I hereby claim:
- I am ha0ye on github.
- I am hao_and_y (https://keybase.io/hao_and_y) on keybase.
- I have a public key ASALs4BLGzLmT9iU4H5GOc11WPPLg9KQvuwvbLG8MntrQwo
To claim this, I am signing this object:
| # For more info, see http://mathworld.wolfram.com/PartitionFunctionQ.html | |
| # This uses the 2nd recurrence relation defined therein. | |
| max_n <- 1000 | |
| # helper function | |
| s <- integer(length = max_n) | |
| for(j in 1:sqrt((2*max_n+1)/3)) | |
| { | |
| n <- j * (3 * j + 1) / 2 | 
I hereby claim:
To claim this, I am signing this object:
| travis_fold:start:worker_info | |
| [0K[33;1mWorker information[0m | |
| hostname: 12607e0a-d790-494c-abc0-33bec19d51ab@1.production-1-worker-org-a-4-gce | |
| version: v3.6.0 https://github.com/travis-ci/worker/tree/170b2a0bb43234479fd1911ba9e4dbcc36dadfad | |
| instance: travis-job-a2fd8785-6b65-4c56-b87e-cbd4d1016e0f travis-ci-garnet-trusty-1512502259-986baf0 (via amqp) | |
| startup: 26.186769693s | |
| travis_fold:end:worker_info | |
| [0Ktravis_fold:start:system_info | |
| [0K[33;1mBuild system information[0m | |
| Build language: ruby | 
| library(lavaan) | |
| library(visNetwork) | |
| model <- ' | |
| # measurement model | |
| ind60 =~ x1 + x2 + x3 | |
| dem60 =~ y1 + y2 + y3 + y4 | |
| dem65 =~ y5 + y6 + y7 + y8 | |
| # regressions | |
| dem60 ~ ind60 | 
| library(drake) | |
| library(furrr) | |
| future::plan(future::multiprocess) | |
| tictoc::tic() | |
| params = data.frame(t = c(1, 2, 3, 1, 2, 3)) | |
| out = purrr::pmap(params, Sys.sleep) | |
| tictoc::toc() | 
| library(likert) | |
| data(pisaitems) | |
| ##### Item 24: Reading Attitudes | |
| items24 <- pisaitems[,substr(names(pisaitems), 1,5) == 'ST24Q'] | |
| head(items24); ncol(items24) | |
| names(items24) <- c( | |
| ST24Q01="I read only if I have to.", | |
| ST24Q02="Reading is one of my favorite hobbies.", | 
| library(dplyr) | |
| library(microbenchmark) | |
| set.seed(42) | |
| n <- 10000 | |
| df <- data.frame(a = rep(seq(n), 2), | |
| x = rnorm(2 * n)) | |
| group_summarize_mutate <- function(df) | |
| { | 
| full_text <- readLines(file, warn = FALSE) | |
| start_par_line <- grep("^\\$par", full_text) | |
| start_objective_line <- grep("^\\$objective", full_text) | |
| param_lines <- seq(from = start_par_line, | |
| to = start_objective_line - 3, | |
| by = 2) | |
| params <- purrr::map_dfc(param_lines, function(line_idx) | |
| { | |
| readr::read_delim(file, delim = " ", | 
| library(rEDM) | |
| #### Example 1: a single forward prediction | |
| # Assume we have already done the analysis, finding that the best embedding | |
| # dimension is 2. Our objective is to make multiple 1-step ahead forecasts | |
| # using simplex and E = 2. | |
| dat <- data.frame(yr = as.numeric(time(sunspot.year)), | |
| sunspot_count = as.numeric(sunspot.year)) | |
| E <- 3 | 
| calc3 <- function(sets) | |
| { | |
| sets <- check_sets(sets) | |
| set_lengths <- vapply(sets, length, 0) | |
| set_order <- order(set_lengths) | |
| sets <- sets[set_order] | |
| set_lengths <- set_lengths[set_order] | |
| n_sets <- length(sets) | |
| set_names <- names(sets) |