCkBICIDBkmk4n4+HiKi4tJTk4+ofcWFRWRlJTUN4GJDHBtC/Du2rWLqqoqgL4rwCsyxAwbNozi4uJAhyEiIiIiIkFICQARGVK+//3v87e//Y1f/vKXJ/S+nTt3kp2d3UdRiQReVwV4TSYTKSkprXvzX3XVVcTExAQ6XJGgEhYWhlM1VEREREREpA8oASAiQ8o555zDgw8+eMLv27lzJ3Pnzu2DiET6T1cFeAHCw8MHdwFekUHMZDLh8/kCHYaIiIiIiAQhJQBEZEhpeZo5Pz+f9PT0Hr+voKDghI4XCSQV4BUZXJQAEBERERGRvqIEgIgMOVdddRXr16/ntttu6/F7nE6n9jaXAaWrArxHjhxh3Lhx7QrwpqamBjpcETkOJQBERERERKQvKAEgIkPOjBkzuP/++wMdhkiP9KQA73e/+10mTpyI1apf6yKDkcPhUJJZRERERET6hGYKRGRIyszMZNeuXT0q7OvxeLDZbP0QlQxVxxbgLSgowGQyYTKZiIuLa92b/+qrryY6OjrQ4YpIL2tubiYiIiLQYYiIiIiISBBSAkBEhqQlS5bw5JNP9mglQGlpKePGjeuHqCSYuVwuysvL2+3Nb7fb8fl8REREqACvyBCmBICIiIiIiPQVJQBEZEhKT0+noKAAr9eLxWLp9tji4mJSUlL6KTIZ7I4twFtbW4vdbsftdjNx4kSys7PJyclh0qRJKsArIoA/ARAbGxvoMEREREREJAgpASAiQ9ZFF13Eu+++y8UXX9ztcUVFRSqiKu0cW4B33759NDQ04PF4VIBXRE6Y3W4nPDw80GGIiIiIiEgQUgJARIas3NxcfvnLXx43AVBcXMxFF13UT1HJQOHxeCgtLW23N39XBXgnTZp03JUkIiJd0RZAIiIiIiLSV5QAEJEhKyYmBrfbTWNjI8OGDevyuLKyMhITE/sxMulPKsArIoGmBICIiIiIiPQVJQBEZEi74ooreOmll7j66qv5/PPPmTVrVuvPtm3bxqhRo3C5XFit+roczFSAV0QGMiUARERERESkr2hGS0SGtHHjxnH33Xdz9913Y7fbqaioAMDtdnPJJZdgtVoxm82kpaURGRnJ9u3bAxyxdKenBXgzMzM12SYiA0ZjY6NWGImIiIiISJ9QAkBEhqxLLrmEL7/8koMHDwKQkpLS+jObzUZSUhKff/5562vXXHNNv8coHdXX15Ofn9+6bU9LAV6328348eNbC/BefvnlxMXFBTpcEZHjamxsJCoqKtBhiIiIiIhIEFICQESGrDvvvJMrrrii9e9erxefz4fJZALgwgsvbE0AxMfHc9dddwUkzqGoqwK8YWFhREREkJKSogK8IhI0vF6vtpoTEREREZE+of/TEJEh69xzz+W+++7jV7/6FQcOHMDn8+FwOAgPDwdgwYIFPPXUU9TW1pKZmUlqamqAIw4+LQV4W7btqaio6LQAb25ubreFmkVEREREREREpCMlAERkSLv22mvZvXs3jz76KIZhYLfbWxMAM2bMYMSIEZhMJlatWhXgSAevrgrwGoZBZGQkWVlZZGdnM2vWLFJSUlpXYIiIiIiIiIiIyKlRAkBEhrwHHniAgoIC3n77bZqbmxk5ciQAVquVsWPHEhMTw3nnnRfgKAe+YwvwVlZW4nA4sFgsKsArItINn88X6BBERERERCRIKQEgIn3CePddvM8/H+gweuzZqCguCg3FccstuNsUYrzc7SZ1+HDcy5YFMLpTZ120CNPs2e1eKygo4NChQ5x99tk9bqeuro6CggIV4BURERERERERGQSUABCRPmF8+CGlOTm4kpMDHUqPPfWjH+EG8tu89r2j/87v5PjBIqS0lKR//hPr0QRAVVUVK1as4MMPPyQ7O5s333yz3fEqwCsiIiIiIiIiEhyUABCRPmNEReGNjg50GEOecXRFQ2NjI3fccQcvv/wyxcXF+Hw+RowYwRNPPMHevXuprKzE5/Nhs9lIT09nwoQJnHXWWSxcuJDIyMgAX4WISPBS7RMREREREekrSgCIiAQ5n8/Hf73zDi8+9RTl5eUYhtH6s8bGRjIyMvjud7+rLXtERERERERERIKMEgAiIkHOB8RGRTF9+nROO+00amtrcTgc1NTUYLfbmTJlCqNGjQp0mCIiQ5LP59MKABERERER6TNKAIiIBDmzycSN55zDittvB8AwDPbt28enn37KP//5T3w+X4AjFBEZulwuFyEhIYEOQ0REREREgpQSACIiQ4zZbGbixIlMnDiRxYsXBzocEZEhTQkAERERERHpS+ZAByAiQ4/H46GoqIjXXnuNRx55pMfv++CDD7j33nt7JYZ33nmn19oaCHrz3oiISP9RAkBERERERPqSEgAi0u82bNiAx+Nhzpw5TJs2rV1R2u5kZGTw2Wef9UoMmZmZfPLJJ73S1kDQm/dGRET6j8vlwmazBToMEREREREJUkoAiEi/qq+v54033sDn81FdXU1sbCx2ux2AqqoqvF4veXl5uN3u1ve43W62b99OfX19u0KJ1dXVuFwu9uzZ0+4cLpeLvXv3tkssOJ1Odu7c2brffdvJlsrKSkpLSzly5Ah1dXVs376dxsbGbq+jpKSEvLw8jhw5Ql5eHnl5eTQ2NnL48OHWeA4cOIDD4aC8vLzTGLq7hs5e7+y6uro3IiIyOLjdbq0AEBERERGRPqMEgIj0q7q6OkpLS6mpqaG0tJTly5dTVlbGxo0byc3NZe3atTz33HOsXr0a8E+a33777VitVt5///3WSe41a9aQm5vLCy+8wCOPPMKyZcsAqK2t5ZFHHqGsrIxFixZRU1NDeXk5v/vd74iPj2fFihU4nc52MW3YsIGioiKqq6vZsGEDNpuNNWvWdHsd1dXV3HLLLURGRrJv3z4eeOABoqKiCAsL4/XXX+fFF19k0aJFPP300zz++OOdxtDVNXT2emfX1dW9ERGRwUMrAEREREREpC8pASAi/SopKYnQ0FCmTp3K2WefTWxsLGazmQsuuACAa665hptuuok33ngDgM2bN5OVlUVWVhaXX355azvnn38+0dHRLF26lIceeojKykr27dvHpk2bGDFiBA6Hg7i4OD7++GNCQ0PJzc0F/BP3RUVFABiGwVNPPcX8+fO58MIL2b9/Pxs2bGDUqFFcccUV3V7HOeecQ2RkJOXl5Zx//vns3LmTpqYmPvroI6666iq+9a1v4fP5WL58OatWreo0hq6uobPXH3rooQ7X1dW9ERGRwUMrAEREREREpC8pASAiA05ISEjrtkCbN29m5MiRgH/bnrZPuZvNX3+FZWdnc/jwYbZs2UJmZiZz5szhwQcfZO7cucTExLBlyxaKi4sZOXJk6/ZCTqeTV155hf379wNw3nnnMXfuXObPn8/nn39+3DgXLFjA//3f//HWW29x5ZVXsmnTJiorK4mPj8disRAeHt56bFcxdHYNnb2+adOmDtfV3b0REZHBoe22cCIiIiIiIr1NCQAR6XfHm+xo+/PMzEw+/PBDADweT5cFgysrKznzzDM5/fTTeeWVVzAMA5/Px5YtW3j++edxu91Mnz4dp9PZ2n54eDgPPPAAt912G9XV1Xz55ZcsW7aMZ599lj//+c/HvY7vfve7vPnmm/h8PpYsWcLq1atJSkrq9NiuYujsGjp7/frrr+9wXT29NyIiIiIiIiIiMjRZAx2AiAwtxcXF7N+/n82bNzNt2jTKy8v517/+RWJiIg0NDeTn55OXl8fBgwcpKSlhzpw5fPHFF/z4xz9mypQpOBwO8vLyiIqKoqamho0bN5KXl8dVV12FxWJh7ty53H333cyfP59zzjmHn/zkJzidTu655x6ioqIYPnw4L730ElOmTKGmpgaLxcLFF1/MDTfcwBlnnMFbb73FJZdcctwtgAAiIyP55je/yWWXXcaIESM499xz+cY3vgH4Vy5UVlby5ZdfcsYZZ5Cent4hhqVLl3Z6DUCH12fNmtXhuiZMmNDpvcnMzOzTz1BERERERERERAYHk0/rjkWkD3juuouiadNwpqb2SntOp7O1SKLZbKasrIybbrqJNWvWYDKZOuyf7HA4CAsL+zoejwer1Z/zNAyj3RY7LXw+H16vF6/XS2hoKADl5eUdjgsLC2P06NEd2uqq3a5iqKio6PQauru2Y6+rs3tzrNDiYlK2bsV6++1dxiYiIoGxe/duNm7cyMqVKwNy/muvvZZnnnkmIOcWEREREZG+pxUAIjIotEzIt3A6nTQ3N3d4vcWxk+QtE+/Q+SQ5gMlkwmq1tjt28+bNHY6Li4tj9uzZHdrqbvK/sxi6uoburu3Y64KO90ZERERERERERASUABCRQaqgoID/+I//aN1ip68sXLiwz9ru6hr669pERERERERERCS4KQEgIoPSpZdeGugQTllX1xAM1yYiIiIiIiIiIoHX/X4VIiIiIiIiIiIiIiIyKCkBICIiIiIiIiIiIiIShJQAEBEREREREREREREJQkoAiIiIiIiIiIiIiIgEIRUBFpE+YR42jHF//CNGVFSvtlvpcPBSVRU3pqRg6tWWB4b9TicvV1VxdUICw222XmnT3NSE6bvf7ZW2RERERERERERk8FACQET6hHnFCsJWrOiVtnw+H++88w4vvvgi4eHh/OD3vyfyjDN6pe2BJskwOPujj7h/3ToaGxuZP38+l112GVarvq5FREREREREROTEaEZJRAasuro61q1bx5tvvsnZZ5/NH/7wB0aMGBHosPqU2Wxm1qxZzJo1i4aGBjZs2MD1119PbGwsP/zhD0lLSwt0iCIiIiIiIiIiMkgoASAiA87WrVt55plnaGhoYNGiRbz00kuBDikgoqOjWbJkCUuWLGHPnj088cQT7Nixg3nz5rFw4UIiIyMDHaKIiIiIiIiIiAxgSgCIyIDQ2NjIiy++yFtvvcVZZ53F7373O0aPHh3osAaMSZMmcf/99+P1ennvvfe4+eab8fl85ObmkpOTE+jwRERERERERERkAFICQEQCavfu3Tz55JMUFRWxbNky1q9fj8kUjOV9e4fFYiEnJ4ecnByqq6tZu3YtTzzxBNOnT+e6665j7NixgQ5RREREREREREQGCCUARKTfOZ1ONm7cyKuvvkpcXBwrVqxg/PjxgQ5r0ImNjeXmm2/m5ptvZuvWrdx5551UV1eTm5vL9773PWw2W6BDFBERERERERGRAFICQET6zd69e1m9ejWFhYVcccUV/PWvf8Vq1ddQb5gxYwYzZszA4XDwyiuvsGzZMkaPHs3SpUuZOnVqoMMTEREREREREZEA0MybiPQpl8vF3//+dzZs2MD48eP54Q9/SGpqaqDDClphYWEsWLCABQsWsG/fPl544QXuvPNOLr30UnJzcxk2bFigQxQRERERERERkX6iBICI9ImKigqef/55Pv74Y77zne/w5JNPEh4eHuiwhpSMjAzuuOMODMPg3Xff5Ze//CUOh4PFixdz0UUXqdaCiIiIiIiIiEiQUwJARHpNy0TzmjVrCA0N5YYbbuA///M/Ax3WkGc2m1sLB9fV1bFu3Tr+93//l0mTJnHDDTeQnJwc6BBFRERERERERKQPKAEgIqds//79rF69ms8++4xLLrmEhx56iMjIyECHJZ0YPnw4P/rRj/jRj37Erl27ePzxxykqKuKyyy5jwYIFWqUhIiIiIiIiIhJElAAQkZO2detWHnvsMZqamvjJT36ip/0HmezsbO69916cTicbN27kxz/+MVFRUVx//fVMnz490OGJiIiIiIiIiMgpUgJARE5IfX09a9eu5a233uKss87i/vvvZ+TIkYEOS05BaGhoa+HgltoNd9xxB+effz4/+MEPGD16dKBDFBERERERERGRk6AEgIj0yNatW1m9ejWNjY0sWrSI9evXq4hsEEpISOA///M/MQyDjz76iFWrVtHY2Mj8+fO57LLLsFr1a0NEREREREREZLDQTI6IdKmxsZEXX3yRV199lenTp/Pb3/6WMWPGBDos6Qdms5lZs2Yxa9as1lUfCxcuJCUlhR/+8IekpaUFOkQRERERERERETkOJQBEpIM9e/bw7LPPkp+fz4IFC3j55ZexWCyBDksCJCYmprVwcF5eHn/961/56quvuPTSS1m4cKEKPouIiIiIiIiIDFBKAIgIQGsh2I0bN5KQkMDy5ctJSkoKdFgywGRmZnLvvffi9Xp57733uPnmm/H5fOTm5pKTkxPo8EREREREREREpA0lAESGiEOHDhEdHY3NZmv3en5+Pn/9618pLi5m/vz5PPXUUx2OETmWxWIhJyeHnJwcqqqqWLduHU888QTTp0/nuuuuY+zYsR3eY7fbCQ8PD0C0IiIiIiIiIiJDkznQAYhI39uxYwdTp07lj3/8IwBer5e3336bxYsX84c//IHFixfz4osvsmDBAk3+ywmLi4vj5ptvZu3ateTk5HDnnXcyf/581q9fj9vtBsDtdpOWlsaDDz4Y4GhFRERERERERIYOrQAQCXKbN29myZIlVFaqSdU6AAAgAElEQVRWsnr1apqamtizZw/z5s3jySefJDQ0NNAhShCZMWMGM2bM4MiRI6xfv56FCxeSmprK2LFjqa+v5+6772bbtm2sXr1adSVERERERERERPqYEgAiQezZZ59l5cqVVFVVAVBVVUV6ejqrVq0KcGQS7KKioli6dClLly5l7969zJ8/n+bmZpqbm3nppZcoLi7mtddeIzo6OtChioiIiIiIiIgELW0BJBKkfvOb3/CLX/yidfIfoL6+nhdeeCGAUclQFB0dTX19fevf7XY7H330ETNnzqS0tDSAkYmIiIiIiIiIBDetAJD+53RCeTlUVuIrLsZbWoqvvBxfQwM+7T/fK96qqODZjz8mITSUlNGjCbFYsJhMRNtsTNu/H+d1151Qeya3G/OoUZiSkjCPG4cpMRHGj4fYWLDqa0SOcruhpAQKCzHy8/Hu24fvwAEK6usZ53IxZtQoQsxmmr1eLCYT9eXlXHXmmbz/ne8EOvJBxQyY0tKwZGRgSkuDtDQYOTLQYUlPeTyQn49vxw68//43RkkJPm2HhRkwT5qEZdo0yM72/44RERERERGRU6aZO+ldTidUVPgn9ysrMcrLMY7+3ev14vP58DmduOLjcY4ciWv0aFwZGbjPPRfPaaeByRToKwgKKcDr3fx830m0aWlowHrgALaDBwn9xz8IPXQI28GDWBsbMYWHY/b5MA0bhjkhAXNion9iMi4OkpMhMvLkLkQGntpaKCzEV1CAkZ+PkZ+P7/BhDMPAMJtxxcZij4vDmZCA69JLccXHE2M283g3TZ5MfxzKTC4XtgMHCCkvJ3TTJsKrqrDV1GBxuzF7vZjGjsWcno4lIwNSUyErC8LDAx320FRZCbt3Y+zYgTcvD29dHYbDgSs+nqakJJrPPBPX97+Pz6wFmSaPh5DiYsLy8oh8/XVCa2qweL1YbDbM2dlYpkyBM8/0/14RERERERGRHlMCQHrO4fBPZrRM7ufn46uo8E/+NTdjhIRgAO5Ro3AcneD3JCbimjkTr/b5HvS80dF4o6NxpqdzpItjzE4n1poaQsrLCfn8c0IOHSK0ogKr243JZMLscGAaPRpTfDyWceO+ThKMHw/DhvXr9Ug3jk7yG/n5GDt24Nu3D8PhwDAMPMOG4UxIwB4Xhys9HedFF2EowdOvfCEhuBITcSUmdjoWLQ0N/jFYVkb4p59+PQYjIjBbLJhSU7FOmPD16oHhw/v9GoJObS3s2oWxc6d/sv/gQQynE9fw4RyZOBFHWhrOCy7AUNH1LvmsVpzp6TjT06lv87rJ5SKktJTIXbuIeO01Qg4exGKxYI6MxDJlCuYpU+D002H06IDFLiIiIiIiMpApASB+djtUVbWb3DfKy/EdPozPbvdP7vt8uEeP9k/8jRqFJz0d1+zZeKOiAh29DBBGaGjrxGRX2iYJbJ99Rujhw4RWVGBxuTCbzf5EQWQkpvh4zImJmBMSID4eMjJAiaTecTSZ5ysowLtvX/un+JubW8e5MyEB16xZuPWE8qDijY7GnpWFPSur3UQqHLN64NVXCa+qwtrY6J9Q9XgwxcZiTk/HOmGCf/XA+PHa5quthgbYt88/yb9jh//3ZHMz7mHDaE5OpmnSJBzXXosRERHoSIOGLySkNTFwuM3rlsZGQvftI/zDD4l4/nlCmpow+3xYxo7FMnUqpuxsmD4d9FmIiIiIiMgQp/+rHwpaJvcLC1u35PEVFOBrbsYwDHzNzXhjYnCPHo1j5EicCQm4s7Jwz56Nocl96WU9SRKYnE5sNTX+LYf27SP8gw8IObrdkNnl8m85ZLH4kwTp6V8nCfQ089faPMXv3bcPX2kphtOJYRh4vd6vn+JPTMQ1fboSeUNEj1cPbN9O+JtvEnrgABbDwGw2Y7FaMaelYU5P968eSE+HmJh+v4Z+4XbD3r34du3yT/aXlmLY7XgMA/ukSTQlJ+OYOxfPqFGBjnTI8g4bRvP06TRPn86hNq9bGhoIzc8nctMmIh5/HKvd7u/DKSlYpkzBNHkyTJ4MWo0hIiIiIiJDhMnn8/kCHYScgtpa/7Y8VVXtJveNpiZ8Ph80N+OOjsY9ejTOUaP8k/ujR+OOj9cTijKotUsSHDzYug+6tbERi9uNKTwck8WCOT6+tS4Bqan+LYfi4wMd/qlrqbfRslVPfj7GoUP+p/jtdtyjRmGPi8MRH48rMRF3fLye4pdT0jLmQsrLCa+qIqyyEtuRI5jNZswul3+cpadjTk/3j7WkJBjoxW09Higtxbdzp/+J/q++wldfjxdwJCXROGECzvR0XAkJqlEzyFkPHCAiL4+I4mLCysqwtiS2MjIwT5niXzGQmQkB+J7cvXs3GzduZOXKlf1+boBrr72WZ555JiDnFhERERGRvqcVAANZ28n9o/vtGy177oeE4PN48ISF4UxIwDlyJO7TTsM1YwbuOXPwacsGCXK+Y1YSHLvVCfi3O7HU1WE7eJCQsjLC/v1vbAcP+gumWiz+7Ya8XkhKwpyQgGXcuK+TBHFxgZ/wO7bgbnExhsvlf4rfMHDGx3+9Vc8VV+BVHQXpQ23HXHerB8J27iTsrbfarR4wm82tyQFTWlpgtvTqpCCvz+HAkZLCkaQkHNnZuC6/XImyIOUZM4aGMWNouPDC1tdMHg+26mrCCgqIeuyxrwsPh4RgzspS4WEREREREQkKmiUOlGMm943ycnyVla2T+4bTiTcysv3k/vnn446LwzfQn6gUGSB8ISF4xozBM2ZMp/uhA5jcbiy1ta1JgpAvvyT08GFCamowHa1JYDGM1iSBOTERU3y8fxVBcvKpPS3ayVP8vooKf1FtkwnX0Sf47XFxuKZP9yf3NP5lgGpbe+BYLasHwgoKiPjsM39h4sZGf2IgJARTUlL71QOnMrbaFOT1bt/ur2vjcuEcM6a1IK/jggvwaQuYIc9ntbYmtdolBtxuQkpK2hUeNpvNWIYNwzJ5sgoPi4iIiIjIoKItgPpLbS3uxYvxhIRgWCy4R4zANWYMzjFjcJ12Gu7YWP9ewnryUGTAMXk8WGtqsFVXE3LgAKEHDxJSXY2toQGT2YzNasX64os9a8zlwj1/Pp7QUDwhIe334k9MxBuse6qLdMHk8WCrqvKvHqisJKyiwj/hahjY5s3DsnRpj9rxXH897sOHcY0aRXNKCs1paTjT0jDCwvr4CmSosNTVEbZvHxHFxUQUFGB1OAiZORPLL395Su1qCyAREREREelLmm3uLw0NHElJoWDVKopuv53ym27iwNVXUz97NvYpU/CcdtqgmPz3eDwUFRXx2muv8cgjj7S+/sUXX3DjjTfS0NDQq+fr7XZfffVVHn744Q6vG4bBTTfdhNvt7pXzDFbvvPMO9957b4+PP5H79sEHH5xQ2wOJz2rFHRdH8xlnUHfppexfuJCyX/yCwjvvpOD223F5PD1vzOnEMWoUBXfeSclvfkP1dddRf+ml2LOzB9zkf2fjva/Gel+3fTJOdDy01ZfXEmzfVz6rFde4cRw591wOXnEF5TfdROGqVRSvWIGxY0eP23E3NFCwahVlN9/MoblzsWdnD9jJ/7b9o+3n2dXvqBM1WPvIQI/bO3w4TWedRc2CBZSsXEnB7bdjfPlloMMSERERERHp1sCfcZYBZcOGDXg8HubMmcO0adMwDAOA6dOnk5eXh9frBWDHCUzadOfYdk/VuHHj2LZtW4fXzWYz1113HTabrVfO01t66z72VGZmJp988kmPjz+R+5aRkcFnn312KuFJP+tsvPfVWIfeH++n6kTHQ1t9cS0t93qgfl9Jz7XtH20/z65+R/XUYO8jgzVuERERERGRgUwJAOmx+vp63njjDXw+H9XV1cTGxmK321t/bj1aeHjLli3ce++9lJSUdNlWUVEReXl5HDp0CLfb3fpnp9PJzp07abszlbVNQePCwkLKysrw+Xzs3buXsrIyAFwuF3v37m1NSHSlpS23290hvpSUFDxHn+SuqqrC6/WSl5fXoycRvV4vu3fv5vDhw+1e379/Pw6Ho9vYuzrfsfexrq6O7du309jY2G0s1dXVuFwu9uzZ0+71zu7Rsfe77aRLZWUlpaWlHDnSWbnPrx3vvrndbrZv3059fT2mNkV1e3o9EhjdjffeGOvQsf+1bbu78dLT8Q6dj4eejAXoejz0tO9aOynG3vY7ATr/7ugslmPvddtx11m70Pl41Ljrez39TNv2j5bPs7vfUQcOHMDhcFBeXt5pm73VR7rT2djprI2uxuix11BcXExVVVW7Y9rG3Vk76sMiIiIiIiInRgkA6bG6ujpKS0upqamhtLSU5cuXt5uUa3Ho0CEcDgd1dXVdtuX1elmyZAkRERHYbDY2btxIbW0tv/vd74iPj2fFihU4nc4O76usrOS2227DZDJRUlLCr3/9a2pra3nkkUcoKytj0aJF1NTUdHsdlZWVPProo6xYsaJ1v929e/dy2WWXUV9fz8aNG8nNzWXt2rU899xzrF69utv2nE4nv//977HZbNx1112899572O12HnjgARoaGli7di1PPPFEp7EDXZ6v7X0sKSlhw4YN2Gw21qxZ02Usa9asITc3lxdeeIFHHnmEZcuWAXR6j8rLy7u93xs2bKCoqIiQkJAuz3e8++Z0Orn99tuxWq28//77rQmAnl6PBE5PxvvJjvXIyMjj9r+uxsuJjPfOxsPJjAX4ejxUV1efVN/t7Duhs++OrmJpe6/bjrvO2oXOv1c07vreiXymLdp+ntD576gXX3yRRYsW8fTTT/P444932mZv9JHudDZ2OmujqzF67DXcc8891NfXc9ttt/HTn/6U/Pz8dnF31o76sIiIiIiIyIlTAkB6LCkpidDQUKZOncrZZ59NbGws5k7qFqSkpDBs2DCmTZvWZVvp6elcdNFFvPvuuzidTlJTU4mJiSE3NxfwP7VbVFTU4X1jxoxp/XNiYiIAmzZtYsSIETgcDuLi4vj444+7vY6xY8fys5/9jPXr1/Ppp59SWVnJhAkTGDFiBAAXXHABANdccw033XQTb7zxRrftvfPOO8yYMYOMjAxWrlxJWloa//jHP7DZbGRkZLB48WKee+45wtrsRd0Se3fna3sfy8vL2bBhA6NGjeKKK67oMpbzzz+f6Oholi5dykMPPURlZSX79u3r9B6FhoZ2er8Nw+Cpp55i/vz5XHjhhd0mAI533zZv3kxWVhZZWVlcfvnlre/r6fVI4PRkvJ/sWA8LC+uy/7XobKzDiY33zsbDQw891OOxAB3Hw/79+0+q73b2nfDyyy93+O7oKpa297rtuOus3YaGhk7Ho8Zd3+vs98Hx+nrbzxM6/x31rW99C5/Px/Lly1m1alWnbfZGH+lOZ2Ovsza6GqNtr+HHP/4x27ZtY9q0aVxzzTWMGTOG9PT0dnF31o76sIiIiIiIyIlTAkACJjc3l3Xr1rF582Zmz55NTEwMW7Zsobi4mJEjR/a4COCWLVvIzMxkzpw5PPjgg8ydO7fb40NDQwH/9guTJ0+murq6y2NDQkLabXPUmc2bNxMeHg74J27Gjx/P1q1bGTt2LODf03jixIls3779uNfS1fnOO+885s6dy/z58/n888+7baPtJG12djaHDx/u9B51db+dTievvPIK+/fvP268x7uOzZs3M3LkSMC/nUrLCoATuR4Z/I4d60C/jfdjx8OmTZt6PBag43g42b7b2XfCww8/3OG740TvS0++a1rGo8Zd3+vs98GJfqad/Y6yWCyt7cKJjZ8T6SPdOd7Ya2mjq+PaXkNcXBwmk4ktW7Zw6NAh5s2b16PzqQ+LiIiIiIicOCUA5IS03b+4K2azuUeFL6dNm4bdbicvL49Ro0bx/PPP43a7mT79/7N379FR13f+x5/fueUCBHIlk4RLQrgFEBTQutJ6S91aFVu6reJatdSt1VbX7tZW9/xqz3bXVntz7dluW3uO116su/a4cBatpVWsiFG5FIUUSAdCkgnkNiQhmfv3+/tjyJjL5AZJJhlej3NygMk33+/7+5n5fnJ4v7+f9/cCgsFgwmO5XC5CoRAQ65FsmiarVq1iy5YtmKaJZVlUVVWN+HwikQjnn3/+oOc3kvNdu3Ytzz//PH6/n2g0yr59+7jiiivYvXt3fJtAIMDFF188IPb+eh+v9zju2bOHTZs28cwzz/DjH/94xOfn9XpZs2ZNwjEabLwzMjJ45JFHeOCBB4YsjgwWd+9/L126lB07dgCxse455zM9H5lYw33+z/RaB4a93hNd68BZXe9er5fbb799xNcCDLwezvSzm2hOuPPOOwfMHYPFkmisLctKuN81a9YM2A503U2ERL8PRvK7DRJfb/1/R/VItM+x+IwMZbhrr2cfI7lGex72a7PZ2LBhA6tWrRqwr0T70WdYRERERERk9FQAkBE7evQoJ06cYPv27dTV1VFfX88bb7wBwHvvvUdLSws7duyguLiY7u5unnjiiYS9tHu78cYbueiii4BYq5AtW7bw1FNPMWvWLF544QX27t0b3y/A/PnzSUtL47777mPXrl10d3dzwQUX0NHRwYYNG3j44YdZsmTJoMcrLCwkEomwdetWHnvsMW644QYMw2D//v00NTXx+uuv8/bbb9PR0UFNTQ1vvvkmLS0tQz7k9GMf+xhOp5NPfOIT/OhHP6KsrIx169Yxe/ZsXn31VZ5//nmuvvpqli5dOiD2+vr6QY/XexwPHjzIww8/zMmTJ4dte9DTl/mRRx7hhhtuwG63s379+gFjlGi8t2/fTnNzM3a7nY9+9KN88YtfHHLlwnDjtmLFCvx+P3fccQe//e1vCQQCVFdXU1tbO+LzkeQY7Hofi2sdhr/eE13r9fX1CT/LQ+l/PWzYsGFE10I0GmXHjh0DroctW7aM6LPbe5yAhHPCJz7xiQFzx2Cx9B7r3bt3x6+7RPtNT09PeD2+/vrruu7GWaLfB8N91nvPo4P9jtq+fTter5c9e/YAia+fwsLCs/6MDPW7LtG1l2gfq1atSniN9j6HU6dO8eijj/Kzn/2M++67j8cffxzTNPuMRaLj6XeHiIiIiIjI6BnWSG77krNXW4vv+9+n4Y47kh3JhIhEItjtdhoaGgZ8Lz09nby8PCDWX7t3i45IJILD4Uj4vd5CoRAOh6PP9wOBQLzPfn19/ZDH7erqYtq0aaM6p+H2GQ6HcTqdfb5/6tQpDMPoc6xEsQ+mZxwh9jDVaDRKWlraoLH4/X7uuecennvuOQzDGNC/v/cY9ex/JOM93LkPJxgMxsfGZrNhWVaf85nqyv71X8n87/8e2cadnXR++cvU3nff+AY1Qc70Wu/52eE+f4NdLyO53oe6Hs70Wkj02R3N9ZFoTug/dwwWS89Y97TSGm6/I4l9MnO0tLBg82acP/zhiLb3f+Yz/PXBB8c5qpEZ6Xs6mJH8jkq0z7P9jMDwn+f+185ghtru4MGDeL1eFi9eTFdXF7t372bFihVUVFQMuZ9J9xm2LBY//DDOX/7yrHZz4MABNm/eHH/o80S79dZbefrpp5NybBERERERGX+OZAcgqaknKbF9+/YB33O73fE+4P2TID0/l+h7vSV6MG3vRMNwxx1t8n8k++yf/AeYPn36gNeGeqhuf73Hw+FwDDuuc+fOpbu7e9DESP9kzEjHe7hzH07/eAzD6HM+MnWd6bXe+2cH+z4Mfr2M5Hof6no402sh0Wd3NNdHojmh/9wxWCxDXS+J9tufrruJM9L3dDAj+R2VaJ9n+xmB4T/PI0n+D7fdSy+9RDAYpLCwkJMnTxIKhSgvLx92P/oMi4iIiIiIjJ5WAEyUY8fw33YbLdddR7iggLDbTSQvD2sEiQCRkfrd737HkSNHuOiiixL2jZaxYYRCOJubcZ44gfP4cQr+939xnW71MqxTpwhedRUnNm4kVFJCaM4czBEm1GR0dD1MQZaFs6kJV309GYcOkRcM4vj+90f0o6HLL6fxM58hsGAB4aKicQ5UzkYoFKKqqor6+nrWrFlDeXl5wlULk5URjeKqrSX98GEK9+zB+YtfnNX+tAJARERERETGkwoAE8WyYPduaGjAPHIEq6EB0+vFCgYxDQPLNAnPnElo9mwCubmECgoIFxYSyc/H0p1uIhPGCAZjif2mJlzHj5PW0oKruRlHRwc2hwPDZsNwODDmzcMoKcExbx6Ul8PixSM/yJ49WIcPYx4+jFlTg9XVhWmaRG02QoWF+N1uAsXFhEpKiBQUjN/JiiSBLRjEVVeHs66OdK+XdK8XZ2cnNpsNm90OxcXYystxLFoE558Ppx8cPayDB7F27cL8858xa2uJRiKE09Lwl5bSVVpKcNEiItnZ43tyklosC5fXS9rhw2QeOUJGbS0Ow4j9LliyBMfKlRgXXwyzZ5/VYVQAEBERERGR8aTM8kQxDFi9Glavjj952d5vkwyfD7xeaGzErK/HfPttrL/+FbOrC8uyoLubcFYW4bw8grm5BIuLCeflES4qwszMnOgzEplyjFAIZ1MTjqYmnC0tZDQ24mxuxtHZGXvWQkYGtnAYW1ERtuJibAsWwEc/Cm43jOUdxeefj3H++djpNw+Ew0yrqyPb48GsqcHcuhWrrg4zEMCMRolkZREsLsbvdhMqKSE4f76ufZmU7B0duOrrY3fyNzaS1tCAoyfJ73BglJZiX7gQ48oroaws9nW2Fi/GWLwY+003YQecQHooxIzDhzHfeQfzf/839rvVNAk7nXTPm4e/rAz/4sVEVRg459k7OkirqSHz6FEyjxzB1dqKzTSxzZuH/cILMW66CZYtA63YEhERERGRKUYFgMkkOzv2tWwZNiBRc6B0vx8aG8HjiSUy9u/H2rwZq7sb0zSxuruJzpxJOC+PQE7OB0UCtxvzDPrei0wVRjAYS+b3Su67WlpiScdQCCMjA8NujyX3y8uxLVwIl14KCxbArFnJDj/G6YwnQ22VlQPnAJ+PGR5PrDBYU4P58stYbW2YpolpGITcbvxuN8HTqwdCRUWgNmMyDoxwGOeJE7jq60lraIgX0+zhMDbTxCgowFZejr3nOlu6FJJRrHK5Yr9TT/9e7ZF+8iQz/vpXzPfew3zuOaItLZjhMKGsLLpLS/GXlhKoqFB7rhRkO3WKtGPHyPB4yDx6lLTWVuyhEEZxMfbzzsN2xRWwahWM8JkJIiIiIiIik51aAKWiXkUCq6EBs6EBs74ey++PryYwLYtwXl7sTuLcXCIFBYTmziWq//DKJGQLBnE0N+Oqr8fZ3ExaWxtpDQ3YQyFsNhuGYWCz2zF6kvvFxbE79svLYebMZIc/McJhqKuLFQdramKtherrMf1+rEiE8MyZfVcPlJZiZmQkO2qZxIa8i9/pxJg/P3YX/4IFscJVaWlstdtU5vPB/v2Y77xD9MABzI4OooEAIbebrnnzCCxYQKC8HGsUD3OX5DDCYVy1tWQcOcK0o0dJq6/HHolgmz4d2+rV2M87D1asOOv2PWNBLYBERERERGQ8aQVAKsrIiN9FbMDANiMAgQB4vczyerG83ljC8LXXsNraYoUClwsTCOfmEigqIpiTEysSzJlDdMaMCT8lSV29k/uulhZcra2xRGM4HEvsB4MYubkYRUXY58zBWLs21pJn7lzQZ/EDw6weSB/t6oHi4qmfzJUhGZEIzuPH+9zF72pujrXBsiyM/Py+d/EvWQKpvpIsOxvWrcO2bl2fayjT62Xmu+9ivv8+5v/9H1G/H9M0CRQV0TV/PoGyMoJlZVpxkwRGNIqzsZH0v/6VzKNHyWhowNHVhTF9OraKChznnQfXX58aBSoREREREZEzoALAuSo9ffgiQTAIDQ3Qq0hgbd+O1dZGNBrFTEvDCgQI5+YSzMkhlJdHqKSEcF6eHlwqQOwO4p6WPGkNDaS1tuJsacERDkNGBvZAIJakKS7GVlKCsWZNLLk/f37qJxonWnY2rF6NsXr1wOs9FCKzvp5ZPasHtm2LrR7q7sYKhwnPmtV39UBZmVqjTBEjvov/kktivxPmz1cSO5GiIoz167GvXx9/vgCRCJnHjpH9/vuxFQMvvIAZDBI0TXZlZrLgwgsJlpcTKilJcvCpw9HURLrHw7SjR8k4fBiH34/d4cCoqMB+3nkYl10Wazelz7CIiIiIiEicCgAyuLS0AUWCHs6evwSD0NoKjY2xO4vr6zGrqsDrJRqNYlkWVihEyO2OP5cgXiTIz9fdeFNY/+R+elsbzpYW7B0dGBkZsT7gWVkYCxZgLyn5IME4Z07sbnWZPFyuM189AISKivquHlDCc8IkvIu/qQlbJILNMDByc2NtscrLMS69FBYvVm/zseJwxFsf7Z8/nz/+8Y+8++67YJpcUFjIhzMzMbZtS/jg4cDixUT04OFBJXwgr8uFMW8ejvPOw/jkJ/VAXhERERERkRFSAUDOTlparNd6UdGAO4vjKd5QiMyGBmhowKqtxfR4Yu2GmpsxDQMrGiVqsxEuKNCDiicpx8mTONrasFlWrOe+wxF7yOe8edjmzsVYtizWkqewEOwD1pLIVDfU6oHubjI9HmZ5PEQPH8bctQurtTVWHLAsQvn5RLOykhT4mWnt7iY3GQ+sHQEjEsHZ2Ijj9PMvbC4X8bv4r7gi9lDroqJkh5nyPB4P27ZtY/fu3fh8PkpLS6msrOSuu+7CNcjzAdLb2pjx3nuY771H9OmnY88XiERi18i58qySITiPH8fZ3Y3dMDCKi3GsXInx8Y9DRUVyHiAtIiIiIiKSIlQAkPHncsV675aWYqxbl7jdUDgMJ05AKJSEAGVYGRmx5L5WbEh/mZmwfDksXz7w2rYsMr3e2EqhKeTue+/lV//xH8kOY3CzZ6tF1gTzer3s2LGD1157jcbGRhYtWkRlZSW33HIL6SO9Cz0nBy69FNull/Z9vkBjI/j94xL3SH3ua1/jye9+N6kxkJ0d+xIREREREZExpQKATO3GfmwAACAASURBVA5OJ6htiEhqMQwoLk52FKM2q6SEtlmzyMnJSXYokiQnTpzg9ddf59VXX6WlpQW32826dev4zne+Q9ZYr2hxu8d2f2cgmpkZa2ckIiIiIiIiKUcFABERkV5Wr17Nnj17uPLKK5MdikyQlpYWdu7cyY4dO/B4POTk5HDllVfy0EMPka270kVERERERGQKUwFARESkl7Vr17J161YVAFLYqVOneOutt9i2bRsej4fc3FyuuOIKvvrVr5KXl5fs8ERERERERETGjAoAIiIivSxbtowf/OAHyQ5DxlB3dzdvvvkmb7zxBh6Ph2g0yqWXXspdd93F3Llzkx1e0tntdkzTxGazDb+xiIiIiIiITCkqAIiIiPRit9sJh8PJDkPOQiQS4c9//jPbtm3jvffewzAMPvzhD3PrrbdSWlqa7PAmHYfDQSQSweVyJTsUERERERERGWMqAIiIiPSTn59PU1MTBQUFyQ5FRiAajbJ37162bdvGwYMHCQaDnHfeeVRWVvK1r30NwzCSHeKk5nQ6CYfDKgCIiIiIiIikIBUARERE+lmzZg27du3i6quvTnYokoBpmlRXV7Njxw7eeustOjs7WbNmDZWVldx3331qZTNKPSsAREREREREJPWoACAiItLPmjVr+J//+R8VACYRj8fDtm3bePPNNwkEApx//vlccsklfO5zn8PpdCY7vCmtZwWAiIiIiIiIpB4VAERERPpZvHgxhw4dSnYY5zSPx8Mbb7xBVVUVDQ0NLFmyhMrKSm699VbS0tKSHV5K0QoAERERERGR1KUCgIiISD82m00J0Ql2/Phx/vSnP/Hqq6/S1NREeXk5lZWVfP/73ycjIyPZ4aU0rQAQERERERFJXSoAiIiIJFBSUoLX66WoqCjZoaSkpqYmtm/fzs6dO2lpaSEjI4PKykq+853vMHPmzGSHd05xOBwqAIiIiIiIiKQoFQBEREQSWL16Ne+88w7XX399skNJCZ2dnVRVVbFt2zY8Hg85OTlceeWV/L//9//IyclJdnjnNKfTqRUvIiIiIiIiKUoFABERkQTWrl3L008/rQLAGerq6mLnzp3xhH9ubi4XX3wxX/7ylykpKUl2eNKLVgCIiIiIiIikLhUAREREEigrK8Pj8SQ7jCnD7/eza9cuduzYwf79+zFNk4985CPceeedzJs3L9nhyRC0AkBERERERCR1qQAgIiKSgGEYRKNRDhw4wM6dO7nuuusoKChIdliTRiQS4c9//jPbtm1j37592O121q1bx7XXXsvXv/71ZIcno6AVACIiIiIiIqlLBQAREZF+vvvd7/L8889z4sQJLrvsMgKBAGvXrj2nCwDRaJS9e/fyxhtvsG/fPtrb21m7di2VlZV87WtfwzCMZIcoZ0grAERERERERFKXCgAiIiL95OXlUVNTQ3t7OwBz5syhrKwsyVFNPI/Hw7Zt29i5cyddXV2sXr2ayspK7r77bmw2W7LDkzHidDq1AkBERERERCRFqQAgIiLSz6ZNm/iv//ovdu3aBUBGRgbTp09PclRnJxgMcvDgQc4777xBt+lJ+O/evRufz0dpaSmVlZXcdtttuFyuCYxWJpJaAImIiIiIiKQuFQBEREQSeOqpp7jqqqtobGyc8sn/t956i89//vPYbDbee++9+Oter5cdO3bw2muv0djYyKJFi6isrOSWW24hPT09iRHLRFILIBERERERkdSlAoCIiEgCy5cv58orr+RXv/oV2dnZyQ7njITDYe6//35+8Ytf0NTURElJCY8//jjvvvsuHR0dlJWVcfnll/O9732PzMzMZIcrSaIVACIiIiIiIqlLBQAREZFB/Od//ifbtm1j0aJFyQ5l1Hbv3s0tt9zCoUOH4sndpqYmjh49yve//32ysrKSHKFMFloBICIiIiIikrpUABARkXER/eEPMRsakh3GWckEvnXeeWTV1xP+539Odjgj9uT773P3H/7ANKcTu2nSc293KBTi0AsvkBEMxl9zfPrTGB/6ULJClUnA4XAQCoWSHYaIiIiIiIiMAxUARERkXIR37ODIFEqaD2bdpz4FQE2S4xiNv/nEJ/j9l79Mm89Hm89HY1MTjSdO0Hj8OHPmzKHm9Dml1dQwb/t27CoAnNOcTifd3d3JDkNERERERETGgQoAIiIyLiy7najazCRNTnY2OaWlCb8XPf2nOcUfbixjw+l06hkAIiIiIiIiKcqW7ABEREREJHn0EGAREREREZHUpQKAiIiIyDlMDwEWERERERFJXSoAiIiIiJzDtAJAREREREQkdakAICIiInIO0woAERERERGR1KUCgIiITBl/+MMf+Pa3vz1m+zNNk3vuuSel735+/fXXx3TMJPVoBYCIiIiIiEjqUgFARESmjKVLl/LWW2+N2f5sNhu33XYbTqdzzPY52SxcuJB33nkn2WHIJKYVACIiIiIiIqlLBQAREZlwx48fJxQK8Ze//CX+WigU4tChQ5imGX8tGAzy/vvvY1kWQJ9Evdfr5dixY5w6dSrhtgAnT55k3759dHZ2DvpaaWlpn+Tn0aNHaWxs7BNvY2Mj0WiU6urqYe+Urq2tpbq6mlOnTlFdXU11dTWdnZ20tbXFz7epqYlAIEB9ff2gsScao0SvDTZ24XCYffv20d7ejmEYQ8Ys5zan06kVACIiIiIiIilKBQAREZlQzz33HBs3buSXv/wlP/nJT9i0aRM+n4+f/OQn1NXVcfPNN9Pc3Ex9fT0PPvggRUVF3HvvvQSDwT77efHFFzly5AgulyvhtrW1tbz44os4nU6ee+45gAGvHTp0iKuvvpr29nYAHnroIdrb23nggQf40pe+RE1NDZs3b2bjxo385je/4dlnn+Wpp54a8vyOHz/OP/3TPzFt2jQOHz7MI488wvTp00lPT+ell17i17/+NTfffDNPPvkkjz/+eMLYE41RoteAhGMXDAb55je/icPh4LXXXlMBQIbkcDi0AkBERERERCRFqQAgIiIT6pJLLiErK4vPfe5zPPbYY3i9Xh577DGys7MJBAK43W527txJWloaGzduBGJJ9SNHjgCxvv1PPPEEGzZs4NJLL8XlciXctr6+nhdffJHc3Fw+9alPAQx4bdGiRWRnZwPQ0NDA3r17WblyJTfddBMFBQWUl5fzkY98BICbbrqJe+65h5dffnnI87vooouYNm0a9fX1XHLJJbz//vt0dXXx5ptvcsMNN3D55ZdjWRZ33nkn3/rWtxLGnmiMCgoKBrx2+PBhtm7dOmDstm/fTkVFBRUVFVx33XVj/yZKStEKABERERERkdSlAoCIiEw4m+2DXz/Lli1j69atLF26lGuuuYYf/OAHrF+/npkzZ1JVVcXRo0fJycmJJyiDwSBbtmzhxIkT8X0k2vZv/uZvWL9+PRs2bODdd98FSPhaD7fbjWEYVFVV0drayvXXXz8gbpfLhd/vH/b8Pv3pT/Pb3/6WV155hb/7u79j69ateL1eioqKsNvtZGRkDBl7ojFqa2tL+FpVVdWAsdu+fTs5OTlALLmrFQAyFK0AEBERERERSV0qAIiISFJ5vV5uv/12tmzZgmmaWJZFVVUVv/jFLwiHw1xwwQUEg8F4f/yMjAweeeQRHnjgAY4fPw6QcNs9e/awadMmnnnmGX784x8DJHwNwLKs+AOBbTYbGzZsYNWqVQNi7d2jfyjXXnstv/vd77Asi1tuuYWnnnqKefPmJdx2sPPsP0Zr1qxJ+NqqVasGjN3SpUvZsWMHAJFIpM+zAUT60woAERERERGR1OVIdgAiInLuaW5uZvPmzVRXV3PDDTewbt06/v3f/50NGzZw0UUXcddddxEMBnnooYeYPn06s2bN4oUXXmDFihU0Nzdjt9v56Ec/yhe/+EW+9a1vUV5ennDbV155hauuuireAqi2trbPa/v376epqYnXX3+dq666ikcffZR58+aRmZnJ8uXLuf3223n77bfp6OigpqaG6upqWlpaqK2tHTShDzBt2jQuu+wyrr76arKzs7n44ov58Ic/DMD27dvxer3s2bOH888/P2Hsn/vc5waMkd1uT/ja+vXrB4zdokWL2L17N3fccQcrVqwgEAhQXV3N0qVLJ+T9lalFKwBERERERERSl2GN9HZGERGRUfB/5jP89cEHB7xeV1fHPffcw3PPPYdhGLhcrvj3AoEA6enp8X9HIhEcjlit2jTNPi1w+uu/rWEYRKNRotEoaWlpQOwO/v6v9Th48CBer5fFixfT1dXF7t27WbFiBRUVFQmPV19fP+C19PR08vLyBsQ72tgbGhoGjNFQ45Zo7CDWLsnpdAIkPH76oUOUHj6M/etfHzQ2SX1+v5+vfOUr/PSnP012KOekAwcOsHnzZu6///6kHP/WW2/l6aefTsqxRURERERk/GkFgIiITKhgMEh3d/eABDwwIIHdkxSHxAns4bZ1OBx9XjcMY8BrPV566SWCwSCFhYWcPHmSUChEeXn5oMfbvn37gNfcbjdXXHHFgHhHG3uiMRpq3GDg2AGDbivSm1oAiYiIiIiIpC4VAEREZEL99a9/5ZOf/GS8Bc5kcdddd1FVVcXevXtZs2YNH/rQh4Z8eO7f//3fj1ssicZoso6bTH1qASQiIiIiIpK6VAAQEZEJ9bd/+7fJDiEhl8sV79OfbInGaLKOm4iIiIiIiIhMXkP3JBARERERERERERERkSlJKwBERGRMhMNhPB4Phw4d4tChQ1zZ2alfMiIiIiIiIiIiSaTcjIiIjJhlWdTX13Po0CEOHz7MoUOHOHHiBBB7kOiCBQtYuHAhl19+OfPefJOGJMcrIiIiIiIiInIuUwFAREQG8Pl8eDye+Nfhw4fp6OggHA4zd+5cli1bRnl5OVdddRWlpaUJH5brt9uTELmIiIiIiIiIiPRQAUBE5BwVCoWor69n//79HDhwAI/Hg9/vJyMjA4CysjLKysq49tprWbJkCfZRJvSdjY3M/853xiP0pPFHozR2d1M2Y0ayQxkTtpMnMT760WSHIZOAZVnJDkFERERERETGgQoAIiIpzuv1xhP8Ho8Hr9dLIBDAZrOxZMkSli1bRmVlJUuWLGHatGljdlzHn/7E9DHb2+QQbG3lyX//dx599NFkhyIiIiIiIiIiMiwVAEREUkBPy56eu/kbGhowDAPDMHC73fG7+a+//npmz56d7HCnrJycHHw+X7LDEBlzidp4iYiIiIiIyNSnAoCIyBTR3t5OTU1N/E7+uro6Ojo66OrqIi8vj4qKCpYtW8a6desG7csvZ8cwDEzTTHYYIiIiIiIiIiIjogKAiMgkEg6Hqaur63M3v8/nIz09nczMTEpLSykrK6OyspJly5aRnp6e7JBFRERERERERGSSUgFARCQJ+vfl9/l8+P1+wuEw8+bNo6KignXr1vH5z3+e6dNTrZO+iIiIiIiIiIhMBBUARETGSU9f/p67+WtqagiFQthsNubPnx/vy3/dddfhdruTHa6MkGVZyQ5BRERERERERGREVAAQETkLwWCQmpqa+N38x44dIxKJ0NXVxbRp0ygrK6OiooJbbrmF+fPnY7PZkh2ynKWsrCw6OzuZMWNGskMRGTMqbImIiIiIiKQmFQBERIbRuy9/z938jY2NAGRmZrJ06dJ4X/6KigoyMjKSHLGMp/z8fJqbm1UAEBEREREREZFJTwUAEZHTfD5f/MG7Ho+HtrY2DMPA7/dTVFQUv5v/xhtvJCsrK9nhSpL0FADKysqSHYrImDEMI9khiIiIiIiIyDhQAUBEzim9+/J7PB4OHz5MR0cH4XCYuXPnsmzZsvjd/KWlpUqKyQA9BQARERERERERkclOBQARSTmhUIj6+vo+d/P7/f54a56eh+9ee+21LFmyBLvdnuSIZSrJz8/n6NGjyQ5DRERERERERGRYKgCIyJQUiUQ4duxYn7v5vV4vgUAAm83GkiVLWLZsGZWVlSxZsoRp06YlO2RJEfn5+bzzzjvJDkNEREREREREZFgqAIjIpNbTsqfnbv6GhgYMw8AwDNxud/xu/uuvv57Zs2cnO1w5B6gFkIiIiIiIiIhMFSoAiEjStbe3U1NTE7+Tv66ujo6ODrq6usjLy6OiooJly5axbt069eWXpMvNzaW1tTXZYYiIiIiIiIiIDEsFABGZEOFwmLq6uj538/t8PtLT08nMzKS0tDTel3/x4sU4HJqeZHJyOBxEIpFkhyEypgzDwDRNbDZbskMRERERERGRMaQMm4iMKa/XG3/wrsfjwefz4ff7CYfDzJs3j4qKCtatW8fnP/95pk+fnuxwRUatra2N9vZ2duzYgc/n45prrtGqFJnynE4nkUgEl8uV7FBERERERERkDKkAICKj1tOXv+du/pqaGkKhEDabjfnz58f78l933XW43e5khysyZoqKirDZbASDQT7+8Y+TkZGB1+tVAUCmPKfTSTgcVgFAREREREQkxagAICIJBYNBampq4nfzHzt2jEgkQldXF9OmTaOsrIyKigpuueUW5s+fr7YRck74+Mc/zhNPPIFlWQCsXLlSn31JCWptJSIiIiIikppUABA5h/Xuy99zN39jYyMAmZmZLF26lLKyMiorK6moqCAjIyPJEYsk17/+67/y8ssv09DQgGEYXH311ckOSWRM9KwAEBERERERkdSiAoDIOcDn88UfvOvxeGhra8MwDPx+P0VFRfG7+W+88UaysrKSHa7IpFVcXExFRQUNDQ3k5+fzyU9+MtkhiYwJrQAQERERERFJTSoAiEwyR44cobS0dNQ/17svv8fj4fDhw3R0dBAOh5k7dy7Lli2L381fWlqqnuUiZ+g73/kOe/fuZebMmSxZsiTZ4YiMCa0AEBERERERSU0qAIhMEm+//Tb33HMPHo+HEydOJEzQh0Ih6uvr+9zN7/f7AcjIyIg/fPfaa69lyZIl2O32iT4NkZS3evVq5syZQ05OTrJDERkzWgEgIiIiIiKSmlQAOFvd3XD8ODQ2Yp04gVVfj3n8OJbXC+3tyY5OxovDAQUFGG439pISjNmzoagIZs+GggIYxUNB//KXv/CP//iP7N27l6amJtxuN2+++Sbt7e0cPHiQw4cP097ejmEYZGRksHDhQhYuXMh1113HggULSEtLG8cTlXNSZ2dsXmtuhpYWzKYmTK8Xq6kJWlogGEx2hEn3DZeLUydPElYLoA/Y7ZCfj5Gfj+30/GgUFEBeHuTnx/6USUsrAERERERERFKTCgCD8fnA640l9hsaMFtbMRsaoLUV0++HQADT5cK0LMJ5eYTz8ghNm0Y4P5/whRcSLizEnD492Wch48gWDOJobsbR1ISzuhrXn/6Eq6sLZ0sLtmAQm82GLRTCcDjiBQJ7SQlGcTG43dR2dXHPQw+xa9cuGhoa4vttb2/n6aef5rLLLmPdunVs2rSJmTNnJvFMZcrz+2Nzms8Xn9OstjbM1tZYsdLni81naWlYp05hGUZsLjs9r0VmzCCyZAnhdeuI5uZiaWUJ5af/PJjUKCYfWzCIrb0dZ0sLjsZGHIcOxedFZ3MzhmFgZGbGtgsEIDcXo6gIW24uRk5OfH4kOztWUNVnbcI4HA4VAERERERERFLQuVUA8PuhsRG8Xqy2NiyvN5bcb2gAn4+o04llWVjhMJHsbEJ5eQRzcmLJr5ISwqtWEcnLG9Xd3ZK6zLQ0QiUlhEpKht3W3tERKxS0tOB85x3S2trY8uabeA8eJDMUoigjg7ZQiEA0Snd3NwuPH2ejw4ERDEJ9fSwJpoKS9BiLhH5xMeGVK5XQlzFlpqVhFhQQKSiAiopht+9TMGhqwvHOOyoYJInT6VQLIBERERERkRQ09QsAoVCsJUWvRJjZ0BD7s7sbq7sby7IwIxHMjIx4Aix0+q79yCWXEC4sxHJM/aGQySualUU0K4tgeXn8tctuvZXLTv+9ra2N6upqqnbs4M979tCek8OxpiZc1dWktbbi6OzE0dmJzWaLJcRMM9ZmIzcXo7gYW3FxrAWR260k2FSkhL6co8a1YOD3Q16eCgYjpBUAIiIiIiIiqWnyZr17363f6059q6EB0zRjd+pbFqZhEMnMJJyfTzAnJ5YUq6gg+qEPxRIKIlNATk4Ol1xyCZdcckn8tc5hfqZnVYG9owPn4cO4du4kra0NZ3PzB4UCw8Cw2zHcbmzFxfGCAW43FBfDrFnje2LnqtEk9Lu6sEAJfZERUMFg/GgFgIiIiIiISGqa2AJAIABtbfHEfjyh39oaa8lzOqlvnTpFZNasWDKspw1PTzIsLw9LLXhE4qsKhmOEQthPnownwJzvvourtRVnczOOzk7s4TCkp2OzLIwZM+LJL1tJSSzxVVQEc+aA0zkBZzVJjWVCPydHK45EJkhSCwaFhVOqZaBWAIiIiIiIiKSmsclCjfKBucGcnHgLnujq1YTdbsxp08YkFBHpy3K5iIwwAdb7wcaOXi2Ihn2wcU7OBy2I3G4wjAk6uzM0moT+6TZiSuiLpL5zuWCgFQAiIiIiIiKpafCs1RAPzLW6uzFNM5bYNwzC2dnxFjx6YK7I1HXGDzZ+/31cVVWxJFhHB/ZwON6CyGazxZ9TYBQXYxQVxZJdc+fCjBljE/ggCX2rrS3+kG/LsmJJ/dMtxCIzZvSZt6K5uUSWLtUzQURkxFKpYOB0OrUCQEREREREJAXFs1yRr32NaF0dZiiEZRhEpk8nfPpO/dCsWYTz84ksWqR+1CICJH6wcSI2vz+W6GptxdnQQNp77+H0+XA2NWEzTWyGgS0Swfm1r2FcfPHwB45EiGzcSMRmw4pEsCyLaGYm4VmziGRnE8rKIpyTQ3T+fCLnn080O1tzlohMCqMtGNh9Phw+H46TJ3H4fLg8Hpzt7ThOnsR+6lSsdZthYLMsXA89BEuWnHFsagEkIiIiIiKSmj4oANTWUvONbyQzlnEXiUSoq6vjwIEDHDt2jDvvvJPdu3fzxBNP8O1vf5usEfRTH43x3PdIjzt9+nTuvfdefvCDH/C73/2OI0eOcPfdd5/V/k3TjO/TeS73hT9Dr7zyCvv37+crX/lKskOZEGZGBqF58wjNmzfoNtN37mTe4cMwkgJAKIQ/LY3a++8fwyinDs1jmscmg/Gaxzo7O9m2bRu7du3ijjvuYM6cOWO6/6kmmp1NNDub4DDbZW/ZQnF9/VkVANQCSEREREREJDWdU/15XnzxRSKRCNdccw0rV67ENE0uuOACqquriUajALz33ntjdrz++54ovY9rs9m47bbbcDqdzJkzh717957xfnvGpvc+ZaDhPkNlZWXs2rVrgqKRVKN5TPPYRBnqczRe89hPf/pTLrjgAv7hH/6B6dOnj/n+ZXBaASAiIiIiIpKazpkCQHt7Oy+//DKWZXH8+HEKCwvx+/1A7D+9AFVVVXz729+mtrZ20P0cOXKE6upqWltbCYfD8b8DBINB3n//fSzLim/fs2+Px0NdXR2WZXHo0CHq6uri24RCIQ4dOhR7rsIwotEoBw4coK2tLf7aUMcFKC0tJRKJxF8Lh8MDzrGpqYlAIEB9fX3CffYfm5599jhx4gSBQKDPPhsbG4lGo1RXVw+bVEg0BoP9fKJt+8cPcPToURobG/vs79ixY7S3t2OaJseOHePUqVODxtTW1oZpmng8nvixGhoa+mwz3Dgler963odIJNLnfUh0XidPnmTfvn10dnYONXxyjtA8NrnnscHGIdE+Bhuv/udwtvMYDD+XJRr74eayweaxwc5tJHOZ1+tl7969eL1esrKyyM7OBga+LyOZm2X0tAJAREREREQkNZ0zBYCTJ09y7Ngxmpub420zeievAFpbWwkEApw8eXLQ/USjUW655RYyMzNxOp1s3ryZadOmUV9fz4MPPkhRURH33nsvwWDfBfter5cHHngAwzCora3lX/7lXwDw+Xz85Cc/oa6ujptvvpnm5uZBjx0MBvne976H0+nk3/7t33j11VeHPe6hQ4e4+uqraW9vj8fx05/+lHvvvZf7T7dQ+fWvf83NN9/Mk08+yeOPP55wn73Hpvc+/X4/jzzyCB0dHfzmN7/h5z//OQCbN29m48aN/OY3v+HZZ5/lqaeeGvS8Eo3BYD+faNv+8QM89NBDtLe388ADD/ClL32JmpoaamtrueGGG3C5XNhsNn75y18OGtPrr7/O+vXreeGFF3j22We57bbb+PWvf83zzz/Pl770JYBhxynR+9WjtbWVZ555hp///Oc89thjCc+rtraWF198EafTyXPPPTdorHLu0Dw2eeexwcYh0T4GG6/+53C28xgMP5cNNvYjmcv6z2ODjcFI5zK/3097ezunTp0iGAwmfF9GMjfLmdEKABERERERkdR0zhQA5s2bR1paGueddx4XXnghhYWF2Gx9T7+0tJQZM2awcuXKQfdTXl7OlVdeyR//+EeCwSBlZWWkp6eTlpbGxo0bATh+/DhHjhzp83MFBQXxv5eUlMT/vnXrVrKzswkEArjdbnbu3Dnosf/whz+wevVqFi5cyP3338+CBQuGPe6iRYvid1ECzJ49m7vvvpv//u//5u2338br9XL55ZdjWRZ33nkn3/rWtxLus/fY9N7n73//e5xOJwsXLuSzn/0szz77LB0dHXzkIx8B4KabbuKee+7h5ZdfHvS8Eo3BYD+faNv+8Tc0NLB3715WrlzJTTfdREFBAeXl5XzoQx9i+fLlVFVVEY1GKS4uHrTFxLp16zBNk09/+tN885vf5MCBA2zcuJGvfOUreDwegsHgsOOU6P3qMWPGDDZt2sTdd9/N73//+4TnVV9fz4svvkhubi6f+tSnBh0/OXdoHouZjPPYYOOQaB+DjVfvc7jjjjvOeh6D4ecyIOHYj2Qu6z+PDTYGI53LFixYQGZmJosXL6awsDDh+7JixYph52Y5M1oBICIiIiIikpocw28i/W3cuJEf/vCHdq5EkQAAIABJREFUOJ1OrrjiCgBmzpzJb3/7W0zTJCcnZ8R30VVVVfHZz36WtWvXcs011wy57fbt27nuuuuAWAIMYq0WRnPctLQ0IHan3/Llyzl+/Dhz5swhIyMjvk2ic+ndiqO3Xbt2sWjRIiDWU3vx4sXs27eP5cuXx7dxuVzxNiUjHYPedy/3/vlE2zY3N/eJ3+12YxgGVVVVtLa2cv3118e/t2nTJn72s59ht9vjibmRmDZtWvzvTqcTv98/7Dgler/6S0tLIxQKJTwvy7JYv349GzZs4MEHH+Sqq64acbwiw9E89oGxmMcGG4dEc9lg42W32+PnMB7zGAycy1wuF1VVVUOOfaL37OjRo/Hv98xjg43Bmc5lid6X/s8lSDQ393w+ZHScTqdWAIiIiIiIiKSgc2YFANCnv3EiNpttRA+6XLlyJX6/n+rqanJzcwH4xS9+QTgc5oILLiAYDA44lsvliidIwuFwvG/xqlWr2LJlC6ZpYlkWVVVVgx537dq1PP/88/j9fqLRKPv27Rv2uEOdeyQS4fzzzx/weqJ9Jhoby7K44oor2L17d/y1QCDAmjVrhj12b8ONQe+fH8l49Tzc02azsWHDBlatWhX/3sUXX0x3dzevvfYa8+fPHzKu4c5huHFK9H7131fP3xOd1549e9i0aRPPPPMMP/7xj0ccq6Q2zWN9TZZ5DEY+lyVrHkt0Hr/85S8Tjv1wc1mieWywcxvNXGZZVnx/Y/W+yMioBZCIiIiIiEhqOmcKAEePHuXEiRNs376duro66uvreeONN3jvvfdoaWlhx44dFBcX093dzRNPPDFsG4Ebb7yRiy66KP7v8vJytmzZwlNPPcWsWbN44YUX2Lt3b3zf8+fPJy0tjfvuu49du3bR3d1NfX0969evp6Ojgw0bNvDwww+zZMmSQY/5sY99DKfTySc+8Ql+9KMfUVZWNuxx9+/fT1NTE6+//jqFhYVEIhG2bt3KY489xg033IBhGGzfvh2v18uePXsGPZfCwsL42OzevTu+z3Xr1jF79mxeffVVnn/+ea6++mrS09N5++236ejooKamhjfffJOWlpZBH0qaaAwG+/lE2/aP/9SpUzz66KP87Gc/47777uPxxx/v8zDKm2++maVLlw75/r711lt0dXXxl7/8hX379uHz+di+fTsej4empibefvvtYcfpsssuG/B+9ey7oaGB2tpadu7cSUtLC8uXLx9wXrW1tTz88MOcPHlSLYAE0Dw2mecxGPlctmrVqoTj1fscxmIeg+HnstbW1gHj1NNaaKi5LNE85vF4Eo7BSOey/fv3c+zYMX7/+98TDAYTvi979+4ddm6WM6MWQCIiIiIiIqnJsE7fPhe44QZqvvGNZMeTdJFIBLvdTkNDw4Dvpaenk5eXB4BpmgN6b0cikXiLiUTfh1irC4fDMeB7gUCA9PR0IPZw2aGOHQ6HcTqdozpub11dXX3aJiSSaJ89Y2MYxoDtT506hWEYw+53qHPrPQbDGWrbgwcP4vV6Wbx4MV1dXezevZsVK1ZQUVEBwPPPP88111wTj3W48R7KSMap//s10vOyLItoNEo0Gk35lhbTd+5kXloaxi23DL9xdzedX/gCtacf/ioD9f4MDvX51jzW11jMYzD0/NTbZJ7Hel4fj7lstLGO9H05l2Vv2ULx2rVQWXnG+9i3bx+vvPIKX/3qV8cwMhmJAwcOsHnz5vhDzSfarbfeytNPP52UY4uIiIiIyPjTMwD66UmCbN++fcD33G53vFd2ouRU7/7SgyWvXC5Xwtd7J4GGO3b/BMxIjtvbSJIoifY5WP9sYMiHUPY21LmNNPkPDLntSy+9RDAYpLCwkJMnTxIKhSgvL2fr1q0cOHCAgoKCPmMw3HgPZSTjNNKEGfQ9L8MwcDgcQ467SCL9n0XRX8/nW/NYX2Mxj8HQ81Nvk3ke6/86jN1cNtpYR/q+yNnRCgAREREREZHUFF8BEPrYxzjxsY8RzskhkpdHJD8fs9cDFUWmip6H6tbX17NmzRrKy8sxDIPq6mrq6uqorKwcUYJRxpFl4Whri301NTH93XfJ/chHMD772eF/1u8ncMUVNG3cSGTWLKI5OURycohmZY1/3CITRPOYDMXW3R2fQ+0+HzNff51ZX/gCXHnlGe/z8OHDPPfcc3xDq0EnnFYAiIiIiIjIeIrf3ud69FHmHD6M1dCAWVOD1diI1d6OabNhRSKYlkU0K4twdjbBvDxCs2YRyc8nnJtLNDcXy25P5nmIxLlcLj784Q8PeH3p0qUj6pktZ87m9+NsasLe2oqzpQVXWxvOtjZcLS3YTBMDsBkGhtOJkZuLUVyMze3G9pnPwIc+NLKDZGSQ/uijzD1+HOv4cUyPB6u5Gcvnw4pGsUwTE7CA6IwZhGfNInT6K5KdTTQ7WwUDmfQ0j51bbH5/LKHf2ord58Nx8iSukydxtrXhbG/HMIzY/AkYNhvGzJmQl4dt9mxss2dj3HnnyOfQQWgFgIiIiIiISGr6YH3/0qWwdCkGMGgq3++HxkbwerHa2rC8Xqx9+zAbGsDnI+p0YlkWVjhMeNYswvn5BHNyiMyYQaSggHBeHpG8PNBdiyJTir2jA0dTE86WFpzNzbi6umJ/7+zEFgrFklOGgc1miyX1i4sxSkowLrwQsrNh7lyYMWPsAjqd6BpyvoLYnOXz9Zm3zEOHYnOW14tlWZhpaVjd3dDVRTQ7m3BeHqFp04jMmEE4P59wXh7RrCzNXSIyYrZgEFt7O/aOjvi86ejsjM+d9o4OSE/HyMzEFghg2GxQVIStuBhbbi7G3LlQVARuN+TnwyjaL50ph8NBOBwe9+OIiIiIiIjIxBpdc/GMDCgrg7IyDGLJN/ggAdfnv6c+H3i90NgYW1VQX49ZVQWtrZh+PwQCmC4XpmURzssjnJdHICcnnmwLFxZiqu+vyLixBYM4mpvjiX1XS0s8OWULBrHZbLHkvsOBMXs2FBVhLynBWL78g8SU2w0JHqY6aWRkxL6KimD16njBYMgiZ/+CgcejgoHIOW4kCX3DMCA9PVYINQyMnJwPCqLLl8eKoUVFMGfOhCT0R0srAERERERERFLT+D1dNDs79rVs2dBJt0AA2triCTezoQHr8GHM1tbYKgPLin2dOkVk1qxYsi0vj+DpFh6RggLCbrdaEIkARiiE/eRJOj0eCgIBnKdO4WptjSer7OFwLEFlmhhZWRhFRdhKSrAtXAgXXhhLTs2dC+fqg4fHomBw4ABWQ0N8/jJNEwIBrHCY6OkipwoGIsllBIPYTyf0e5L6rpYWnKdO4WxpwdHZGU/ox1c35eT0LYRO8oT+aDmdTq0AEBERERERSUHJz/Klp8f+A3064daT/kqYcOvdgsjrja0sOHQIy+vF7OqKFwtMwyCSmRlvQdQnyVZQMIEnJzI2elrw9E5UpbW14Wxu/uBuU8PA5nBgzp7N13ft4qRpEna5sE+bBpmZOGfNoqioiIKCAtxuN4WFhRQUFFBUVMR0rbY5M4MUDAbVaw7D58NsbcXcv/+D4oFpYllWvGAQOb3CIDx9OqHTK6WiWVkqGIj0M1RC39HZieN0u7J4251QCON0At9eUoLRuwiaIgn90XI4HFoBICIiIiIikoKSXwAYjQQtiBKmv0IhaGmJ35lrNTTE78o1u7uxurtjxYJolGh6evyO3J4EW6SggHBhIda5ehe0TIielhLOlhYcTU24WltJO/3wXEdnJ0ZGRiyxH41iFBTE+kIXF8fu1r/00lj7ndmzIcHql/9IcLxgMEhrays+n4/GxkY8Hg87duzA6/USCATw+/0AWJaFYRgUFRXhdrv7/FlSUoLL5RrnkUlhveYwiM1fQ6bwhyoYdHXFHnbc3R1rqWa3E5k1K7ayIFHBID9/crdrEullTBP6JSWgeWtYWgEgIiIiIiKSmlIzw+1yfbCqoFcLooQSPdh4x46EDzaOZGcTmTGDYG4uodxcPdhYEur/wNyeO/Ud4XD8gbk2w8Do/cDc4mKMVavGNVmVlpZGUVERRUVFLFu2bMht/X5/vFDg9Xo5cOAA27Ztw+fz4fP54ttFo1Hy8vLIzs4eUDCYPXs2drXmOjtjWTDo7sa0rA8KBjZbfE5TwUDG29kk9G09hU8l9MeVVgCIiIiIiIikptQsAIzGSB9sHI1CUxOcOBF7VsHx45gHD2K99los0RYOY9rtWKEQZmYmodxczLS0iT4bmUBOnw9Hezs2y4qtRnE6Mex2jKIiDLcbm9uNsXgxFBTEklYzZiQ75BHLyMggIyODoqIiVq9ePeS2Pp8Pr9cbLxi88cYb8cJBb3a7naysrAGFguzsbNxud6zftpyd0RQMTDO2UqqlBZqbsU6cwDpxItZWrbkZq70dKxrFgthKA8siMnMmkexsLL1XMghHZyeOtjZs0Sg2hyP2e9WyMKZNwygsxMjPx1ZQgLFiRWwFU14e5Oefky13JhsVAERERERERFKTCgAjZbfHWq643bBq1dCJte5uOH481oJIUpPTGUvsFxSc86s/srOzyc7OHna7UChES0tLn5UFu3btwuv14vf7CQQCwOAtiLKzs5k7dy4zplAhZVKz2T74DMPQbdXgg4JBc3Ps4e0i/TkcsWR+Xp7u0J+CDMOIPbRcREREREREUooKAOMhMzN+B66IxLhcrrNqQdSzyqB3C6Kuri7y8vIGPKvA7XZTUFCAQ8/xGDv9CgYiIiIiIiIiIjL5KTsmIpPOaFoQ+f3+eKGgpwVRT/Gg58HGoBZEIiLD0TwoIiIiIiKSelQAEJEpLSMjg7KyMsqGWXUz0hZEPdSCSEREREREREREpjoVAETknDBRLYiys7MpKipi7ty5akEkIiIiIiIiIiJJpeyUiEg/Z9OCaNeuXWzbtq1PC6JAIIDdbqegoEAtiEREREREREREZMKoACAichZG2oIIwOfzxQsFakEkIiIiIiIiIiLjTQUAEZEJkp2dTXZ2tloQiYiIiIiIiIjIhFB2SERkkpmIFkQ9hQK3260WRCIiIiIiIiIiKUoFABGRKexsWhB5PB4aGxtpa2uLtyDKyMggEAjECwO9CwZz5swhKytrvE9JRERERERERETGiAoAIiLniJG2IAoEArS1takFkYiIiIiIiIjIFKfsjIiI9JGenk5RUZFaEImIiIiIiIiITHEqAIiIyBkbyxZEgUCA9PR0DMOIFwZ6FwrUgkhEREREREREZHRUABARkQlxpi2IvF4vu3btirch6tHd3U1ubq5aEImIiIiIiIiIDELZERERmVQmugVRYWEhNpttIk5NRERERERERGRCqQAgIiJT1li0IGptbSUYDA7bgqikpISZM2dOwFmJiIiIiIiIiIwNFQBEROScMFYtiHoKBZFIhBkzZiRsQTRnzhycTucEnZnI2Vm5ciUdHR10d3czf/58Ojs7qampITs7O9mhiYiIiIiIyFlSAUBERKSXM21B5PP5OHDgQMIWRA6Hg/z8fLUgkklp9erVPPnkk/F/r1q1Ssl/ERERERGRFKECgIiIyBlSCyJJBffffz//93//R1NTE4ZhcO211yY7JBERERERERkjKgCIiIhMgLFuQRSNRpk+ffqAQoFaEMloLVq0iMLCQpqamigsLOT2229PdkgiIiIiIiIyRlQAEBERmUTGqgWRz+cjPT0dgEgkohZEMqQbb7yR/fv3U1BQwLx585IdjoiIiIiIiIwRFQBERESmqDNpQeTz+WhsbOSNN94YVQui4uJiZs2aNQFnJcnwhS98ge9+97tcffXVyQ5FRERERERExpAKACIiIueAnhZEw1ELoiTzeon0eiDvRJkJXFRQwKZQiMhDD0348Q2bDfs//iNkZk74sUVERERERFKZCgAiIiISN54tiPoXCtSCKIH9+2nt6KD98ssn/NA/Wr0aC/BM+JFh9q9+xczmZlD7IRERERERkTGlAoCIiIickbFoQeT1evtsZ7PZKCwsPKdbEEWyswmVlCQ7jAkVzcpKdggiIiIiIiIpSQUAERERGXcjbUEUDAZpbW0dtgWRaZpMmzZNLYhEREREREREhqACgIiIiEwaaWlpE9qCaPbs2djt9ok4NREREREREZEJpwKAiIiITEnj1YJo5syZAwoFRUVFI1rBMFLvvPMOc+bMobCwcMz2KSIiIiIiItKfCgAiIiKS8kbbgqinUNC7BVEgEMDv9wMM2YKopKQEl8s15HH++Z//mUOHDrF69Wp++MMfsnjx4jE5TxEREREREfn/7d15dFXlof7x54xJSCCEhISQMs+jEMCBScUJRIMiZYwVqK3VaqDe9v68rnu9tVy5WHVVWpUivRZBJGBRDKNWqmgJDSJB5iHIkHiAJMZMJOckZ/j9cSSCJBBIcvZJ8v2s1eXK3vu877ND/4D97PO+uBAFAAAAwHcuXIKoX79+l722qKhIp0+fVm5ublVRsHHjRjkcDvl8Pnk8HplMJlksFkVHRyshIUGxsbFq166diouLdfbsWW3cuFG7du1St27dNH/+fI2uY/5du3bpjTfe0Pz589WqgTbWvXCOiIgIzZ07Vy+99BL7LgAAAABAEKIAAAAAuAaRkZGKjIxU7969L3ud1+tVbm5uVVHgcDhUWlpadf7MmTM6c+aMxo0bp66xsVoza9Y1Z0pMTNRvfvMbeTyeax7jauYwm82aOXMmD/8BAAAAIEiZjQ4AAADQlJnNZrVr104DBw7U2LFj9ZOf/ERut1uSf2mibt266dZbb9W8efO05plnFF7D8kEej0cHDhxQQUFB1TGXy6V9+/bJ5/NVHbNarZf9TE0KCwu1Z88elZSUVB07c+aMKioqdOjQoYuuvXCOLl26VN3P6dOn5fF4dPDgQVVWVlZdU1FRoSNHjsjr9V4xBwAAAACg/lAAAAAABJDP59PQoUP18ssvKyMjQ1lZWfrHP/6hJ598Uj1/9KNqP+NyufTCCy/IZrNp3rx5+vjjj5WTk6NnnnlG7du319y5c+Vyua74mZqcPHlSa9eulc1mU2pqqiQpNTVV06ZN04oVK7Ro0SLNnj37ks8dOXJE48aNU1FRkdLS0jRt2jStWrVKy5cv19KlSyX5N2BetGiRsrOzlZycrLy8vGv8zQEAAAAArhYFAAAAQACZTCb97W9/05w5c9SjR49afWbLli0aMmSIevTooaeeekrdunVTSEiIpk2bJsn/pv7x48ev+Jma5OTkaO3atYqOjtYDDzwgSRoxYoRatWqlWbNmaeHChXI4HDp69OhFn+vZs2fV5sqjR/t3MJg+fbpSUlK0efNmSdLGjRsVFRUlp9Op+Ph4bd++vVb3DAAAAACoOwoAAACAILd161aFhYVJkuLi4tSxY0dFRkYqIyNDJ06cUJs2bS5acqemz9Rk+PDhSkpK0sSJE7Vz586q42bz939V7NevX62WEpIku92u8vJySVJGRob69Omj8ePH66WXXlJSUlLtbhoAAAAAUGcUAAAAAEFu2LBhWr16tcrLy+XxeLRnzx699dZbqqysVGJiolwu10X7ANT0mZpkZmZq9uzZWrZsmV599dVqr3E4HBo6dGi1534494U/Dxo0SOvWrZPX65XP51NGRkZtbxsAAAAAUEcUAAAAAEFu7Nixstlsuu+++/THP/5RXbt2Vffu3bVu3TotXbpUrVu31po1a7R7927l5+dr27Zt1X6mJidPntSCBQtUWFhYtQSQJOXl5SktLU3PP/+8pkyZIovFor1791bNsX//fuXm5urTTz/Vjh07VFxcrKysLKWnpys/P18nT55UUlKSiouLNXHiRC1YsEC9e/cOxK8MAAAAACDJ5PvhK1sAAAAwxt//rq+/+ELf3nNPtacrKytls9mqfna73bJarZIkr9d70ZI9NX0mJyfnkmtCQkIUFRUlj8ejkJAQSVJ2drZSUlKUmpoqk8kku91ep1tzOp0KDQ2t9lz7P/9ZbX7zG6lTpzrN0RgdOHBAaWlpeuqppwyZ/6GHHtKbb75pyNwAAAAAGp7V6AAAAAConQsf5EuqevgvqdqH/9V9ZuvWrZdcEx8frzFjxlw0nsvlUllZWVUhUFc1PfwHAAAAADQcCgAAAIBmZMaMGbW67tixY7r//vuVmZmpwYMHN3AqAAAAAEBDoAAAAADAJe666y6jIyAAWA0UAAAAaNrYBBgAAABopkwmk9ERAAAAADQgCgAAAAAAAAAAAJogCgAAAAAAAAAAAJogCgAAAACgGWMfAAAAAKDpYhNgAACAYGG1KjotTa327DFk+pyyMkWHhCjMYgnovKH79klPPRXQOeHXsmVLlZSUqFWrVkZHAQAAANAAKAAAAACCxa23KnTDBoUaNP2m117TmFGjNGjAgMBObDZLkZGBnROSpJiYGOXl5VEAAAAAAE0UBQAAAEAwiYoybOq2HTsqz+UyNAMCKzY2Vrm5uerWrZvRUQAAAAA0APYAAAAAgCSpbdu2ysvLMzoGAuh8AQAAAACgaaIAAAAAgCQKgOaIAgAAAABo2igAAAAAIIkCoDnizxwAAABo2igAAAAAIImHwc3Rj370I3399ddGxwAAAADQQCgAAAAAIEkKCwtTWVmZ0TEQQC1btlRxcbHRMQAAAAA0EAoAAAAAAAAAAACaIAoAAAAAoBnz+XxGRwAAAADQQCgAAAAAUMVkMhkdAQHWsmVLlZSUGB0DAAAAQAOgAAAAAEAVi8Uit9ttdAwEUOfOnXX8+HGjYwAAAABoABQAAAAAqBIdHa2CggKjYyCAevXqpSNHjhgdAwAAAEADoAAAAABAlbZt2yovL8/oGAigXr166fDhw0bHAAAAANAAKAAAAABQhQKg+enWrZu++uoro2MAAAAAaAAUAAAAAKhCAdD82O12VVRUGB0DAAAAQAOgAAAAAECV8PBwHTx4UP/617906NAho+MgQHw+n9ERAAAAADQAq9EBAAAAYLyPPvpI06dPV0hIiFwul1588UXdcccdWrNmjdHREABxcXHKzc1VbGys0VEAAAAA1CO+AQAAAADdfPPNat26tXJycpSXlyen06nJkycbHQsBwkbAAAAAQNNEAQAAAADZbDZNmDBBZrP/r4dxcXG67bbbDE6FQKEAAAAAAJomCgAAAABIkp5++ml16NBBktSmTRvFxMQYnAiBQgEAAAAANE0UAAAAAJAkRUVFaejQoZKk6667zuA0CKR27drp9OnTRscAAAAAUM8oAAAAAFBl/vz5CgsL09SpU42OggDz+XxGRwAAAABQz6xGBwAAAEA1SkulL7+U94sv5Nm3T3K7AzJtF0kPtG+v4ampqvzb3wIy54VMsbGyDB0qU2Ki1LVrwOdvztq2bau8vDy1bdvW6CgAAAAA6gkFAAAAgNGKiqS9e+X9/HN5MjPlLSpSpd2ucz166Fzv3nL+7GfyhoUFLM7/e/JJ5QRstotZc3PV4uBBRbz8skKzs2Wx22WOiZFl2DCZBwyQBgyQ7HaD0jVtiYmJ2rVrl+666y6jowAAAACoJxQAAAAAgeRwyLdzpzx798p74oS8RUXyeL0q7dlT53r3VvmcOfKFhBid0jDu2FgVx8aq+Oabq45ZiosVkpWl8DVrFP7CC7KVl8scESHL0KEyDxsmJSZKLVoYmLppSExMVFpaGgUAAAAA0IRQAAAAADSU7x72ez//XJ4jR+Q9d06umBiV9uqlsn795Lr3XsnMlkxX4mnVSmWJiSpLTFTed8fM584p9PBhhW/cqBavvy6rJIvJJHPPnrIOHCjddJMUE2Nk7EanT58+euGFF4yOAQAAAKAeUQAAAADUldstHT7sf7N/xw558vPl8flU0aaNznXqpLIhQ+SaPFkymYxO2mR4w8OrSoHzTG637CdOKHz/foWvWaOQggJZbDaZ+/aV5frrpWHDpHbtDEwd3CwWi9wB2msCAAAAQGBQAAAAAFyNigrp6FF5P//c/7+vv5bH61V5584q6dlT5ZMnyx0dbXTKZslntcrVvbtc3bur4J57JEkmr1f2r75SWFaWwj/6SPZvvpG1rEyW+HhZrr9epqFDpb59KWe+ExUVpW+++UbR/H8YAAAAaBIoAAAAAGpSw+a85b166VznziqfPl2eyEijU+IyfGZzVSlQeMHxqs2GFy9WaE6OrF6vzAkJ35cCvXtLFothuY2SmJiozMxM3X777UZHAQAAAFAPKAAAAAAk/3r9+/fLu3evvF9+KW9hoSptNp37bnNe55w58jbjzXmbmstuNrxihcK/+urSzYaHDJHCwgxM3fASExP14YcfUgAAAAAATQQFAAAAaL5yclQxZ448Pp9cMTE617Onynr1kuv229mctxmqbrNhS0mJQg8eVMSGDWrxpz/J4nbLNnKkLL/6laFZG0q/fv308ssvGx0DAAAAQD3hX7YAAKD5cjhU2K+fjv3ud8pJSdG3Y8fK1aVLUD3837Vrlx5//HEVFxfL6/UqJSVFlZWVWr9+vf70pz/VefwLxwy0mu4tmHhattS566/X2RkzdPy//ktZzz4rz44dRsdqMDabTS6Xy+gYAAAAAOpJ8PzrFgAAAJdITEzUwYMH5fF4ZDabNXPmTNlsNnXo0EG7d+++5nH37t0rSReNGWg13RuMlZCQoJycHKNjAAAAAKgHFAAAAAAG8Xg8OnDggAoKCqqOuVwu7du3Tz6fr+qY1fr9qo1dunSR2+2uOlZZWamTJ09eNG5ubq6cTmfVQ9wfjpmRkaH58+dXfe78mOedPXtWTqfzojFPnz4tj8ejgwcPXvEt/cLCQu3Zs0clJSVVx86cOaOKigodOnToomuru7fLzVdRUaEjR47I6/VeNgOu3YgRI5Senm50DAAAAAD1gAIAAADAAC6XSy+88IJsNpvmzZunjz/+WDk5OXrmmWfUvn17zZ0795KlWI4cOaJx48apqKhIkuRwOPTnP/9Zc+fO1VNPPSVJWrlypZKTk/XXv/4FS5F7AAAgAElEQVRVr7/+erVjfvPNN3I6nSosLLxozPLycj3//PMqLi7WqlWrtGTJEklSWlqapk2bplWrVmn58uVaunRpjfd18uRJrV27VjabTampqZKk1NRUTZs2TStWrNCiRYs0e/bsSz53YY6a5vv222+1aNEiZWdnKzk5WXl5eZeMg7obNWqUtm3bZnQMAAAAAPWAAgAAAMAAW7Zs0ZAhQ9SjRw899dRT6tatm0JCQjRt2jRJ/jfmjx8/ftFnevbsqaioqKqf4+Li9MQTT+idd97Rjh075HA4dOutt8rn8+nRRx/V7373u2rH7NKli1q2bKnrrrvuojH//ve/y2azqUePHnrwwQe1fPlyFRcXa/To0ZKk6dOnKyUlRZs3b67xvnJycrR27VpFR0frgQcekOR/o7xVq1aaNWuWFi5cKIfDoaNHj9Z4bzXNt3HjRkVFRcnpdCo+Pl7bt2+/tl8+LismJka5ublGxwAAAABQDygAAAAADLB161aFhYVJ8j/I79ixoyIjI5WRkaETJ06oTZs2V1xqJyQkRJJ/GZ3+/fvrzJkzslgsVeNKuqoxv/jiC8XFxUny7w3Qq1cv7dmz56Jr7Ha7ysvLaxxj+PDhSkpK0sSJE7Vz586q4+YLNlbu16/fRcseXc6F82VkZKhPnz4aP368XnrpJSUlJdVqDFy9iIgIFRcXGx0DAAAAQB1RAAAAABhg2LBhWr16tcrLy+XxeLRnzx699dZbqqysVGJiolwu10X7AFyouuNut1uDBw++5Hh1Y5rNZnk8nkvGHDNmjHbt2lV1zOl0aujQoVec+0KZmZmaPXu2li1bpldffbXaaxwOxyXj1jT+hT8PGjRI69atk9frlc/nU0ZGxmWzNAYWi+WSP4tgcNNNNzWJ3y8AAADQ3FEAAAAAGGDs2LGy2Wy677779Mc//lFdu3ZV9+7dtW7dOi1dulStW7fWmjVrtHv3buXn52vbtm3av3+/cnNz9emnn6pdu3Zyu93auHGjFi5cqClTpshkMmnr1q1yOBzKzMyUpGrHbNeuncrKyvTGG29o165dVWOOHDlScXFx+vjjj7V69WqNGzdOoaGh2rFjh4qLi5WVlaX09HTl5+dfsvHweSdPntSCBQtUWFhYtQSQJOXl5SktLU3PP/+8pkyZIovFor1791Z7bzXNl5SUpOLiYk2cOFELFixQ7969A/Jn1ZBsNtsVv+lhhJEjR7IPAAAAANAEmHxXeo0LAACgqdqxQ7nr1yt38mTDIlRWVspms1X97Ha7ZbVaJUler/eipXOqc+7cOYWHh1/2murGdLvdslgsMplMl1xfWloqk8l0xXFzcnIuORYSEqKoqCh5PJ6qJYqys7OVkpKi1NRUmUwm2e32y457JU6nU6GhoXUaoy56Pvec7CtX1stYOTk5WrRokZ577rl6Ga+++Hw+zZgxQ2+//bbRUQAAAADUgdXoAAAAAM3ZhQ//JVU9qJd0xYf/kq74kL6mMS889kMRERFXHFPy72PwQ/Hx8RozZsxF47tcLpWVlVUVAnVl5MP/+ma321VRUWF0jEuYTCZZLJaLyiMAAAAAjQ9/mwcAAM2a7fhx2c6eVeV3m9+i9mbMmFGr644dO6b7779fmZmZ1e5T0FiYXC6FHj0q1eMD+2AtACRpyJAh2rlzp2688UajowAAAAC4RhQAAACg+Ro4UK3Hj1erTZvkOXFCHo9Hrrg4lfbsqbJevVTRoYNUi7fwcXl33XWX0RGumqW0VKGHDin8yBG1OHZMVrdb5hYtZL7uOlmffbbe5gkJCZHT6ay38erTbbfdprS0NAoAAAAAoBGjAAAAAM1XaKhMU6fKMnWqLN8dCnM4FLlzpzy7d8u7dq08LpfcHo/KOnXSud69Vd6vn3z1tJQNgoOluFghWVkKP3RI4V99JVt5ucwREbIMHSrz3XdLiYlSixYNMndYWFjQFgD9+/fX/PnzjY4BAAAAoA4oAAAAAC7Uvr1MSUmyJiV9f6yoSC337pX388/lWbhQ3qIiVdrtOtejh8717i1nnz7yhoUZlxm1Zs3NVYuDBxVx+LBCs7NlsdtljomRZcAA/8P+YcOkABc8Pp8voPPVlslkUlhYWK02mgYAAAAQnCgAAAAAriQyUho5UuaRI3V+QaCQ0lJFHD4s79698i5dKu/XX8vj8ai8SxeV9Oyp8oED5W7TxtDYzZnJ65XN4VDosWP+h/0Oh6xOp8ydOsly/fUyPfKI1KcPSzxdwejRo/XZZ59p7NixRkcBAAAAcA0oAAAAAK5FRIQ0ZIjMQ4bIPHOm/5jbrbDDhxW1c6c8q1bJ+/XXcvt8cnXurNJOneTs2lWu7t0Njd0Umdxu2U+c8C/hc+iQQgoKZLHZZO7bV+Zhw2QaN07q2tXomI3SHXfcoZdffpkCAAAAAGikKAAAAADqi9Uq9esnU79+sj70kCTJLqmFw6HWO3f6lxBKTZW3pESutm1V2quXyvr0katrV95EryXzuXMKPXxYLU6cUIvsbFmdTlkrK2Xp0UOW66+XfvpTqW1bo2M2GQkJCcrJyTE6BgAAAIBrRAEAAADQ0L7bV8CSlFS12XCow6FW50uBNWvkMZku3my4f3/57HZDYxvNUlKikKNHFX7okHZu367C0lLd3a2bIm+4QeYxYxp0c95AslqtqqyslM1mMzpKtdq2bauzZ88qLi7O6CgAAAAArpLJF6y7jgEAADQ3eXlSZqY8O3fKs3evvC6XKsPCVNali7xB+nC4voXk5SnU4ZDFbJa5XTtZhw2TKTFR5Z0766NPPtH69et17tw53XnnnZowYYIiIyONjlxnTz/9tB599FF16NDB6CjVev/991VeXq6pU6caHQUAAADAVaIAAAAACGYlJVJWluT1Gp0kMFq39q/XbzLVeInT6dTf//53rVu3TgUFBRo1apSmT5+uto106Z9XX31VQ4YM0Y033mh0lGoVFRXp3//937V48WKjowAAAAC4SiwBBAAAEMxatpQGDzY6RVAJDQ3Vvffeq3vvvVcej0fbt2/XggULdOLECY0ePVpTp05tVMvVJCQk6OuvvzY6Ro0iIyNVXFwsn88n02WKGQAAAADBhwIAAAAAjZbFYtHIkSM1cuTIqjLg+eef16lTpzRq1ChNnjxZ8fHxRse8rISEBG3fvt3oGJeVmJioL774QkOHDjU6CgAAAICrQAEAAACAJqG6MuCFF15QTk6ORowYoUmTJikhIcHomJdo3759UH8DQJLGjx+vd955hwIAAAAAaGQoAAAAANDkXFgGeL1epaen68UXX9RXX32lwYMH68EHH1S3bt2MjilJio+P1+nTp42OcVl9+/bV4cOHjY4BAAAA4CpRAAAAAKBJM5vNVWWAJO3fv1/Lly/X7t27NWjQIE2fPl09e/Y0NJ+3EWzy3LZtW505c0bt2rUzOgoAAACAWqIAAAAAQLPSr18/9evXT5K/DHj77be1Z88eDRw4UFOnTlXv3r0DnqkxbK47btw4bdq0SbNmzTI6CgAAAIBaogAAAABAs/XDMiA1NVX79u1T//79NXnyZPXt2zcgOWJjY5Wbm6vY2NiAzHctbr31Vj3yyCMUAAAAAEAjQgEAAAAA6NIyYPXq1Tpw4IDat2+vSZMmVS0h1BC6d++urKysoC4AQkJC5Ha7VVFRIbvdbnQcAAAAALVg8vl8PqNDAAAAAMHqq6++0rp167Rz505FR0dr0qRJGjFiRL0u2/PRRx8pJydHM2fOrLcxG8KSJUvUqVMn3XnnnUZHAQAAAFALFAAAAABALZ04cULvv/++Pv/8c8XExNRbGeBwOPTyyy/r97//fT0lbRj5+fn67W9/q1deecXoKAAAAABqgSWAAAAAgFrq3Lmz5syZI0k6deqU3nvvPb322muKi4vTAw88oOHDh8tsNl/1uO3bt9fp06frO269i4mJUW5urrxe7zXdJwAAAIDAogAAAAAArkHHjh2ryoDs7Gy9++67eu211xQaGqr7779f48aNk9Va+79uN5Yv5g4fPlzbt2/XiBEjjI4CAAAA4AooAAAAAIA66tChQ1UZkJ+fr40bN+pnP/uZzGaz7rvvPo0dO1Y2m+2yY7Ru3VoFBQVq06ZNICJfs0mTJmnhwoUUAAAAAEAjwB4AAAAAQAP55ptvtGHDBv3jH/+Q1WrVhAkTdNddd8lut19y7aJFizRgwACNHDnSgKRX58c//rHeeecdo2MAAAAAuAIKAAAAACAACgoKtH79en300UcKCQlRUlKS7rzzToWEhEiS0tPTlZmZqV/+8pcGJ72y+fPn6+6771aPHj10+vRpde/e3ehIAAAAAKpBAQAAAAAEWGFhodLS0vTPf/5TFRUVGjNmjMaNG6enn35aS5YsMTreZZWXl2vRokVaunSpSkpKlJCQoH/+859GxwIAAABQDQoAAAAAwEBlZWXasmWLNmzYoM2bN+t3v/udJk6cqIiICKOjXaKwsFA9e/ZUSUmJnE6nJGnUqFH69NNPDU4GAAAAoDpmowMAAAAAzVmLFi1077336s9//rPGjBmjsLAw/du//ZumT5+uZcuWqbi4+JLPfPjhh9q+fXvAs7Zu3VqPPPLIRRsam0ymgOcAAAAAUDsUAAAAAECQGDp0qOLj47V48WK98cYbioqK0q9//WslJydr2bJlKioqkiT993//tyZMmKB58+YFPOO8efN00003yWzmnxIAAABAsGMJIAAAACBI7NixQ+np6Zo7d+5Fx51Opz744AOtX79excXFSk9PV05Ojlq2bKlhw4bp3XffVWRkZMBylpaWaujQoTp8+LBuvvlmffLJJwGbGwAAAEDt8doOAAAAECQGDRqkzMzMS46HhoZqwoQJWrJkiW6++Wbl5uZKkkpKSvTxxx9ryJAh+vLLLwOWMyIiQmvXrlWHDh1YAggAAAAIYlajAwAAAADws9vtcjqd8vl8NT5YX7ZsmaxWq6xW/1/lw8LC9E1enm4cOlSrp0/X3b16BSRrD0n/c+ONenf/fnnmzw/InFfDFBIi89y5ksVidBQAAADAMCwBBAAAAASR3/72t5o6dap69+5d7fldu3apoKBAkhQeHi673S7fhx+q+OhRRd98syLCwgIZV26PR9YgfMjebtkyhb/9ttSqldFRAAAAAMPwDQAAAAAgiIwePVqffvppjQVAYmLiJcd8WVk61aqVSoYMUXlDB6xGpQFzXoknOtroCAAAAIDh2AMAAAAACCI33XSTMjIyjI4BAAAAoAmgAAAAAACCSFhYmEpLS42OAQAAAKAJoAAAAAAAgkzXrl114sQJo2MAAAAAaOQoAAAAAIAgM3r0aG3dutXoGAAAAAAaOQoAAAAAIMiMGDFC6enpRseQJO3atUuPP/64iouLAzK+1+tVSkqKKiuDcWthAAAAoHGhAAAAAACCTKtWrRrsgfvVSkxM1MGDB+XxeAIyvtls1syZM2Wz2RpkPgAAAKA5oQAAAAAAglB8fLwcDkedx3G5XNq3b598Pl/VsTNnzqiiokKHDh266NqajlutVknS6dOnderUKRUVFcnr9erUqVOX3bC4sLBQe/bsUUlJyWXnOD/+eV26dJHb7a6a0+Px6ODBgxd9K6CiokJHjhyR1+ut7a8CAAAAaHYoAAAAAIAgdMcdd+iDDz6o0xg5OTl65pln1L59e82dO1cul0upqamaNm2aVqxYoUWLFmn27NmSVOPxC508eVJTpkyR3W6X2WzWihUrapz75MmTWrt2rWw2m1JTU2s9x5EjRzRu3DgVFRUpLS1N06ZN06pVq7R8+XItXbpUkvTtt99q0aJFys7OVnJysvLy8ur0ewIAAACaKgoAAAAAIAjdcsstdd4IOCQkRNOmTZPkf/P++PHjGjFihFq1aqVZs2Zp4cKFcjgcOnr0aI3HL3TjjTeqf//+ysjIkMfjUUJCgiIiIqqdOycnR2vXrlV0dLQeeOABSarVHD179lRUVJQk/2bIkjR9+nSlpKRo8+bNkqSNGzcqKipKTqdT8fHx2r59e51+TwAAAEBTRQEAAAAABKGwsDC5XK46bYYbGRmpjIwMnThxQm3atKkay2z+/p8B/fr1U0FBwWWPX2j27NlaunSp0tPTqx7QV2f48OFKSkrSxIkTtXPnzqrjtZmjOna7XeXl5ZKkjIwM9enTR+PHj9dLL72kpKSkWo0BAAAANDcUAAAAAECQGjFiRJ3ebn/rrbdUWVmpxMREuVyui/YBOM/hcGjo0KG1Pn7TTTeprKxMn3zyiTp37lzj3JmZmZo9e7aWLVumV199tdprappD0iVZL/x50KBBWrdunbxer3w+nzIyMmrMAQAAADRnFAAAAABAkBo/frw2bdp0zZ/v3r271q1bp6VLl6p169Zas2aNPB6P8vLylJaWpueff15TpkyRxWKRpGqP7927V/n5+dq2bVvVuMnJyerTp89l5z558qQWLFigwsLCqiWAqpvjwIEDF42/f/9+5ebm6tNPP9WOHTtUXFysrKwspaenKz8/XydPnlRSUpKKi4s1ceJELViwQL17977m3xEAAADQlJl81b0GBAAAACAoTJkyRatWrbrsNb5Vq3QqP18lN998yTm32y2r1SpJ8nq9+vrrr5WSkqLU1FSZTCbZ7XZJUnZ2drXHq7N69WqNHz9e4eHhkvzr/f9QSEiIoqKi5PF4FBISctVz1IbT6VRoaGi15zq+8IJa/elPUqtWdZoDAAAAaMysRgcAAAAAULMf/ehHOnXqlDp27HhNnz//8F/yr7/vcrlUVlZW9VD+vJqOX2jjxo06cOCAYmNjqx7+S6p2s+L4+HiNGTPmovlrM8fVqOnhPwAAAAA/CgAAAAAgiI0bN06bN2/Wz3/+83oZ79ixY7r//vuVmZmpwYMHX/H4hbp06SKr1arbb7/9ouMzZsyo09wAAAAAGgZLAAEAAABBrKKiQg8//LCWLVtW4zWXWwKouWIJIAAAAIBNgAEAAICgZrfb5fV65XK5jI4CAAAAoJGhAAAAAACC3C233KJPPvnE6BgAAAAAGhkKAAAAACDI3X///Xr//feNjgEAAACgkaEAAAAAAIJcdHS0CgoK5Ha7jY4CAAAAoBGxGh0AAAAAwJXdcsst2rp1q2677bZLT1osil6/XpF79wYsT6HLpdYhIQGb72qFZWZKZt53AgAAQPNm8vl8PqNDAAAAALi8s2fPat68eXrllVcuPel2S6dOBSzL8exsvfiXv+jVZ58N2JxXzWaTOnQwOgUAAABgKL4BAAAAADQCcXFxysvLk8fjkcViufik1Sp17RqwLPP/93/1zPz5PGAHAAAAghzfiQUAAAAaiVGjRumzzz4zNMO+ffsUFRWlDjz8BwAAAIIeBQAAAADQSEyaNEnvvfeeoRnmz5+vX//614ZmAAAAAFA7FAAAAABAI9GuXTs5HA55vV5D5t+xY4f69Omj2NhYQ+YHAAAAcHUoAAAAAIBGZOTIkUpPTzdk7hdffFFz5841ZG4AAAAAV48CAAAAAGhEJk2apNWrVwd83k2bNmnkyJFq2bJlwOcGAAAAcG2sRgcAAAAAUHsJCQk6e/asKioqZLfbAzKnz+fTkiVLtHLlyoDMBwAAAKB+8A0AAAAAoJG5++67tXnz5oDNt2rVKk2YMEEhISEBmxMAAABA3VEAAAAAAI3MpEmT9N577wVkLrfbrdTUVM2YMSMg8wEAAACoPxQAAAAAQCMTHh4us9mswsLCBp/rL3/5i2bOnCmrldVDAQAAgMaGAgAAAABohH784x/rnXfeadA5nE6nPvzwQ02YMKFB5wEAAADQMCgAAAAAgEbojjvu0JYtWxp0joULF+rxxx+XyWRq0HkAAAAANAwKAAAAAKARslgsSkhI0PHjxxtk/KKiIn355ZcaM2ZMg4wPAAAAoOFRAAAAAACNVHJyslasWNEgY//+97/XnDlzGmRsAAAAAIFBAQAAAAA0UoMHD1ZmZqa8Xm+9jLd//355vV7l5ubqzJkzuuGGG+plXAAAAADGsBodAAAAAMC1GzNmjD7++GPddtttdR5r/PjxCg0NVf/+/fXcc8/VQzoAAAAARuIbAAAAAEAjVl/LAJWXl8vr9erw4cP64IMPNGnSJH322Wf1kBAAAACAUSgAAAAAgEYsMjJSFotFeXl5dRrn6NGjKisrkySVlpYqJydHmzZtqo+IAAAAAAxCAQAAAAA0cg899JCWL19epzH279+vwsJCSVJsbKxSUlI0f/78+ogHAAAAwCAUAAAAAEAjN3LkSG3btk0+n++ax/jXv/4lj8ejuLg4/ed//qeeffbZekwIAAAAwAgUAAAAAEATMGLECG3btu2aP793717FxcXplVde0RNPPFGPyQAAAAAYxeSry2tCAAAAAALn6FFp5Urpu7X6L5RfXq5PTp3SpF69rmno21JT9Z/Dh+vWjh0vPjFggPTjH0t2+zWNCwAAAMA4FAAAAABAMPN6pQ8+kJYvlxISpIcflmJjAzO3zydt2SK9847Up4/0i19I8fGBmRsAAABAnVEAAAAAAMGopMT/tv+mTdItt/gf/IeHG5dn927pL3+RSkul5GTp9tuNywIAAACgVigAAAAAgGCSlSW98Yb/vw8+KN1zj2QySU6nvG+/Lfd778kVHi6ZG347L0t5uWyxsbKlpEj9+vkPFhVJS5dKW7dKY8f6M4aFNXgWAAAAAFePAgAAAAAwmtcr/eMf/gfrbdtKKSlSly7+c6dPy/Paa6rcuVP5d96pojFj5LNYAhbNmpen2PfeU8SxY7I99JBMEydKVqs/84YNUmqq1LGj9NhjUocOAcsFAAAA4MooAAAAAACjXG6Zny++UOUrr8hVVqYzU6bI2bOnoVFNFRVq/emniv7oI9kGD5Zl7lwpOtp/8vBhafFiyeHw3wPLAwEAAABBgQIAAAAACLSjR6W//tX/35/85Ptlflwuedeulfutt1TSubNyp0yRp3Vro9NeIuzAAcW+955CbTbZfv1raeBA/wmWBwIAAACCCgUAAAAAEAg/XOZnzhypc2f/OYOX+blW1vx8xWzYoFZZWbJNm3bp8kArV0qdOkmPPupfJggAAABAQFEAAAAAAA2puNi/Tv6VlvmZOlXOHj0MjXqtTJWVivzkE8Vs2eJfHmjOHCkmxn+S5YEAAAAAw1AAAAAAAA1l3TppxQrpF7/wP/yX/Mv8rFwp99/+pqLevZV/331BuczPtapaHshul+3JJ6XrrvOfKCiQ/u//pO3bpXffNTYkAAAA0ExQAAAAAAAN5Q9/8D/4HzxYcjjkfu01ub/4olEt83OtqpYH2rdPtqlTZZoxw7880EMPSW++aXQ8AAAAoFmwGh0AAAAAaA4qZszQyV/9Sq6pU42OEhDumBideeghna2oUOyyZYp2u2X+6U+NjgUAAAA0K2ajAwAAAADNgadtW7m6djU6RsD57HaVJiZKbrfRUQAAAIBmhwIAAAAAAAAAAIAmiAIAAAAAaEQqKip05MgReb3eqmOnT5+Wx+PRwYMHVVlZWeN1kpSbmyun06mcnBxJ0okTJ3T69OmLxjp16pSKiork9Xp16tQplZaWBuDOAAAAANQ3CgAAAACgkfj222+1aNEiZWdnKzk5WXl5eUpLS9O0adO0atUqLV++XEuXLq32OklauXKlkpOT9de//lWvv/66nnvuORUVFek//uM/9Mtf/lJZWVk6efKkpkyZIrvdLrPZrBUrVhh81wAAAACuFQUAAAAA0Ehs3LhRUVFRcjqdio+P1/bt2zV69GhJ0vTp05WSkqLNmzdXe50k3XrrrfL5fHr00Uf1yCOPaPfu3bruuus0ffp0xcbGqnv37rrxxhvVv39/ZWRkyOPxKCEhQREREUbeNgAAAIBrZDU6AAAAAIDaycjI0IMPPqhhw4Zp/PjxkqTCwsKq83a7XeXl5dVeJ0kWi0VhYWGSpPj4eJlMJmVkZOibb77RhAkTqq6bPXu2Fi9eLIvFUlUwAAAAAGh8+AYAAAAA0EgMGjRI69atk9frlc/nU0ZGxkXnfT5fra6TJLPZrJkzZ8psNmvixIkaNGhQ1bmbbrpJZWVl+uSTT9S5c+cGvScAAAAADYdvAAAAAACNRFJSkv7nf/5HEydO1A033KDHHntMGRkZKi4uVlZWlg4ePKj8/HwNGjRIe/bsueg6Sdq6dascDocyMzPVo0cP/eEPf1CnTp3UokUL9e/fXw8//LDMZv87QsnJyaqoqDDydgEAAADUkcl3/jUhAAAAAPXrD3+QbrlFGjxY5ZMn69gzz9TLsE6nU6GhoXW67vDhw3I4HOrVq5fOnTunXbt2acCAAerbt68kafXq1Ro/frzCw8PrnDd81y51Ki+X+ZFHpIcekt58s85jAgAAALgyvgEAAAAANDK1efh/pes2bdokl8uldu3aqbCwUBUVFerevbs2btyoAwcOKDY2tl4e/gMAAAAwDnsAAAAAAAFgLSpS682bZXK7jY4iSXrsscc0fPhw7d69WzExMUpOTpbdbleXLl00cOBAJScn18s89uxsxaxfL1ObNvUyHgAAAIDa4xsAAAAAQADYNm5UwoYNip0/X+eiopQ7ebIq4+IMy2O32zVq1KhLjvfp00d9+vSp8/jhmZmK3bBB9pYtZfvtb6XvlhYCAAAAEDjsAQAAAAA0lIwM6fnnpdGjpVmzpMhI//HMTFUuXqyK/Hzl3nefzg0aZGzOemIuK1ObzZsV9a9/yTpypCyPPSa1bu0/uX27tGSJFBEh/fGPxgYFAAAAmgkKAAAAAKChffGF9H//J5lM0qOPSv37+4/n5cmzZInc27ap4PrrVXDPPfKFhBib9RrYs7PVNi1N4WfOyDZrlkz33uu/14oK6f33pVWr/Pf8+ONSTIzRcQEAAIBmgwIAAAAACBSHQ3r9dWn3bmnGDOn++yWrVfJ65Vu/XpVvvRUUywPVikQfbY8AAAHbSURBVM+niIwMtd2yRSEtW8r6q19J55cOOnNGevNNKT1deuABafp0/30CAAAACCgKAAAAACDQXC7/W/Fr10o33CA9/LAUHe0/t3u33IsXy5Wfr7y77lLpjTcam/UHzOfOqc0HH/iX+bn9dll+/nP/sj6S/5sOixdLXq/0xBPSddcZGxYAAABo5igAAAAAACOdf2ju8Uhz50oDBviPFxbK88Ybcm/ZooLrr9e399wjr4HLA9lPnVLbdesUceaMrCzzAwAAADQKFAAAAABAMDh92l8EfPmlf8mcHy4PtHy5zkVHK3fSJFW2axeYTF6vInbs+H6ZnyeflHr39p87v8zPrl3SpEnf5wUAAAAQNCgAAAAAgGDicklpaVJqqv/bAE888f3yQF9+qcpXXpHb6fS/fd/AzOXlso0ZI/NPfiKFh/sPXviNhTlzpIEDGzwHAAAAgGtDAQAAAAAEq2B52H6+lDi/zM+FpQQAAACAoEUBAAAAAAS7nBxp0SIpK0u67z6pbdvAzf3xx9KxY9LUqdK990oWS+DmBgAAAFAnFAAAAABAY+F0SuvXSwUFgZnPZJJGjJD69g3MfAAAAADqFQUAAAAAAAAAAABNkFXSO0aHAAAAAAAAAAAA9ev/AyTkVr2xT20RAAAAAElFTkSuQmCC",
"prompt_number": 144,
"svg": [
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<!-- Generated by graphviz version 2.38.0 (20140413.2041)\n",
" -->\n",
"<!-- Title: graphname Pages: 1 -->\n",
"<svg width=\"1152pt\" height=\"695pt\"\n",
" viewBox=\"0.00 0.00 1152.00 694.98\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n",
"<g id=\"graph0\" class=\"graph\" transform=\"scale(0.477498 0.477498) rotate(0) translate(4 1451.47)\">\n",
"<title>graphname</title>\n",
"<polygon fill=\"white\" stroke=\"none\" points=\"-4,4 -4,-1451.47 2408.58,-1451.47 2408.58,4 -4,4\"/>\n",
"<!-- 1 -->\n",
"<g id=\"node1\" class=\"node\"><title>1</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1321.05,-1368.61 1226.05,-1368.61 1226.05,-1332.61 1321.05,-1332.61 1321.05,-1368.61\"/>\n",
"<text text-anchor=\"middle\" x=\"1273.55\" y=\"-1346.21\" font-family=\"Times,serif\" font-size=\"18.00\">summarize</text>\n",
"</g>\n",
"<!-- 5 -->\n",
"<g id=\"node2\" class=\"node\"><title>5</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"2271.48,-1262.32 2271.48,-1280.03 2221.14,-1292.55 2149.95,-1292.55 2099.62,-1280.03 2099.62,-1262.32 2149.95,-1249.8 2221.14,-1249.8 2271.48,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"2275.49,-1259.21 2275.49,-1283.14 2221.64,-1296.54 2149.46,-1296.54 2095.61,-1283.14 2095.61,-1259.21 2149.46,-1245.81 2221.64,-1245.81 2275.49,-1259.21\"/>\n",
"<text text-anchor=\"middle\" x=\"2185.55\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">pretrig_mean</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;5 -->\n",
"<g id=\"edge1\" class=\"edge\"><title>1&#45;&gt;5</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1321.13,-1349.48C1447.01,-1348.5 1798.95,-1341.6 2087.55,-1296.61 2095.55,-1295.36 2103.86,-1293.76 2112.11,-1291.99\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"2113.11,-1295.35 2122.1,-1289.75 2111.58,-1288.52 2113.11,-1295.35\"/>\n",
"</g>\n",
"<!-- 6 -->\n",
"<g id=\"node3\" class=\"node\"><title>6</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"407.12,-1262.32 407.12,-1280.03 362.266,-1292.55 298.832,-1292.55 253.977,-1280.03 253.977,-1262.32 298.832,-1249.8 362.266,-1249.8 407.12,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"411.122,-1259.3 411.122,-1283.05 362.815,-1296.54 298.282,-1296.54 249.975,-1283.05 249.975,-1259.3 298.282,-1245.81 362.815,-1245.81 411.122,-1259.3\"/>\n",
"<text text-anchor=\"middle\" x=\"330.549\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">pretrig_rms</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;6 -->\n",
"<g id=\"edge2\" class=\"edge\"><title>1&#45;&gt;6</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1226.01,-1350.02C1096.06,-1350.42 724.32,-1346.74 420.549,-1296.61 413.023,-1295.36 405.22,-1293.75 397.495,-1291.95\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"398.325,-1288.55 387.78,-1289.57 396.663,-1295.35 398.325,-1288.55\"/>\n",
"</g>\n",
"<!-- 7 -->\n",
"<g id=\"node4\" class=\"node\"><title>7</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1183.7,-1262.32 1183.7,-1280.03 1130.31,-1292.55 1054.79,-1292.55 1001.39,-1280.03 1001.39,-1262.32 1054.79,-1249.8 1130.31,-1249.8 1183.7,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"1187.71,-1259.16 1187.71,-1283.19 1130.77,-1296.54 1054.33,-1296.54 997.391,-1283.19 997.391,-1259.16 1054.33,-1245.81 1130.77,-1245.81 1187.71,-1259.16\"/>\n",
"<text text-anchor=\"middle\" x=\"1092.55\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">pulse_average</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;7 -->\n",
"<g id=\"edge3\" class=\"edge\"><title>1&#45;&gt;7</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1233.38,-1332.42C1209.53,-1322.22 1178.84,-1309.09 1152.2,-1297.69\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1153.54,-1294.46 1142.97,-1293.74 1150.78,-1300.89 1153.54,-1294.46\"/>\n",
"</g>\n",
"<!-- 8 -->\n",
"<g id=\"node5\" class=\"node\"><title>8</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1170.32,-1175.46 1170.32,-1193.17 1130.04,-1205.69 1073.06,-1205.69 1032.78,-1193.17 1032.78,-1175.46 1073.06,-1162.94 1130.04,-1162.94 1170.32,-1175.46\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"1174.31,-1172.53 1174.31,-1196.1 1130.64,-1209.68 1072.46,-1209.68 1028.78,-1196.1 1028.78,-1172.53 1072.46,-1158.95 1130.64,-1158.95 1174.31,-1172.53\"/>\n",
"<text text-anchor=\"middle\" x=\"1101.55\" y=\"-1179.91\" font-family=\"Times,serif\" font-size=\"18.00\">pulse_rms</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;8 -->\n",
"<g id=\"edge4\" class=\"edge\"><title>1&#45;&gt;8</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1225.92,-1347.85C1152.79,-1344.05 1018.18,-1332.26 988.549,-1296.61 974.1,-1279.22 976.929,-1265.13 988.549,-1245.74 999.359,-1227.71 1017.59,-1214.75 1036.3,-1205.58\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1037.84,-1208.72 1045.48,-1201.38 1034.93,-1202.35 1037.84,-1208.72\"/>\n",
"</g>\n",
"<!-- 9 -->\n",
"<g id=\"node6\" class=\"node\"><title>9</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1337.1,-1262.32 1337.1,-1280.03 1299.87,-1292.55 1247.23,-1292.55 1210,-1280.03 1210,-1262.32 1247.23,-1249.8 1299.87,-1249.8 1337.1,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"1341.1,-1259.46 1341.1,-1282.89 1300.53,-1296.54 1246.57,-1296.54 1206,-1282.89 1206,-1259.46 1246.57,-1245.81 1300.53,-1245.81 1341.1,-1259.46\"/>\n",
"<text text-anchor=\"middle\" x=\"1273.55\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">rise_time</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;9 -->\n",
"<g id=\"edge5\" class=\"edge\"><title>1&#45;&gt;9</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1273.55,-1332.42C1273.55,-1324.86 1273.55,-1315.7 1273.55,-1306.83\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1277.05,-1306.65 1273.55,-1296.65 1270.05,-1306.65 1277.05,-1306.65\"/>\n",
"</g>\n",
"<!-- 10 -->\n",
"<g id=\"node7\" class=\"node\"><title>10</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"625.924,-1262.32 625.924,-1280.03 569.468,-1292.55 489.629,-1292.55 433.174,-1280.03 433.174,-1262.32 489.629,-1249.8 569.468,-1249.8 625.924,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"629.921,-1259.12 629.921,-1283.23 569.907,-1296.54 489.19,-1296.54 429.176,-1283.23 429.176,-1259.12 489.19,-1245.81 569.907,-1245.81 629.921,-1259.12\"/>\n",
"<text text-anchor=\"middle\" x=\"529.549\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">postpeak_deriv</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;10 -->\n",
"<g id=\"edge6\" class=\"edge\"><title>1&#45;&gt;10</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1225.89,-1347.86C1119.82,-1343.5 856.434,-1329.95 638.549,-1296.61 629.609,-1295.24 620.31,-1293.56 611.078,-1291.72\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"611.606,-1288.26 601.107,-1289.68 610.202,-1295.12 611.606,-1288.26\"/>\n",
"</g>\n",
"<!-- 11 -->\n",
"<g id=\"node8\" class=\"node\"><title>11</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1502.34,-1262.32 1502.34,-1280.03 1461.46,-1292.55 1403.64,-1292.55 1362.76,-1280.03 1362.76,-1262.32 1403.64,-1249.8 1461.46,-1249.8 1502.34,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"1506.35,-1259.38 1506.35,-1282.97 1462.06,-1296.54 1403.04,-1296.54 1358.75,-1282.97 1358.75,-1259.38 1403.04,-1245.81 1462.06,-1245.81 1506.35,-1259.38\"/>\n",
"<text text-anchor=\"middle\" x=\"1432.55\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">timestamp</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;11 -->\n",
"<g id=\"edge7\" class=\"edge\"><title>1&#45;&gt;11</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1308.84,-1332.42C1330.08,-1322.08 1357.49,-1308.73 1381.12,-1297.22\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1382.84,-1300.27 1390.3,-1292.75 1379.78,-1293.98 1382.84,-1300.27\"/>\n",
"</g>\n",
"<!-- 12 -->\n",
"<g id=\"node9\" class=\"node\"><title>12</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"803.103,-1262.32 803.103,-1280.03 758.844,-1292.55 696.253,-1292.55 651.994,-1280.03 651.994,-1262.32 696.253,-1249.8 758.844,-1249.8 803.103,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"807.092,-1259.31 807.092,-1283.04 759.398,-1296.54 695.7,-1296.54 648.005,-1283.04 648.005,-1259.31 695.7,-1245.81 759.398,-1245.81 807.092,-1259.31\"/>\n",
"<text text-anchor=\"middle\" x=\"727.549\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">peak_index</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;12 -->\n",
"<g id=\"edge8\" class=\"edge\"><title>1&#45;&gt;12</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1225.81,-1346.48C1142.27,-1340.47 964.35,-1325.29 816.549,-1296.61 809.519,-1295.24 802.232,-1293.61 794.992,-1291.84\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"795.728,-1288.42 785.175,-1289.37 794.015,-1295.21 795.728,-1288.42\"/>\n",
"</g>\n",
"<!-- 13 -->\n",
"<g id=\"node10\" class=\"node\"><title>13</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1678.56,-1262.32 1678.56,-1280.03 1634.62,-1292.55 1572.48,-1292.55 1528.54,-1280.03 1528.54,-1262.32 1572.48,-1249.8 1634.62,-1249.8 1678.56,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"1682.56,-1259.31 1682.56,-1283.04 1635.18,-1296.54 1571.92,-1296.54 1524.54,-1283.04 1524.54,-1259.31 1571.92,-1245.81 1635.18,-1245.81 1682.56,-1259.31\"/>\n",
"<text text-anchor=\"middle\" x=\"1603.55\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">peak_value</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;13 -->\n",
"<g id=\"edge9\" class=\"edge\"><title>1&#45;&gt;13</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1321.48,-1339.92C1370.44,-1329.84 1448.55,-1313.23 1515.55,-1296.61 1521.96,-1295.01 1528.61,-1293.3 1535.26,-1291.53\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1536.22,-1294.9 1544.97,-1288.92 1534.41,-1288.14 1536.22,-1294.9\"/>\n",
"</g>\n",
"<!-- 14 -->\n",
"<g id=\"node11\" class=\"node\"><title>14</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1844.88,-1262.32 1844.88,-1280.03 1803.68,-1292.55 1745.42,-1292.55 1704.22,-1280.03 1704.22,-1262.32 1745.42,-1249.8 1803.68,-1249.8 1844.88,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"1848.88,-1259.37 1848.88,-1282.98 1804.28,-1296.54 1744.82,-1296.54 1700.22,-1282.98 1700.22,-1259.37 1744.82,-1245.81 1804.28,-1245.81 1848.88,-1259.37\"/>\n",
"<text text-anchor=\"middle\" x=\"1774.55\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">min_value</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;14 -->\n",
"<g id=\"edge10\" class=\"edge\"><title>1&#45;&gt;14</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1321.29,-1346.06C1399.35,-1339.69 1558.91,-1324.35 1691.55,-1296.61 1697.82,-1295.29 1704.31,-1293.74 1710.76,-1292.06\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1712.1,-1295.33 1720.84,-1289.34 1710.28,-1288.57 1712.1,-1295.33\"/>\n",
"</g>\n",
"<!-- 4 -->\n",
"<g id=\"node12\" class=\"node\"><title>4</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"2078.29,-1262.33 2078.29,-1280.02 2016.35,-1292.54 1928.75,-1292.54 1866.81,-1280.02 1866.81,-1262.33 1928.75,-1249.81 2016.35,-1249.81 2078.29,-1262.33\"/>\n",
"<text text-anchor=\"middle\" x=\"1972.55\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">pulsefile_lengths</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;4 -->\n",
"<g id=\"edge11\" class=\"edge\"><title>1&#45;&gt;4</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1321.42,-1346.91C1420.39,-1341.21 1654.02,-1325.99 1848.55,-1296.61 1862.19,-1294.54 1876.65,-1291.87 1890.7,-1289.05\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1891.75,-1292.41 1900.84,-1286.97 1890.35,-1285.55 1891.75,-1292.41\"/>\n",
"</g>\n",
"<!-- 2 -->\n",
"<g id=\"node13\" class=\"node\"><title>2</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"937.742,-1262.32 937.742,-1280.03 905.996,-1292.55 861.101,-1292.55 829.355,-1280.03 829.355,-1262.32 861.101,-1249.8 905.996,-1249.8 937.742,-1262.32\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"941.731,-1259.61 941.731,-1282.74 906.754,-1296.54 860.343,-1296.54 825.366,-1282.74 825.366,-1259.61 860.343,-1245.81 906.754,-1245.81 941.731,-1259.61\"/>\n",
"<text text-anchor=\"middle\" x=\"883.549\" y=\"-1266.78\" font-family=\"Times,serif\" font-size=\"18.00\">npulses</text>\n",
"</g>\n",
"<!-- 1&#45;&gt;2 -->\n",
"<g id=\"edge12\" class=\"edge\"><title>1&#45;&gt;2</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1225.8,-1344.82C1161.45,-1337.34 1044.12,-1321.12 946.549,-1296.61 942.182,-1295.51 937.701,-1294.27 933.234,-1292.95\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"934.118,-1289.56 923.53,-1289.94 932.045,-1296.24 934.118,-1289.56\"/>\n",
"</g>\n",
"<!-- 15 -->\n",
"<g id=\"node17\" class=\"node\"><title>15</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"580.549,-1202.31 478.549,-1202.31 478.549,-1166.31 580.549,-1166.31 580.549,-1202.31\"/>\n",
"<text text-anchor=\"middle\" x=\"529.549\" y=\"-1179.91\" font-family=\"Times,serif\" font-size=\"18.00\">select_good</text>\n",
"</g>\n",
"<!-- 6&#45;&gt;15 -->\n",
"<g id=\"edge19\" class=\"edge\"><title>6&#45;&gt;15</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M377.961,-1249.96C408.8,-1236.81 448.934,-1219.69 480.159,-1206.38\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"481.718,-1209.52 489.544,-1202.37 478.972,-1203.08 481.718,-1209.52\"/>\n",
"</g>\n",
"<!-- 17 -->\n",
"<g id=\"node16\" class=\"node\"><title>17</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1230.55,-1036.02 1030.55,-1036.02 1030.55,-1000.02 1230.55,-1000.02 1230.55,-1036.02\"/>\n",
"<text text-anchor=\"middle\" x=\"1130.55\" y=\"-1013.62\" font-family=\"Times,serif\" font-size=\"18.00\">calc_average_pulse_filter</text>\n",
"</g>\n",
"<!-- 8&#45;&gt;17 -->\n",
"<g id=\"edge20\" class=\"edge\"><title>8&#45;&gt;17</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1105.89,-1158.72C1111.2,-1128.61 1120.18,-1077.78 1125.71,-1046.44\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1129.22,-1046.69 1127.51,-1036.23 1122.33,-1045.47 1129.22,-1046.69\"/>\n",
"</g>\n",
"<!-- 10&#45;&gt;15 -->\n",
"<g id=\"edge21\" class=\"edge\"><title>10&#45;&gt;15</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M529.549,-1245.63C529.549,-1235.28 529.549,-1223.19 529.549,-1212.56\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"533.049,-1212.54 529.549,-1202.54 526.049,-1212.54 533.049,-1212.54\"/>\n",
"</g>\n",
"<!-- 12&#45;&gt;15 -->\n",
"<g id=\"edge22\" class=\"edge\"><title>12&#45;&gt;15</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M680.625,-1250.06C649.949,-1236.92 609.946,-1219.77 578.811,-1206.43\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"580.023,-1203.14 569.453,-1202.42 577.266,-1209.57 580.023,-1203.14\"/>\n",
"</g>\n",
"<!-- 4&#45;&gt;1 -->\n",
"<g id=\"edge18\" class=\"edge\"><title>4&#45;&gt;1</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1909.83,-1288.75C1895.68,-1291.68 1880.68,-1294.47 1866.55,-1296.61 1671.95,-1326 1438.24,-1341.22 1331.57,-1346.92\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1331.15,-1343.43 1321.35,-1347.45 1331.51,-1350.42 1331.15,-1343.43\"/>\n",
"</g>\n",
"<!-- 2&#45;&gt;1 -->\n",
"<g id=\"edge13\" class=\"edge\"><title>2&#45;&gt;1</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M931.499,-1286.78C942.346,-1290.34 953.795,-1293.9 964.549,-1296.61 1051.19,-1318.37 1153.41,-1333.6 1215.92,-1341.98\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1215.61,-1345.47 1225.98,-1343.32 1216.53,-1338.53 1215.61,-1345.47\"/>\n",
"</g>\n",
"<!-- 19 -->\n",
"<g id=\"node14\" class=\"node\"><title>19</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1223.05,-885.163 1142.05,-885.163 1142.05,-849.163 1223.05,-849.163 1223.05,-885.163\"/>\n",
"<text text-anchor=\"middle\" x=\"1182.55\" y=\"-862.763\" font-family=\"Times,serif\" font-size=\"18.00\">filter1lag</text>\n",
"</g>\n",
"<!-- 2&#45;&gt;19 -->\n",
"<g id=\"edge14\" class=\"edge\"><title>2&#45;&gt;19</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M909.998,-1246.89C941.684,-1216.28 990.549,-1159.22 990.549,-1098.45 990.549,-1098.45 990.549,-1098.45 990.549,-1017.02 990.549,-969.768 1001.52,-952.881 1036.55,-921.163 1063.04,-897.179 1101.23,-883.823 1131.9,-876.52\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1132.99,-879.863 1141.99,-874.268 1131.47,-873.031 1132.99,-879.863\"/>\n",
"</g>\n",
"<!-- 20 -->\n",
"<g id=\"node21\" class=\"node\"><title>20</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1264.64,-778.881 1264.64,-796.585 1227.1,-809.105 1174,-809.105 1136.45,-796.585 1136.45,-778.881 1174,-766.361 1227.1,-766.361 1264.64,-778.881\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"1268.63,-776.005 1268.63,-799.461 1227.74,-813.094 1173.35,-813.094 1132.47,-799.461 1132.47,-776.005 1173.35,-762.372 1227.74,-762.372 1268.63,-776.005\"/>\n",
"<text text-anchor=\"middle\" x=\"1200.55\" y=\"-783.333\" font-family=\"Times,serif\" font-size=\"18.00\">filt_value</text>\n",
"</g>\n",
"<!-- 19&#45;&gt;20 -->\n",
"<g id=\"edge28\" class=\"edge\"><title>19&#45;&gt;20</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1186.54,-848.979C1188.32,-841.339 1190.48,-832.06 1192.56,-823.095\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1196,-823.745 1194.86,-813.212 1189.18,-822.16 1196,-823.745\"/>\n",
"</g>\n",
"<!-- 3 -->\n",
"<g id=\"node15\" class=\"node\"><title>3</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"2404.61,-1417.19 2404.61,-1434.88 2345.41,-1447.4 2261.69,-1447.4 2202.49,-1434.88 2202.49,-1417.19 2261.69,-1404.67 2345.41,-1404.67 2404.61,-1417.19\"/>\n",
"<text text-anchor=\"middle\" x=\"2303.55\" y=\"-1421.64\" font-family=\"Times,serif\" font-size=\"18.00\">pulsefile_names</text>\n",
"</g>\n",
"<!-- 3&#45;&gt;1 -->\n",
"<g id=\"edge15\" class=\"edge\"><title>3&#45;&gt;1</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M2202.44,-1417.83C1989.21,-1402.63 1499.26,-1367.7 1331.29,-1355.72\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1331.4,-1352.22 1321.17,-1355 1330.9,-1359.2 1331.4,-1352.22\"/>\n",
"</g>\n",
"<!-- 3&#45;&gt;19 -->\n",
"<g id=\"edge17\" class=\"edge\"><title>3&#45;&gt;19</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M2311.98,-1404.67C2323.18,-1375.74 2341.55,-1320.85 2341.55,-1272.18 2341.55,-1272.18 2341.55,-1272.18 2341.55,-1017.02 2341.55,-903.57 1456.57,-874.728 1233.25,-869.256\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1233.2,-865.754 1223.12,-869.013 1233.03,-872.752 1233.2,-865.754\"/>\n",
"</g>\n",
"<!-- 3&#45;&gt;17 -->\n",
"<g id=\"edge16\" class=\"edge\"><title>3&#45;&gt;17</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M2303.55,-1404.27C2303.55,-1374.86 2303.55,-1319.41 2303.55,-1272.18 2303.55,-1272.18 2303.55,-1272.18 2303.55,-1183.31 2303.55,-1076.62 1532.61,-1034.94 1240.74,-1022.99\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1240.69,-1019.48 1230.56,-1022.57 1240.41,-1026.48 1240.69,-1019.48\"/>\n",
"</g>\n",
"<!-- 18 -->\n",
"<g id=\"node20\" class=\"node\"><title>18</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1293.53,-933.746 1293.53,-951.441 1220.9,-963.954 1118.19,-963.954 1045.57,-951.441 1045.57,-933.746 1118.19,-921.233 1220.9,-921.233 1293.53,-933.746\"/>\n",
"<text text-anchor=\"middle\" x=\"1169.55\" y=\"-938.194\" font-family=\"Times,serif\" font-size=\"18.00\">average_pulse_filter</text>\n",
"</g>\n",
"<!-- 17&#45;&gt;18 -->\n",
"<g id=\"edge26\" class=\"edge\"><title>17&#45;&gt;18</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1139.59,-999.993C1143.85,-991.985 1149.04,-982.205 1153.9,-973.051\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1157.01,-974.668 1158.61,-964.194 1150.83,-971.384 1157.01,-974.668\"/>\n",
"</g>\n",
"<!-- 16 -->\n",
"<g id=\"node18\" class=\"node\"><title>16</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"627.484,-1088.6 627.484,-1106.31 570.115,-1118.83 488.982,-1118.83 431.613,-1106.31 431.613,-1088.6 488.982,-1076.08 570.115,-1076.08 627.484,-1088.6\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"631.483,-1085.39 631.483,-1109.52 570.547,-1122.81 488.55,-1122.81 427.615,-1109.52 427.615,-1085.39 488.55,-1072.09 570.547,-1072.09 631.483,-1085.39\"/>\n",
"<text text-anchor=\"middle\" x=\"529.549\" y=\"-1093.05\" font-family=\"Times,serif\" font-size=\"18.00\">selections/good</text>\n",
"</g>\n",
"<!-- 15&#45;&gt;16 -->\n",
"<g id=\"edge23\" class=\"edge\"><title>15&#45;&gt;16</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M529.549,-1166.14C529.549,-1156.65 529.549,-1144.51 529.549,-1133.13\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"533.049,-1133 529.549,-1123 526.049,-1133 533.049,-1133\"/>\n",
"</g>\n",
"<!-- 16&#45;&gt;17 -->\n",
"<g id=\"edge24\" class=\"edge\"><title>16&#45;&gt;17</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M625.776,-1084.06C733.369,-1070.19 907.306,-1047.79 1020.29,-1033.23\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1020.88,-1036.68 1030.35,-1031.93 1019.99,-1029.74 1020.88,-1036.68\"/>\n",
"</g>\n",
"<!-- 24 -->\n",
"<g id=\"node19\" class=\"node\"><title>24</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"591.549,-575.442 435.549,-575.442 435.549,-539.442 591.549,-539.442 591.549,-575.442\"/>\n",
"<text text-anchor=\"middle\" x=\"513.549\" y=\"-553.042\" font-family=\"Times,serif\" font-size=\"18.00\">findpeaks_wrapped</text>\n",
"</g>\n",
"<!-- 16&#45;&gt;24 -->\n",
"<g id=\"edge25\" class=\"edge\"><title>16&#45;&gt;24</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M515.078,-1071.97C499.082,-1042.54 475.549,-991.16 475.549,-943.594 475.549,-943.594 475.549,-943.594 475.549,-707.303 475.549,-663.401 491.257,-614.417 502.474,-585.033\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"505.822,-586.085 506.222,-575.498 499.307,-583.525 505.822,-586.085\"/>\n",
"</g>\n",
"<!-- 25 -->\n",
"<g id=\"node27\" class=\"node\"><title>25</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"527.855,-473.164 527.855,-490.86 414.033,-503.373 253.064,-503.373 139.242,-490.86 139.242,-473.164 253.064,-460.651 414.033,-460.651 527.855,-473.164\"/>\n",
"<text text-anchor=\"middle\" x=\"333.549\" y=\"-477.612\" font-family=\"Times,serif\" font-size=\"18.00\">filt_value_bin_counts_peak_inds</text>\n",
"</g>\n",
"<!-- 24&#45;&gt;25 -->\n",
"<g id=\"edge37\" class=\"edge\"><title>24&#45;&gt;25</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M471.801,-539.411C448.399,-529.865 418.818,-517.797 393.03,-507.277\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"394.3,-504.015 383.719,-503.479 391.656,-510.497 394.3,-504.015\"/>\n",
"</g>\n",
"<!-- 26 -->\n",
"<g id=\"node28\" class=\"node\"><title>26</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"864.941,-473.164 864.941,-490.86 771.571,-503.373 639.526,-503.373 546.156,-490.86 546.156,-473.164 639.526,-460.651 771.571,-460.651 864.941,-473.164\"/>\n",
"<text text-anchor=\"middle\" x=\"705.549\" y=\"-477.612\" font-family=\"Times,serif\" font-size=\"18.00\">filt_value_peaks_locations</text>\n",
"</g>\n",
"<!-- 24&#45;&gt;26 -->\n",
"<g id=\"edge38\" class=\"edge\"><title>24&#45;&gt;26</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M558.08,-539.411C583.151,-529.823 614.871,-517.691 642.464,-507.139\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"643.944,-510.32 652.034,-503.479 641.443,-503.782 643.944,-510.32\"/>\n",
"</g>\n",
"<!-- 18&#45;&gt;19 -->\n",
"<g id=\"edge27\" class=\"edge\"><title>18&#45;&gt;19</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1173.17,-921.139C1174.58,-913.174 1176.22,-903.93 1177.72,-895.415\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1181.18,-895.982 1179.47,-885.525 1174.29,-894.761 1181.18,-895.982\"/>\n",
"</g>\n",
"<!-- 21 -->\n",
"<g id=\"node22\" class=\"node\"><title>21</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1020.55,-726.303 952.549,-726.303 952.549,-690.303 1020.55,-690.303 1020.55,-726.303\"/>\n",
"<text text-anchor=\"middle\" x=\"986.549\" y=\"-703.903\" font-family=\"Times,serif\" font-size=\"18.00\">addhist</text>\n",
"</g>\n",
"<!-- 20&#45;&gt;21 -->\n",
"<g id=\"edge29\" class=\"edge\"><title>20&#45;&gt;21</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1152.26,-769.26C1115.63,-756.009 1065.72,-737.95 1030.27,-725.124\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1031.28,-721.764 1020.68,-721.653 1028.9,-728.347 1031.28,-721.764\"/>\n",
"</g>\n",
"<!-- 33 -->\n",
"<g id=\"node23\" class=\"node\"><title>33</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1294.55,-122.861 1186.55,-122.861 1186.55,-86.8605 1294.55,-86.8605 1294.55,-122.861\"/>\n",
"<text text-anchor=\"middle\" x=\"1240.55\" y=\"-100.461\" font-family=\"Times,serif\" font-size=\"18.00\">apply_spline</text>\n",
"</g>\n",
"<!-- 20&#45;&gt;33 -->\n",
"<g id=\"edge30\" class=\"edge\"><title>20&#45;&gt;33</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1202.37,-762.127C1204.44,-731.934 1207.55,-679.168 1207.55,-633.872 1207.55,-633.872 1207.55,-633.872 1207.55,-254.721 1207.55,-211.151 1221.19,-162.072 1230.93,-132.578\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1234.28,-133.598 1234.19,-123.004 1227.65,-131.346 1234.28,-133.598\"/>\n",
"</g>\n",
"<!-- 23 -->\n",
"<g id=\"node24\" class=\"node\"><title>23</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1130.33,-624.025 1130.33,-641.72 1053.14,-654.233 943.961,-654.233 866.762,-641.72 866.762,-624.025 943.961,-611.512 1053.14,-611.512 1130.33,-624.025\"/>\n",
"<text text-anchor=\"middle\" x=\"998.549\" y=\"-628.472\" font-family=\"Times,serif\" font-size=\"18.00\">filt_value_bin_counts</text>\n",
"</g>\n",
"<!-- 21&#45;&gt;23 -->\n",
"<g id=\"edge31\" class=\"edge\"><title>21&#45;&gt;23</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M983.531,-690.272C983.964,-682.598 985.196,-673.295 986.881,-664.477\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"990.351,-664.988 989.047,-654.473 983.51,-663.506 990.351,-664.988\"/>\n",
"</g>\n",
"<!-- 36 -->\n",
"<g id=\"node25\" class=\"node\"><title>36</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"849.226,-624.025 849.226,-641.72 759.204,-654.233 631.893,-654.233 541.871,-641.72 541.871,-624.025 631.893,-611.512 759.204,-611.512 849.226,-624.025\"/>\n",
"<text text-anchor=\"middle\" x=\"695.549\" y=\"-628.472\" font-family=\"Times,serif\" font-size=\"18.00\">energy_value_bin_counts</text>\n",
"</g>\n",
"<!-- 21&#45;&gt;36 -->\n",
"<g id=\"edge32\" class=\"edge\"><title>21&#45;&gt;36</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M952.483,-699.789C909.498,-689.544 834.415,-670.762 776.442,-655.86\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"777.119,-652.42 766.562,-653.315 775.373,-659.199 777.119,-652.42\"/>\n",
"</g>\n",
"<!-- 34 -->\n",
"<g id=\"node35\" class=\"node\"><title>34</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1249.53,-16.5778 1249.53,-34.2827 1220.25,-46.8019 1178.85,-46.8019 1149.57,-34.2827 1149.57,-16.5778 1178.85,-4.0586 1220.25,-4.0586 1249.53,-16.5778\"/>\n",
"<polygon fill=\"none\" stroke=\"red\" points=\"1253.55,-13.9528 1253.55,-36.9078 1221.08,-50.791 1178.02,-50.791 1145.55,-36.9078 1145.55,-13.9528 1178.02,-0.0695371 1221.08,-0.0695371 1253.55,-13.9528\"/>\n",
"<text text-anchor=\"middle\" x=\"1199.55\" y=\"-21.0303\" font-family=\"Times,serif\" font-size=\"18.00\">energy</text>\n",
"</g>\n",
"<!-- 33&#45;&gt;34 -->\n",
"<g id=\"edge47\" class=\"edge\"><title>33&#45;&gt;34</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1231.45,-86.6763C1227.27,-78.7902 1222.17,-69.1566 1217.28,-59.9262\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1220.28,-58.1094 1212.51,-50.9098 1214.1,-61.3852 1220.28,-58.1094\"/>\n",
"</g>\n",
"<!-- 23&#45;&gt;24 -->\n",
"<g id=\"edge36\" class=\"edge\"><title>23&#45;&gt;24</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M905.323,-617.758C817.714,-604.494 687.562,-584.788 601.659,-571.782\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"602.08,-568.306 591.668,-570.27 601.032,-575.227 602.08,-568.306\"/>\n",
"</g>\n",
"<!-- 23&#45;&gt;21 -->\n",
"<g id=\"edge35\" class=\"edge\"><title>23&#45;&gt;21</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1001.32,-654.473C1000.66,-662.502 999.27,-671.812 997.484,-680.36\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"994.036,-679.734 995.133,-690.272 1000.85,-681.35 994.036,-679.734\"/>\n",
"</g>\n",
"<!-- 36&#45;&gt;21 -->\n",
"<g id=\"edge50\" class=\"edge\"><title>36&#45;&gt;21</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M774.022,-652.178C828.057,-665.486 897.817,-683.149 942.431,-694.854\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"941.817,-698.312 952.379,-697.476 943.601,-691.543 941.817,-698.312\"/>\n",
"</g>\n",
"<!-- 22 -->\n",
"<g id=\"node26\" class=\"node\"><title>22</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"779.65,-778.885 779.65,-796.581 705.196,-809.094 599.901,-809.094 525.447,-796.581 525.447,-778.885 599.901,-766.372 705.196,-766.372 779.65,-778.885\"/>\n",
"<text text-anchor=\"middle\" x=\"652.549\" y=\"-783.333\" font-family=\"Times,serif\" font-size=\"18.00\">filt_value_bin_edges</text>\n",
"</g>\n",
"<!-- 22&#45;&gt;24 -->\n",
"<g id=\"edge34\" class=\"edge\"><title>22&#45;&gt;24</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M627.062,-766.199C599.274,-742.339 555.687,-700.316 532.549,-654.303 521.744,-632.817 517.079,-605.734 515.068,-585.841\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"518.533,-585.278 514.201,-575.609 511.558,-585.869 518.533,-585.278\"/>\n",
"</g>\n",
"<!-- 22&#45;&gt;21 -->\n",
"<g id=\"edge33\" class=\"edge\"><title>22&#45;&gt;21</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M725.846,-769.741C792.01,-754.402 887.188,-732.337 942.366,-719.546\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"943.236,-722.937 952.187,-717.269 941.655,-716.118 943.236,-722.937\"/>\n",
"</g>\n",
"<!-- 27 -->\n",
"<g id=\"node29\" class=\"node\"><title>27</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"803.549,-424.582 637.549,-424.582 637.549,-388.582 803.549,-388.582 803.549,-424.582\"/>\n",
"<text text-anchor=\"middle\" x=\"720.549\" y=\"-402.182\" font-family=\"Times,serif\" font-size=\"18.00\">peakassign_wrapped</text>\n",
"</g>\n",
"<!-- 26&#45;&gt;27 -->\n",
"<g id=\"edge39\" class=\"edge\"><title>26&#45;&gt;27</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M709.727,-460.557C711.354,-452.593 713.242,-443.349 714.982,-434.833\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"718.43,-435.441 717.002,-424.943 711.571,-434.04 718.43,-435.441\"/>\n",
"</g>\n",
"<!-- 29 -->\n",
"<g id=\"node30\" class=\"node\"><title>29</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"453.146,-322.303 453.146,-339.999 320.408,-352.512 132.689,-352.512 -0.0486024,-339.999 -0.0486024,-322.303 132.689,-309.791 320.408,-309.791 453.146,-322.303\"/>\n",
"<text text-anchor=\"middle\" x=\"226.549\" y=\"-326.751\" font-family=\"Times,serif\" font-size=\"18.00\">filt_value_calibration_energy_matches</text>\n",
"</g>\n",
"<!-- 27&#45;&gt;29 -->\n",
"<g id=\"edge40\" class=\"edge\"><title>27&#45;&gt;29</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M637.307,-393.208C560.789,-381.834 446.109,-364.788 357.353,-351.595\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"357.617,-348.095 347.211,-350.087 356.587,-355.019 357.617,-348.095\"/>\n",
"</g>\n",
"<!-- 30 -->\n",
"<g id=\"node31\" class=\"node\"><title>30</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"982.314,-322.303 982.314,-339.999 832.49,-352.512 620.607,-352.512 470.783,-339.999 470.783,-322.303 620.607,-309.791 832.49,-309.791 982.314,-322.303\"/>\n",
"<text text-anchor=\"middle\" x=\"726.549\" y=\"-326.751\" font-family=\"Times,serif\" font-size=\"18.00\">filt_value_calibration_energy_matches_fom</text>\n",
"</g>\n",
"<!-- 27&#45;&gt;30 -->\n",
"<g id=\"edge41\" class=\"edge\"><title>27&#45;&gt;30</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M721.94,-388.551C722.567,-380.877 723.327,-371.574 724.048,-362.756\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"727.539,-363.004 724.865,-352.752 720.562,-362.434 727.539,-363.004\"/>\n",
"</g>\n",
"<!-- 31 -->\n",
"<g id=\"node33\" class=\"node\"><title>31</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1059.05,-273.721 962.049,-273.721 962.049,-237.721 1059.05,-237.721 1059.05,-273.721\"/>\n",
"<text text-anchor=\"middle\" x=\"1010.55\" y=\"-251.321\" font-family=\"Times,serif\" font-size=\"18.00\">calc_spline</text>\n",
"</g>\n",
"<!-- 29&#45;&gt;31 -->\n",
"<g id=\"edge44\" class=\"edge\"><title>29&#45;&gt;31</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M382.379,-315.556C557.246,-299.178 832.076,-273.437 951.674,-262.235\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"952.099,-265.711 961.729,-261.294 951.446,-258.741 952.099,-265.711\"/>\n",
"</g>\n",
"<!-- 28 -->\n",
"<g id=\"node32\" class=\"node\"><title>28</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1130.53,-473.164 1130.53,-490.86 1057.9,-503.373 955.195,-503.373 882.57,-490.86 882.57,-473.164 955.195,-460.651 1057.9,-460.651 1130.53,-473.164\"/>\n",
"<text text-anchor=\"middle\" x=\"1006.55\" y=\"-477.612\" font-family=\"Times,serif\" font-size=\"18.00\">calibration_energies</text>\n",
"</g>\n",
"<!-- 28&#45;&gt;27 -->\n",
"<g id=\"edge42\" class=\"edge\"><title>28&#45;&gt;27</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M938.408,-463.517C895.86,-452.593 840.998,-438.507 796.973,-427.204\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"797.737,-423.786 787.181,-424.689 795.996,-430.566 797.737,-423.786\"/>\n",
"</g>\n",
"<!-- 28&#45;&gt;31 -->\n",
"<g id=\"edge43\" class=\"edge\"><title>28&#45;&gt;31</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1006.92,-460.313C1007.64,-419.652 1009.25,-329.362 1010.06,-283.937\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1013.56,-283.986 1010.24,-273.925 1006.56,-283.861 1013.56,-283.986\"/>\n",
"</g>\n",
"<!-- 32 -->\n",
"<g id=\"node34\" class=\"node\"><title>32</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1127.5,-171.443 1127.5,-189.139 1062.51,-201.652 970.589,-201.652 905.592,-189.139 905.592,-171.443 970.589,-158.93 1062.51,-158.93 1127.5,-171.443\"/>\n",
"<text text-anchor=\"middle\" x=\"1016.55\" y=\"-175.891\" font-family=\"Times,serif\" font-size=\"18.00\">calibration_spline</text>\n",
"</g>\n",
"<!-- 31&#45;&gt;32 -->\n",
"<g id=\"edge45\" class=\"edge\"><title>31&#45;&gt;32</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1011.94,-237.69C1012.57,-230.016 1013.33,-220.714 1014.05,-211.895\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1017.54,-212.144 1014.87,-201.892 1010.56,-211.573 1017.54,-212.144\"/>\n",
"</g>\n",
"<!-- 32&#45;&gt;33 -->\n",
"<g id=\"edge46\" class=\"edge\"><title>32&#45;&gt;33</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1072.78,-160.856C1105.1,-150.261 1145.74,-136.94 1178.92,-126.062\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1180.11,-129.358 1188.52,-122.917 1177.92,-122.706 1180.11,-129.358\"/>\n",
"</g>\n",
"<!-- 34&#45;&gt;21 -->\n",
"<g id=\"edge48\" class=\"edge\"><title>34&#45;&gt;21</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M1188.67,-51.0413C1176.52,-80.8057 1158.55,-132.718 1158.55,-179.291 1158.55,-558.442 1158.55,-558.442 1158.55,-558.442 1158.55,-601.876 1168.07,-621.549 1139.55,-654.303 1112.36,-685.521 1065.82,-698.361 1031.19,-703.637\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"1030.3,-700.226 1020.86,-705.043 1031.24,-707.162 1030.3,-700.226\"/>\n",
"</g>\n",
"<!-- 35 -->\n",
"<g id=\"node36\" class=\"node\"><title>35</title>\n",
"<polygon fill=\"lightgrey\" stroke=\"red\" points=\"1114.04,-778.885 1114.04,-796.581 1026.47,-809.094 902.626,-809.094 815.055,-796.581 815.055,-778.885 902.626,-766.372 1026.47,-766.372 1114.04,-778.885\"/>\n",
"<text text-anchor=\"middle\" x=\"964.549\" y=\"-783.333\" font-family=\"Times,serif\" font-size=\"18.00\">energy_value_bin_edges</text>\n",
"</g>\n",
"<!-- 35&#45;&gt;21 -->\n",
"<g id=\"edge49\" class=\"edge\"><title>35&#45;&gt;21</title>\n",
"<path fill=\"none\" stroke=\"black\" d=\"M970.444,-765.983C973.051,-756.807 976.15,-745.9 978.93,-736.117\"/>\n",
"<polygon fill=\"black\" stroke=\"black\" points=\"982.311,-737.024 981.677,-726.448 975.577,-735.111 982.311,-737.024\"/>\n",
"</g>\n",
"</g>\n",
"</svg>\n"
],
"text": [
"Graph(Ptr{Void} @0x00007faa8ecd9020,true)"
]
}
],
"prompt_number": 144
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# find everything that depends on filt_value_peaks_locations\n",
"# then I could delete all of the data entries, and it should recalculate them all \n",
"# based on present state of previous data\n",
"verts = vertices(g)\n",
"labels=[label(v) for v in verts]\n",
"i=first(indexin([\"filt_value_peaks_locations\"],labels))\n",
"v = verts[i]\n",
"visited = Any[]\n",
"visit_func(v) = push!(visited,v)\n",
"visited_vertices(g, BreadthFirst(), v)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 116,
"text": [
"13-element Array{ExVertex,1}:\n",
" vertex [26] \"filt_value_peaks_locations\" \n",
" vertex [27] \"peakassign_wrapped\" \n",
" vertex [29] \"filt_value_calibration_energy_matches\" \n",
" vertex [30] \"filt_value_calibration_energy_matches_fom\"\n",
" vertex [31] \"calc_spline\" \n",
" vertex [32] \"calibration_spline\" \n",
" vertex [33] \"apply_spline\" \n",
" vertex [34] \"energy\" \n",
" vertex [21] \"addhist\" \n",
" vertex [23] \"filt_value_bin_counts\" \n",
" vertex [36] \"energy_value_bin_counts\" \n",
" vertex [24] \"findpeaks_wrapped\" \n",
" vertex [25] \"filt_value_bin_counts_peak_inds\" "
]
}
],
"prompt_number": 116
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment