Created
July 11, 2013 11:57
-
-
Save haarts/5974827 to your computer and use it in GitHub Desktop.
Denoising autoencoder with CIFAR10. Overfitting like there is no tomorrow.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
!obj:pylearn2.train.Train { | |
"dataset": !obj:pylearn2.datasets.cifar10.CIFAR10 &dataset { | |
"which_set" : 'train' | |
}, | |
"model": !obj:pylearn2.models.autoencoder.DenoisingAutoencoder { | |
"nvis" : 3072, | |
"nhid" : 400, | |
"irange" : 0.05, | |
"corruptor": !obj:pylearn2.corruption.BinomialCorruptor { | |
"corruption_level": 0.5, | |
}, | |
"act_enc": "tanh", | |
"act_dec": null, # Linear activation on the decoder side. | |
}, | |
"algorithm": !obj:pylearn2.training_algorithms.sgd.SGD { | |
"learning_rate" : 1e-3, | |
"batch_size" : 10, | |
"monitoring_batches" : 5, | |
"monitoring_dataset" : *dataset, | |
"cost" : !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError {}, | |
"termination_criterion" : !obj:pylearn2.training_algorithms.sgd.EpochCounter { | |
"max_epochs": 25, | |
}, | |
}, | |
"save_path": "./dae_cifar.pkl", | |
save_freq: 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment