Skip to content

Instantly share code, notes, and snippets.

View gurusura's full-sized avatar

Gurumurthi V Ramanan gurusura

View GitHub Profile
@jqtrde
jqtrde / modern-geospatial-python.md
Last active August 1, 2023 14:50
Modern remote sensing image processing with Python
@karpathy
karpathy / min-char-rnn.py
Last active October 20, 2025 02:21
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
@calstad
calstad / TDA_resources.md
Last active September 29, 2025 12:57
List of resources for TDA

Quick List of Resources for Topological Data Analysis with Emphasis on Machine Learning

This is just a quick list of resourses on TDA that I put together for @rickasaurus after he was asking for links to papers, books, etc on Twitter and is by no means an exhaustive list.

Survey Papers

Both Carlsson's and Ghrist's survey papers offer a very good introduction to the subject

Other Papers and Web Resources

@erikbern
erikbern / install-tensorflow.sh
Last active June 26, 2023 00:40
Installing TensorFlow on EC2
# Note – this is not a bash script (some of the steps require reboot)
# I named it .sh just so Github does correct syntax highlighting.
#
# This is also available as an AMI in us-east-1 (virginia): ami-cf5028a5
#
# The CUDA part is mostly based on this excellent blog post:
# http://tleyden.github.io/blog/2014/10/25/cuda-6-dot-5-on-aws-gpu-instance-running-ubuntu-14-dot-04/
# Install various packages
sudo apt-get update
@kastnerkyle
kastnerkyle / painless_q.py
Last active August 18, 2023 09:32
Painless Q-Learning Tutorial implementation in Python http://mnemstudio.org/path-finding-q-learning-tutorial.htm
# Author: Kyle Kastner
# License: BSD 3-Clause
# Implementing http://mnemstudio.org/path-finding-q-learning-tutorial.htm
# Q-learning formula from http://sarvagyavaish.github.io/FlappyBirdRL/
# Visualization based on code from Gael Varoquaux [email protected]
# http://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
@dannguyen
dannguyen / README.md
Last active July 29, 2025 14:26
Using Python 3.x and Google Cloud Vision API to OCR scanned documents to extract structured data

Using Python 3 + Google Cloud Vision API's OCR to extract text from photos and scanned documents

Just a quickie test in Python 3 (using Requests) to see if Google Cloud Vision can be used to effectively OCR a scanned data table and preserve its structure, in the way that products such as ABBYY FineReader can OCR an image and provide Excel-ready output.

The short answer: No. While Cloud Vision provides bounding polygon coordinates in its output, it doesn't provide it at the word or region level, which would be needed to then calculate the data delimiters.

On the other hand, the OCR quality is pretty good, if you just need to identify text anywhere in an image, without regards to its physical coordinates. I've included two examples:

####### 1. A low-resolution photo of road signs

@chipoglesby
chipoglesby / bigQueryMailChimp.gs
Last active November 18, 2019 12:38
This gist shows how to query the MailChimp API using Google Apps Script and pushes data to Google BigQuery
// This script is designed to run on a 1 hour trigger in Google Apps Script. It is also written to "WRITE_TRUNCATE" your table
// which means it deletes the table and updates it with the newest information. You can change the variables in campaignList
// if you want to adjust it for your needs.
function chimpyAPI30days() {
projectId = "xxx";
datasetId = "xxx";
tableId = 'xxx';
yesterday = new Date();
yesterday.setDate(yesterday.getDate() - 29);
@karpathy
karpathy / pg-pong.py
Created May 30, 2016 22:50
Training a Neural Network ATARI Pong agent with Policy Gradients from raw pixels
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """
import numpy as np
import cPickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
@fchollet
fchollet / classifier_from_little_data_script_3.py
Last active February 26, 2025 01:37
Fine-tuning a Keras model. Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@cburgdorf
cburgdorf / xor_keras.py
Last active November 18, 2020 11:23
Comparing XOR between tensorflow and keras
import numpy as np
from keras.models import Sequential
from keras.layers.core import Activation, Dense
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32")
target_data = np.array([[0],[1],[1],[0]], "float32")
model = Sequential()
model.add(Dense(32, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))