Last active
August 29, 2015 14:18
-
-
Save hansenms/bc269495d0e1e05cd470 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"nbformat": 4, "metadata": {"orig_nbformat": 3}, "cells": [{"cell_type": "code", "execution_count": 17, "outputs": [], "source": "#%% imports\nimport os\nimport sys\n\nsys.path.append(os.environ['GADGETRON_HOME'] + '/share/gadgetron/python')\n\nimport ismrmrd\nimport ismrmrd.xsd\nimport numpy as np\nfrom ismrmrdtools import show\nfrom gadgetron import WrapperGadget\nimport GadgetronPythonMRI as g", "metadata": {"collapsed": false, "trusted": false}}, {"cell_type": "code", "execution_count": 24, "outputs": [], "source": " # <gadget>\n # <name>NoiseAdjust</name>\n # <dll>gadgetron_mricore</dll>\n # <classname>NoiseAdjustGadget</classname>\n # </gadget>\n\ng1 = WrapperGadget(\"gadgetron_mricore\",\"NoiseAdjustGadget\")\n\n \n # <gadget>\n # <name>PCA</name>\n # <dll>gadgetron_mricore</dll>\n # <classname>PCACoilGadget</classname>\n # </gadget>\n \ng2 = WrapperGadget(\"gadgetron_mricore\",\"PCACoilGadget\", next_gadget=None)\ng1.next_gadget = g2\n\n # <gadget>\n # <name>CoilReduction</name>\n # <dll>gadgetron_mricore</dll>\n # <classname>CoilReductionGadget</classname>\n # <property><name>coils_out</name><value>16</value></property>\n # </gadget>\n\ng3 = WrapperGadget(\"gadgetron_mricore\",\"CoilReductionGadget\", next_gadget=None)\ng3.set_parameter(\"CoilReductionGadget\",\"coils_out\",\"16\");\ng2.next_gadget = g3\n\n # <gadget>\n # <name>gpuSpiralSensePrepGadget</name>\n # <dll>gadgetron_spiral</dll>\n # <classname>gpuSpiralSensePrepGadget</classname>\n # <property><name>deviceno</name><value>0</value></property>\n # <property><name>use_multiframe_grouping</name><value>true</value></property>\n # <property><name>propagate_csm_from_set</name><value>0</value></property>\n # <property><name>buffer_convolution_kernel_width</name><value>5.5</value></property>\n # <property><name>buffer_convolution_oversampling_factor</name><value>1.25</value></property>\n # <property><name>reconstruction_os_factor_x</name><value>1.5</value></property>\n # <property><name>reconstruction_os_factor_y</name><value>1.5</value></property>\n # </gadget>\n \n # <gadget>\n # <name>gpuCgSenseGadget</name>\n # <dll>gadgetron_gpuparallelmri</dll>\n # <classname>gpuCgSenseGadget</classname>\n # <property><name>pass_on_undesired_data</name> <value>true</value></property>\n # <property><name>deviceno</name> <value>0</value></property>\n # <property><name>setno</name> <value>0</value></property>\n # <property><name>number_of_iterations</name> <value>10</value></property>\n # <property><name>cg_limit</name> <value>1e-6</value></property>\n # <property><name>oversampling_factor</name> <value>1.25</value></property>\n # <property><name>kernel_width</name> <value>5.5</value></property>\n # <property><name>kappa</name> <value>0.3</value></property>\n # </gadget>\n\n # <gadget>\n # <name>gpuCgSenseGadget</name>\n # <dll>gadgetron_gpuparallelmri</dll>\n # <classname>gpuCgSenseGadget</classname>\n # <property><name>pass_on_undesired_data</name> <value>true</value></property>\n # <property><name>deviceno</name> <value>0</value></property>\n # <property><name>setno</name> <value>1</value></property>\n # <property><name>number_of_iterations</name> <value>10</value></property>\n # <property><name>cg_limit</name> <value>1e-6</value></property>\n # <property><name>oversampling_factor</name> <value>1.25</value></property>\n # <property><name>kernel_width</name> <value>5.5</value></property>\n # <property><name>kappa</name> <value>0.3</value></property>\n # </gadget>\n\ng4 = WrapperGadget(\"gadgetron_gpuparallelmri\",\"gpuCgSenseGadget\",gadgetname=\"gpuCgSenseGadget1\", next_gadget=None)\ng4.prepend_gadget(\"gadgetron_gpuparallelmri\",\"gpuCgSenseGadget\", gadgetname=\"gpuCgSenseGadget2\")\ng4.prepend_gadget(\"gadgetron_spiral\",\"gpuSpiralSensePrepGadget\",gadgetname=\"gpuSpiralSensePrepGadget\")\n\ng4.set_parameter(\"gpuSpiralSensePrepGadget\",\"deviceno\",\"0\")\ng4.set_parameter(\"gpuSpiralSensePrepGadget\",\"use_multiframe_grouping\",\"true\")\ng4.set_parameter(\"gpuSpiralSensePrepGadget\",\"propagate_csm_from_set\",\"0\")\ng4.set_parameter(\"gpuSpiralSensePrepGadget\",\"buffer_convolution_kernel_width\",\"5.5\")\ng4.set_parameter(\"gpuSpiralSensePrepGadget\",\"buffer_convolution_oversampling_factor\",\"1.25\")\ng4.set_parameter(\"gpuSpiralSensePrepGadget\",\"reconstruction_os_factor_x\",\"1.5\")\ng4.set_parameter(\"gpuSpiralSensePrepGadget\",\"reconstruction_os_factor_y\",\"1.5\")\n\ng4.set_parameter(\"gpuCgSenseGadget1\",\"pass_on_undesired_data\",\"true\")\ng4.set_parameter(\"gpuCgSenseGadget1\",\"deviceno\",\"0\")\ng4.set_parameter(\"gpuCgSenseGadget1\",\"setno\",\"0\")\ng4.set_parameter(\"gpuCgSenseGadget1\",\"number_of_iterations\",\"10\")\ng4.set_parameter(\"gpuCgSenseGadget1\",\"cg_limit\",\"1e-6\")\ng4.set_parameter(\"gpuCgSenseGadget1\",\"oversampling_factor\",\"1.25\")\ng4.set_parameter(\"gpuCgSenseGadget1\",\"kernel_width\",\"5.5\")\ng4.set_parameter(\"gpuCgSenseGadget1\",\"kappa\",\"0.3\")\n\ng4.set_parameter(\"gpuCgSenseGadget2\",\"pass_on_undesired_data\",\"true\")\ng4.set_parameter(\"gpuCgSenseGadget2\",\"deviceno\",\"1\") #Think this should be \"1\"\ng4.set_parameter(\"gpuCgSenseGadget2\",\"setno\",\"1\")\ng4.set_parameter(\"gpuCgSenseGadget2\",\"number_of_iterations\",\"10\")\ng4.set_parameter(\"gpuCgSenseGadget2\",\"cg_limit\",\"1e-6\")\ng4.set_parameter(\"gpuCgSenseGadget2\",\"oversampling_factor\",\"1.25\")\ng4.set_parameter(\"gpuCgSenseGadget2\",\"kernel_width\",\"5.5\")\ng4.set_parameter(\"gpuCgSenseGadget2\",\"kappa\",\"0.3\")\n\ng3.next_gadget = g4\n\n # <gadget>\n # <name>PhaseSubtraction</name>\n # <dll>gadgetron_mricore</dll>\n # <classname>FlowPhaseSubtractionGadget</classname>\n # </gadget>\n \ng5 = WrapperGadget(\"gadgetron_mricore\",\"FlowPhaseSubtractionGadget\", next_gadget=None)\n\ng4.next_gadget = g5\n # <gadget>\n # <name>MaxwellCorrection</name>\n # <dll>gadgetron_mricore</dll>\n # <classname>MaxwellCorrectionGadget</classname>\n # </gadget>\n\ng6 = WrapperGadget(\"gadgetron_mricore\",\"MaxwellCorrectionGadget\", next_gadget=None)\n\ng5.next_gadget = g6;\n \n # <gadget>\n # <name>Extract</name>\n # <dll>gadgetron_mricore</dll>\n # <classname>ExtractGadget</classname>\n # <property><name>extract_mask</name><value>9</value></property>\n # </gadget>\n\ng7 = WrapperGadget(\"gadgetron_mricore\",\"ExtractGadget\", next_gadget=None)\ng7.set_parameter(\"ExtractGadget\",\"extract_mask\",\"9\")\n\ng6.next_gadget = g7", "metadata": {"collapsed": false, "trusted": false}}, {"cell_type": "code", "execution_count": 25, "outputs": [], "source": "def gadget_wait_function(first_gadget):\n g = first_gadget;\n while (g):\n g.wait()\n g = g.next_gadget\n\ndef gadget_config(first_gadget, conf):\n g = first_gadget;\n while (g):\n g.process_config(conf)\n g = g.next_gadget\n ", "metadata": {"collapsed": false, "trusted": false}}, {"cell_type": "code", "execution_count": 26, "outputs": [{"output_type": "stream", "name": "stdout", "text": "Sending in acquisition 0 of 160\nSending in acquisition 1 of 160\nSending in acquisition 2 of 160\nSending in acquisition 3 of 160\nSending in acquisition 4 of 160\nSending in acquisition 5 of 160\nSending in acquisition 6 of 160\nSending in acquisition 7 of 160\nSending in acquisition 8 of 160\nSending in acquisition 9 of 160\nSending in acquisition 10 of 160\nSending in acquisition 11 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 12 of 160\nSending in acquisition 13 of 160\nSending in acquisition 14 of 160\nSending in acquisition 15 of 160\nSending in acquisition 16 of 160\nSending in acquisition 17 of 160\nSending in acquisition 18 of 160\nSending in acquisition 19 of 160\nSending in acquisition 20 of 160\nSending in acquisition 21 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 22 of 160\nSending in acquisition 23 of 160\nSending in acquisition 24 of 160\nSending in acquisition 25 of 160\nSending in acquisition 26 of 160\nSending in acquisition 27 of 160\nSending in acquisition 28 of 160\nSending in acquisition 29 of 160\nSending in acquisition 30 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 31 of 160\nSending in acquisition 32 of 160\nSending in acquisition 33 of 160\nSending in acquisition 34 of 160\nSending in acquisition 35 of 160\nSending in acquisition 36 of 160\nSending in acquisition 37 of 160\nSending in acquisition 38 of 160\nSending in acquisition 39 of 160\nSending in acquisition 40 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 41 of 160\nSending in acquisition 42 of 160\nSending in acquisition 43 of 160\nSending in acquisition 44 of 160\nSending in acquisition 45 of 160\nSending in acquisition 46 of 160\nSending in acquisition 47 of 160\nSending in acquisition 48 of 160\nSending in acquisition 49 of 160\nSending in acquisition 50 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 51 of 160\nSending in acquisition 52 of 160\nSending in acquisition 53 of 160\nSending in acquisition 54 of 160\nSending in acquisition 55 of 160\nSending in acquisition 56 of 160\nSending in acquisition 57 of 160\nSending in acquisition 58 of 160\nSending in acquisition 59 of 160\nSending in acquisition 60 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 61 of 160\nSending in acquisition 62 of 160\nSending in acquisition 63 of 160\nSending in acquisition 64 of 160\nSending in acquisition 65 of 160\nSending in acquisition 66 of 160\nSending in acquisition 67 of 160\nSending in acquisition 68 of 160\nSending in acquisition 69 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 70 of 160\nSending in acquisition 71 of 160\nSending in acquisition 72 of 160\nSending in acquisition 73 of 160\nSending in acquisition 74 of 160\nSending in acquisition 75 of 160\nSending in acquisition 76 of 160\nSending in acquisition 77 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 78 of 160\nSending in acquisition 79 of 160\nSending in acquisition 80 of 160\nSending in acquisition 81 of 160\nSending in acquisition 82 of 160\nSending in acquisition 83 of 160\nSending in acquisition 84 of 160\nSending in acquisition 85 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 86 of 160\nSending in acquisition 87 of 160\nSending in acquisition 88 of 160\nSending in acquisition 89 of 160\nSending in acquisition 90 of 160\nSending in acquisition 91 of 160\nSending in acquisition 92 of 160\nSending in acquisition 93 of 160\nSending in acquisition 94 of 160\nSending in acquisition 95 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 96 of 160\nSending in acquisition 97 of 160\nSending in acquisition 98 of 160\nSending in acquisition 99 of 160\nSending in acquisition 100 of 160\nSending in acquisition 101 of 160\nSending in acquisition 102 of 160\nSending in acquisition 103 of 160\nSending in acquisition 104 of 160\nSending in acquisition 105 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 106 of 160\nSending in acquisition 107 of 160\nSending in acquisition 108 of 160\nSending in acquisition 109 of 160\nSending in acquisition 110 of 160\nSending in acquisition 111 of 160\nSending in acquisition 112 of 160\nSending in acquisition 113 of 160\nSending in acquisition 114 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 115 of 160\nSending in acquisition 116 of 160\nSending in acquisition 117 of 160\nSending in acquisition 118 of 160\nSending in acquisition 119 of 160\nSending in acquisition 120 of 160\nSending in acquisition 121 of 160\nSending in acquisition 122 of 160\nSending in acquisition 123 of 160\nSending in acquisition 124 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 125 of 160\nSending in acquisition 126 of 160\nSending in acquisition 127 of 160\nSending in acquisition 128 of 160\nSending in acquisition 129 of 160\nSending in acquisition 130 of 160\nSending in acquisition 131 of 160\nSending in acquisition 132 of 160\nSending in acquisition 133 of 160\nSending in acquisition 134 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 135 of 160\nSending in acquisition 136 of 160\nSending in acquisition 137 of 160\nSending in acquisition 138 of 160\nSending in acquisition 139 of 160\nSending in acquisition 140 of 160\nSending in acquisition 141 of 160\nSending in acquisition 142 of 160\nSending in acquisition 143 of 160\nSending in acquisition 144 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 145 of 160\nSending in acquisition 146 of 160\nSending in acquisition 147 of 160\nSending in acquisition 148 of 160\nSending in acquisition 149 of 160\nSending in acquisition 150 of 160\nSending in acquisition 151 of 160\nSending in acquisition 152 of 160\nSending in acquisition 153 of 160"}, {"output_type": "stream", "name": "stdout", "text": "\nSending in acquisition 154 of 160\nSending in acquisition 155 of 160\nSending in acquisition 156 of 160\nSending in acquisition 157 of 160\nSending in acquisition 158 of 160\nSending in acquisition 159 of 160\n"}], "source": "#%% Load file\nfilename = '/home/hansenms/temp/simple_spiral.h5'\nif not os.path.isfile(filename):\n print(\"%s is not a valid file\" % filename)\n raise SystemExit\ndset = ismrmrd.Dataset(filename, 'dataset', create_if_needed=False)\n\n#%% Send in data\n#First ISMRMRD XML header\ngadget_config(g1,dset.read_xml_header())\n\n# Loop through the rest of the acquisitions and stuff\nfor acqnum in range(0,dset.number_of_acquisitions()):\n print \"Sending in acquisition \" + str(acqnum) + \" of \" + str(dset.number_of_acquisitions())\n acq = dset.read_acquisition(acqnum)\n g1.process(acq.getHead(),acq.data.astype('complex64'))\n\n# #%%\ngadget_wait_function(g1)", "metadata": {"collapsed": false, "trusted": false}}, {"cell_type": "code", "execution_count": 27, "outputs": [], "source": "res = g7.get_results()", "metadata": {"collapsed": false, "trusted": false}}, {"cell_type": "code", "execution_count": 28, "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAT4AAAEACAYAAAAqSBrtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuMHcd1//npvq958DEkJVLiDC3KmnHIOArDRArzAqwf\ngkQId8NkgyBL+x8BpgFBiKJFnIdhZLOQgXUSJQiyiIkY0h9RVvlDUbBZgwLC5cKKYzu7G5JOIjux\npTgjm5SHQ1MPisPHvO69fXv/qHvmnnumum/f17x0v0Bj5nZXVVd1V536nkdVB3EcxwwwwAADvI8Q\nrncFBhhggAHWGgPBN8AAA7zvMBB8AwwwwPsOA8E3wAADvO8wEHwDDDDA+w4DwTfAAAO87zAQfAMM\nMMCa4ty5cxw6dIipqSmeeeYZb5qnnnqKqakpjhw5wquvvtoy78WLF/nxH/9xjh49ysMPP8zXvva1\n9ErEAwwwwABrhGq1Gj/wwAPxpUuX4nK5HB85ciR+7bXXmtL8/d//ffwLv/ALcRzH8fnz5+Njx461\nzPuRj3wkPnfuXBzHcXz27Nn4kUceSa3HgPENMMAAa4aLFy8yOTnJwYMHKRQKnDx5kjNnzjSlefnl\nl3nssccAOHbsGHNzc1y7di0177333svNmzcBmJubY3x8PLUe+T60bYABBhjAi9nZWQ4cOLDye2Ji\nggsXLrRMMzs7y9WrVxPz/tEf/RE/8zM/w2//9m9Tq9X453/+59R6DBjfAAMMsGYIgiBTurjNlbSn\nTp3iz//8z/ne977Hn/3Zn/Hxj388Nf2aM74g+BMgV791CRhSf0eAYv3aUP3QD2oZuA0s1f8fg3AY\nhhbd/0uTMDwPO6/BzZ0wXwX+GXgbGK2XUQHuAIv9begAHSJQh/4dAbUelB0CsSlL7uUbbGnXfAjr\neWr1PLo924AduL6XB6aAu4EihAsQ3oTaGNS216+XgRvAXP0IVf0FNdyzidT9pL7VehlVdR3i+H/K\n2JbVGA4CltpIv23bNm7fvr3ye3x8nJmZmZXfMzMzTExMNOWxaa5cucLExASVSiUx78WLF3nllVcA\n+NVf/VU+8YlPpNZrHVTdURpCb1v9t3TIIk7YDdfPDwHv4V7+LWAeJ/RioABMQf4B2BW7U++EsPBd\nWPoK1H4AuIuGkH2Xxssf7MuwcWHfT4h7h70qO/KcF2HVEA7ZrvlgBWqozt/G9eERXJu+C1xy5eYO\nQfEnofw61P4T2AfsBT4MXANew/X9Mm6chDiBJuNGyIAIxzyNvr+o6t/d5LEE/K9tpP+f79xp+v3Q\nQw8xPT3N5cuX2b9/Py+99BIvvvhiU5oTJ05w+vRpTp48yfnz5xkbG2Pfvn3s2bMnMe/k5CRf+cpX\n+MhHPsKXvvQlPvShD6XWax0E3zbcixrGCT9heCIMwb2o27iXLOysWs97H4wWYVsObu+B5UW4cwni\nCGr7IF6CqIgTdLdpMMQqzTPiAL2HMJteTi4yWNPK0wwR2h/cur62Dd20RfLq+sW4fi11DIA81K44\nZaQW4gTeDpywmqnn+QEcCZir549wk38Nl1HGUKV+rVovO0djXAn76w6FLvLm83lOnz7No48+ShRF\nnDp1isOHD/Pss88C8Pjjj3P8+HHOnj3L5OQko6OjPP/886l5AZ577jl+/dd/neXlZYaHh3nuuedS\n6xHE7SrTXSII/k/cixihMRsW1bGMY3jC9IAgB+EQxAeh9qNwdwn2VuD7Mbz3LvDler4fwgm6K8BN\nYKFevsz00hF6oTYNsBrCNmqs7fPN0ehL8q477db9aIP0OxF+uv8VcCSghuvDP4YTckVcX76MU4cP\n4ybzt4HruMlcBN0CbjyVaGhFUb0dIhyjeroycfwbnbckCPjTNtL/Fu3b69YC68D4hmgIOZlZl2gI\nKqHsMe5FjkPhbtgzArWdcL0It78L1ddg4YPAdpxKex2Yrue3L1/Q7aAYIB1p7MzaviDZ5tYupEz9\nrqXsNLboq1MWhtlpHXXdcjQE0pI6N4PTckaAMeAB3Nj4v4EPAgdxavAN4CqOwW2nYbsu4MxEot5W\naAjcHN3xNYfhrktYf6yD4CvgOpzMelWcoJrHzXA1oAi5bZDbAdFBCO+GYhmiHFCBpRuwdAUnGPfU\ny42At2i8aJ89b2Df6y9aPV+tRvrO63KgWT3Mcl9dhnYqWKO/vbf9v9ds1fZBEbhyrwpOKOVwrO4G\nTnjtx/XvZVzfvgc3ZMfc32ABuA1xpV5GjYbAL7DaNqlZZ+foXnSuP9Ypjk+8swv1Q+wOJdxL3Qel\nPTC6G+aHobIAb/9bnbD9AG6G+2Gc0fdN3EsXwy80d/Ka+n+A9YOPbcv7Ebajz0GDDWZ9d/pd+5wk\nkkazO+0Nbfd+WWHL1oe+VqmnFwfMDPAOTuD9JG7cvA7sgXA75CYh/j5U/xOnSW3DjauIBi+r1POV\naQjX7rAVgn/XoQ23cYJOVNEA95KGIbgbwj0Q7oYwhuodiGsQLUM1D/EirjOIevAeboYUdUXP1LH5\nO8D6wLI5WC387Ll2y7aCzsfu4pR8a420e4owLuOE1hxOWO2i4RQp1aueh1wIxf1QqUKlghtL4tgA\nZ1KSdvZGhR8wvo7wLg0Vdwew0/0N9kA4AfntUAqh8m1YeB3ieyDeA3wIN/t9E9cZFmioy3oWSwpZ\nGGB9IIxGBI1v8CW9s1bvUTurYnPOlqknRe3AsOyvH0grW65J2I42AUk938L1/Q8A4+5a/A5U34XS\nvbDjqLN7V76HG09BPX1dSFKql7NIQyvqHAPG1xFG6rctAmMQ7IL8DghHoFqB6BqU56Fag9okTsB9\nH9cRxNu7SEMtgPbV2fWe8Tc6evl8tDpry+v2PtpbrwN7W9no+uXA6Aa+Osk5EewSizrKikCr3Ib5\nV6E2AoUPQlSFWhnYTcP8I7F+vRHsA8bXEcZoeKzqbC9fglzsZrDqu1B9B7gP59H6JjCLc+PP4++w\n7RqjdVDqAKuRxSOaFa2EmgisTt6FlC3hLFkD1DfihOd7Brae7+E8vDtwkQzjUL4J5X+H4jEofAji\nd6E2j1N5b+OEpWa43a9SHQi+jrAH9+L2AjmIq1D5JlTnofYhHJ3fiXthr+DU2ls0Qlx6Ff4wCGRO\nxloyoizBya2EcLvvs1dhNO0irS2+a7561nBa0Ds4RjcKfBCq16H2/0L0QVy4S1mVJ84NWTDQHQbh\nLB2hvjZxxSFRhtotGissZKnNuzi2J/Y78fz6wiHaxUac8btFu2tK07BWzyfLfWxYSqfl+Mpcizbq\n95LWFrtGWee155dpBC7fDeyC2rtQW8QRi524MbYDN57mcOMrpBcT/sDG1xH203BSlCDYBvkpCCKo\nzEB8AycAb9Cg/vqFDdTT1bBrQreSUJf29LJNa/WM9HsRp0VSW3QQtl6FomPw5JykreLU3yWckNuF\nC++6iXMG1k1JK3kHXl3BOgi+70BQdUvQaiWcuitrcq/RWI4jLnlt+9iKTK0X0M9loz4f68hoh6Fq\ntpTWB3zsSpdhz/fjWVlG53PmJN07rW22HBGA4sAQIVuuHyM4Vri7/j841recvSkJGDC+jvB/QXgI\n8h+BKIDqbah+Hbjs7H0s01jCsx7rPjcrNvoz0u8T2meorRxSlvX6wmhg9ZrZXgs/22+twLLhNxa+\nsBs9+et21dS193CCbWf9Ht/GqbgfxDlC7qGhHneHAePrBDt+HKpFqHwXavUXEYvHVl6mXs6zURnM\nZoJdr9yPwe5jV5hz1nAvdbN716Xdw+5HB6uFi76fZYk1VrMun2rpu7fkT4NmlnYliAiprM9ft8Gu\n/JDrum6yEUGVxiqNADe29kAwDEH6luxZMGB8nWDbT8DiZVh6FWoLuFlonkbAptg5Bjuo9AZaYEAj\nLqzX98gSpKyFXsxq2622byXBd10LE/03SZ301b9VeJP0zVZOERFuOsRGX2tn0pH0OrjZeqLtcj/Z\n6GMEx/hkHfwiBPdDeFcb9/djwPg6wdwrUF2u2/VkJxWZ1WTPvIEtrzvY0Ai991s/YAdjljg6u2pC\nX+tUQPgC2bVaKL9tfVsFwIswaycMpts14paF6m3VkmJZ9XOQPSwLOEdhDHEM0XXc9m2dYxDO0gkW\nvo17GSUa9jyh5GIXGcTYNaNdY7wNm5DBoNXEtQh/aceQb1VUm8eWZVVr330CVj8LH7I6WMCvanda\npoXU0Wc6kPenWbJlt1q1l91aZOfnKm4Xl+4F34DxdYQR3Ewku0gUaHwzQO/UMbDvNSADIesz8YVN\n+FSkdspsFzaUIw127WyaOqqZm7a7WQbmU5uzMLU0aCdDr2E3QJWxoIWc3F+zWPv+rNOoHiu7sv1V\n90N+YOPrCLIAu0yzwVm/6HaYDW2k38rwOQaSwjksc+in8LN2saR31sm7tAM+iUXK/636Vlod+tHX\nrFCzrDJm9TtEnffVyf4vdsEqDTt6dyi0IzW63+m+L1gHwafX2+oZS5hekqrjQ7sfgtmsaMVStDBL\nK8PufQerGUI/4LO5tfvO7DPQzEtMJa2cE2n31f3PlpN2rVNYh5N2iuh6+u6n36NN43tO+lwP9uPb\nAoKve/HfNiq4p6EN7pZ5ZB0Q3aouWwXWuG+Rpvrq99CP7iAD1LKvkGZh7VNhfQg9h84vEIGQFE+n\n82dhvr2eGPT7sGMga5/OWietJvfgY0O57IcP586d49ChQ0xNTfHMM8940zz11FNMTU1x5MgRXn31\n1ZZ5T548ydGjRzl69Cj3338/R48eTW3DOjA+vZ2UtWu027EGQq8B7bzwqbj2WVmhJ+yh10iKgdNC\nVkJsWjE3G5oj8IU+WcGiBZz9rZeT+dCulzkrfMwt6706qZPY0rtDW4zP1iCKePLJJ3nllVcYHx/n\n4Ycf5sSJEytfSwM4e/Ysb7zxBtPT01y4cIEnnniC8+fPp+b9m7/5m5X8v/3bv83Y2Fh6GzpvQjfw\n0fxW6bMGkG5VpAkQLeh81+yg19e0mmVhPYjdPHtbD3sty/cgkswgSapraH7bcqyJoBNhkuW92Gdn\nQ2z0qpIkj3avtgnrHoVS6zRJuHjxIpOTkxw8eBBwTO3MmTNNgu/ll1/mscceA+DYsWPMzc1x7do1\nLl261DJvHMf87d/+Lf/4j/+YWo91UHVteEFSjJkNRbDG+05DXtYqVMbnbOg0v2Y6Vj2zabVwsIzH\nCkCf1zDLc291XpDGunwGfVu3JMSew+ZLel5JE2iv3pXvfKu2+Mw+7Zazhsi3cRjMzs5y4MCBld8T\nExPMzs5mSnP16tWWef/pn/6Jffv28cADD7RswhrDZ5CVl2qXNNmZWA+STtbxdpqvXei6d6JaSH7r\nidVsTQs3uzrAJxyzwDpIfM/JvhfNVgR6hYF1puh8SUIv9KTR12y7pJ5J9j6b35bbrm1ZI4kJpzlC\nbH9uVYdu6tcHdCE1giBbn+z0W7wvvvgiH/vYx1qmWwfBp1+6ryNbRqFd+JB9XaUNB/AxhH5C193W\nyaaz15LYlP6dRNazsgM7kejztjx9PgvTs23X9wtMGis4WtU97brPeeOrp08FTXtHrZCW3gruVv0g\nqbxO+mw3bUpBitT48qI7kjA+Ps7MzMzK75mZGSYmJlLTXLlyhYmJCSqVSmrearXKF77wBf7t3/6t\nZRPWQdXVhmg9u9vP/Nm1pVZQtgpLsOqhdID1CH1JYiqtrrUqM5dwZHmtlpHp1TM2mDypzKCNa5rB\nJb0XOTp9P9pJpstMso3ZEJ+szy4LZH2tnRCSbJlp1zpFp32rBZK6XQ4e2QZP3904LB566CGmp6e5\nfPky5XKZl156iRMnTjSlOXHiBC+88AIA58+fZ2xsjH379rXM+8orr3D48GH279/fsgnr6Nyw6q2d\n8XzszKo/SbO/9o5pxtinGbAJSYy0FYvR+XW79GDQIR/WJqevZYG+h6iJeiJqxbx8KyV8ZSfdT09M\nSYIp6Zpte6v7aAHrY7m2TmlOhqzMXd9H99skwe5T7btFP8qkK6mRz+c5ffo0jz76KFEUcerUKQ4f\nPsyzzz4LwOOPP87x48c5e/Ysk5OTjI6O8vzzz6fmFbz00kt89KMfzVSPIO5Ume4QQfA0jdle20Gk\nw6XZRix8M7QwFh9kFu7Xzi9JjFTv1GHvaz+UkzTra7VMPzvN1ORa1hleD4xWbEPb0Wxb5Llmga+d\n+p1Z5mOvaU1A0tq62OejJyO92D9rnQRpNmLfNVvfjWGji+OnO84bBAHxj7SR/uud2+v6iXVifElG\n8W46R9Ls5vPo+a61U4c04aJZg7Vz2TAGW44emL77ySCybNB3LQta5bPPIqtQTQvJ8N3PCqI0G15N\n/W+fq+TVNkZbB5+ATnsGNuwnqX/4rvnqu3HCUjrGFlisu46CD5pnZ+v00OlIOKfLs84B+avVHMx5\ne82qlL77aUFj8/nS2XP6r2Yi+rxPtbPl+X53grR8VmWz7LqVgPLVz7ZRmz0w19Lu0+p52Hyt3pW9\nry99konE129sObqOSYI5K9LGwhpgIPg6hZ15reHb2lg0M/F9e9THHvW99EC0h++a78Mu+n548mWF\nbgusViGT8qwH0uyFrWyJetKxSHtnPjtuKzVaBJIN+dH3bmUKSGJzmrH5kNY3LXoVlrLO6nP3y33X\nHesg+LTx3gq8JKan07diDpjzSUjryL7fSQxA/5/FKZB0D8sE5P80ptJvpDGLtPpYtTMtTatr7U4s\nsFq4ZH2GPo0hi6BqR/j0QlCts5o8YHydwMf0bPiKDW71qYTaVuJjS9Zo77Ml+q5paPapv/Tmg25L\nOwPVxtClOTDWA0kOgTRkYYNpArHdttpnaD2n1r7Yqm7aBNKKVfWCwbWLdV62ORB83cKnDmn7WZYB\n4mN6Wmj6oO1zWespzgp9PxvC0YuYKctqrdCzzNIOvH6EZrZbpm8JVjuMOCuSytQhJJ2UaScwXf46\nC52NgIHg6xZJBumsA8M3IDVLarW6ISuS0nerknV6Xx3KocMn9ITR7zqkQQRSErvvpeCzjFjqm+ag\nalWmb+Jsd7Lcwuhik4KNgnUQfPqjLRppTE2uaXtgEnwsabNAq5Np9U8y4vdD+HaCpJCVXq8isO/a\nqqXaSZbkLEuCziMCtlVdkphm2rVNiAHj6wSx+Ws9b0kDI8mJYbFRBn+nyOIY6TfT7BZJ7LjfjFiH\nNVm7sVzX9fM5QGxZSdeT6pN2jy2CgVe3E+jVGVkZQJYZeoABfKwqzSlj03YjpCwr1Cr3FmF6ggHj\n6wSB+WuvdRL+MEAzLAt6v8Cn8mdh0JAeFuULt7LPVTub0spvFxuQOQ4EX6fwzcLthEsMkA4b7vN+\nQqdhNzpsx4azQLMt0bfRgH3m2gGVJSzGB52/X5+17ABbYJhuAdk9wGp0OtAGWO199jE964SzMYO2\nLJumHegdZtYjZtCDLSA1tkATBliNDTJANiWsautbXmjVYrsDNiZPt3XRuwptgPc6tN4V6B4DwdcW\nkoKGe4GkffzS6tKNOtvPtmxG+OIioXl1kA1L0WxMp233vq1CXXyrUdYRA1X3/YYkA3Yvy+9V2VnD\nYnxhRVmwQQZhT6GFUNJ18dTakCJoXrGS9FytWpz0Huxv66m2Za0htoDU2AJNWEtIh+9Hh7P2oyzp\nkxhGuwG6nYQLbVUbonWOWDtfUhrwrwfXIVtZdhyyK098tr113p1lC0iNLdCEtUarjqZn4yxhJUlp\nfLO6PZe0isXHRpLqoBmHLStrjGWremYtQ7DeAjXp+aWda5VPCzrL5izja3V/bYO0jpc1YIMDVXeA\n1cgyY9v0spW7PafzpTEE3840NkDcMkS9Xby2Wdly04RfkrfRBu+2ghUKW4FN6t119LO0TgptW8wa\nsqJDZWyIjdynjzbBLSA1Bssheg6rstrZW+/8LOlrnmtaQFnh48uvj6R8SffXbMFeh2ZBZEM0fELd\nd16XnfQMrOrtO5IYWCfrgDvN10n5+h5Ju1nrtKH5nSP9GeA536f2dfFBcYBz585x6NAhpqameOaZ\nZ7xpnnrqKaampjhy5Aivvvpqpryf+9znOHz4MD/0Qz/Epz71qZZNGKCnyMLuJJ3+GpzddzBS53wh\nFHoBvb1f0sDyDYBWi/etELfex6Tt1m2dksq2uxKnDdakZ+tjzVkg+frJMH3cwvcurN3QbnlmJwlf\nmUnPvMft62J3liiKePLJJ3nllVcYHx/n4Ycf5sSJE01fSzt79ixvvPEG09PTXLhwgSeeeILz58+n\n5v3Hf/xHXn75Zf793/+dQqHAO++8k1qPdd6dxfcxG1gdJuBjUb0mq9Kh+skANLvzXUsbuLbD24GS\nBs0CLZK29rJ76ml7VNJ9fQZ9Xab+WppmNhYyiLUti5T0At+1tDrp+/lMCwHJwna9oJ+BT5vQEyk0\nq8U9QhdS4+LFi0xOTnLw4EEATp48yZkzZ5oE38svv8xjjz0GwLFjx5ibm+PatWtcunQpMe/nP/95\nPv3pT1MoFAC4+27PR30V1kHV1SqNVXH0udhzzpe2V0e/yve1NanN9lra71b1tGmTDl++yFwj5b1Y\ntFuntHT6g+C+9BqdvrekfFnas16Hr26wWlDr9tkJrAt0oerOzs5y4MCBld8TExPMzs5mSnP16tXE\nvNPT03z1q1/lJ37iJ3jkkUf4l3/5l5ZNWAfEpH80yJfGvvB+rV3sddndej19KowtpxX0wMiKmMY6\n0SQhZ9VSLTTT6pG1Lq3qrU0BaSskbN9qdT9U+izvaCNB6ps2lrpEF+QxCLL1wXa/xVutVrlx4wbn\nz5/na1/7Gr/2a7/Gd7/73cT062jjS2ILadezXOsWvS67VTs7yd/qWpKa1uq+Vq3Ug8jm1cJO36+V\neugLwfClketpAyUL89S/fWUn1XezCTyLdt57m0iRGl/+Nnz5v5Kvj4+PMzMzs/J7ZmaGiYmJ1DRX\nrlxhYmKCSqWSmHdiYoJf+ZVfAeDhhx8mDEOuX7/Onj17vPUYeHW3JGyoQzv5JMxFh2P4Bo6PbbXy\nOkqanLpHK89zoNLbQ7pvmHLNlq2v9duru0WRoto+8mF4+n9oHBYPPfQQ09PTXL58mXK5zEsvvcSJ\nEyea0pw4cYIXXngBgPPnzzM2Nsa+fftS8/7yL/8yX/rSlwD4r//6L8rlcqLQkyYMsKFgdw3uJJ9W\nbZKM9j74GFArr2SS99gu7vcJGW2QTyq7U6EkQk7bu+w1y3Cz3KuTTQfSmKW9bxa2nJZmDdCFqpvP\n5zl9+jSPPvooURRx6tQpDh8+zLPPPgvA448/zvHjxzl79iyTk5OMjo7y/PPPp+YF+PjHP87HP/5x\nHnzwQYrF4orgTEIQt6tMd4kgeHotb7fJoAdrOyEI2munGZoMbsvKWvVcSe8Li2kXvSyrG8hz8THh\ntGsa2sHSDvR7tbY2y87TbKS+99k+4vjpjvMGQUD8YhvpP9q+vW4tMGB86wYfK9IDI4s9TlRNDbvT\nh2VaWVhNL1XAjaJO+kJAslzTyBJGJc9e2izvQf7qDyD58vlCT7I6Z5Lq22n+BGwBqbEFmrAZ4BtQ\nVsXx2bog2cBvA551mTpWUBvx26lvrwRVL8vqBml1yFq/LG2pmXRaNdXvzAo/SeMTrkmxn1nrrJ1O\nPcBgre4A2eDrzFbt8amCdglXUtl2QGq2EbMxGNf7BcLYLOO2aSxb9y1t811rNyJArwDq0frdLSA1\ntkATNiqyGM6todqm0V7LNIdE2v03nn1la8MXDqTPJyGtH/jCdlq9W8345XeP+sMWkBpboAkbEVnC\nSSRN2izss/e0g0G00vpBhwNZO6d2TmgBFeHvN1o70GUlOVrSnCk9wEDVfb+gn2EEaSrOAJsDdg21\nZn06nMgyN/vu03af0eoznnSW0dmNJHrYdwff3Hi/IAs766bsgdDbvLChR5ax6SBvq6pab3sSlfJN\nvLYfahaY5DjpEQaMb7PDtyecRiehGFlWL2xmbIQg2o1QB10XHSit1VlxLFlkYflaeGkHie6n2vFl\nvcJ9fDZbQGpsgSZ0isAcPqFnPaZZDMRbncHJwEqyHXXieZR81iCfVH7WtP2CFXKt3rm9nuall/K1\n4LOrW2zZ2mPb6v30AFtAamyBJnQKHTCadVbup8q7FdDK6G6h34GdhFot2+phQG7bkHqnObCsgLYb\ni7YDa6PrdFljj7AFpMYWaEISLCtIG0i+fL5ZXHdiu8/ZRlC7+gX7HH1G9rSwiXbYWSuBp+uxntB9\nwxeGktR3OoWPZcp5rfquwbMZ2Pg2MmyUfJJx2a5+yLKmVJhN2m7SWwVJnknftSz57TX7Sca0erTD\nJvsJ3T+04FkPiWBDVtaABW4BqbEFmmDhi5nyBX/61AW7XXerWdq3vdFGsu/1go36hF2AXxBa25Qt\nY6tCLwnrBbPTMX4+b659F0l9uE/o4psbGwVbWPBB8kC0rn85p+13rWZvn/1vIwk9yOaMyQJfnJov\nXswn4La60NPoxfv37W/oY3XWm6zr0GfTyxaQGlugCZ3CF0cF6R60jQ6fx7NXqqEuN80DbmEdGJ0O\nyDWyX6XeG5rNGtJ/OlVxtYCzsGFRSbu6JJXZx+e0BaTGJm+Cb6AlGZV9HSHJgbHRmFs7sEZ3rX5p\nFSmLs8fHJpKEj7WV6rLkmXZjC13vycjHZAVJAj/pmlzX6qt+J1botZo0dN41eE6bXGrApm9Cq3go\nbVjfCEbxfsN6XJMGX5IAss9Tp8nyDO11GbybPaDbPhdheWltEiGVtgxN24j1hq3tTL4+s01/EQ+8\numuNJGOvvubLY69vlEHYTphHqzIElolYBqeFkc/TrZ+vrZ/PeG/zJ7HK9VRVu0GWUJVO4bMRd6Jx\nrG1/jjaZ1PBhkzVBMzi7RXfaUrFu7DD9QpZQkHbKgdWsLC0EJE31tGwly/IpuZYz19Yz0LgXkLa3\n+/GmdnfG2Yh91I+tIPjWad+iLOqPpNGHz5OadG0zoBcMSAsYYWSaqck53+6/9j1owZkkKH1la1Ur\nqS79UHnXQo1uZU6B/gv4LGaGtVsjvlwqZj58OHfuHIcOHWJqaopnnnnGm+app55iamqKI0eO8Oqr\nr7bM+/RX2m/rAAAgAElEQVTTTzMxMcHRo0c5evQo586dS23DOsluy9x8yBpIvFn3nOuV2mfjukJz\n3rIVny1JM79Wg0vK1h5Jy/x8dZHfvf5Ye7+Dx1v1L+217hfSxolAGGP/l1NGuc6ZaRRFPPnkk7zy\nyiuMj4/z8MMPc+LEiZWvpQGcPXuWN954g+npaS5cuMATTzzB+fPnU/MGQcAnP/lJPvnJT2aqxzpJ\nDT2DWRXCGo5rrH6ZkkY6RNqXqTYq2mErWWZzy3x9z1A/R/vssg4Wy/R8glfOW+dIrxfOS5nWG9ov\n+Ews8qw7va9+D7otrb7oZvOtnfMuIpf5sLh48SKTk5McPHiQQqHAyZMnOXPmTFOal19+mcceewyA\nY8eOMTc3x7Vr11rmbedrbuss+KQKaSEo9pDreoBtNqO5ZlpZmUKS7dIeac4Nfd6qtT7Dus9xYdmd\n3U3Y5o/p33tKKrPf7MuiF2YWX1+3fd73fNfejloll/mwmJ2d5cCBAyu/JyYmmJ2dzZTm6tWrqXk/\n97nPceTIEU6dOsXc3FxqGzagnpg0k/lesMy23cy4a41OPHc+G4+1gWph5ov+t4cu01eWvq9d86yv\naQaUZU10P9HvSdAy6V6VKauGpB/7JnZ7ff0QkU88/unLMX/8dHnlsAiCbHVv91u8TzzxBJcuXeLr\nX/869957L7/1W7+Vmn4D+Gds9HoaA0lihhsJNgQkDb5QCV+arGVpdtVunWJW10OfEweGvgbNsWhJ\n91grRt7Pe2R5V92U7ZsM9XOzY8K2NTZ/+wefCis49kiOY4809qb/s88sNl0fHx9nZmZm5ffMzAwT\nExOpaa5cucLExASVSiUx7969e1fOf+ITn+AXf/EXU9uwzjRJGIKPuelzm4nVtVJhNVMSm5dtpxyt\nBGLEavuQfm7QrM7q+2r2Yq9lHTwBbu7Mp9Q3i0dyo8Nn2+tl2Vab0efk3bV6Lz5beH/QjY3voYce\nYnp6msuXL1Mul3nppZc4ceJEU5oTJ07wwgsvAHD+/HnGxsbYt29fat7vf//7K/m/8IUv8OCDD6a2\nYR0Yn909wsdOeq1OrCU6nXmlg9stoCx8TgU538ruqVlZknPCnkuriy/dVkU/J107UWobMDRPXKHK\nkySINXvsvbBexh+mkgX5fJ7Tp0/z6KOPEkURp06d4vDhwzz77LMAPP744xw/fpyzZ88yOTnJ6Ogo\nzz//fGpegE996lN8/etfJwgC7r///pXykhDE7SrTXSIIPktjdoK1tQFtREjb9cJ3SN/a3YaQWJZp\nHQ6+a3JfzRJk0tkKgcdbCb7xEpDM8HTUw2q2HcdPd1yTIAj4ZvxA5vQ/FHynbXvdWmCdbXybNfC4\nU9gZXP6331613us0VdHH9KB5BYX1xKahj99q2JSwO7EknesWmtFZ51In2oPuU+28/9ZIs/FtFqyD\n4LMvUat2rWxatEizkaGdBNoJYdXMtLxJs7tckw6uy/IZwlF50n4PkK7m9+M+dhzY+1tnR1JdtLe+\nt5PZQPB1BN9L0PatNAM5bJb1jM2w4SZZ1+hqQaaZnw0M9gkwG2TrsxelCcUBktEPO3Q72o+d3Nb2\nHfri8zYb1onxafUsyZ5kZ7/NyvQEVshoNUSghZllwr509n8p155P8zCnwceydZ02+zvJAvs8O4nB\n1OWkXctaruTLupyut4jW20LWA2ygtbq+GCZthN8Kg8wKI90mnwFb8mTtvPq56nt12vl9ywp9tqit\nDN1PhellhX539nmlXesV9PjqHQaqbkfQlD425yw2sxpmw1J0+E4aC/A5Oex1XziLoNX5LIzF1lH/\ntnGBgn555W171pppJi3HywJraxX4bLv2/fju26sJrTuUuwhn2ShYB8FnZwsbs2SvbUb4OqvtsDbM\nxJoAWpUveTRa2Q11sHgaxPwgTM8XNrEWQg9WawVryTT1u+vUpud7NklMOqI58ByTxm4ysT7EYGDj\n6xg+mq9fpF2vuNmQpJ76HAztwBcOkwYbdqFjBGUljNTDtxxNI0toRD/CPDSsY0fgCwFJmkw10uqb\nZZuudpFUf3vfLG1Jal//V8kMbHwdw9rvfKxosxvPk4RHUhqrCunzsbmeJjCTHB/WM+xjDrFJK/e0\nqwWyhB21glX3k/IlsVrLlNt1DGTxiFp1XyOLs8J3vVUaW45eraHvbVVo3U/s8+ktBja+nuH95ClM\nE3DatiPn2tlo0zIKEV66o2qGXaH5ucsAy9OI/xKVV7+jpI6fNcxDs8ZOVookOXH0tbT7BupIqq9u\np2XoPoZoy/bBtzTNd99Wji3fdV122vPpHgPB1zE0o9ADdbMJvqyzalo6nyDMwgSz3M8+Ty24RKhZ\noedjifK/ZZ4WWuBYRmmN+NpZgrnWLrQASOpDelLwORbw5MvC8tqtp2Xkvvq20nzS2Hr/7X4DG1/H\nkMFn141uJrQzq+oBZsMLNKuzs7svfav7+DqldUQUaAg/nVcEgwhF3+TU6v52pYA2a0hZuj4Rjf3o\nsu4uYp+LbV+Szc7eV9hemrNB2tWKyWZxGvnep+37WdtiYc/1b+lhmVLfyl4rrIPg8+2/txnhs0um\nwaqxuhzLeuW8j7Gl3c+yKt+g0gNdM29rN9L10A4Qnz3QVw+tbvtCmHSdRCD0oi9olVOfs8/TCkKf\n40gHmGd1mKQhyUmhbamWxVlnx/pjoOp2BJnhBZtJtbXoRRyVVb2059WqoFk6vva85mi8Yss2rI1L\nBJTeD1DfrwZU1W8RVNoOpvcGlHNWeFsPrE9ts/AJzCS0KkcLM6mz3utRAsn1rjna+9tK3U9DFvvo\nxghZScNA1e0amnFsZWRVWa0x2+bz2co0tACz+QMam4YWaFY9K8CySlMARoBRYBgYqp+TDUet8KjW\n8y/Wj9vAPLBQP1816QNVjmWkSW2q0uzh7GTSacd0YJm4PudzOmVhg1btb3W/LNDCfG0CmgfhLB3B\n0vasu7NsZqQxkLS0rfJpQagPzVakDGF/cq1UP/L1NEt1opeHcBTYDuyAYDsN4VdkxT4YAEH9vQVl\nCOpCL5gHbrmjdgeiRaiWIapBrYYThBVVN/3erXNEq+O6Hfb5tCMsktLa83Zi0SqyDcGybFC3SQtG\nLZzSlrC1A59dtb8YqLodQX8W0gYvvx/YnyCJIbSa9S0zsNvya1WzRIPdybNdAG4Au4FdwIH6/3ko\nhbAjgHzOCUDyEOQgzDWXEQRqd/sYwgLkhiEfQa6uEteqUKnCnRrM1WChAktLwDXgLeDtel00g5K6\nynPQqrX+0I4VeO2Gw1i0ymtNELb/6vzaYaevWYG9edc7DwRfR7AhDf2PNF9bZDFEa3aWpe2+waGF\nkRZsIpG0wItxbG03hDGEi1Acg9xuiPZDPAZBAYpKEGvSYs101g8S5hpasJDKgAapHMUJwUoZaiMQ\n7YSlPbC4APM1qN0G5tSz0PGEWpDryslf66SxNtMsdrJ27Ic2vc9eac9pFqjZos9x0cqUYa+tnYor\nGAi+rqFn+80WzpIE6ZxJAt3aNbUjIq1M+3xEuMl9avXfopaWcHa2RZxqOQLcB+HdUBqFHSGMhLCU\ng2oIYeAI1oK5hY2osEQmpPl7QzmcjJVjBzABFPNQyEF1HBbvhXdq8P0aLEdQnga+CdwByvUbiE2x\nXG+Dhm6zaApSmbjeXp8drlNksQ1qFmjDk/QsoWMoffWSB+y7n+9aO3bL3mB5C4SzrIO08RmMtxI0\nm027bsNDauacL6REBo7+qlkeJ+x2Azvr55ZwDoY9ED4I2x6C3Q/C7n2wbQfkRqA8BHeKTvBVgob/\nQXwbRVaTE+vgtB+Ds9Ei1XpV7tSrcyuASh6KRdg3BD84DD89Cj81AT92BPY+DOFRCPbX2yQCcBQn\nuLWdUR/2C3w+9tePyVWbaJIiFXQoT7foVqXvDbr5yhrAuXPnOHToEFNTUzzzzDPeNE899RRTU1Mc\nOXKEV199NXPeP/3TPyUMQ957773UNmyAHZg3n40jHVlUq6R4Pus1tCqN0Cs9mAo4djdWTzcHwTKE\nZYj3Qf7DsK0EI/VXvUzD2SrsTrM27fCtsjq8zpoWUVUJ1bkajqyJw1eu1X0m7Aa2BzAawPJeuF3/\nLuriHai+DtWrUL0DsdjCROWtqkMEgf34vATHi43QmhZ6NdnKu0oLUemlHa+Xde8c3ai6URTx5JNP\n8sorrzA+Ps7DDz/MiRMnVr6WBnD27FneeOMNpqenuXDhAk888QTnz59vmXdmZoYvfvGL3HfffS3r\nsUE+NmSNxZsBlt5kSdvKbgPulfjO5dW1GCfshmm8wuv13/fD6A4YG4LyXVAtOVX2Jo3QQK1JShMi\nnIYoy3dhtdNYqlvFCTURZlIlrfLKNW1qFM18gYZaPYojcqPAjwMfHoKb98PMXvjPCiy8DVwxFY9o\nhMnolT9VklVcya/jE3thH7Oqpvy2dkcbppQEG3ztQ9bYTj2B9o4pdhPHd/HiRSYnJzl48CAAJ0+e\n5MyZM02C7+WXX+axxx4D4NixY8zNzXHt2jUuXbqUmveTn/wkf/zHf8wv/dIvtazHOgo+TRPW5kPI\nnSHNWZFVSCc5MqxKC6tVJlFtRYLo3/W/QVj3qO4APgClu6C0vVG0CLRqPYveR1ITS3kNdiVhmhZn\n46N1PLAIVmGHEjIocqtc/72zXqd7gaE83LkLxu6CKIa3S3B7CZYXoLJM8yQpjRImqJ+pz6Si7YGa\nXfsmIzznk5B0Hz3Z2TXJaWW1uq+vfkl1zupAy45u4vhmZ2c5cODAyu+JiQkuXLjQMs3s7CxXr15N\nzHvmzBkmJib44R/+4Uz1WOe1uhsdPpWzE/gGmJY0+l6SVux3dt+8EeBunMH/OjAKuTHYeRSG9gLb\noFxw0SJSrES1aMEmMkM31fpQfGRFp5FrPgEp14VBCqMUmV2ioY3O01CJt+FU4R8EpgL49t3w6ih8\n/xpcfxtHXcHpzOL4EKanVz5YFiaNtXGjdrWEnOvWKeJzOvgcH51A8lrBZ0lEfxwfaaru5S+/yZtf\nfjPxehBkIwvtfIt3cXGRP/iDP+CLX/xi5vzryPj0y9mIbC+JpWm0U2/f7Bx4Dq0Xal0yh9MHSziP\nQQ64F0a3w8huyI1DrW7n0+RCa31iDrN+FVtFuyBB91V5JNb3YmWFj3hY/4PV2ORcEccCdwPBEBSH\n4HIMbxbg2jDcEe+v0MoyDfqo1V8tufWkIhXQN7YN7tWk52OD3fb3NMdZ1rSdI03wHXjkgxx45IMr\nv7/6mf+n6fr4+DgzMzMrv2dmZpiYmEhNc+XKFSYmJqhUKt683/nOd7h8+TJHjhxZSf9jP/ZjXLx4\nkb1793rruY4bkW50J4cOpE3qUJ10Kj2g5D6huiaGMQkZkIE5ggs2XgJeAw4CPwp7tsPYCFzLuwUT\n1LNuV9VfxLEp7TcRQolKJz4DW11RWX17G9hYXfkrY0M3TZot7E8cIOCEnRCz6/X6RsBe4EPAd3fB\na9vgK2Nw5x2c3Q8cRVyqH4uqQLmBnQXkf90gn7dXs+xO3rMOPekvA3NYO2/vchff3HjooYeYnp7m\n8uXL7N+/n5deeokXX3yxKc2JEyc4ffo0J0+e5Pz584yNjbFv3z727NnjzXv48GHeeuutlfz3338/\n//qv/8ru3bsT67FBFt35pv6tAJ9TQ/9vnTkBTgLIaxHj2DacNLsOQQHCIzC83zG9qAjvFdx4kkiP\nGCcHtHlJNGZhfT6IUNO/ta1en7dN9F2T33JPCdHT+yKAk1Hz9f9r9aaWcc4PiVa5K4QfLUBhO3wz\nhG+W4M4cTvUVXV4KraiCKqqimnFpHV0bNfX78en/WsDofuu7R6/ZVpqTbO3QjY0vn89z+vRpHn30\nUaIo4tSpUxw+fJhnn30WgMcff5zjx49z9uxZJicnGR0d5fnnn0/Na5FFnQ7idpTpHiAInvac1R+1\n2Sj2Px2X0ekjSvOq+bwGORyzE72xiPPU7gLyEF6G8C7I/zcY2+lUwXdwMXJD6ljEsT+pelE1p4IT\nKj4yZAWYVXntRs528UhgronQ0unkd6ler5LKO1Rv/nYaoXvD9eM+XHvngH8D/g9gdhaW31A3uIOT\noPM0pPsSDRaogxF1FIEIylYs39oIfP02bWbpFvp+nQ/bOH6647xBEPAb8R9nTv+54HfbstetFTYI\n49uI8BmQuylHYONDBLLUQdv4tuGkwC3I12D7D0JhHOJhV+z1etId9SIinBAUsiPjQ5wMOtwNVgco\nW9imJ30CWaB3s7IkSuRCqM4JC5SAaWhePaKF6rv19LuAo7ie+//tgq/+ANTewknEURrMT3Rl6onl\nASQ5HaRhonFYg6W1B0oDfbMG6px92K1UUp3PvoAsoS79x2DJWlfQlvHYc07/Xg/0YpZKKkMLPm3X\nk0FbwtGduuGrGMDQCIzcD/l7G+EpZRqLGeS3BAuLyiuCzsb4att/luZaNVjgW5WVpu3pVyx2xZz5\nLfeSWO0cjsEGOMF3b/0vI/DWCFwrw41lGi7jWv3/RZrjavQ3RjSltfY/2zj9v3WSSJ52fneKjeEI\nHOzH1zFsyIAVdJstmLkbSGCdXoK2DdiHs+m9CWMPwo4pKO9saG6STNhcmebPskqQsV68ILcQx2cr\np7WGdjhbud0qrdYw7XXpBhKiB41Y5DvqERXq7bmGi+bZH8PPBO4xfWEvfHkEp/fP46SixO9Uaaad\n2ntTVtetXdlnuEzS+62Qs327nX7cL/tg7zDYj68rWDc/+Gfd9YZlod1ASw2t0grTy+MG7RBwG4o5\nKB2A0gSEextjScL7YLVA0ec0ofExu3abpIWd/t9n49OROHr8Wxlh/Q32qOBUX5kfdLjLnhrBnhrx\nu0VYGoM3KvBujoZkj3Csb0lVVPe1JMGkdXPtCElKb/uIz8Pjc5r4BFwvBV5/nCEDVbdjpLn1N4pz\nA5oHS7cdRxu5ZCANqXPgRvR+3Ej/Dxg+BLt/GmoFd6qisknAryBPIzzE2u61Pb/bZliHqHZk+ISh\n5AlMHj0erd1PBLnEFs/TvHjlFnAlIDgQEXywDD9XIL47D//7Xnh3GLffn+yJ9R4NfVpsf7pyNuhX\n2wKksSJAfHY320fsA/LZFXWoSz8hdes2GLsZ5S7CWTYKNhhn1cbijYJezZa6HG3TkyVoYzjj/E0I\nAggehPwBKA070hLRGPjSjzUh0Z+7EMGhWV+v+r7IgCSPrk4jTdUM1VeWZooiDyoqT4gT6PM0tr1a\ngvhWCG8XKOwuk/vxJcqzQ0SFEnxrBG7LgxrFNXyx/nuIhhdXbH/6ofrYn66wZX4+RpXlQad5/HuF\nXr74BgY2vp7Ces02grrba1uLlCdCL6/+34eL25iGcAzyD0FhtHmcFXGPRbank306dfCxNi359vDs\nFNYXo3dnSbNQaN+Cz6HtE5rSHlmcIc6bxfr/IrtuhcSEFA7PUzywSO1OjpiQ2lujsBhAdREn+IQO\nV+qZQxrfGNGxfHaZm+2Hlvm1Cn9pBe0o6YdNrz+2woGNr2OkzXZavdhIzK8b6LbISBa3awlnsJKB\neS+M7oL9eXfqNu4tjdIYm3osyneCdP+WdL0gEprdQTN7k7EvrE6gd4kX6Bg+a+qUOmsbpnQPUell\nbW8ZZ7ITz/YyLF8foZbPMXxwnqGfgjtvjhDlq/CdW1Ar4YSdDl6UysoGB9oeIBWt0rAtFGhe6+sz\ncuoHpv+mwcYF9hr9YZUDG19XSJrlNPOz5yXfZoK1/stAko/8jAJ3AfOQq8LQPti5B7blG9s3ycIE\nUXl1XxZWpyM0ehVDK9XVgk9+a63dCjr9W/+1qrGWH7oraBOcsD+ZJ0TQL7ES+li9WSQuhYwcuEP4\n4YjCR0ZgKU90pQTLRajpmUMHM4uRVPRrEW7ildUV1OEsvgcljdCCMEl11i/KqtI6XS/QezY5EHwd\nI825kZReW7w3C2zchgg9sfHlccsR7gG+DaV5uO9+KOyAd0KXfAfN2pUUqdfVigzV6m4vq693WbYC\nUG9cqvMJC9TXajQLPV1WQPN8EHvySruqOAdHDmcdmIf4ZsDSXUMU7lpi6PhtwvkiixfuJZ6bh8VF\nXFxkgPvQkiwd0Y4IqbSuvLaR6Yr5HHC+Pm3ZoLZDWDXUeoN6wQTbHWfZMLDxdYRWXlKfIQjP77VE\npzOxpTqi4gY49UvizW5BcRSGt0FxOwTFhkYmWpo4JqHZiaFVwm4Enu9xW6Kq/xfZoDcztfY/7QCx\n1y0D9DFB6zjRDFdU4AWgCPFyQPnWELlSxLZ7bxI+CIs/vQu+UYHpMo1YyaV6YdozJO9UYv/kOjRW\nfFjPrUCHsPhorNX35Xxs0lmHSRrsPdL65MDG58M6fV4yTRfT+pE+t94qbid7tGkWAY3FqTGOqkwA\nNyCYhpEfhJEPwEK+sWRXGJDsrCJjcYnVwcBa5W1Xu/E9clgd9aGFnN6qnnp99NIzLQz153ztut3Q\npPWRZJFRIvCknVWcDXQE4iik+t4QtVyZ0dEFgskcN/7HGMp5mJYPohdwD0+cGyL4ZEVHkQZt1uti\n9Vo9/ZB8fVjeeZZr1jkiEehpfV0/IMm7th8bGoSzdASf8LDGYR0isBGEHnSmesjAsjsoF2iswF+G\nYBvsHIaxomMwEW5VhsTfihqoY/GkKiIMZEy1y/p8BFt+i+DRX1DT16wtT0iRT8BpoaavJTFLLXD1\ndZFD8mjF+7sE8VBAtZpnPtpGbleF/Ue+x82vbePOv43Ae9X6GuAdNGwFMoAXVMWh2a6gVVzrJEhz\nHCQxRA1tP0jrX9aZInUkJU//MFB1O4LPDmJtIbDa/rKe6CYsQNoggk/Wmo0CAQQjkL8Ltg87564s\n0B+u/79Y/79Iw7mhqyUERUdltAMfudbCRsfh+VibVUetpzepfGs3zJvr1hYov63w157eCKq1Arcq\nO9i97V3Gd71J7dD93PnQbnjtdv3Zyjo/WQ+nV3oI7IeLrDPCOtrSTDOt+o3OG5nz+j7ala4NnmuP\ngarbNaQ3C823es9GEHqdwNIb2Vg0rP8dr5+bgW27YGwCGHUDU8LMhMUN01BlZXzKWJQ4XD0W2iWm\nOnLICjk5LzIbmtmf9gnkTZ4kZmdtfK0Yn89pIs9D5pQqKyvTosU8Sze2UeMmxbEy+R+O4L8P4GYJ\nrom6K98Zllg+bduDZp3aR1mt+ivsziLJuSHpk/q27fvtjgFdp94LyIFXtyeQadx3fjMKPQ0tTcRg\nNwLswQ2sK07w7dvd2GhAPicrHtsSzZ951ERC2/k0A4rVuTQE5hDmpQVRkpDT9r4kddiywiSnhk5v\nzaLW4SH30O2U7a3KEC+GVBdKVEeLRISU7l9iR+Umi18dovJ6CZYCqBVx230JRS7SPGtI7IxIVv3A\nfCqvfpitHrh2zdsX1Au7dv/HzUDwdQ1hemmz32aE7tAi8ETF3UGDQu2C0WG3vfq7OHVtuJ5NtmGS\nXUkkli2gsbuyVm91wHKgzicJPy2MciqfHs96WyibXqJydLibFp66TGgIzCQHhi1DCz6f2i0yRMct\nymc3YlhiiBvsZsf2G+zcP8el+x7gvf13wWwMi0X37InrD1O2+RfHRwG/Oik3ksqgKpFmrvHZtANz\nTT+EbiB16MY8k46B4OsavhdjX9hmZX4imWQr+RyOZdRXaRRyMHQ3DO1ojDUhGzbeTRcnDAcaS9Z8\nZqckaMGSpGJap0Zo/urv52qbXo5m4ST3C1QeHQaXxPx8TNTaBUXwyYQAjcUWNShHReYqY+zM32TX\njht8/wcn4HIAN2JYykGYd8wv1pu/6klYBzT7jIs+m16O7AKnnX7tu5cVsjZt/5weyysTxebFBlB1\nLay+tlntfNAIlBWqs6N+VKA0BHfvh2J+9e4jElmhhZmc18wuz2o1WDNAH0Sg6fEheSUcRQs5H5uz\ndj6t+ibZ+CSNrruMXZ9g03Y+eZSazMj/euNSEXyxE3y3FnfAcMy2oXnyP1KFdwL499Bt1pwPICpA\ndZiGd6hMw6FRNTe1y2MspPHtGFl99j8fLIVPEnoarcLGOsdWYHxZnuAaQDs5oNGJdEdYX09WZxAq\nJ4cE570NI++4Hai2hW68FeuXZVyVaPRd2YtOHouQSCsYfSwpSU0UgiKhhdqBoR+7NEFir8VPIzvl\nayFYUOflmt6HQV/X5yyz1AJT7qctBtYOCc3OnQrElZBqlKNSKxLlA/Z84C3umZqlOFaGUlB/DkUa\nn+yUiurVG/JbP2RLee3E7Jus7QvR15LU4XbRq3JaIyKX+fDh3LlzHDp0iKmpKZ555hlvmqeeeoqp\nqSmOHDnCq6++2jLv7//+73PkyBF+5Ed+hJ/92Z9t+gylDxtE8NkZTc+00PxS1z5uqXOIjicjfqT+\n+wYMz8G+mjP7SUjZMI1mylgUwVdSReprvjHlE3zacQGNMawFn9bU5DFrgeYTXlrwST3l0Gm0ENTn\nbRn2kDJtOVo4QmNOrIe3xBWIayHluEglX+Due95i/APfo3TXsnsNIRCUcIJPaK7cRDdcCyot/LSQ\nDDxp9G+dz6fB9KJfa1W8v6iSy3xYRFHEk08+yblz53jttdd48cUXef3115vSnD17ljfeeIPp6Wme\ne+45nnjiiZZ5f/d3f5dvfOMbfP3rX+eXf/mX+cxnPpPahg2o6m5kaCaa1sF0Z4fGh24LuIH2YYhz\nUCs0dl6RsSfCqUBjxYbPBgYN7UtUXj1n+ByG8rYlnQ5B0XY4K8zsig1tF7Rqrz6n62s9vtaREZq0\n8pi1bTA2Zek2QJOTI4hiwrDGUjDEPKPs5W2K26pc/oEpeBv4NhAHztYa1d/Fyswjn6Rs5XCQmUdm\nIR1bJA89VP+3G/Iiv9uBZn39cm50LjYuXrzI5OQkBw8eBODkyZOcOXOm6TORL7/8Mo899hgAx44d\nY25ujmvXrnHp0qXEvNu3b1/Jf+fOHe66667UemxAwZcU7R6Yv+sBnwpur1t1HZzg2wHkISxAaX9j\nm1XUciYAACAASURBVCURfEIuivhDGmNWCw1t+6ua3zYW1joitcoowkRUan3NCiy9U74mSZZZ+uyD\nlqVZZoq6BzSEvsgVLdh1na1sqUIQQRjWWA6KLDDKKPMUt0fkf6gCM8DrQBBAIYTlHG4HF9n4L69u\noL240i/1zGJnIyuorP3Aqrn2nK9/JY0JXx3SJuXejJ1ubHyzs7McOHBg5ffExAQXLlxomWZ2dpar\nV6+m5v293/s9/vqv/5qRkRHOnz+fWo8NKvha7XKxXpAZ3texZDT6Zuhh3A7LOShV4Z68+0C2DGRx\nLEpSCcuA1WxHqiHX5JbSF2WsauhxKdVMM2fpEDZr2tJbCaLKlTJ0uTpSwwpaOW81P0kLzf4FraJb\ndV4L5RVPt2N81aDAEkPu8liV4MdiuAR8sZ53JIAoD1Vxp0tDAvUgrecoK/SD1255+Z1mk4vN/zat\nDqPRVDlN3e2NozBN8JW//M+Uv5wsdLJ87Bvo6Fu8n/3sZ/nsZz/LH/3RH/Gbv/mbKx8i92GdBJ+d\nnZJmMpunn9DSJe1evlAGXwiOGunBEE7VvQOF23D33bBrqGHjEseibC8f09h9uETz7ix5nFCUfu5z\ncFgPqc/EZB0fWl3VjhD5X++SL73Gqrq+VR2YMn2Mz5rIrD9B91I9znV5+p4xUAuo1UJqhCuG9sJw\nhbvue4ul8SFujuwiJqibGESiR6oR9oZyTu8Eoe3S0lDrdbX93Gouvr5v+5el/j5otaCVGaY7LJdT\nNin4qY9Q+KmPNH5/5n9rujw+Pt7keJiZmWFiYiI1zZUrV5iYmKBSqbTMC/Cxj32M48ePp7ZhnWiU\n7vGwlobZZAjTzBqDpXVAya/tM+IByDnBF9Y/f1i4BLsWXPysbKMuu6PLYM6p/2XJmqinQka04NOE\nBBrCQjyiUmbelK/VRS1kSjTWB2svrmZzhXrdR+qH3AdPOTq/dlJoZ4l2iMh16x3WITM+O6TqzbWa\n27CgFoXEBJQpkitUuX/PG+zfM0O4I3J1ywcQSGN0I9NmBXtYfV5XylSsCUnl2dlDXpRVia0TcG3M\nQFE1n/mweOihh5ienuby5cuUy2VeeuklTpw40ZTmxIkTvPDCCwCcP3+esbEx9u3bl5p3enp6Jf+Z\nM2c4evRoahvWifFpmm7tJRqt2Fc/ISqNr9PaDmiv6Q5dgDAPuQCqgRtou3Ga7xwNAbFMM6vTTMen\nIlonhqi8sTmn2Z0IDu3cyNEsKAs0CxjfOM6ZckOT1jI8zdJ8Kz6syuqruyVNWi5ooVh3DMVhSFTN\nQQ1CapQpEgQx9wZXuTm6i+m9NaIb1L85Hrj3U8s5p9OKkTGm+fu8tr+K/Q9Wh1vZPqLZoU+7kHO+\nclppIFk0FUnbfUhYVO3cxpfP5zl9+jSPPvooURRx6tQpDh8+zLPPPgvA448/zvHjxzl79iyTk5OM\njo6uqKxJeQE+/elP8+1vf5tcLscDDzzA5z//+dR6BHEnynQXCIKn1S/p1dpyvZ6CTu+HllYny/Ts\ngnWJ2RsD9kBxEoofgOVp2DsPvzgFYzthFqcB78IJwUXcAF4GbtIQDjdxQc4hTs2dV7es0Ni8wB5a\nWAqDkqZZB4YOU7FsUMftiWDUDk0RQja/Jk3yeIoqv9YQfU4OnV+TcaswSP1K9ce+HdgVwe4Ke3e+\nxf7tVznIZfZzld28x7e+eISzn/8lli+X3Jco54GlCCpLUJvHbfJXX/zLEo297mVTUr1GTn/D164d\nFNQ8aWzf0tetVzgw5diypd+GCfdvRhw/nXo9DUEQULx+M3P68p6dHdnr+o11dm6kGXi12rhewjAr\n7AyovQPDkC9AMYTKvbiBMtwQFDqQVz6pKAJH70AiTg7N3Cxr0sTC2r0tU9MsKWeu23g7a7ND5S+q\nfElaoe5lck2TKp/gs44RaZd1bmihrUg2YQC1kFxcI0eVKjlqhGzjDiPb5uG+2H1y9xqNVTJRWA9r\nGWIlIHDlRbTqg9rWIA3wRSZohrhikFQPxzI3m6YVfA6U3qJa6ZzxbRRsAMGX5ua3BuG1gs+Y7Ktf\nmnohI3rIqbqFEApjkI8hCBr2O1mh4QsTkWJEEIm2pd+aFRY22kLSWNueZmraq6vtc8LOfI4QK/h0\nGl84jHW26JAVbcKSQ8as3Ms3D0q9tQqu7x0H5KiRp0pcf0gjLDC0bYngvhi+S4P9EsCibrx4l3xe\nGd/7t2prTf2vJbXOG5s0VnDKXztOfM40/b9miCSk6xy1aAMGg7SJDdgCUR19Bt21hDYsgV/w2fO+\nMuojMsAJutGgMTi30RAAQjTki4biOBMzk16ZIOxPNBzUNe10lOppm6AVYDoERausck/5ypuokpZx\nUc+nr1lGKcJbrz+2rDU016BZKMqz8LFOzSJX1PEYcjXCICKvFlEVKVPYXoWDuP0ipG5BAKGeBbSB\nUhtFQ5zaa3d/9bE7aSAmnb6WxAq1zQJVBqzeiicrA+uR9tSFjW+jYIMJPp/h12et7wesPUXP3r56\n6jRJ5YlEqAu+bTiznwxYWTqlBZ2wHNkirkqD8ehx4PMP+WziVg3W41ePcS0YbchKweTRQjLPataF\nKlteoQhYn+CTcq1Z1UeE9CO3Thd1BPmYIBcRhDVcUItjfkXK5EcrBOMR7Kiz75WVadqOII2JaXZs\n6MZbCmqZXZKTQrM93SidXo8Dm1YzTzsmfH3TstEusbTBxEYH2EAt0E4CDT3atfuv1/DNnO3Mpjaf\nVpvy7tQOnEdXGFbBk1V/1CuisZBAr4jSt7GflLRqsB0XWu2141gzQ2FoWpiJ19mGyWj1WcxjAQ01\nGFW2wGdvtLZJLfBQ56Q9UmdZyyvlFmKCQo2wEBGGtXrSiDwVCpTJjZThngpsjyCXb9gEQylcpLkw\nLwtrq/NVLqttTfqY0HWB/SCRFmj6YVno2cPWNylPm6i2TrLRsYEEnyCp1/tGcT+RFs6ikTTjwoqU\niHINlVHUW6sKQkN1FXu6FghawORYPXELc9LCMTCHZmjaoaH/12zPkhwRhjp+Vc6LoBNWpwWflGM9\ntlaA+eYYn9quu0JAs7peiqEQERaqFItl8rkqOZy6W6BCiWWGCosM71ygMjxMNcybV6jfpVZNrQdG\nU1ut81szjSzBsYzLZ7fTDfapwZrm+9LpMi17TFsl0iYGgq8f0KMiKX6h30iKtfLB1k3P2nU9Mco1\ntp6SDQlEiGitSNiUnrS1rU1rUdZZoCMhrC3MMjmtnlqVVwdI6/Euu8eIgNFb1+l1xsK8ApVW31/g\nM99a/0Fkzkk+S/zFtpcHhuqCr1ihUKqQz1XJ444CVYZYYqSwwEhugcXSdqrhUAKxs4JJN0JmAkmn\n3dq24rJ7hJ1AbRiUngW0mcdXp5w559OUYvN/D0NKBoKvH7C2kR6+sMzQjNMn9GznrHnyCBUagmre\nCYocja9KDrE6jEv+ylFQ/0voV0jzJ2FFmGmPro8ladueJTBWOGkhqNXdqrrfsCpT0toNC/SuTto7\nC83yw84xeg7RmiCqLlr4qXoGRafi5vNVCvkyxbBMgUpd+DnGNxwsMhre4VZuN4tS5xhn71uBlugh\nLsjSSkcrBFtBC0V9zoaztIL1GMtDTFJj5UH1iPVVWifZ6Niggk9TFmvgXSvWZ1WTNGOxjiGxqm4R\narmGGquXZmkjvkDW7GoGpz/qFdMc3ydV8QX46v+1ai1jxTJB7em1S8xk3BjTpW7mqr31RG5ImlaC\nTz82uZ9mueKBtVpnASjEzrZXisgVqxQKZYq5MkXKlFhe+TvEkjuCZfK5arM5oalr2Qr6TC3WlmBh\nNQafqirn5Z42fMUHa+jVD8sH+xC7xNp+v7wv2ICCTyAvS389WkbsWsF21FZp7QdfTce3trRC49JK\n35XzNVWkFhryvzbliD3NLjX2sTr9O8mRoYOqdT1jGja+IVVPyxK1h1XuoVVn3Wbf/CLCDZUH9Vva\nrdtSiAmKVXKlMqXhJYYKTsiVWKoLvEWG60eRMiERQRA3P5OW0DNGK2QxlSRFDHSybn0Nx8ZA1e0W\nWl1MCxuR/wP1dz1h6+pjpMrdGsSQC5qFjbA/rYHI7ixV9Vt2ZxZZKuxPCz5tUrKr57TQk7FhD71Z\ngBZgmu3JOWGsWs3UAjPPauanHTNW0GjZIGxQM0UrlJoEXwy5Wl3o1cgPlSkOLVMqLFPKOZY3xDLD\nLDLCAqPxAqO1eYpBhSjMExM2P5NV3cralbXdQOvf+rrVBOS8ZnVa8lvYfmT/JglE6/21ZfbQubHU\nm2LWExtA8FlXpKD3S23aR9IsaoNKrSchwBlClt3fXAT5sFlNE5ali4vrWcS2JeEsWsjZiATtzU1y\naGjGpdmmtc/JbiryWkQdF9veCA1mKHJdzoWecsEvgLUnWKuz0lbN+LTgC3DCTtqZiyAfEeRqhPmI\nwtAypZITeqVgmaLY9FhklAVG43m2V+YphBXKhSJVqaRX8ElFNbTgkzWG9lqSMNN2PDmXJoistBdB\nm5RHzx4+p0gP9dMB4+sWWWaitJms13XJ4sXFpEnr6MvALcgVoFhQA5bmJWraRCibgYhDsEzDqyv5\nNOkVxufzr1iGpYWOFVLa7KTHiY7bsx8XyplzogZboetTs6XteqWJ3DsH5GLHlFfOuwYHhQiCGnEc\nEORqBIUquVxEvlClVFhmKLfEULC0Ys8Ttred22yP5iktVKnFBW4VdrJcLjU/oyaIsBFhoh98En3V\n561gs/9rE4q16+nK2CBoPR6Syrfo8dgZCL5ukcXYKp2j3xZVbVDLIvha2XlqOJ3gJuRGobRttR1P\nBwfLWJEVG8L2RPXV3lut9ehgZxEqWluSw9rctFpqx63MRSKE9N58Nr8cwhCHVHt8Kquyya2cF6zE\n/MX1o24mAKjlXPUKFafe1kLCsEauUHUe3EJlRcUtKfVWju3cZlt0h+JiRFQpcjvcwfJSafVzWoGu\nsDTSt7W1doDIOaHg8lv+Wuqu08pL1zZEKxCtKp0Uw9dnDATfWkDrgfI7i+Dp1X11Z/MtnbBC0uqt\n16G4E0bucpdkJYb9sJfI9pH6/8s0YufkVnZMBDRUTkljPaA5lVauWzueZlqy+kIzNWi2SVq7Ycjq\njUi1I0cLFmFz+cgJtxjnZAhicrmIIIyJaq7gQAu+uEoQQK5QcefrjC/M1SjkKxTyZQphmaK26THP\nNu6wg1vs4gY7uEWeqtuM4HbefVhcJhr9faEmK4s8zNBz0dr7tANOHrplb2mqatKkm2YSsqxR6tzH\ncTIIZ1kLWDovnbCXZfsMyL57xeYI1F9fmWXgPSjc29hsVD4erndlGYqdKqfXngub0+xLV0ELMusc\nkHzWQ6xtfHbZGqxWWaFZyGkV16qtNlhZe69zyi4Xxu53ztnmCGKCMHZrauuCL6i5Zx6EjXcf4NKF\nYc0dQc39DmoU6/F6RZYpUV5RcUeZZzu32clNdsfvsZOb5HIRLAXw/RwsBM1ror2sTx6eflDW1CEP\nQws7XxowUtXcC5IFm0991mla2f4Ar1DtAINwls0MbXC2HgA7c+JJZ+00GtpaPwfhghszN4F3cf8P\n4QZboQbDNaiGUKl3fmEgvg1G9diyQkk6pHiDtQorAksHMQu0rU6PkZJKLzKgRDMj1AJUBKpeoxvU\n2d2KfbOhwgZhTL5QgTB2l4O6YMtHhDkn4OI4IK4FK79rtdAJu1yZMHDvZihwsXkuQHlJOTTmHduL\nb7A3epvd8XXCoQq1CnAFWKDxYTWxNYrZYKVxskTFBiGKEbZmM5o+4LPRBZ5zAs3qsjA2n51c30fX\nIcn50iYGqu56QQskn+DJgiSBpa/5DMmB+R/Pb0EFuA21ZffvHdzuwLASdxfkagSlKnG5QCzCqkbD\nqSEqsHZg+I6Q1U4Oq2LqJWqa9WmV2xdrGHrS63yiodn4PZzQcw6J+hOqs7o4DgjzEblC1W0kUH+s\nQQC5fEQuF60IvlocUgzL5IKIai1PQEwxXCYM3HtxMXpL5IgYqsfsjTLPTm4yxhxj8Rw77tyhUI24\nMzTKfHWY+FrgGPgQzRsiixc7ltlALzmzrA6a6Tc0P3DwT442rZQj97Gs0E7SaY4Nex87U/ZA8G2B\ncJZ+G8r6BNEDbVBbu0jrDFq3s49J23Pw1EHqVwYWoVJxKu679SOOIe/SB7kaYalCUKw1r+oQZiWb\nlcp+fXIIQ7MxeDLm9O4pett4EXDDNK8bRp2XvDJe9MeA7FTp8xQHOKZXiAiKTvAF+arzwBYr5Ivl\nFadEvhBRKFYplioUilV3vlAll6+SC6vkclXyuSrF0C01G8otuRi9oEwBtxxNYvVkVcYwS2znNrt5\nj928x1h0k5HrZWrXC7wT3MWNaIzaO4F7PaPq9RZ0+8QeoZmTtiek2eOS4ohCk87XxwJzToSXpqRp\n0HXVAtPaNbpAtY3Dg3PnznHo0CGmpqZ45plnvGmeeuoppqamOHLkCK+++mrLvL/zO7/D4cOHOXLk\nCL/yK7/CzZvp2+NvMsHnUxV6BekkviNJsFomaOsWA1VYqsFcBIuzUPsOhLch71hOLh9RLFUIR8oE\noxXYVoXRqCFsZF2v/l+Ylt40QH+RTAca66BkOwaFyck4g8bqEC0AfSarnCq/SajGrm0FEXg1grBG\nrhBRKFbI5yPyhYjS8DKloWWKhTKFXMXZ6HJlSrkyhaBCgWp9N5UyQ8ESBaqEaoeVIhWGWGKUBUos\nU6DcZNfbxQ328RZ38w67ajco3imzcGuU/6p9iJnyAWpzoZMlQ/XXZDdRWeU0sLS5FcRwqNceai3F\nCqcklqcNv750ms1Zmh+aA0/+DtCF4IuiiCeffJJz587x2muv8eKLL/L66683pTl79ixvvPEG09PT\nPPfcczzxxBMt8/78z/883/rWt/jGN77Bhz70If7wD/8wtQmbTNXVRt5eW1izlJnkOdN1syEGNfch\nm6UyzrB0C8JhCNx3I8NcRKFUJopCagEQh8RxDu6ErCyar8dBr/TZZXVbIb3W6SgmKe2fkWBnu5JC\nkwu9ptiOJdT/wjK1Pa9QZ7Jhzam0hYgw5+x1ubzbOAAgCGMKBbdzSoDbJDRnBqQ7FyFfxhUUKSO7\nKReouB2VqVCgwjALbONOne3d4B6ucXf8DruqNyjNl3m7vI/Xo8NcLt9H7VbOCfdhGoJvlTdXv2dt\nJPVRGR/j10ba5tY1p7WTq52E00JWklig75yvLh2gCxvfxYsXmZyc5ODBgwCcPHmSM2fOrHwtDeDl\nl1/mscceA+DYsWPMzc1x7do1Ll26lJj3537u51byHzt2jL/7u79LrccmE3y+TmKvZVEH0qBVGnuf\nLPfXNhVJdwN40/2u7IT3huBWDsKAXL5GIV+mHBYIwjxhWCEeiqkN5YkLgStqkYawi2neNKSibimC\nTYShXh0BzTY4u4pkiGb2V8Vv3/OtwQ2BXExYqhIUq3XHRY0gVyOXr1IoVCnknKCLCSCIyYfVurCL\nyRO5MBMgIG46QmoE9QaExCs7rQT1/0ssE1KjQIXt3GGMuTrje497uMbuhZuMzpXJRxG3cjv4j/hB\nvlt7gKiWayyu0Ru5rnqfekLTX0nTklLH4WkNQHuBfWX6NAbr3CjQLAi7iWrQdeoCXYSzzM7OcuDA\ngZXfExMTXLhwoWWa2dlZrl692jIvwF/+5V/y0Y9+NLUem0jwSefxBYZCsqu/3XvoQ8pNur++poWe\nvhbivh35JoS7INoD7wzBjRB2QZBznsxcPiJfqxLmImpVKA/TIKB6fSw0GGCME1jC1Gq4cVKupxHh\nJvZ5vQGpdWzYAGVpVsjq9bgFoBi7Q5UTFCJypbLLGrq4vHy+SqFYoRBWKAQVavXnmK+zuYCYfF2t\nFch5LfzkfInlFSHp1uIuOmcHFXZwizHm2MlN9tSus7f6Ljtu3aE0VyXOw0I4wuW5+7l2+15qYdhg\nevKcm+Y0rQHoB+xjYWkqqFaVdXmSV//2OUD0BCp5LGOE1X3f3qOH6ELZCpq2/kpGp5+k/OxnP0ux\nWORjH/tYarpNIvg0i/PtTqkFTafQTK9mfqeosU06IjQe6bL6fROCCPL7oHYvXC3BODAGtSAkivMr\nxv2YgEotpDJcIy6HjU0KJJBZqrFQP8QWd7teBRtIrB+V/t86QISwaEGoTVoSprLy/doIhiKCnHse\ncRwQ5J2HNghr5HI18oUqhXyFfFAlF0R1IecYXK6uwroPAbmNQuVLaKLKitDLERETEBA3CT5n07tD\njogSZXZwk128x17e4Z7lt7n79g1K1ytwC2q7oRLlWPzWNpYvDROPBA1tVKC3/2pi8LH6LQ9Ph7dA\ns6DT0N5YzRC1QNTmG+0484XD6EnZhsFYG6LP+9sDQZjm1b38ZXjzy4mXx8fHmZmZWfk9MzPDxMRE\naporV64wMTFBpVJJzftXf/VXnD17ln/4h39o2YQNJvj0LGWZk3bNWxWh1/f31SdJvbX2F/ktQrFu\nE4pvQ1yG2xH8xwLhXQH5oyHkYpYXhhgqLZHLV6jW8tSKFUo7FqjOl6jMl2BbzY21hfozGatXbZmG\nF1Xi/uSD3vKooHndrXVw2Fg8GTPaS6uFoXaWhAErMXm48JRCsUwujMiHkQtLCZ0aK8LMPdV4RejJ\ntXDFawl5qsgHgnL1nZNrhHVmV165LttMDbHECIuMcZM9XGecK+xdfofhuWXCmzGV+TzXxu/mzcUP\nsPCdbdTeyrvvn9yuH9CQMStyRoeX6Iua2WvoCVALrlD9Tuqrvj5tvbK+/L7y0hyAPRJ8aTa+iUfc\nIfjqZ5ouP/TQQ0xPT3P58mX279/PSy+9xIsvvtiU5sSJE5w+fZqTJ09y/vx5xsbG2LdvH3v27EnM\ne+7cOf7kT/6Er3zlKwwNDdEKG0jwyWi0rvskW1tk8vUTnTpTRE+s66XV23D9HTgP+fEcw2MFysUR\nFue2Udq1TKEu+HKFCqXdiyyywwm+nTUn/GbzEAXuux0RbtDKpgAj9dtowaVNT1IdEXB6DOdwYR0B\njRUM0Mz8xFMswjPKQTUgFnteWKNQrDA0vLxihyMQIVdbcUDU6kxEPvnYEHw1ZdOLV5waBaUGa7U4\nT5WhutDbwe0VNfcurvMBvsddy+8R3IjhFpQrRb4VHuYb0YPceXPUfUh8D852KuxFe7WbIDOD9IGk\nMKpApZNvhFrNRPeLJHuxNbNolpkF+p59UHOhKxtfPp/n9OnTPProo0RRxKlTpzh8+DDPPvssAI8/\n/jjHjx/n7NmzTE5OMjo6yvPPP5+aF+A3fuM3KJfLK06On/zJn+Qv/uIvEusRxJ0q0x0iCJ5OukKz\nHU3PetY1afOJwLQR6p2wQb3Hu75/kjfMqh+63kKZhCFM4D6zFpP773ZT+F/uJ9o1SlTLcc++K4zu\nvM3N6k4AtuVvc+v/b+/cguQ6zvv+O5e5z96wwAIEFiRMAhQpixRJkaLKURw7CsmEVhDHDypW8sBK\nySmWqlQs58nOm/ImP+WFL3SVS5JfVLSTosXEEG1LieNbCDIyylZCUgQlAgR2sdj7zu7czyUPfb45\n3/SemV0AS1Ikzld1ambOdPfpc073v//fpbvXZ1ldvgO33sFxQqJrZeKWZ4psYkyHeoaHXs1FV1v3\nLzvCQfq1Dl0RwCur80OLEsS45QC3FOAW+wPPbanYpVzqIHtcaFtdEbMasqisGvBs4JNzAowpAwzx\nEhDVK69IvN4h1jjevcY9m5eZXN2hsBxBAGv+IV488+/476tf5v99+yEam9NwFLgEvIcBv21gDQOG\nARg63SGNJt9JfneT3z1SABRHh6v+k/agPbtat9ZAOs6zq1/cKFZoaxt2Gfp3TBz/R25WHMeB/3AD\nkPGfnZu2132Q8nPE+PayR+zlhtej5H5XWdmrPDnGXVvqKVRK6JXWQcWLsIaZtwbhtkf40wrMl3En\nQophQIUOO9RxnYgaTXpuFa9ggnrxQpgMiVyXuOsYQJrFgF+LdFvHJsPkVIOf1sAk5k9r6g6pd1ev\nwmzF8TpestpxpUux2MNLppgV3P6QWiuAZZ6GCT0xTzZOVkE2/0la+U8DXlpekDhEQor0BzF7NZrM\nssYcyxyOVplrr1Fb6lDYiKANUd2lOVnj74PP8qPW5+h71dRbHSTPTofbDZqcbQDU6qPtnXWtdJpx\nCWBpG4P8p70qtsRWep3ONvPo8nXcny03SwYsyaesfdSiA810I9Mv3g4P2CsUIMtAfbMio7zUU3YH\nn4Nrh+F/ePBLEH/BYcet4Th9Sp4Jz+g5JYq1Dnd4V9jqTtAOKxRn2sSlHt3lKrHjptOtNBkWrO2p\namSZKuWczArRarC9EIGozl5sZmIUA1w11cxxzGIBRg3tDdRYDYDDwBdRpD8APj9DndXgl5YVJLMz\nzEyNCbaZZpM5lpkLVzi6s8rMeoNCIxgwt+WpWd6dPcXmm4cILpbBc809N0jVXJsVDx5WprvXEt2m\n5AV4Kk9m4VZ+HbKiyxJA0+3I9jDbdf4QJAe+j0KyRjnU94jdI7NWF/ZT/iijscio0IGsOupDGmwR\nViN4fQVOTsEX67R6NbxmwGx5FceNaEY1ioUek4UtulGBTlSmMNGFokPYLBD0Cwb86ph+1iONvesx\njN929fTYoGd8SDpRf4uYkBXZzMcDp2z2tSj4fXyvb5wYTurESI9h0JPpZebpRslMDAG+/gAItZpb\noD8EoAX61NmhSosyHWbY4DCrHAlXOdJdY3Z9k+pqx2ilycKtV+onuDDxIGuLR4jeK6Q2y1UMOJKk\nFW11F3bo+Dx7ANWeWSfjP7sN2KIZo26jdhu37RSRdV6Xpz/JSHMAki9L9WHLKDe9Fm3fO6iXbnvJ\nRgWqSlpIo/1lo1kJvOsA12FnE957G9Y/Tew8SHelRmmjz9R8g7gSs9o/TMHrUy9sUyk1aXkVPD8A\n16F4rAmNCv1GxTglypjOLsG4EqoiKpzGfx2JoTV0Hb83mC4Xm6OQrJ3ngF9MNvPxOxS9Lr4TpN0T\nlgAAIABJREFUJqukiMMiGppVIYxNnBsyU8NR78bDsMUSHQr0iXHwCQfqsKjG5WQObp0dajQ5wgrH\nuMbh7hYzW9sUFvrGmhAnz2QC3ix/mj+Nn2Kxd9y8gmryXNYwam6cPDex7cWwW3Xs6z9JDaGZkc+W\nSHvNSqvjjHSANAx7pOR6OoxFA2tWmTCead6CdPdO8vMuP8fAZxtvx8l+3fRZTopR1xl3fT0i259a\n9YbhRi0NtgX9ZMWWix34awiP+fSOl2hGNQpOl6rbwnf69ChSLbSIvHV6TpHA8ylOdIhjhzDwiSOP\nOHQxiwIAbWe47+iVXUST0qErUkUd1Dyw7zlmrm0xwPXNqiqFci8NSHbTUBQ3YXECcMbz2h84LmSW\nhQG+OHmKUQJ6/cH+GMUEHAX4JL/Y82SpqWk2OdxfY663xsRam/Jy17C4JlCBVq3C1rE6F9tneHP5\nAba60+lssw7pQCG4NmB8muF51kOyWV2W2OqtY6XPouHajqzTafONbodZoJdF6/V/++1L+5Bc1f0g\nJSucRdtdUOey7B1Zzo2s/FrVsENk5JzdiCRPOCKfHXgqdZSguDD5XoMLZWg48G+gd7rEgneCGXeN\nucIyPafIBoeY8LepRztcC+8gwKfg94iqLv3YJ9wuE0eOCXcpJfcTOMOX1rOrxGYvrE6LBEorv46D\nWTPPL/fN7JJCgOeHA8aWrKSHT5jE07UGLM88EQN0sq+tZnuG5XUH4OknMXtm0YG+UpP7TLPJJA2q\ntJhiiyOscKizxfRGE/f9GBYxoJcA+8bUJO+cvJufXbibpb+fJ+p4hh03k0Nmv8jMjcHrCpM/hbEL\nRRb2t5dzQJs07CgDu51m2aQ19Rbgsz0vWe1dm3o0eMt/o0LDbkJyVfeDFNs+B6NHrlt5mVnXkfNZ\njdwefW21OsumM/AOMKxPTsJWAy79A6zNE25N0QymqE63KR9eBJ9BOIjvBEy6DTxCupQoFnoUaz1a\n1OkUqkSxCx64hT5xxyNqq82N9J67cugVWZykesk0NMeLwI1w/chszi0sz+sPbHllOgkjCwaByBqw\n0gUGItLYu/7A9ifnNRgW6CnmZ2yCsoT8JA0maTAVbTHVbTDV2qGy2sW7HhnQW0vucxqYg8szd/En\n/tO807qXcC1p5hHGC75NGqXSIrVCxPIwZNC0HRTyfvV7tQc5UUtDK7+UrcVR/8tL0OBltymdT/Jq\n++KofjCqjd+k5Cswf5AySsW02dkHcZ29xG7odmS/LbarVDx5VWhtQnQVrpeJFqbpFKv0jlVh0sH3\nQopO4p51YNJr4McBq7Gx/5ULbRw3Ii7E9NoV4gL45R5Rq0CMR+w4w07ByBke/COMiuyBU8KsBp0s\nHOr6Zk08vxhQLPYper1BuIpPQIU2JToUlTo77NxIjwL9JAYvVGpw+l2cHOVk9WRRi8t0BouJ1uIm\nE9E2R3orTO40KSzHuNeABVJ73RxEEy79Yz4/nbyHc72nuda60zA8sXluYdRcAb42ihELw9KbG0tb\ns8NEbNBJXtKQK1zPgRtlC9TApwFzFNjq60TsfqGjrnGAtr5c1f2wxR65RjUM+W8vtcS2p8g5PRLv\nx76o7TkCcjDsZXZJ9aoCpqcuAnXoH4EfBrC5AWcnaNw5xU82P82xaJET9QW2maBLiQptJh2zYY7Z\nO6xCvdCk5jTZ8mZoRxViYrxyH+9wSBD6hKGXVNEhDlyIHUVQDbtzCyF+KdkDw43Nysi+WQS04AWD\nBQYEpLwBaxNbncypDQZOCHFMDMfkpfY/cWgUksDmYuIMEZW4SmvA8iZpMNlsUd9uUd7q4q+DswIs\nA0vJo04CrtdqM/x44tP8aOMRrv90ntZK3Tg0mphFcpqkcch9dmPHoA2IjUDASxaY0yCog91FbJY4\nKvAehgFOt8VbZWc6pMZmnQcgOfB92HIjKu5eo9w4FUGrOaPyjruGgKA0OLtRQ0o/yhBW4a02dNbg\nMyXac3XacYVaYYeT9UsU6RHhDFhVxWnjE9CjQMVr4bshkefhhQG9oEDsu1AFt+8TBl6yb4VLnHxP\nbyMeLP/uS1wesVks1AvwnADfCSgl3lk9r9acE9XV2OZksx/DBo3rL2V5Btx8pQpLHpmFkYJem3q8\nw3S8Sb2/Q73Xor7SobLaS1exXsEAWQOYhHjCoTfjszh9B3/lfpELG4+w9ZNZwr5nWnkredwtDPDJ\nxIvMVyzvSTyxmvVltQXtwBjnDLOvkXVo5rbXwG2Xg/rMqs9+ytuH5Da+j7NoELLBdK/l7O1RXI+u\nsnGGDq4W0etCaZrRBLZhow1/dtj8/KcOjekp3udOjrDMUbZY5xB9ChxifcCg2lTpOUWmvC1qbpOm\nXzO+UadIqdCFGILIJ4w8osjbZSryfAE8cJ0I1wkNwyMw35M5sRJ3J6xNVFKZQlakSyGpk158QBig\nxPEZBhjiK3VWH8Z50WAyajARbFNZ71NcCfEWIsPutjBzba+TxoM7EFY91u+a4ifHTvPD7Sf5v5sP\nEvVdA3DJ9sZskTI98V/ILLMgJvXoatCT963BTQY1cVRlhapoO9x+Ql4gbXfaC7xXWNYoLUjqqUOt\nbnU2UyJ5OMvHXUaxtRvNp9XkUenFIyjeQZkXFmCs7TVoefDWKkxGcHqG5mSdpdoJqpU2tZJZUj1O\n/KRFehxhhS2maVLDc0Jix6FElw5lWlSS6jiEsUccOYb5xc7AE+vIXrZObHYycyI8JxiEpchS7+WB\n5zUNPRHngztgbr0Bq9MzNoTFye5n4rktJOfN8vFNqrSoBy3qQZNav0Wl1abS6OAvRXiLGNC7Tsry\nmhgVdgbiOWjdXebC3IP8jf9L/HTpDBtrh8z9dzAODfHkai1V8GJAirRNz2b82pabxei0FqAZm1aN\ns9qNPejadsMsGcXysj51mePCcG5AclX3dhV7BJe5wXqU1mxPh72IjU88vRJTcQz6M7B8FS414N0a\n7XqdXrlM/dgOlVKLO3mfGIcrnKRGkzlWBntPtKkQ4zBJgy4ltqnTpUSAj+eEuGrdvAh3UDXxvDpu\nuiKKMDbD0tJFAgDlnBDVV3t1U/ue7eCoJlZJ8diao0uJ7iAub6a3Q73Zxt2OcVZinKsxzjUM4K2T\nMr0O6UZMVYjugcbDNX5Y/xJ/uvIUG+9NG4AsYJwXK8mn/doyzWlZDComndgcqDT2ElR2eBNWWhv4\nRoWl7BV6Muq/rPCtA/TmiuSq7u0mduiKNLSsHiUjrXSYiOGde2SGvKi+KxD3IayZhUr/4hpxPEN4\naJq1why+H1Kv7DBbWOMk7xPh0aKarEnXokuZfgJToorKLNcYd8AUI8d8OoOz6VJQJL+9xFFRSljd\n8HzZ4alpAo5eEsdXTmZf6Bi8QrKoQIX2oG4V2tSiJhP9JtVem2q3TXmjR2E9NE6LRYzHdhlj0xOm\n1yPdge4YcD/8/YkH+d+lz3Nh6XMsLZ6gH5bM425jyLQsrNJTn6LN7tprQ4s2WehEAk72yiu2N1aD\nTtY0tiwGth+gyipL102zRg2iB+TkyMNZbjexR2NpgFmqiRiQ9GocEsunlzMqY6jJMkYfexCWS7C8\nBPWY+N4JNr0ZgqLPlLfOhN/gF5xLNJjkCieZZY1JGoR4tCmzxRQRLrJ5T4Q7AMQAX/jdAPjs6WPO\nAPxCZceTRQb6Q6xQlocS210pYXAa9MTGJ2qtHxuHxkS8w1Rvm5n2FoVGiLeFUWevAVeABYivQbwO\n8SawCU4bnDo4R4EpCO706T9Q4PzcY/zX6Dd4c+EBthZmU9+UxOy1SNfe044NezGHXe/aZu76PxF7\nakxWDJ6tvurpaPq87dzYq26wGyjdjHQHCHqQq7qfTNFR9lk2GT16yjS0Aumob08yF2eHOEAgjemL\nUFuUJb9/hlkeeBJ+3IPO+/AvZ+lWy1wunsJ1Q6qlNjPuBg/wY1pU6VGkQI9pOsywSY8iHcrJzFmB\nKhNcMryVjzMAPr3MuwY/UXPFcyurpBQsW5+AnNj0tDpbTDy9VVrU+m0qvS6lVp9is0+hEeFKWMpV\nDMu7BtF1CFZhZwe2WlDtQdWFymHwjwG/CD+77xT/59TD/NXOP+Ht5QdotKfNo+9iAG8Vw/bEmSGg\nJ9YFPXbF+t2TvAuZo2uHs0i70OvpCUj6Kn+U8T2rHdkhMLAbPLVktc1RtscPYO5uDnyfVBllXLaN\nxbYak/W/LJmiI4n1VChhkJJmI8lTgasxXGvCkRLBdIHVeBbf6zNd2KTsdjjOIkV6dCgrp0OXgAId\nyoPFnSKcgaIq9xYliq69qY8An7mraHB4pKuuaBVWh6rIb1F5S3QoRT1KUY9K2KEctqm321R2urgb\n4KxjwGkBuArhFQgWobcGvS3obcNOFxp9cHwoTRlHRueeMhufmeLCXZ/lXOWf83drj3BtbT4Ftkby\nGCVuT9YGFbXWDsEb2mdDRMDOnvCcFeNpr66ivae280I7T+ScrSLrtCL79e7q9Pb1D0hyG98nUW40\nnEU3OB3WIhNh9aoemim4SRo9eVY2tAgw+t4MRLPwlw3ilYDoK7NslWZ5q/5pYs+h5HS5i8vcw08H\nQc4xDhPsUKGNLN/ZTZTQHsUB2LlJALJmf8AA9ITxabve8MyL1MFhWF66Eovsg1GhTTXoUm118dsh\nbivE34lwt8C5jrHjXU0+l6BzFRrLsNSHrQD6AZQiM8W2VIf6cfAegmuPH+Z/PfSP+GHhn/E/F55k\nqzNtHuUmxgGygHFo6Jg97YPQr24gEcPBfdoZpQPUfXVOGJ4e5EY5MrQ6rGMC7fZmawx2HeVGxsWS\n6hsNrfN5OAvkwJchtuMii+HBcCPSi41meenEkq7ngOrOpBljkbQT7kDswtIk9H3iw206vRIrzTkm\n79pm5o4NM3+VLabYQnYjEwdCquK6SeRcYaD+7r5rR32mTo5USTY5RbUVBlgYAF+HQhjihyHFqEcp\n7FEMepRafcrbAc5WbIBpAzPFbAGiqxC8D+01aG3B+jqsbRvs6iRP5agHhwpQuxfCR0q894V5fvSp\nh/lB+Ql+1H2Ua60TZkXqdlLu9eRzm1Sl1QsR2FtmRKj3k7XXpB02YsfC2HY0fUTWp60ai8iCGKiy\nHPUbdrc9Ms7Lf/ZKMnabvkXJVd1PqtjUIGs+pD0tSAcsa/ufnrNZxzA6vR6SrO0eky4YJ2pwG4MW\n98DGDPzJNsGlgHBjlrVfneP9O+7EJSTE42H+jnkWKGCWsmpTHtjwqpiZHuLoEPbXpzC0rJQovIb/\nRQMoBAaOEFFtdciLODVKQZ9SJ8DrgteJoRXjbGNAbw3DwsSBsQDhVWhfhaUOLAawEJlkLiZSZQKY\nLMLJOrifh/Uv1/jLX/wl/qz6JH91/VdZ7c0Ru45BSWF6ixjQE5Zna6xa5Q2BSJhaX2WCbNdlhLmY\nHZdng5qktdmfpNOhTzAMXpIHxs8GGSXS5kTEmXaAKu8tqrqvvvoqv/Vbv0UYhvzmb/4mv/3bv70r\nzfPPP8/3v/99qtUq3/72t3n44YfH5v2jP/ojvvGNb/D222/zxhtv8Mgjj4ytQw58mWKHG+iGpwHR\ntdJIo5b/Y4btPWJRl9/iUtSsoc3wZhcAmxCF0JqBSx7xD7ZpXC7x/t/eg/tETOlzPWZZpUSPo1xn\nsr/NXG8dQnDimILfx3VDE8oSeUSBUUoj18NxI3BjIj8mclwixwUnBgfcKMKNYohj3BjcOMaPQvwo\nxA1j3DDCjUP8MMDrhfitEL8V4bTA2cE4FkT9XAWWIbwGvWXY3oCNTVhpwmoI63G6W+Y0MFuBY9Nw\n+HMO4RddXn/oc7x+5jH+OvwiP958kI3oEP1+wTwuUZk3SPcC6mDse63knDg3ZDWWISzQVFDb3uTT\n9tbajE7P55V02hEihzjCRnlks87p6+9lfrHZp5w/YLmFcJYwDPn617/OD37wA06cOMFjjz3G2bNn\nB7ulAZw7d453332Xixcvcv78eb72ta/x2muvjc37wAMP8PLLL/Pcc8/tqx458I0UYXoCZHqk1uqK\nHNJ5yqRTBmC4QQrVKJHG8sl/su+C7BxUVJ9iqS/ASglWAnbOT7FTvhO/1KF4ukW1vINfCKm6TWaD\nTY63V/C6EU4QExch9jGLs/TB6zLA69iHqAC9okvkOUSuS+Q6xI6DH4S4YYgbxWb73Ai8AFzZzU0A\npJtUW/ap3cE4GBoYCrcK8Yo5etdhZ83Y8RZCY8ncToqYdmDWg2M+3HHY5Y57fIJ/UWLp31f4gfMr\nvNz9DS5dPs1mc9Y8mh4GVK9idktrkzoy2qrgDsPhLEPODDsMxV5NxY7R03k1W7QZn23Hk7agB86s\n0JVRHuC90CZr9oitLh+Q3IKq+/rrr3P69GlOnToFwDPPPMP3vve9IeB75ZVXePbZZwF4/PHH2dzc\nZGlpiffee29k3vvuu++G6pED31iR0dwWYXg6Vk8at9jy5FyfdFML6UA9DNCVGbb5ibE8wvRa2eex\nmuRdwqDKEQhd6LisvhTQuzzNtS//MssPzlM+1MEvRsQOHKLBRK+Fswx0DGA5lmnKCc1Vi35M7MXE\nxMQu4Do4kVF3hQQSgSNRHT1SUBFgEdDbwbCtBobxrUF/HTrrsNqC9T5sRebJTGI2iysDR2twaA6q\nD0LzwRl+9NkzXLj7EV7b/jzvtu7jSvtuWnHdPOYVDNO7nDyWzaQ+ct0mw6AnTHBAmmznhT6vbX62\nkVCzvazVWTRT1CCXpQbDsBnlIIxndhyf9jgfkNxCNRcWFjh58uTg9/z8POfPn98zzcLCAouLi3vm\n3a/kwLenZIUjjPotIAbDO21ptdkOaYFhRiGAKWqwgKGL6dGJXTAKIWqzcz5g5/I0i8Xj9FsTHD1x\njc7xClt3THC6f5lCZ5FCEOA1IqN+Sh+WqnYN+Hl+nGhJ8TB5EEemVDNQhyzkKcs8Cei11PcGsAVx\nA8Jt6EUmm+/BpA/TJajXYLIO9WNlvLtrrH/hEBcfuIc37n6Ev3R/mb/Y+VVoeGYuc5yUuQC8nxx6\ndoYwT1mMQIB5SL0V0LPZmlZXRwGe5LfDWUTkvA2GWU4z+W2DU1boyl7hLLaMc4DcotyCjc9x9sc+\nP+i9eHPguyGxGaB0ANk7V29AI2qNqLA90nAVCZvokgKgZgTC9PQafi6G+cUY/W4zyXfCOD7+S4vF\nv63zyol/xU++fD8P/NsLdCp/Q9lrM+ttUS10TFFid9PgJTic5ZSElITay7RrfBD10mZ+iY2t4ECt\nDMdCOBSDVwBnGpxj4N0P3mccrt47x09+4X5+OPUl/iF8iMUrJ1n1DkPVh9Ax9U1i/rhCOo2tpQ4B\nucCq21A/kmevN9sQlLRj98ROm8XK7BFCHoqtGmtGLwOi9r7Kwx8VbKyD6m3V2BZ5edoc82Eyvr9I\njmw5ceIEV65cGfy+cuUK8/PzY9NcvXqV+fl5+v3+nnn3Kznw3ZDYo7I0WGnUcl7O6RkaOvZLmF6g\nytGNOyR9NY5Vpo1Om9B14b0iraUq71+apeeeZsd12JmvceWOu7h76hIn5hY5zCqTtQa1qSbuTozb\nJGVKegqXnqQA6XRjPdLrMDHpx4LxcZKnzACE3Nj8XS9CWHNgzmXnyATLh4+wcvcRVk4f4b2Ju3i7\nci/n4y9wqX03zdYkUeyla+mtYwBvCaPqCrAK4ErMngC6MNGBqS2GWFy74sG1VV7NxDQbywIc7UjQ\nYGezQ3lg2t4Lw2AZW+VlXcsWPULpiAKbXWY5PT4o+ZXkEPlPQ/8++uijXLx4kUuXLnH8+HFeeukl\nvvvd7w6lOXv2LC+88ALPPPMMr732GtPT0xw9epTZ2dk988L+2GIOfDctogPqxq4NytLbNBqIV1cH\nN0t+sQMKXXFJg5rFEdJOvteSzxATuLYCzEPHgaWQlVd8Nv78Pn785MNMPRnw0D9+g8+deoPHZt/g\nnv67nOy3Ka1EuMuxmSK8jrGJ7TAc8iGx10I4IZ1uLCJOSjs8UWv4Yk/0wT8K3OnQfKjA5bnjvOZ+\ngfP+53nDe4zNnxyhcXGGXlQkKPjEddfUawljy7tKusRUj9SeJ6Anmqq27Q36utyIGPv6DLMuGYD0\nIKNNEzYwioiDw57OZtuBRwUPS35bjd5LtJ1Raxja1JKV/oMGvvHi+z4vvPACTz31FGEY8tWvfpX7\n77+fF198EYDnnnuOp59+mnPnznH69GlqtRrf+ta3xuYFePnll3n++edZXV3l137t13j44Yf5/ve/\nP7IeTvxBK9P2BZ1vfJiX+wDF7ii2WhKrNNobDOmCpNreU1TntQok+z46pL1bzstO4hEmRrCCAdUJ\nYAruLVL8lMMdp7c48allTn7mKidPXubkHZc40lpntrnO5M42tVaTUq9LodfH6wUU+n2KQR8vCvDj\nAN8Nk9CWKAlrYbedX38KqS1Au1hiu1hjzZ1lxT3MYv04S7VjbBQOcS08xvs7d/F+fJIrnKS7XqXf\nKA2rqrIU1Sap06LNMMvTYXjidNFjSiTPWKN6Tz1/UXntFZe12qv1fLmglKvTaQeGBkvXOqfDZkY5\nPlBpNKu0maKUP4rVDb+wON4dN7dfMTa6G7M1fsgQsy/JGd9NizR4bduznRaSxscAkuhdQqGKpJ1I\nGEGR4RVcpKH7Kn1XpZVzEj9STvJU4J0mvYsOl/3jXL7vXvjXDoe+uMod9SucKl7irplLHJ9d5Ii7\nyoTboOq0KDpd6o7Zv7ZEl3LcoRR3KQR9/CCk0I/xe7Hx7oZx2pcDxyx2GjlEvkNUdIkqLpvlCRZL\nc7zLPbwTfYoLPMxbO7/I8sXjtK7WTXyfOFvKya13MUB3nXQBUunrOnRmsBcuqbNc1F1IVfSBCMPT\nYSVZTgabTWV5f7PK1awtC+CyPLf7AQVdngyoIprpjarffmyDNyIf/8m6OfDdsohhHFJWFzH8aAWs\ntM0vcakO5uzKiN1T6aRDCRuRzXBlpocOpygl16wkv7eBJsSBSXa1Df+tQvNCgYWTd9G4c5af3fkp\nqsdalI90KEz2KU20KNebTHoNJt2GAT4nWRbe71ByuxT9PqVSn2LUx4/7uHFIHLuEsUc7rtCKq2y5\nU2zG02z0DtFYnaS1VmN7Y5KtjSnWglk2+9P0eqXhkLkeBuzapIHHEpcnO6SJ/6HHcOSP2PVE45OF\nbgYrwo8CFw1wGtxs1VarxPI+dYyeRmA5J/m1ViAioBtY+WzRtjn921ZjR8kHpd5+/Oes5cAH7M/1\nb4chwO4ZGzLyagOXOED08lSQ9kxZjVl7C+QaovoGGWVq9iDnCqTxgrKdWAhRI4mB7tF9a4JudYrN\nMzNwxoF7HLjTgSNQmO1SPNRkorhN3d+h4PYouT1KbtccToeik66xV6CPFwdEkUsQFmhFVbaps84s\nq8FhVnbmaK/WYNGDFceorTJGlDGAJjP4xMYoHmGZCK/tjDpoWptSBRS1tUHwa6jjZ3lb9bms31k2\nN9t5EVvntGgDaGydt7+Py8+IT9uZkaXmZn2/FWkfUDkfneTAt2s0z1ILtDqhe5dQDu2dhbSzyL4a\n0qGEGQjYiVFcOzckv6jRwuak83SS/2VKm5Qdk1IfuW4NgzAxAxDsxRB68HYBFn246MOcB4cgOFQg\nOjRBUKrQKM7ilmOcUoRbinCLEW4hwnWTgwgninHCmLgDcdMlDDzC0DOzeeMivahorhUmz3aaFN8l\n/GWNNMBYr4gsYKenmQkIOsnvNukeudopOphyK4XYTM5meFq91c8ThmP7tB1ORMwQci1UPrtcG3js\ndrdfYLKNqlIPu43qQXIcON+o5KruJ0yyvG72aJwVbGo7NMblE/ueq87Jee0wcTLSS7nSOfXywboD\naTDVKlkM0Q5EAWxVYacGzSoseVCDeMolPOQSVgrpnhYya058LzrqRmuKWX1BPwqtvYcY0GqRemgF\n1CQURfsgtANDB1CL2muTGo1bQ+AXqt9Ze+Tq3/YxjtkJ4GjgscOQBCx1u8hyUsAwcxvHJMfZ9rLa\n4UHF9OXA9wkQDS627SQrVs/u9Zrp6cYtoNYl9cBKI+2ROjy00TtxSgxmaghTc1V6AUGhPMLuZI6w\ndNw+aaxHnTSEZgfjUThknBObBWgUwHdMsmkMUawlVSkm2ezHI0DlkYKkOJXlscpt2UCmV0jR/VLA\nTSJONNGScgQoJY++1gA/bJsYDAOEvAPbnjfOxpelrmaJRt4s0POsczbTtLULG/i0g8Z2etjszwY/\n+/vNSm7j+5iLnkupVRXN6qR32iOnfaD+F7HVX91gYVg10mAn5+2d26SziEdYh7XofDpcRvKJCizl\nJms5RR2IqhBVYLsM/TJsOQbAqqRYqxeM1lWSzbp9dTnNBO3wN/2fxiHbxCYsUq/8LqAZqLJ2HVpV\njcmeehZamWx7ng2E9qG9MiKjmJm+jt1WbMAapfrKdXUb1MA5SmzQzRmfyG0MfLbRWBpg1mKh0vO1\np86eDG6rJ6h8UpZmflq91fNxhd44pFPXbCO7AJvHMLOUuol3V9uBAnUtcZNKcFwZohnoTkM30Wdd\nB6pOuheSrw79Wy6v2ZzcrmaFciuiLodWOk0issrU5lAbDwaiaaZmvhopBY31e9LPVv/WQKfB0E5n\n10F/2udt8Mpip9r8odPamoX93RZ573q0OgjJGd/HWEaNmprhjVrZQo+io+xwtnqs1Rdt8NLXt2PM\nBDkEMPW0J22rkvyCMBHGPSrXFTCEFLVEJxVW2sWAYGjSxEXoFiEoDGtX8l2Dn21GE3DTj05Pmtil\nmjKM7ZrxhRlph+x3dse3AUtXQj8zDY72xUexdjL+tytlM0ZhensBTxb46nYDu+MPBYC0VmE/UM0i\nD0pyxvcxlXHhAzbzs0dwDWq2FxeGGaOt4mTZYRiRVsrV9kebEYinQKvRUl6f4XvQnce3ynRIp8SF\nQBHiMvTjpI1rxEtEQC+LIEuYitymTZJssmMzuKwZYLtUSe3ksYHHdlzYaqymj1mIawPxFvtQAAAK\nHklEQVRglk6ddTP2kQU4dhvQD0Cn0YOvpHPH5JHy9HPQNupRqvjNSB7O8jGV/RirNRuUQ8BF92QB\nEJu12eVAth1PMwod/Kynr4neJwxS0y+po1afxeOgKZlcS0BROpevyhFappdrkuXxRVd1hquaZd7U\ncXZ239dWAlujlHOZ/VQASwrVz9EOKM4KWdGoqj28wpz089NBgaF1DZvGZtFWuVF9k2HGd90OYbjd\nZNl2bd3eHtTkelrbkDhQu+63Irmq+xFJFoO62XIYU8Y4pmaP7FmGZ6y8WSO9oz51/nBEfg180rl0\nh7Hr6Yz5bTtnpONLB9M2R80snaRaukwL4UY9Dhv4bLzYVQcNyoKo2gGg4+z0OZvlaVudvrA+j/Xd\nycin24Pd/mxGKuXpumSxOynXDofJSmdfYxS7tM/b7fRWJFd1PyKxG8mNinQoOzzFLl+rjjbLkw6q\nmZ4uy2ZkehS2vXfaFifpuwwDnJuRXtih/Rq1JzdS+bXrVS+GYDNgubee+i6HrosY+3RZGdXV/VV7\nc8F6ffKM9K7fch0RPRNGMz0RbffUcW5ZLmZhv7pSkk7fgAaj/bY7SZM1LU3aj2Zw8k7stsaIc7bs\nR4s5KCdHzvg+Ihk1et5oGVlsLSsNZBuJs5iWnPes3zZbyGKO2hmiQRDr2rbqqj22Nuro6+swjJDU\nSOeT3SG0zirXsR0tkVWGA1GcVNExrFC+S1mxrpttIBynusrzyXoGWpXUDp9R3hENSln1ENGUVTNI\nPY0Q61MDq53G/m4felTYj2jbq90G5Z6kPR2UkyNnfB+R3KqKK2IbgLNGVZ1Gi602SJ1s7+u469qM\nUA47DMZyLAyuL8AjIQtZIK47nzbo65VlIlJXrL4fDSgyymv7o9iPZM3B5N5DHQ8p9bF1XB2rKHY1\n28Ggn5cOS5H3oZf7stXZUWWR8Z8OE7GBzLaraXDOEn1vWapwVhvTz/pGRTO9yDqHOpeHs2j5mALf\nQYoeZT2GG3kW4MFwA9PhJbrTaLYkooFAq1S2tV8+bdubvmZWJ9IeBwFPvciBZmaaEcl3HfYi15W8\n0jFljrAO6JN706xWlyEqssfuTq4XXNBgNMpOqkXy2LF62oFhDyL6Oo4qR+oZWWVngZF+Bxos9wIX\nrc7eysCt848aFG1TykHYxEVyxvcxlCwWplVM2x2Zld5WP23mlpVGxI7Dy1rMVHckrQ7bDDOLOUqH\n1iEoGtw0mNtsUIOWBjEBDNuJYKvt2lHjkAKJsEu9YrWthuvztsvYBlN9r3p6h1b9tTNCM0ENaFJn\nO+4Odb/6elIXXSdbPbXfYVZ+20Giyx2Xz5YsFXqvZ3YQwJeHs3zMJMu4qzudqJl7eb90qIE96tuN\nMAustB1POqYuO+va2gmBVV9PpbFDaWy7njgNHJVe2xO1A8AGMylbM1WX4VUGxOFiMyJhfBqQpF62\nvVPCSUaZDDQ4aiasnTAkefWcN6m3rQJnAZ8uR79T22GiBwDtdc6y3dmgmMUU7XRaG9F5QiuN3eZ0\nm9Ke7IOQnPH9HMkoOm+PpONAhX2kzTpvq3ZabFaWVb7uOJDd2WMrvQZCzf5sO50GBq1m28HNWt2T\n+mSxYF2m5NXxhhrctUlAAzAMT/nQLHQUYNhgYINcrH7b6p0GKO0E0XXTISu6Hlj5bIaq37e+rma1\nNiu0y5d6ZIldnyzNwG4PUhf7me01oO9XPv42voO0eP4ciM3oHEazBp3GY7cN6iDEHo21J3Qvg3vW\n6Kw7PAyDl6hmdke0wzj0M9FxerJDj96Mp8vwUilyT8IcZbG8tkoj7MoOmtXrSGn1tG8dch3tmbbX\nmM/KZ4elaMBz2L2YgwZUG0izYm7kvnTds95RVnnj2pOdflSZ+rlqk4OIbW6w3z3sjja4Wcl69qOO\n3fLqq69y3333cebMGX73d383M83zzz/PmTNn+OxnP8uFCxf2zLu+vs4TTzzBvffey5NPPsnm5ubY\nO/iEAZ9+wTb7yxoJswBIZC+1QI/6exmr7bRZkjUa28Cpz2n1bS+GqvPJzP+szXV059KzOzRQ2uEv\nwha76pDF9vSnbOArz0CvP2UDn10XAbqeypNlI7SBbK/5uFkDk2ZrOq2tjkP2e9XskD3Sj2s/o85r\ndmefz6ovDJtVDkKCGziGJQxDvv71r/Pqq6/y5ptv8t3vfpe33nprKM25c+d49913uXjxIr/3e7/H\n1772tT3zfvOb3+SJJ57gnXfe4Utf+hLf/OY3x97BJwj4dCPWL1kagzZk22rDzdo+9hqp7bqNA0k9\nYtv5sjqPZh9Zam5WHaRTahZng4V2DsAw6EkHUjF7Q4xRDtnbUY4Ww/vYxgxv4pvF3DSrkzWppHwN\nyvZ7tp9PVpiL/Sw1UGjGpMscZX6w32kWsGb9HscKdbosydJi7Gvp//fSem5Ubp7xvf7665w+fZpT\np05RKBR45pln+N73vjeU5pVXXuHZZ58F4PHHH2dzc5OlpaWxeXWeZ599lj/+4z8eewefIBufiG03\nymo8tr1Dp8mym42yC+o5urqRaVvcfkDJTpt1Tnd0zb50OrsDu1Z6zY7kvt2M757KZ6uMtvdXGJIN\nlPYzENHMSNLDsJdVAFnH7Umntpm7ZndZg1kW0xPR+bDSZ/22y9DPKKt8myXqe7bZpjxnGC7vRkXy\nZLXZvTST/crN2/gWFhY4efLk4Pf8/Dznz5/fM83CwgKLi4sj816/fp2jR48CcPToUa5fvz62Hp9Q\n4LNZX1YaGO70cs42+o+ziWSB4n7PjapTFvBpUNGgZKfVnUhAWYOfBmoYBku7Y9rgNYqlaruZdoJk\n1c3uyDbD0vUQxid1t5mMzZxsFVNfOxrxn362On1Wfvu71F/fX9ZzyjKxSN5x7+9mQErXIavdZr2D\nm5GbD2cx+/LuLfvZizeO48zyHMfZ8zofOvDF8Tc+7EvmkksuByrf2HfKer0+9PvEiRNcuXJl8PvK\nlSvMz8+PTXP16lXm5+fp9/u7zp84cQIwLG9paYljx45x7do15ubmxtbrE2TjyyWXXD5oieP4ho7t\n7e2h/I8++igXL17k0qVL9Ho9XnrpJc6ePTuU5uzZs/zBH/wBAK+99hrT09McPXp0bN6zZ8/yne98\nB4DvfOc7/Pqv//rY+/gEqrq55JLLz6v4vs8LL7zAU089RRiGfPWrX+X+++/nxRdfBOC5557j6aef\n5ty5c5w+fZparca3vvWtsXkBfud3foevfOUr/P7v/z6nTp3iD//wD8fWw4n3o0znkksuuXyCJFd1\nc8kll9tOcuDLJZdcbjvJgS+XXHK57SQHvlxyyeW2kxz4cskll9tOcuDLJZdcbjvJgS+XXHK57SQH\nvlxyyeW2kxz4cskll9tOcuDLJZdcbjvJgS+XXHK57SQHvlxyyeW2kxz4cskll9tOcuDLJZdcbjvJ\ngS+XXHK57SQHvlxyyeW2kxz4cskll9tO/j9SlFrtp/9FYwAAAABJRU5ErkJggg==\n", "text/plain": "<matplotlib.figure.Figure at 0x7f8a84f75b90>"}}], "source": "show.imshow(abs(np.squeeze(res[10][1])),colorbar=True)", "metadata": {"collapsed": false, "trusted": false}}, {"cell_type": "code", "execution_count": null, "outputs": [], "source": "", "metadata": {"collapsed": false, "trusted": false}}], "nbformat_minor": 0} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment