Skip to content

Instantly share code, notes, and snippets.

View glemaitre's full-sized avatar

Guillaume Lemaitre glemaitre

View GitHub Profile
['/home/glemaitre/Documents/data/cycling/user_3/2015/2015-01-03-10-28-33.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-01-09-18-14-34.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-01-16-18-20-45.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-01-22-17-58-25.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-01-23-17-36-40.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-01-30-18-03-10.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-02-01-17-14-54.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-02-06-18-22-13.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-02-13-18-21-15.fit',
'/home/glemaitre/Documents/data/cycling/user_3/2015/2015-02-14-09-05-54.fit',
import os
import pandas as pd
import numpy as np
from sklearn.ensemble import make_stack_layer
from sklearn.preprocessing import FunctionTransformer
from sklearn.experimental import make_column_transformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import CategoricalEncoder
from sklearn.datasets import load_diabetes
from sklearn.compose import TransformedTargetRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
X, y = load_diabetes(return_X_y=True)
ttr = TransformedTargetRegressor()
grid = [{'regressor': [RandomForestRegressor()], 'regressor__n_estimators': [10, 20]},
In [16]: df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3, 3]})
In [17]: df2 = df[df['A'].isin([1, 2])]
In [18]: df2.loc[df2['A'] == 1, 'A'] = 4
/home/glemaitre/miniconda3/lib/python3.7/site-packages/pandas/core/indexing.py:189: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
self._setitem_with_indexer(indexer, value)
import asyncio
import random
import time
from concurrent.futures import ProcessPoolExecutor
def simulator_submission():
"""Give ``None`` or a submission id."""
return random.choice([random.randint(0, 1000), None])
import cv2
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
def grab_frame(cap):
_, frame = cap.read()
return cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
# %%
from sklearn.datasets import make_classification
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import cross_validate
RANDOM_SEED = 2
In [1]: import numpy as np
In [2]: X = ["One", "string"]
In [3]: X
Out[3]: ['One', 'string']
In [4]: X[0]
Out[4]: 'One'
@pytest.mark.parametrize("name, Tree", REG_TREES.items())
@pytest.mark.parametrize("criterion", REG_CRITERIONS)
def test_diabetes_overfit(name, Tree, criterion):
# check consistency of overfitted trees on the diabetes dataset
# since the trees will overfit, we expect an MSE of 0
reg = Tree(criterion=criterion, random_state=0)
reg.fit(diabetes.data, diabetes.target)
score = mean_squared_error(diabetes.target, reg.predict(diabetes.data))
assert score == pytest.approx(0), (
f"Failed with {name}, criterion = {criterion} and score = {score}"
import pandas as pd
import pytest
def func(expected_columns):
df = pd.DataFrame({
"A": [1, 2, 3],
"B": [1, 2, 3],
"C": [1, 2, 3]