Skip to content

Instantly share code, notes, and snippets.

@hhl60492
hhl60492 / main.py
Last active February 4, 2018 07:58
import numpy as np
from sompy.sompy import SOMFactory
import pandas as pd
import glob
import os
# read in all csvs from folder
path = '..\\..\\data\\'
all_files = glob.glob(os.path.join(path, "*.csv"))
import math
import requests
import json
import os
from .color_dicts import mpl_color_map, html_color_codes
def safe_iter(var):
try:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
### Data Wrangling code adapted from https://www.kaggle.com/wosaku/eda-of-crime-in-vancouver-2003-2017
# import csv
df = pd.read_csv('crime.csv')
df.head()
require(extRemes)
# Sometimes R can be a bit tricky...
df <- read.csv('crimes_daily.csv')
# convert Date field in CSV to R date format
df$DATE <- as.Date(df$DATE)
# Get months
# A simple Tensorflow 2 layer dense network example
import tensorflow as tf
import numpy as np
from sklearn import datasets
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# A simple Tensorflow 2 layer dense network example
import tensorflow as tf
from sklearn.gaussian_process import GaussianProcessClassifier
import numpy as np
from sklearn import datasets
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt