Created
February 9, 2020 20:23
-
-
Save gkthiruvathukal/f32486fa9cf08f9fa2ecefe06ea6d92e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"This notebook aims to show how to use Python to teach some CS2 ideas in data structures and is based on a pairing session with @gkhiruvathukal and @laufer.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"class Node:\n", | |
" def __init__(self, data, next_node):\n", | |
" assert isinstance(next_node, Node) or next_node == None\n", | |
" self.data = data\n", | |
" self.next_node = next_node\n", | |
"\n", | |
" def __str__(self):\n", | |
" if not self.next_node:\n", | |
" next_rep = \"None\"\n", | |
" else:\n", | |
" next_rep = str(self.next_node)\n", | |
" return \"\"\"%s(\"%s\", %s)\"\"\" % (Node.__name__, self.data, next_rep)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"n = Node(\"a\", None)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"m = Node(\"b\", n)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "AssertionError", | |
"evalue": "", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-35-cd5187cf4e47>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mbad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'd'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mbad\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-32-6a36d60ffce5>\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, next_node)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mNode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnext_node\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnext_node\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNode\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mnext_node\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext_node\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnext_node\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mAssertionError\u001b[0m: " | |
] | |
} | |
], | |
"source": [ | |
"bad = Node('c', 'd')\n", | |
"bad" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Node(\"b\", Node(\"a\", None))\n" | |
] | |
} | |
], | |
"source": [ | |
"print(m)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"How many nodes shall I create? 5\n" | |
] | |
} | |
], | |
"source": [ | |
"text = input(\"How many nodes shall I create? \")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<__main__.Node at 0x7f4bd45f21c0>" | |
] | |
}, | |
"execution_count": 39, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"num_nodes = int(text)\n", | |
"node = None\n", | |
"for i in range(num_nodes, 0, -1):\n", | |
" node = Node(\"Node %d\" % i, node)\n", | |
"\n", | |
"node" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Node(\"Node 1\", Node(\"Node 2\", Node(\"Node 3\", Node(\"Node 4\", Node(\"Node 5\", None)))))\n" | |
] | |
} | |
], | |
"source": [ | |
"print(node)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def node_generator(node : Node):\n", | |
" while node:\n", | |
" yield node\n", | |
" node = node.next_node\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"nodes = node_generator(node)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def get_node_number(node):\n", | |
" tokens = node.data.split()\n", | |
" try:\n", | |
" return int(tokens[1])\n", | |
" except:\n", | |
" return None\n", | |
"\n", | |
"nodes_data = map( get_node_number, nodes)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[1, 2, 3, 4, 5]" | |
] | |
}, | |
"execution_count": 44, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"list(nodes_data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 45, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"myList = [2, 5, 1, 3]\n", | |
"myList.sort()\n", | |
"assert [1, 2, 3, 5] == myList" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"assert True" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "AssertionError", | |
"evalue": "", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-47-a871fdc9ebee>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;31mAssertionError\u001b[0m: " | |
] | |
} | |
], | |
"source": [ | |
"assert False" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"False" | |
] | |
}, | |
"execution_count": 48, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"l1 = [1, 2]\n", | |
"l2 = [1, 2]\n", | |
"l1 is l2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 49, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"execution_count": 49, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"l1 is l1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 50, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"execution_count": 50, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"l1 == l2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 51, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import os" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Anaconda3-2019.10-Linux-x86_64.sh\n", | |
"\n", | |
"checkme.py\n", | |
"\n", | |
"code_1.41.1-1576681836_amd64.deb\n", | |
"\n", | |
"Node.ipynb\n", | |
"\n", | |
"pandoc-2.9.1.1-linux-amd64.tar.gz\n", | |
"\n", | |
"Python Programming--3ed.pdf\n", | |
"\n", | |
"ubuntu-18.04-amd64-dell_X00.iso\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"with os.popen(\"ls\") as in_stream:\n", | |
" for line in in_stream.readlines():\n", | |
" print(line)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "TypeError", | |
"evalue": "can't multiply sequence by non-int of type 'float'", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-40-725f9de2a8e3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# typechecks; a list of floats qualifies as a Vector.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mnew_vector\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m4.2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"string\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;32m<ipython-input-40-725f9de2a8e3>\u001b[0m in \u001b[0;36mscale\u001b[0;34m(scalar, vector)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mscalar\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvector\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mVector\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mVector\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mscalar\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnum\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mnum\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mvector\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# typechecks; a list of floats qualifies as a Vector.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-40-725f9de2a8e3>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mscalar\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvector\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mVector\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mVector\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mscalar\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnum\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mnum\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mvector\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# typechecks; a list of floats qualifies as a Vector.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: can't multiply sequence by non-int of type 'float'" | |
] | |
} | |
], | |
"source": [ | |
"from typing import List\n", | |
"Vector = List[float]\n", | |
"\n", | |
"def scale(scalar: float, vector: Vector) -> Vector:\n", | |
" return [scalar * num for num in vector]\n", | |
"\n", | |
"# typechecks; a list of floats qualifies as a Vector.\n", | |
"new_vector = scale(2.0, [1.0, -4.2, \"string\"])\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[2.0, -8.4, 10.8]" | |
] | |
}, | |
"execution_count": 39, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"new_vector" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[1, 2, 3, 4]" | |
] | |
}, | |
"execution_count": 30, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"sorted([2, 1, 3, 4])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[(-1, -2), (-1, -1), (-1, 0), (0, 1), (1, 0), (1, 1)]" | |
] | |
}, | |
"execution_count": 31, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"sorted([(1, 1), (0, 1), (1, 0), (-1, 0), (-1, -1), (-1, -2)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment