.blueColor() to UIColor.blue
.clearColor() to UIColor.clear
.darkGrayColor() to UIColor.darkGray
.lightGrayColor() to UIColor.lightGray
| class ConvNet(nn.Module): | |
| def __init__(self, num_classes=10): | |
| super(ConvNet, self).__init__() | |
| self.layer1 = nn.Sequential( | |
| nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), | |
| nn.BatchNorm2d(16), | |
| nn.ReLU(), | |
| nn.MaxPool2d(kernel_size=2, stride=2)) | |
| self.layer2 = nn.Sequential( | |
| nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), |
| import os | |
| from datetime import datetime | |
| import argparse | |
| import torch.multiprocessing as mp | |
| import torchvision | |
| import torchvision.transforms as transforms | |
| import torch | |
| import torch.nn as nn | |
| import torch.distributed as dist | |
| from apex.parallel import DistributedDataParallel as DDP |
| { | |
| "Iris": 100, | |
| "MNIST": 100000, | |
| "Public SVNH": 1000000, | |
| "Champolion": 10000000, | |
| "ImageNet": 100000000, | |
| "HN transcriptor": 1000000000, | |
| "Seconds from birth to college graduation": 10000000000, | |
| "HN detector": 100000000000 | |
| } |
| def start_dataflow_pipeline(): | |
| bucket = ‘fb_bucket’ | |
| BODY = { | |
| “jobName”: ‘fb_ | |
| catalog_upload’, | |
| “gcsPath”: “gs://{bucket}/catalog_up”.format(bucket=bucket), | |
| “environment”: { | |
| “tempLocation”: “gs://{bucket}/temp”.format(bucket=bucket), | |
| “zone”: “us-central1-f” | |
| } |
| #!/bin/bash | |
| python -m catalog_upload — project project_name — runner DataflowRunner \ | |
| — staging_location $BUCKET/staging — temp_location $BUCKET/temp \ | |
| — output $BUCKET/results/output — template_location $BUCKET/catalog_up \ | |
| — requirements_file requirements.txt |
| def transform_entity(pb): | |
| from google.cloud.datastore.helpers import entity_from_protobuf | |
| entity = entity_from_protobuf(pb) | |
| retailer_id = entity.get('id', '') | |
| name = entity.get('name') | |
| category = entity.get(‘category’, ‘’) | |
| description = entity.get(‘description’, ‘’) | |
| image_link = entity.get(‘image’, ‘’) | |
| price = entity.get(‘price’, ‘0’) | |
| link = entity.get('url', '') |
| #1 Here we define the Dataflow pipeline | |
| with beam.Pipeline() as p: | |
| # 2 We query all products in the queried_namespace | |
| query = query_pb2.Query() | |
| query.kind.add().name = 'Product' | |
| entities = p | 'Read From Datastore' >> | |
| ReadFromDatastore('project_name', query, namespace='queried_namespace') | |
| # 3 Formatting the rows | |
| products = entities | 'Format Rows' >> beam.Map(transform_entity) |
| find . -type f -name '*.swift' -exec sed -i '' s/\.endIndex/\.upperBound/ {} + | |
| find . -type f -name '*.swift' -exec sed -i '' s/\.startIndex/\.lowerBound/ {} + | |
| find . -type f -name '*.swift' -exec sed -i '' s/offsetInPlace/offsetBy/ {} + | |
| # Uppercase to lowercase | |
| find . -type f -name '*.swift' -exec sed -i '' s/\.CGColor/\.cgColor/ {} + |
| Language files blank comment code | |
| ------------------------------------------------------------------------------- | |
| Objective C 1089 31528 14773 132248 | |
| Swift 864 19360 8987 75756 |