Created
August 1, 2017 09:06
-
-
Save hirokiky/6d1eb1fb327e6b215761ef6ac00c22d7 to your computer and use it in GitHub Desktop.
wanted to know what makes high quality wines.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', delimiter=';')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style>\n", | |
| " .dataframe thead tr:only-child th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: left;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>fixed acidity</th>\n", | |
| " <th>volatile acidity</th>\n", | |
| " <th>citric acid</th>\n", | |
| " <th>residual sugar</th>\n", | |
| " <th>chlorides</th>\n", | |
| " <th>free sulfur dioxide</th>\n", | |
| " <th>total sulfur dioxide</th>\n", | |
| " <th>density</th>\n", | |
| " <th>pH</th>\n", | |
| " <th>sulphates</th>\n", | |
| " <th>alcohol</th>\n", | |
| " <th>quality</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>7.4</td>\n", | |
| " <td>0.70</td>\n", | |
| " <td>0.00</td>\n", | |
| " <td>1.9</td>\n", | |
| " <td>0.076</td>\n", | |
| " <td>11.0</td>\n", | |
| " <td>34.0</td>\n", | |
| " <td>0.9978</td>\n", | |
| " <td>3.51</td>\n", | |
| " <td>0.56</td>\n", | |
| " <td>9.4</td>\n", | |
| " <td>5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>7.8</td>\n", | |
| " <td>0.88</td>\n", | |
| " <td>0.00</td>\n", | |
| " <td>2.6</td>\n", | |
| " <td>0.098</td>\n", | |
| " <td>25.0</td>\n", | |
| " <td>67.0</td>\n", | |
| " <td>0.9968</td>\n", | |
| " <td>3.20</td>\n", | |
| " <td>0.68</td>\n", | |
| " <td>9.8</td>\n", | |
| " <td>5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>7.8</td>\n", | |
| " <td>0.76</td>\n", | |
| " <td>0.04</td>\n", | |
| " <td>2.3</td>\n", | |
| " <td>0.092</td>\n", | |
| " <td>15.0</td>\n", | |
| " <td>54.0</td>\n", | |
| " <td>0.9970</td>\n", | |
| " <td>3.26</td>\n", | |
| " <td>0.65</td>\n", | |
| " <td>9.8</td>\n", | |
| " <td>5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>11.2</td>\n", | |
| " <td>0.28</td>\n", | |
| " <td>0.56</td>\n", | |
| " <td>1.9</td>\n", | |
| " <td>0.075</td>\n", | |
| " <td>17.0</td>\n", | |
| " <td>60.0</td>\n", | |
| " <td>0.9980</td>\n", | |
| " <td>3.16</td>\n", | |
| " <td>0.58</td>\n", | |
| " <td>9.8</td>\n", | |
| " <td>6</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>7.4</td>\n", | |
| " <td>0.70</td>\n", | |
| " <td>0.00</td>\n", | |
| " <td>1.9</td>\n", | |
| " <td>0.076</td>\n", | |
| " <td>11.0</td>\n", | |
| " <td>34.0</td>\n", | |
| " <td>0.9978</td>\n", | |
| " <td>3.51</td>\n", | |
| " <td>0.56</td>\n", | |
| " <td>9.4</td>\n", | |
| " <td>5</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " fixed acidity volatile acidity citric acid residual sugar chlorides \\\n", | |
| "0 7.4 0.70 0.00 1.9 0.076 \n", | |
| "1 7.8 0.88 0.00 2.6 0.098 \n", | |
| "2 7.8 0.76 0.04 2.3 0.092 \n", | |
| "3 11.2 0.28 0.56 1.9 0.075 \n", | |
| "4 7.4 0.70 0.00 1.9 0.076 \n", | |
| "\n", | |
| " free sulfur dioxide total sulfur dioxide density pH sulphates \\\n", | |
| "0 11.0 34.0 0.9978 3.51 0.56 \n", | |
| "1 25.0 67.0 0.9968 3.20 0.68 \n", | |
| "2 15.0 54.0 0.9970 3.26 0.65 \n", | |
| "3 17.0 60.0 0.9980 3.16 0.58 \n", | |
| "4 11.0 34.0 0.9978 3.51 0.56 \n", | |
| "\n", | |
| " alcohol quality \n", | |
| "0 9.4 5 \n", | |
| "1 9.8 5 \n", | |
| "2 9.8 5 \n", | |
| "3 9.8 6 \n", | |
| "4 9.4 5 " | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.head()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "X = df.iloc[:, :-1].values\n", | |
| "y = df.iloc[:, -1].values" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from sklearn.ensemble import RandomForestClassifier\n", | |
| "from sklearn.grid_search import GridSearchCV" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "gs = GridSearchCV(RandomForestClassifier(),\n", | |
| " param_grid=[{'n_estimators': [3, 10, 20, 50],\n", | |
| " 'max_depth': [3, 5, 10, 20, 30]}])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from sklearn.model_selection import train_test_split\n", | |
| "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "GridSearchCV(cv=None, error_score='raise',\n", | |
| " estimator=RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", | |
| " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", | |
| " min_impurity_split=1e-07, min_samples_leaf=1,\n", | |
| " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", | |
| " n_estimators=10, n_jobs=1, oob_score=False, random_state=None,\n", | |
| " verbose=0, warm_start=False),\n", | |
| " fit_params={}, iid=True, n_jobs=1,\n", | |
| " param_grid=[{'max_depth': [3, 5, 10, 20, 30], 'n_estimators': [3, 10, 20, 50]}],\n", | |
| " pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0)" | |
| ] | |
| }, | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs.fit(X_train, y_train)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 25, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "{'max_depth': 10, 'n_estimators': 50}" | |
| ] | |
| }, | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs.best_params_" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0.6875" | |
| ] | |
| }, | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs.score(X_test, y_test)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 27, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", | |
| " max_depth=10, max_features='auto', max_leaf_nodes=None,\n", | |
| " min_impurity_split=1e-07, min_samples_leaf=1,\n", | |
| " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", | |
| " n_estimators=50, n_jobs=1, oob_score=False, random_state=None,\n", | |
| " verbose=0, warm_start=False)" | |
| ] | |
| }, | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs.best_estimator_" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 28, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0.69374999999999998" | |
| ] | |
| }, | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "es = gs.best_estimator_\n", | |
| "es.fit(X_train, y_train)\n", | |
| "es.score(X_test, y_test)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 29, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 0.07894648, 0.10711908, 0.0643799 , 0.0656545 , 0.07742105,\n", | |
| " 0.06366092, 0.10172709, 0.09202301, 0.067935 , 0.11266989,\n", | |
| " 0.16846308])" | |
| ] | |
| }, | |
| "execution_count": 29, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "es.feature_importances_" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 31, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from sklearn.svm import SVC\n", | |
| "from sklearn.pipeline import Pipeline\n", | |
| "from sklearn.preprocessing import StandardScaler\n", | |
| "pipe = Pipeline([('sv', StandardScaler()), ('clf', SVC())])\n", | |
| "gs_svm = GridSearchCV(pipe,\n", | |
| " param_grid=[{'clf__gamma': [0.01, 0.1, 1, 10, 100],\n", | |
| " 'clf__C': [0.01, 0.1, 1, 10, 100]}])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 36, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "GridSearchCV(cv=None, error_score='raise',\n", | |
| " estimator=Pipeline(steps=[('sv', StandardScaler(copy=True, with_mean=True, with_std=True)), ('clf', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", | |
| " decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',\n", | |
| " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", | |
| " tol=0.001, verbose=False))]),\n", | |
| " fit_params={}, iid=True, n_jobs=1,\n", | |
| " param_grid=[{'clf__gamma': [0.01, 0.1, 1, 10, 100], 'clf__C': [0.01, 0.1, 1, 10, 100]}],\n", | |
| " pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0)" | |
| ] | |
| }, | |
| "execution_count": 36, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs_svm.fit(X_train, y_train)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 37, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0.66041666666666665" | |
| ] | |
| }, | |
| "execution_count": 37, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs_svm.score(X_test, y_test)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 38, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "{'clf__C': 1, 'clf__gamma': 1}" | |
| ] | |
| }, | |
| "execution_count": 38, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs_svm.best_params_" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 39, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from sklearn.linear_model import LogisticRegression\n", | |
| "pipe = Pipeline([('sv', StandardScaler()), ('clf', LogisticRegression())])\n", | |
| "gs_lr = GridSearchCV(pipe,\n", | |
| " param_grid=[{'clf__C': [0.01, 0.1, 1, 10, 100]}])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 41, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "GridSearchCV(cv=None, error_score='raise',\n", | |
| " estimator=Pipeline(steps=[('sv', StandardScaler(copy=True, with_mean=True, with_std=True)), ('clf', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", | |
| " intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n", | |
| " penalty='l2', random_state=None, solver='liblinear', tol=0.0001,\n", | |
| " verbose=0, warm_start=False))]),\n", | |
| " fit_params={}, iid=True, n_jobs=1,\n", | |
| " param_grid=[{'clf__C': [0.01, 0.1, 1, 10, 100]}],\n", | |
| " pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0)" | |
| ] | |
| }, | |
| "execution_count": 41, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs_lr.fit(X_train, y_train)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 42, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0.58333333333333337" | |
| ] | |
| }, | |
| "execution_count": 42, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs_lr.score(X_test, y_test)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 67, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import numpy as np\n", | |
| "y_s = np.array([1 if a >= 7 else 0 for a in y])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 68, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "X_s_train, X_s_test, y_s_train, y_s_test = train_test_split(X, y_s, test_size=0.3)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 69, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "gs = GridSearchCV(RandomForestClassifier(),\n", | |
| " param_grid=[{'n_estimators': [3, 10, 20, 50],\n", | |
| " 'max_depth': [3, 5, 10, 20, 30]}])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 70, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "GridSearchCV(cv=None, error_score='raise',\n", | |
| " estimator=RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", | |
| " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", | |
| " min_impurity_split=1e-07, min_samples_leaf=1,\n", | |
| " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", | |
| " n_estimators=10, n_jobs=1, oob_score=False, random_state=None,\n", | |
| " verbose=0, warm_start=False),\n", | |
| " fit_params={}, iid=True, n_jobs=1,\n", | |
| " param_grid=[{'max_depth': [3, 5, 10, 20, 30], 'n_estimators': [3, 10, 20, 50]}],\n", | |
| " pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0)" | |
| ] | |
| }, | |
| "execution_count": 70, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs.fit(X_s_train, y_s_train)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 71, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "{'max_depth': 10, 'n_estimators': 20}" | |
| ] | |
| }, | |
| "execution_count": 71, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gs.best_params_" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 72, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0.90416666666666667" | |
| ] | |
| }, | |
| "execution_count": 72, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "e = gs.best_estimator_\n", | |
| "e.fit(X_s_train, y_s_train)\n", | |
| "e.score(X_s_test, y_s_test)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 73, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": false, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 0.06236372, 0.11460061, 0.08839113, 0.06540987, 0.07850471,\n", | |
| " 0.05851349, 0.07462395, 0.09557788, 0.0689122 , 0.12739927,\n", | |
| " 0.16570318])" | |
| ] | |
| }, | |
| "execution_count": 73, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "e.feature_importances_" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "button": false, | |
| "collapsed": true, | |
| "deletable": true, | |
| "new_sheet": false, | |
| "run_control": { | |
| "read_only": false | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.5.0" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment