https://github.com/adaptlearning/adapt_authoring/wiki/Installing-FFmpeg
ffmpeg -i videofile.mp4 audiofile.wavhttps://github.com/adaptlearning/adapt_authoring/wiki/Installing-FFmpeg
ffmpeg -i videofile.mp4 audiofile.wav| from sympy import * | |
| init_printing(use_unicode=False, wrap_line=False, no_global=True) | |
| x = Symbol('x', positive=True) | |
| xmax = Symbol('xmax', positive=True) | |
| sigma = Symbol('sigma', positive=True) | |
| mu = Symbol('mu') | |
| lx = log(x)-log(xmax-x) |
| import subprocess | |
| import os | |
| import glob | |
| for filename in glob.iglob(os.path.join(".", "**", "*.nc"), recursive=True): | |
| if os.stat(filename).st_size < 50: | |
| continue | |
| result = subprocess.run(["gdalinfo.exe", filename], stdout=subprocess.PIPE) | |
| if result.stdout.rfind(b"COMPRESSION=") > 0: |
| # This file contains code to save 64 samples as a syx file for Novation Circuit | |
| # | |
| # * It reads a single long wave file. | |
| # * splits it into 64 equal chunks | |
| # * crops the sound | |
| # * adds a super fast fadein and "an appropriate fadeout". To remove clicks | |
| # * normalizes every sample | |
| # * Saves the whole thing as a syx file. | |
| # |
| import numpy as np | |
| import heapq | |
| import scipy.ndimage | |
| # lebrocq et al. | |
| # https://www.sciencedirect.com/science/article/pii/S0098300406000781?via%3Dihub | |
| def balanceflux(Z, P, n=1): | |
| """ |
| # -*- coding: utf-8 -*- | |
| """ | |
| Created on Thu Feb 6 15:01:40 2020 | |
| @author: aslak grinsted | |
| """ | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from numpy import nan |
| # | |
| # Snippet to empirically determine credible intervals for return period plots | |
| # | |
| # aslak grinsted 2021 | |
| # | |
| import numpy as np | |
| from scipy.stats import beta |
| figure.facecolor: white | |
| figure.dpi: 200 | |
| savefig.dpi: 600 | |
| figure.figsize: 3.3,2.2 | |
| axes.facecolor: white | |
| figure.subplot.bottom: 0.01 | |
| figure.subplot.left: 0.01 | |
| figure.subplot.right: 0.99 | |
| figure.subplot.wspace: 0.2 |
| import rioxarray as rio | |
| from rasterio.enums import Resampling | |
| import xarray as xr | |
| import numpy as np | |
| ds = rio.open_rasterio('BedMachineGreenland-v5.nc') | |
| props_to_save = ["thickness", "surface", "bed", "errbed"] | |
| ds.thickness.rio.write_nodata(0, inplace=True) |
| import numpy as np | |
| import pandas as pd | |
| import geopandas as gpd | |
| from shapely.geometry import Point, Polygon | |
| zwally = np.loadtxt('grndrainagesystems_ekholm.txt',skiprows=7) | |
| regions = np.unique(zwally[:,0]) | |
| for region in regions: | |
| z = zwally[np.abs(zwally[:,0]-region)<0.001,1:] |