This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| 'input_mask': array( | |
| [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), | |
| 'input_type_ids': array( | |
| [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), | |
| 'input_word_ids': array( | |
| [ 101, 2023, 3319, 3397, 27594, 2545, 2005, 2216, 2040, ..., 2014, 102]), | |
| 'label': array([0]) | |
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| mirrored_strategy = tf.distribute.MirroredStrategy() | |
| with mirrored_strategy.scope(): | |
| model = get_model(tf_transform_output=tf_transform_output) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def run_fn(fn_args: TrainerFnArgs): | |
| tf_transform_output = tft.TFTransformOutput(fn_args.transform_output) | |
| train_dataset = _input_fn( | |
| fn_args.train_files, tf_transform_output, 32) | |
| eval_dataset = _input_fn( | |
| fn_args.eval_files, tf_transform_output, 32) | |
| mirrored_strategy = tf.distribute.MirroredStrategy() | |
| with mirrored_strategy.scope(): | |
| model = get_model(tf_transform_output=tf_transform_output) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| input_word_ids = tf.cast(inputs["input_word_ids"], dtype=tf.int32) | |
| input_mask = tf.cast(inputs["input_mask"], dtype=tf.int32) | |
| input_type_ids = tf.cast(inputs["input_type_ids"], dtype=tf.int32) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| feature_spec = tf_transform_output.transformed_feature_spec() | |
| feature_spec.pop(_LABEL_KEY) | |
| inputs = {key: tf.keras.layers.Input(shape=(max_seq_length), | |
| name=key, dtype=tf.int32) | |
| for key in feature_spec.keys()} | |
| input_word_ids = tf.cast(inputs["input_word_ids"], dtype=tf.int32) | |
| input_mask = tf.cast(inputs["input_mask"], dtype=tf.int32) | |
| input_type_ids = tf.cast(inputs["input_type_ids"], dtype=tf.int32) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| input_type_ids = tf.zeros_like(input_mask) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def preprocessing_fn(inputs): | |
| def tokenize_text(text, sequence_length=MAX_SEQ_LEN): | |
| ... | |
| return tf.reshape(tokens, [-1, sequence_length]) | |
| def preprocess_bert_input(text, segment_id=0): | |
| input_word_ids = tokenize_text(text) | |
| ... | |
| return ( |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| CLS_ID = tf.constant(101, dtype=tf.int64) | |
| SEP_ID = tf.constant(102, dtype=tf.int64) | |
| start_tokens = tf.fill([tf.shape(text)[0], 1], CLS_ID) | |
| end_tokens = tf.fill([tf.shape(text)[0], 1], SEP_ID) | |
| tokens = tokens[:, :sequence_length - 2] | |
| tokens = tf.concat([start_tokens, tokens, end_tokens], axis=1) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| tokens = bert_tokenizer.tokenize(text) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| bert_tokenizer = text.BertTokenizer( | |
| vocab_lookup_table=vocab_file_path, | |
| token_out_type=tf.int64, | |
| lower_case=do_lower_case | |
| ) |