Created
June 1, 2019 17:00
-
-
Save guilhermefgs/47202b8fac1ef1ea587b178d4faaa7bb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>A</th>\n", | |
" <th>B</th>\n", | |
" <th>C</th>\n", | |
" <th>D</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>0.616149</td>\n", | |
" <td>0.821017</td>\n", | |
" <td>0.150830</td>\n", | |
" <td>0.538643</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>0.599560</td>\n", | |
" <td>0.893655</td>\n", | |
" <td>0.622565</td>\n", | |
" <td>0.914114</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>0.581489</td>\n", | |
" <td>0.521830</td>\n", | |
" <td>0.829649</td>\n", | |
" <td>0.323176</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>0.783207</td>\n", | |
" <td>0.846791</td>\n", | |
" <td>0.013040</td>\n", | |
" <td>0.582965</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" A B C D\n", | |
"0 0.616149 0.821017 0.150830 0.538643\n", | |
"1 0.599560 0.893655 0.622565 0.914114\n", | |
"2 0.581489 0.521830 0.829649 0.323176\n", | |
"3 0.783207 0.846791 0.013040 0.582965" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# criando dataframe a partir de numpy array\n", | |
"df = pd.DataFrame(np.random.random((4,4)),columns=list('ABCD'))\n", | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>A</th>\n", | |
" <th>B</th>\n", | |
" <th>C</th>\n", | |
" <th>D</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1.0</td>\n", | |
" <td>2019-01-01</td>\n", | |
" <td>foo</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>1.0</td>\n", | |
" <td>2019-01-01</td>\n", | |
" <td>foo</td>\n", | |
" <td>2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1.0</td>\n", | |
" <td>2019-01-01</td>\n", | |
" <td>foo</td>\n", | |
" <td>3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1.0</td>\n", | |
" <td>2019-01-01</td>\n", | |
" <td>foo</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" A B C D\n", | |
"0 1.0 2019-01-01 foo 1\n", | |
"1 1.0 2019-01-01 foo 2\n", | |
"2 1.0 2019-01-01 foo 3\n", | |
"3 1.0 2019-01-01 foo 4" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# criando dataframe a partir de dicionário\n", | |
"df2 = pd.DataFrame({\n", | |
" 'A': 1.,\n", | |
" 'B': pd.Timestamp('20190101'),\n", | |
" 'C': 'foo',\n", | |
" 'D': np.array([1,2,3,4])\n", | |
"})\n", | |
"df2" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment