I hereby claim:
- I am gangachris on github.
- I am ganga (https://keybase.io/ganga) on keybase.
- I have a public key whose fingerprint is B36F FABA 3B58 5076 13EA DAA5 255C 5FDB BF1F 4395
To claim this, I am signing this object:
FROM php:7 | |
# Work Dir | |
WORKDIR /opt/app | |
ADD . /opt/app | |
# Install Dependencies | |
RUN apt-get update && apt-get install -y \ | |
libpq-dev \ | |
&& docker-php-ext-install pdo_pgsql |
version: '2' | |
services: | |
app: | |
build: . | |
ports: | |
- "8000:8000" | |
volumes: | |
- .:/opt/app | |
links: |
DB_HOST=database | |
DB_DATABASE=homestead | |
DB_USERNAME=homestead | |
DB_PASSWORD=secret |
<?php | |
Route::group(['middleware' => ['web', 'auth','adminMiddleware']], function () { | |
Route::get('/panel/home', 'UserAdminController@showAdminHome'); | |
Route::get('/panel/home', 'UserRegionController@showAdminRegionHome'); | |
Route::get('/panel/home', 'UserPlaceController@showAdminPlaceHome'); | |
}); |
// After studying the problem, you'll see an arithemetic progression like pattern | |
// Using the sum of arithmetic progression could easily work too. | |
// But on further inspection, it's a simple consectuive numbers problem. | |
function getConsecutiveDevisors(num) { | |
let lowerDevisor = Math.floor(Math.sqrt(num)) | |
let higherDevisor = lowerDevisor + 1; | |
if (lowerDevisor * higherDevisor === num) { | |
return [lowerDevisor, lowerDevisor + 1] | |
} |
version: '2' | |
networks: | |
basic: | |
services: | |
ca.example.com: | |
image: hyperledger/fabric-ca | |
environment: | |
- FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server |
pragma solidity ^0.4.20; | |
contract Cars { | |
// we declare a custom type car | |
struct Car { | |
bytes32 make; | |
uint year; | |
} | |
// we create a map that takes ethereum address and maps them to a Cars array |
f, err := os.Open("salary.txt") | |
if err != nil { | |
log.Fatal(err) | |
} | |
defer f.Close() | |
var xs []float64 | |
scan := bufio.NewScanner(f) | |
for scan.Scan() { | |
var v float64 |
I hereby claim:
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object: