Skip to content

Instantly share code, notes, and snippets.

@goerlitz
Last active November 7, 2020 09:30
Show Gist options
  • Save goerlitz/fb1230ee820406c5a9681249345fce3f to your computer and use it in GitHub Desktop.
Save goerlitz/fb1230ee820406c5a9681249345fce3f to your computer and use it in GitHub Desktop.
Bug in fastai's accuracy_thresh
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**There seems to be a bug in fastai's `metrics.accuracy_thresh()`**"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from fastai.vision import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"fastai 1.0.61\n",
"torch 1.5.1\n",
"torchvision 0.6.1\n"
]
}
],
"source": [
"import fastai\n",
"import torch\n",
"import torchvision\n",
"print('fastai', fastai.__version__)\n",
"print('torch ', torch.__version__)\n",
"print('torchvision ', torchvision.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Instead use these accuracy functions to get correct results**\n",
"\n",
"see also:\n",
"* https://forums.fast.ai/t/a-different-variant-of-accuracy-thresh/47977\n",
"* https://stats.stackexchange.com/questions/12702/what-are-the-measure-for-accuracy-of-multilabel-data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def accuracy_multi_exact(y_pred:Tensor, y_true:Tensor, thresh:float=0.5, sigmoid:bool=True)->Rank0Tensor:\n",
" \"\"\"Compute accuracy where the predicted labels must match exactly the true labels\"\"\"\n",
" if sigmoid: y_pred = y_pred.sigmoid()\n",
" return ((y_pred>thresh)==y_true.byte()).all(1).float().mean()\n",
"\n",
"def accuracy_multi_partial(y_pred:Tensor, y_true:Tensor, thresh:float=0.5, sigmoid:bool=True)->Rank0Tensor:\n",
" \"\"\"Compute accuracy with partial match, e.g. one of two labels predicted -> 50% correct.\n",
" Mathematically, this is the intersection of predicted and true labels devided by the union of both.\n",
" \"\"\"\n",
" if sigmoid: y_pred = y_pred.sigmoid()\n",
" ypred_byte = (y_pred>thresh).byte()\n",
" ytrue_byte = y_true.byte()\n",
" return (ypred_byte.bitwise_and(ytrue_byte).sum(1).float() / ypred_byte.bitwise_or(ytrue_byte).sum(1).float()).mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Multi-class\n",
"\n",
"The example data has five classes and two images labeled with the first and second class.\n",
"The dummy prediction always predicts the first class.\n",
"\n",
"Expectation: the accuracy should be 0.5 as only the first image is predicted correctly."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"classes=['ant', 'bee', 'cat', 'dog', 'eel']"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>ant</th>\n",
" <th>bee</th>\n",
" <th>cat</th>\n",
" <th>dog</th>\n",
" <th>eel</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>img_1</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>img_2</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" ant bee cat dog eel\n",
"img_1 1 0 0 0 0\n",
"img_2 0 1 0 0 0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"target = {'img_1': [1, 0, 0, 0, 0], 'img_2': [0, 1, 0, 0, 0]}\n",
"df_true = pd.DataFrame.from_dict(target, orient='index', columns=classes)\n",
"df_true"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>ant</th>\n",
" <th>bee</th>\n",
" <th>cat</th>\n",
" <th>dog</th>\n",
" <th>eel</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>img_1</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>img_2</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" ant bee cat dog eel\n",
"img_1 1 0 0 0 0\n",
"img_2 1 0 0 0 0"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred = {'img_1': [1, 0, 0, 0, 0], 'img_2': [1, 0, 0, 0, 0]}\n",
"df_pred = pd.DataFrame.from_dict(pred, orient='index', columns=classes)\n",
"df_pred"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[1., 0., 0., 0., 0.],\n",
" [0., 1., 0., 0., 0.]])\n",
"tensor([[1., 0., 0., 0., 0.],\n",
" [1., 0., 0., 0., 0.]])\n"
]
}
],
"source": [
"y_true = tensor(df_true.values).float()\n",
"y_pred = tensor(df_pred.values).float()\n",
"print(y_true)\n",
"print(y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(0.8000)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_thresh(y_pred, y_true, thresh=0.5, sigmoid=False)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(0.5000)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_multi_exact(y_pred, y_true, thresh=0.5, sigmoid=False)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(0.5000)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_multi_partial(y_pred, y_true, thresh=0.5, sigmoid=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Multi-label\n",
"\n",
"The example data has five labels and two images each labeled with two of the five labels.\n",
"The dummy prediction always predicts the first label.\n",
"\n",
"Expectation: the accuracy should either be\n",
"\n",
"* 0.0 because none of images had all labels predicted correctly (exact match), r\n",
"* 0.25 because the first image had one of two labels predicted correctly (partial match)."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>ant</th>\n",
" <th>bee</th>\n",
" <th>cat</th>\n",
" <th>dog</th>\n",
" <th>eel</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>img_1</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>img_2</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" ant bee cat dog eel\n",
"img_1 1 0 0 1 0\n",
"img_2 0 1 1 0 0"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"target = {'img_1': [1, 0, 0, 1, 0], 'img_2': [0, 1, 1, 0, 0]}\n",
"df_true = pd.DataFrame.from_dict(target, orient='index', columns=classes)\n",
"df_true"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>ant</th>\n",
" <th>bee</th>\n",
" <th>cat</th>\n",
" <th>dog</th>\n",
" <th>eel</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>img_1</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>img_2</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" ant bee cat dog eel\n",
"img_1 1 0 0 0 0\n",
"img_2 1 0 0 0 0"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred = {'img_1': [1, 0, 0, 0, 0], 'img_2': [1, 0, 0, 0, 0]}\n",
"df_pred = pd.DataFrame.from_dict(pred, orient='index', columns=classes)\n",
"df_pred"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[1., 0., 0., 1., 0.],\n",
" [0., 1., 1., 0., 0.]])\n",
"tensor([[1., 0., 0., 0., 0.],\n",
" [1., 0., 0., 0., 0.]])\n"
]
}
],
"source": [
"y_true = tensor(df_true.values).float()\n",
"y_pred = tensor(df_pred.values).float()\n",
"print(y_true)\n",
"print(y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(0.6000)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_thresh(y_pred, y_true, thresh=0.5, sigmoid=False)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(0.)"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_multi_exact(y_pred, y_true, thresh=0.5, sigmoid=False)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(0.2500)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_multi_partial(y_pred, y_true, thresh=0.5, sigmoid=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment