Created
November 11, 2024 20:34
-
-
Save giswqs/6296c86c92211419d87ef85c1a71aa7f to your computer and use it in GitHub Desktop.
Search for GEE publications
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# %pip install -U scholarpy kaleido" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import scholarpy\n", | |
"import pandas as pd\n", | |
"import plotly.express as px" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"\u001b[2mUsing default endpoint: 'https://app.dimensions.ai'\u001b[0m\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"\u001b[2mDimcli - Dimensions API Client (v1.3)\u001b[0m\n", | |
"\u001b[2mConnected to: <https://app.dimensions.ai/api/dsl> - DSL v2.10\u001b[0m\n", | |
"\u001b[2mMethod: manual login\u001b[0m\n" | |
] | |
} | |
], | |
"source": [ | |
"dsl = scholarpy.Dsl()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"keywords = \"Google Earth Engine\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"Starting iteration with limit=1000 skip=0 ...\u001b[0m\n", | |
"0-1000 / 1975 (7.50s)\u001b[0m\n", | |
"1000-1975 / 1975 (5.29s)\u001b[0m\n", | |
"===\n", | |
"Records extracted: 1975\u001b[0m\n", | |
"Warnings: 2\u001b[0m\n" | |
] | |
} | |
], | |
"source": [ | |
"result = dsl.search_pubs_by_keyword(keywords, scope=\"title_only\", iterative=True, limit=1000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# result = dsl.search_pubs_by_keyword(keywords, scope=\"title_abstract_only\", iterative=True, limit=1000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"1975" | |
] | |
}, | |
"execution_count": 32, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"result.count_total" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>id</th>\n", | |
" <th>title</th>\n", | |
" <th>altmetric</th>\n", | |
" <th>authors</th>\n", | |
" <th>authors_count</th>\n", | |
" <th>dimensions_url</th>\n", | |
" <th>doi</th>\n", | |
" <th>field_citation_ratio</th>\n", | |
" <th>pages</th>\n", | |
" <th>times_cited</th>\n", | |
" <th>type</th>\n", | |
" <th>volume</th>\n", | |
" <th>year</th>\n", | |
" <th>journal.id</th>\n", | |
" <th>journal.title</th>\n", | |
" <th>issue</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>pub.1090359717</td>\n", | |
" <td>Google Earth Engine: Planetary-scale geospatia...</td>\n", | |
" <td>198.0</td>\n", | |
" <td>[{'affiliations': [{'city': 'Zurich', 'city_id...</td>\n", | |
" <td>6</td>\n", | |
" <td>https://app.dimensions.ai/details/publication/...</td>\n", | |
" <td>10.1016/j.rse.2017.06.031</td>\n", | |
" <td>3005.39</td>\n", | |
" <td>18-27</td>\n", | |
" <td>8756</td>\n", | |
" <td>article</td>\n", | |
" <td>202</td>\n", | |
" <td>2017</td>\n", | |
" <td>jour.1045931</td>\n", | |
" <td>Remote Sensing of Environment</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>pub.1127756464</td>\n", | |
" <td>Google Earth Engine for geo-big data applicati...</td>\n", | |
" <td>31.0</td>\n", | |
" <td>[{'affiliations': [{'city': 'Syracuse', 'city_...</td>\n", | |
" <td>6</td>\n", | |
" <td>https://app.dimensions.ai/details/publication/...</td>\n", | |
" <td>10.1016/j.isprsjprs.2020.04.001</td>\n", | |
" <td>217.75</td>\n", | |
" <td>152-170</td>\n", | |
" <td>768</td>\n", | |
" <td>article</td>\n", | |
" <td>164</td>\n", | |
" <td>2020</td>\n", | |
" <td>jour.1044622</td>\n", | |
" <td>ISPRS Journal of Photogrammetry and Remote Sen...</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>pub.1049181935</td>\n", | |
" <td>Mapping paddy rice planting area in northeaste...</td>\n", | |
" <td>4.0</td>\n", | |
" <td>[{'affiliations': [{'city': 'Norman', 'city_id...</td>\n", | |
" <td>8</td>\n", | |
" <td>https://app.dimensions.ai/details/publication/...</td>\n", | |
" <td>10.1016/j.rse.2016.02.016</td>\n", | |
" <td>184.57</td>\n", | |
" <td>142-154</td>\n", | |
" <td>604</td>\n", | |
" <td>article</td>\n", | |
" <td>185</td>\n", | |
" <td>2016</td>\n", | |
" <td>jour.1045931</td>\n", | |
" <td>Remote Sensing of Environment</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>pub.1130519734</td>\n", | |
" <td>Google Earth Engine Cloud Computing Platform f...</td>\n", | |
" <td>57.0</td>\n", | |
" <td>[{'affiliations': [{'city': 'Ottawa', 'city_id...</td>\n", | |
" <td>12</td>\n", | |
" <td>https://app.dimensions.ai/details/publication/...</td>\n", | |
" <td>10.1109/jstars.2020.3021052</td>\n", | |
" <td>185.15</td>\n", | |
" <td>5326-5350</td>\n", | |
" <td>596</td>\n", | |
" <td>article</td>\n", | |
" <td>13</td>\n", | |
" <td>2020</td>\n", | |
" <td>jour.1137583</td>\n", | |
" <td>IEEE Journal of Selected Topics in Applied Ear...</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>pub.1107145592</td>\n", | |
" <td>Google Earth Engine Applications Since Incepti...</td>\n", | |
" <td>9.0</td>\n", | |
" <td>[{'affiliations': [{'city': 'Armidale', 'city_...</td>\n", | |
" <td>2</td>\n", | |
" <td>https://app.dimensions.ai/details/publication/...</td>\n", | |
" <td>10.3390/rs10101509</td>\n", | |
" <td>175.62</td>\n", | |
" <td>1509</td>\n", | |
" <td>524</td>\n", | |
" <td>article</td>\n", | |
" <td>10</td>\n", | |
" <td>2018</td>\n", | |
" <td>jour.1430766</td>\n", | |
" <td>Remote Sensing</td>\n", | |
" <td>10</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" id title \\\n", | |
"0 pub.1090359717 Google Earth Engine: Planetary-scale geospatia... \n", | |
"1 pub.1127756464 Google Earth Engine for geo-big data applicati... \n", | |
"2 pub.1049181935 Mapping paddy rice planting area in northeaste... \n", | |
"3 pub.1130519734 Google Earth Engine Cloud Computing Platform f... \n", | |
"4 pub.1107145592 Google Earth Engine Applications Since Incepti... \n", | |
"\n", | |
" altmetric authors \\\n", | |
"0 198.0 [{'affiliations': [{'city': 'Zurich', 'city_id... \n", | |
"1 31.0 [{'affiliations': [{'city': 'Syracuse', 'city_... \n", | |
"2 4.0 [{'affiliations': [{'city': 'Norman', 'city_id... \n", | |
"3 57.0 [{'affiliations': [{'city': 'Ottawa', 'city_id... \n", | |
"4 9.0 [{'affiliations': [{'city': 'Armidale', 'city_... \n", | |
"\n", | |
" authors_count dimensions_url \\\n", | |
"0 6 https://app.dimensions.ai/details/publication/... \n", | |
"1 6 https://app.dimensions.ai/details/publication/... \n", | |
"2 8 https://app.dimensions.ai/details/publication/... \n", | |
"3 12 https://app.dimensions.ai/details/publication/... \n", | |
"4 2 https://app.dimensions.ai/details/publication/... \n", | |
"\n", | |
" doi field_citation_ratio pages \\\n", | |
"0 10.1016/j.rse.2017.06.031 3005.39 18-27 \n", | |
"1 10.1016/j.isprsjprs.2020.04.001 217.75 152-170 \n", | |
"2 10.1016/j.rse.2016.02.016 184.57 142-154 \n", | |
"3 10.1109/jstars.2020.3021052 185.15 5326-5350 \n", | |
"4 10.3390/rs10101509 175.62 1509 \n", | |
"\n", | |
" times_cited type volume year journal.id \\\n", | |
"0 8756 article 202 2017 jour.1045931 \n", | |
"1 768 article 164 2020 jour.1044622 \n", | |
"2 604 article 185 2016 jour.1045931 \n", | |
"3 596 article 13 2020 jour.1137583 \n", | |
"4 524 article 10 2018 jour.1430766 \n", | |
"\n", | |
" journal.title issue \n", | |
"0 Remote Sensing of Environment NaN \n", | |
"1 ISPRS Journal of Photogrammetry and Remote Sen... NaN \n", | |
"2 Remote Sensing of Environment NaN \n", | |
"3 IEEE Journal of Selected Topics in Applied Ear... NaN \n", | |
"4 Remote Sensing 10 " | |
] | |
}, | |
"execution_count": 33, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df = result.as_dataframe()\n", | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df.to_csv(\"Earth_Engine_title_only.csv\", sep=\"\\t\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"start_year = 2012\n", | |
"end_year = 2025" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"query = f'search publications in title_only for \"{keywords}\" where year>={start_year} and year<{end_year} return year limit 100'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Returned Year: 13\n", | |
"\u001b[2mTime: 5.54s\u001b[0m\n" | |
] | |
} | |
], | |
"source": [ | |
"result = dsl.query(query)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = result.as_dataframe()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>id</th>\n", | |
" <th>count</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2023</td>\n", | |
" <td>462</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2022</td>\n", | |
" <td>401</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2024</td>\n", | |
" <td>383</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2021</td>\n", | |
" <td>321</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2020</td>\n", | |
" <td>223</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>2019</td>\n", | |
" <td>96</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>2018</td>\n", | |
" <td>52</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>2017</td>\n", | |
" <td>21</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>2016</td>\n", | |
" <td>7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>2015</td>\n", | |
" <td>5</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>2012</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>2013</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>2014</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" id count\n", | |
"0 2023 462\n", | |
"1 2022 401\n", | |
"2 2024 383\n", | |
"3 2021 321\n", | |
"4 2020 223\n", | |
"5 2019 96\n", | |
"6 2018 52\n", | |
"7 2017 21\n", | |
"8 2016 7\n", | |
"9 2015 5\n", | |
"10 2012 1\n", | |
"11 2013 1\n", | |
"12 2014 1" | |
] | |
}, | |
"execution_count": 39, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Year</th>\n", | |
" <th>Title_only</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2023</td>\n", | |
" <td>462</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2022</td>\n", | |
" <td>401</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2024</td>\n", | |
" <td>383</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2021</td>\n", | |
" <td>321</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2020</td>\n", | |
" <td>223</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>2019</td>\n", | |
" <td>96</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>2018</td>\n", | |
" <td>52</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>2017</td>\n", | |
" <td>21</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>2016</td>\n", | |
" <td>7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>2015</td>\n", | |
" <td>5</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>2012</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>2013</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>2014</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Year Title_only\n", | |
"0 2023 462\n", | |
"1 2022 401\n", | |
"2 2024 383\n", | |
"3 2021 321\n", | |
"4 2020 223\n", | |
"5 2019 96\n", | |
"6 2018 52\n", | |
"7 2017 21\n", | |
"8 2016 7\n", | |
"9 2015 5\n", | |
"10 2012 1\n", | |
"11 2013 1\n", | |
"12 2014 1" | |
] | |
}, | |
"execution_count": 40, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.columns = [\"Year\", \"Title_only\"]\n", | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"query2 = f'search publications in title_abstract_only for \"{keywords}\" where year>={start_year} and year<{end_year} return year limit 100'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Returned Year: 13\n", | |
"\u001b[2mTime: 0.27s\u001b[0m\n" | |
] | |
} | |
], | |
"source": [ | |
"result2 = dsl.query(query2)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df2 = result2.as_dataframe()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Year</th>\n", | |
" <th>Title_abstract</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2023</td>\n", | |
" <td>1495</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2024</td>\n", | |
" <td>1476</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2022</td>\n", | |
" <td>1252</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2021</td>\n", | |
" <td>881</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2020</td>\n", | |
" <td>531</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>2019</td>\n", | |
" <td>245</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>2018</td>\n", | |
" <td>130</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>2017</td>\n", | |
" <td>57</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>2016</td>\n", | |
" <td>20</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>2015</td>\n", | |
" <td>13</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>2012</td>\n", | |
" <td>6</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>2013</td>\n", | |
" <td>5</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>2014</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Year Title_abstract\n", | |
"0 2023 1495\n", | |
"1 2024 1476\n", | |
"2 2022 1252\n", | |
"3 2021 881\n", | |
"4 2020 531\n", | |
"5 2019 245\n", | |
"6 2018 130\n", | |
"7 2017 57\n", | |
"8 2016 20\n", | |
"9 2015 13\n", | |
"10 2012 6\n", | |
"11 2013 5\n", | |
"12 2014 4" | |
] | |
}, | |
"execution_count": 44, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df2.columns = [\"Year\", \"Title_abstract\"]\n", | |
"df2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 45, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Year</th>\n", | |
" <th>Title_only</th>\n", | |
" <th>Title_abstract</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2023</td>\n", | |
" <td>462</td>\n", | |
" <td>1495</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2022</td>\n", | |
" <td>401</td>\n", | |
" <td>1252</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2024</td>\n", | |
" <td>383</td>\n", | |
" <td>1476</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2021</td>\n", | |
" <td>321</td>\n", | |
" <td>881</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2020</td>\n", | |
" <td>223</td>\n", | |
" <td>531</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>2019</td>\n", | |
" <td>96</td>\n", | |
" <td>245</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>2018</td>\n", | |
" <td>52</td>\n", | |
" <td>130</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>2017</td>\n", | |
" <td>21</td>\n", | |
" <td>57</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>2016</td>\n", | |
" <td>7</td>\n", | |
" <td>20</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>2015</td>\n", | |
" <td>5</td>\n", | |
" <td>13</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>2012</td>\n", | |
" <td>1</td>\n", | |
" <td>6</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>2013</td>\n", | |
" <td>1</td>\n", | |
" <td>5</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>2014</td>\n", | |
" <td>1</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Year Title_only Title_abstract\n", | |
"0 2023 462 1495\n", | |
"1 2022 401 1252\n", | |
"2 2024 383 1476\n", | |
"3 2021 321 881\n", | |
"4 2020 223 531\n", | |
"5 2019 96 245\n", | |
"6 2018 52 130\n", | |
"7 2017 21 57\n", | |
"8 2016 7 20\n", | |
"9 2015 5 13\n", | |
"10 2012 1 6\n", | |
"11 2013 1 5\n", | |
"12 2014 1 4" | |
] | |
}, | |
"execution_count": 45, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df_merge = df.merge(df2, on='Year')\n", | |
"df_merge" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Year 26234\n", | |
"Title_only 1974\n", | |
"Title_abstract 6115\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 46, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df_merge.sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"fig = px.bar(\n", | |
" df_merge, \n", | |
" x = \"Year\",\n", | |
" y = ['Title_only', 'Title_abstract'],\n", | |
" barmode=\"group\",\n", | |
" \n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.plotly.v1+json": { | |
"config": { | |
"plotlyServerURL": "https://plot.ly" | |
}, | |
"data": [ | |
{ | |
"alignmentgroup": "True", | |
"hovertemplate": "variable=Title_only<br>Year=%{x}<br>value=%{y}<extra></extra>", | |
"legendgroup": "Title_only", | |
"marker": { | |
"color": "#636efa", | |
"pattern": { | |
"shape": "" | |
} | |
}, | |
"name": "Title_only", | |
"offsetgroup": "Title_only", | |
"orientation": "v", | |
"showlegend": true, | |
"textposition": "auto", | |
"type": "bar", | |
"x": [ | |
2023, | |
2022, | |
2024, | |
2021, | |
2020, | |
2019, | |
2018, | |
2017, | |
2016, | |
2015, | |
2012, | |
2013, | |
2014 | |
], | |
"xaxis": "x", | |
"y": [ | |
462, | |
401, | |
383, | |
321, | |
223, | |
96, | |
52, | |
21, | |
7, | |
5, | |
1, | |
1, | |
1 | |
], | |
"yaxis": "y" | |
}, | |
{ | |
"alignmentgroup": "True", | |
"hovertemplate": "variable=Title_abstract<br>Year=%{x}<br>value=%{y}<extra></extra>", | |
"legendgroup": "Title_abstract", | |
"marker": { | |
"color": "#EF553B", | |
"pattern": { | |
"shape": "" | |
} | |
}, | |
"name": "Title_abstract", | |
"offsetgroup": "Title_abstract", | |
"orientation": "v", | |
"showlegend": true, | |
"textposition": "auto", | |
"type": "bar", | |
"x": [ | |
2023, | |
2022, | |
2024, | |
2021, | |
2020, | |
2019, | |
2018, | |
2017, | |
2016, | |
2015, | |
2012, | |
2013, | |
2014 | |
], | |
"xaxis": "x", | |
"y": [ | |
1495, | |
1252, | |
1476, | |
881, | |
531, | |
245, | |
130, | |
57, | |
20, | |
13, | |
6, | |
5, | |
4 | |
], | |
"yaxis": "y" | |
} | |
], | |
"layout": { | |
"barmode": "group", | |
"legend": { | |
"title": { | |
"text": "Search scope" | |
}, | |
"tracegroupgap": 0 | |
}, | |
"margin": { | |
"t": 60 | |
}, | |
"template": { | |
"data": { | |
"bar": [ | |
{ | |
"error_x": { | |
"color": "#2a3f5f" | |
}, | |
"error_y": { | |
"color": "#2a3f5f" | |
}, | |
"marker": { | |
"line": { | |
"color": "#E5ECF6", | |
"width": 0.5 | |
}, | |
"pattern": { | |
"fillmode": "overlay", | |
"size": 10, | |
"solidity": 0.2 | |
} | |
}, | |
"type": "bar" | |
} | |
], | |
"barpolar": [ | |
{ | |
"marker": { | |
"line": { | |
"color": "#E5ECF6", | |
"width": 0.5 | |
}, | |
"pattern": { | |
"fillmode": "overlay", | |
"size": 10, | |
"solidity": 0.2 | |
} | |
}, | |
"type": "barpolar" | |
} | |
], | |
"carpet": [ | |
{ | |
"aaxis": { | |
"endlinecolor": "#2a3f5f", | |
"gridcolor": "white", | |
"linecolor": "white", | |
"minorgridcolor": "white", | |
"startlinecolor": "#2a3f5f" | |
}, | |
"baxis": { | |
"endlinecolor": "#2a3f5f", | |
"gridcolor": "white", | |
"linecolor": "white", | |
"minorgridcolor": "white", | |
"startlinecolor": "#2a3f5f" | |
}, | |
"type": "carpet" | |
} | |
], | |
"choropleth": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"type": "choropleth" | |
} | |
], | |
"contour": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"colorscale": [ | |
[ | |
0, | |
"#0d0887" | |
], | |
[ | |
0.1111111111111111, | |
"#46039f" | |
], | |
[ | |
0.2222222222222222, | |
"#7201a8" | |
], | |
[ | |
0.3333333333333333, | |
"#9c179e" | |
], | |
[ | |
0.4444444444444444, | |
"#bd3786" | |
], | |
[ | |
0.5555555555555556, | |
"#d8576b" | |
], | |
[ | |
0.6666666666666666, | |
"#ed7953" | |
], | |
[ | |
0.7777777777777778, | |
"#fb9f3a" | |
], | |
[ | |
0.8888888888888888, | |
"#fdca26" | |
], | |
[ | |
1, | |
"#f0f921" | |
] | |
], | |
"type": "contour" | |
} | |
], | |
"contourcarpet": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"type": "contourcarpet" | |
} | |
], | |
"heatmap": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"colorscale": [ | |
[ | |
0, | |
"#0d0887" | |
], | |
[ | |
0.1111111111111111, | |
"#46039f" | |
], | |
[ | |
0.2222222222222222, | |
"#7201a8" | |
], | |
[ | |
0.3333333333333333, | |
"#9c179e" | |
], | |
[ | |
0.4444444444444444, | |
"#bd3786" | |
], | |
[ | |
0.5555555555555556, | |
"#d8576b" | |
], | |
[ | |
0.6666666666666666, | |
"#ed7953" | |
], | |
[ | |
0.7777777777777778, | |
"#fb9f3a" | |
], | |
[ | |
0.8888888888888888, | |
"#fdca26" | |
], | |
[ | |
1, | |
"#f0f921" | |
] | |
], | |
"type": "heatmap" | |
} | |
], | |
"heatmapgl": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"colorscale": [ | |
[ | |
0, | |
"#0d0887" | |
], | |
[ | |
0.1111111111111111, | |
"#46039f" | |
], | |
[ | |
0.2222222222222222, | |
"#7201a8" | |
], | |
[ | |
0.3333333333333333, | |
"#9c179e" | |
], | |
[ | |
0.4444444444444444, | |
"#bd3786" | |
], | |
[ | |
0.5555555555555556, | |
"#d8576b" | |
], | |
[ | |
0.6666666666666666, | |
"#ed7953" | |
], | |
[ | |
0.7777777777777778, | |
"#fb9f3a" | |
], | |
[ | |
0.8888888888888888, | |
"#fdca26" | |
], | |
[ | |
1, | |
"#f0f921" | |
] | |
], | |
"type": "heatmapgl" | |
} | |
], | |
"histogram": [ | |
{ | |
"marker": { | |
"pattern": { | |
"fillmode": "overlay", | |
"size": 10, | |
"solidity": 0.2 | |
} | |
}, | |
"type": "histogram" | |
} | |
], | |
"histogram2d": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"colorscale": [ | |
[ | |
0, | |
"#0d0887" | |
], | |
[ | |
0.1111111111111111, | |
"#46039f" | |
], | |
[ | |
0.2222222222222222, | |
"#7201a8" | |
], | |
[ | |
0.3333333333333333, | |
"#9c179e" | |
], | |
[ | |
0.4444444444444444, | |
"#bd3786" | |
], | |
[ | |
0.5555555555555556, | |
"#d8576b" | |
], | |
[ | |
0.6666666666666666, | |
"#ed7953" | |
], | |
[ | |
0.7777777777777778, | |
"#fb9f3a" | |
], | |
[ | |
0.8888888888888888, | |
"#fdca26" | |
], | |
[ | |
1, | |
"#f0f921" | |
] | |
], | |
"type": "histogram2d" | |
} | |
], | |
"histogram2dcontour": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"colorscale": [ | |
[ | |
0, | |
"#0d0887" | |
], | |
[ | |
0.1111111111111111, | |
"#46039f" | |
], | |
[ | |
0.2222222222222222, | |
"#7201a8" | |
], | |
[ | |
0.3333333333333333, | |
"#9c179e" | |
], | |
[ | |
0.4444444444444444, | |
"#bd3786" | |
], | |
[ | |
0.5555555555555556, | |
"#d8576b" | |
], | |
[ | |
0.6666666666666666, | |
"#ed7953" | |
], | |
[ | |
0.7777777777777778, | |
"#fb9f3a" | |
], | |
[ | |
0.8888888888888888, | |
"#fdca26" | |
], | |
[ | |
1, | |
"#f0f921" | |
] | |
], | |
"type": "histogram2dcontour" | |
} | |
], | |
"mesh3d": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"type": "mesh3d" | |
} | |
], | |
"parcoords": [ | |
{ | |
"line": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "parcoords" | |
} | |
], | |
"pie": [ | |
{ | |
"automargin": true, | |
"type": "pie" | |
} | |
], | |
"scatter": [ | |
{ | |
"fillpattern": { | |
"fillmode": "overlay", | |
"size": 10, | |
"solidity": 0.2 | |
}, | |
"type": "scatter" | |
} | |
], | |
"scatter3d": [ | |
{ | |
"line": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"marker": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "scatter3d" | |
} | |
], | |
"scattercarpet": [ | |
{ | |
"marker": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "scattercarpet" | |
} | |
], | |
"scattergeo": [ | |
{ | |
"marker": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "scattergeo" | |
} | |
], | |
"scattergl": [ | |
{ | |
"marker": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "scattergl" | |
} | |
], | |
"scattermapbox": [ | |
{ | |
"marker": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "scattermapbox" | |
} | |
], | |
"scatterpolar": [ | |
{ | |
"marker": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "scatterpolar" | |
} | |
], | |
"scatterpolargl": [ | |
{ | |
"marker": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "scatterpolargl" | |
} | |
], | |
"scatterternary": [ | |
{ | |
"marker": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"type": "scatterternary" | |
} | |
], | |
"surface": [ | |
{ | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
}, | |
"colorscale": [ | |
[ | |
0, | |
"#0d0887" | |
], | |
[ | |
0.1111111111111111, | |
"#46039f" | |
], | |
[ | |
0.2222222222222222, | |
"#7201a8" | |
], | |
[ | |
0.3333333333333333, | |
"#9c179e" | |
], | |
[ | |
0.4444444444444444, | |
"#bd3786" | |
], | |
[ | |
0.5555555555555556, | |
"#d8576b" | |
], | |
[ | |
0.6666666666666666, | |
"#ed7953" | |
], | |
[ | |
0.7777777777777778, | |
"#fb9f3a" | |
], | |
[ | |
0.8888888888888888, | |
"#fdca26" | |
], | |
[ | |
1, | |
"#f0f921" | |
] | |
], | |
"type": "surface" | |
} | |
], | |
"table": [ | |
{ | |
"cells": { | |
"fill": { | |
"color": "#EBF0F8" | |
}, | |
"line": { | |
"color": "white" | |
} | |
}, | |
"header": { | |
"fill": { | |
"color": "#C8D4E3" | |
}, | |
"line": { | |
"color": "white" | |
} | |
}, | |
"type": "table" | |
} | |
] | |
}, | |
"layout": { | |
"annotationdefaults": { | |
"arrowcolor": "#2a3f5f", | |
"arrowhead": 0, | |
"arrowwidth": 1 | |
}, | |
"autotypenumbers": "strict", | |
"coloraxis": { | |
"colorbar": { | |
"outlinewidth": 0, | |
"ticks": "" | |
} | |
}, | |
"colorscale": { | |
"diverging": [ | |
[ | |
0, | |
"#8e0152" | |
], | |
[ | |
0.1, | |
"#c51b7d" | |
], | |
[ | |
0.2, | |
"#de77ae" | |
], | |
[ | |
0.3, | |
"#f1b6da" | |
], | |
[ | |
0.4, | |
"#fde0ef" | |
], | |
[ | |
0.5, | |
"#f7f7f7" | |
], | |
[ | |
0.6, | |
"#e6f5d0" | |
], | |
[ | |
0.7, | |
"#b8e186" | |
], | |
[ | |
0.8, | |
"#7fbc41" | |
], | |
[ | |
0.9, | |
"#4d9221" | |
], | |
[ | |
1, | |
"#276419" | |
] | |
], | |
"sequential": [ | |
[ | |
0, | |
"#0d0887" | |
], | |
[ | |
0.1111111111111111, | |
"#46039f" | |
], | |
[ | |
0.2222222222222222, | |
"#7201a8" | |
], | |
[ | |
0.3333333333333333, | |
"#9c179e" | |
], | |
[ | |
0.4444444444444444, | |
"#bd3786" | |
], | |
[ | |
0.5555555555555556, | |
"#d8576b" | |
], | |
[ | |
0.6666666666666666, | |
"#ed7953" | |
], | |
[ | |
0.7777777777777778, | |
"#fb9f3a" | |
], | |
[ | |
0.8888888888888888, | |
"#fdca26" | |
], | |
[ | |
1, | |
"#f0f921" | |
] | |
], | |
"sequentialminus": [ | |
[ | |
0, | |
"#0d0887" | |
], | |
[ | |
0.1111111111111111, | |
"#46039f" | |
], | |
[ | |
0.2222222222222222, | |
"#7201a8" | |
], | |
[ | |
0.3333333333333333, | |
"#9c179e" | |
], | |
[ | |
0.4444444444444444, | |
"#bd3786" | |
], | |
[ | |
0.5555555555555556, | |
"#d8576b" | |
], | |
[ | |
0.6666666666666666, | |
"#ed7953" | |
], | |
[ | |
0.7777777777777778, | |
"#fb9f3a" | |
], | |
[ | |
0.8888888888888888, | |
"#fdca26" | |
], | |
[ | |
1, | |
"#f0f921" | |
] | |
] | |
}, | |
"colorway": [ | |
"#636efa", | |
"#EF553B", | |
"#00cc96", | |
"#ab63fa", | |
"#FFA15A", | |
"#19d3f3", | |
"#FF6692", | |
"#B6E880", | |
"#FF97FF", | |
"#FECB52" | |
], | |
"font": { | |
"color": "#2a3f5f" | |
}, | |
"geo": { | |
"bgcolor": "white", | |
"lakecolor": "white", | |
"landcolor": "#E5ECF6", | |
"showlakes": true, | |
"showland": true, | |
"subunitcolor": "white" | |
}, | |
"hoverlabel": { | |
"align": "left" | |
}, | |
"hovermode": "closest", | |
"mapbox": { | |
"style": "light" | |
}, | |
"paper_bgcolor": "white", | |
"plot_bgcolor": "#E5ECF6", | |
"polar": { | |
"angularaxis": { | |
"gridcolor": "white", | |
"linecolor": "white", | |
"ticks": "" | |
}, | |
"bgcolor": "#E5ECF6", | |
"radialaxis": { | |
"gridcolor": "white", | |
"linecolor": "white", | |
"ticks": "" | |
} | |
}, | |
"scene": { | |
"xaxis": { | |
"backgroundcolor": "#E5ECF6", | |
"gridcolor": "white", | |
"gridwidth": 2, | |
"linecolor": "white", | |
"showbackground": true, | |
"ticks": "", | |
"zerolinecolor": "white" | |
}, | |
"yaxis": { | |
"backgroundcolor": "#E5ECF6", | |
"gridcolor": "white", | |
"gridwidth": 2, | |
"linecolor": "white", | |
"showbackground": true, | |
"ticks": "", | |
"zerolinecolor": "white" | |
}, | |
"zaxis": { | |
"backgroundcolor": "#E5ECF6", | |
"gridcolor": "white", | |
"gridwidth": 2, | |
"linecolor": "white", | |
"showbackground": true, | |
"ticks": "", | |
"zerolinecolor": "white" | |
} | |
}, | |
"shapedefaults": { | |
"line": { | |
"color": "#2a3f5f" | |
} | |
}, | |
"ternary": { | |
"aaxis": { | |
"gridcolor": "white", | |
"linecolor": "white", | |
"ticks": "" | |
}, | |
"baxis": { | |
"gridcolor": "white", | |
"linecolor": "white", | |
"ticks": "" | |
}, | |
"bgcolor": "#E5ECF6", | |
"caxis": { | |
"gridcolor": "white", | |
"linecolor": "white", | |
"ticks": "" | |
} | |
}, | |
"title": { | |
"x": 0.05 | |
}, | |
"xaxis": { | |
"automargin": true, | |
"gridcolor": "white", | |
"linecolor": "white", | |
"ticks": "", | |
"title": { | |
"standoff": 15 | |
}, | |
"zerolinecolor": "white", | |
"zerolinewidth": 2 | |
}, | |
"yaxis": { | |
"automargin": true, | |
"gridcolor": "white", | |
"linecolor": "white", | |
"ticks": "", | |
"title": { | |
"standoff": 15 | |
}, | |
"zerolinecolor": "white", | |
"zerolinewidth": 2 | |
} | |
} | |
}, | |
"title": { | |
"text": "The number of journal publications empowered by Google Earth Engine", | |
"x": 0.5 | |
}, | |
"xaxis": { | |
"anchor": "y", | |
"domain": [ | |
0, | |
1 | |
], | |
"title": { | |
"text": "Year" | |
} | |
}, | |
"yaxis": { | |
"anchor": "x", | |
"domain": [ | |
0, | |
1 | |
], | |
"title": { | |
"text": "Publication count" | |
} | |
} | |
} | |
} | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig.update_yaxes(title_text=\"Publication count\")\n", | |
"fig.update_layout(title=f\"The number of journal publications empowered by {keywords}\",title_x=0.5, legend_title=\"Search scope\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 49, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"fig.write_image(\"GEE_pubs.jpg\", width=1000, height=600, scale=2)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 50, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"fig.write_image(\"GEE_pubs.pdf\")" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "geo", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.12.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment