Skip to content

Instantly share code, notes, and snippets.

@hjwp
Last active January 26, 2016 15:53
Show Gist options
  • Save hjwp/00171ce282b2762f8c1a to your computer and use it in GitHub Desktop.
Save hjwp/00171ce282b2762f8c1a to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"source: https://www.gov.uk/government/statistics/percentile-points-from-1-to-99-for-total-income-before-and-after-tax\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[8370, 8670, 8970, 9260, 9570, 9880, 10200, 10500, 10700, 10900, 11100, 11300, 11600, 11800, 12000, 12200, 12400, 12700, 12900, 13100, 13300, 13500, 13800, 14000, 14200, 14500, 14700, 14900, 15200, 15400, 15700, 15900, 16100, 16400, 16700, 16900, 17200, 17500, 17700, 18000, 18300, 18600, 18800, 19100, 19400, 19700, 20000, 20400, 20700, 21000, 21400, 21700, 22100, 22400, 22800, 23200, 23500, 23900, 24300, 24800, 25200, 25600, 26100, 26500, 27000, 27500, 28100, 28600, 29100, 29700, 30300, 30900, 31500, 32200, 32900, 33600, 34300, 35100, 35900, 36700, 37700, 38700, 39700, 40700, 41800, 42800, 44100, 45600, 47200, 49200, 51500, 54300, 57700, 62000, 67900, 76100, 88000, 106000, 150000]\n"
]
}
],
"source": [
"before_tax_percentiles_str = '''8,370\n",
"8,670\n",
"8,970\n",
"9,260\n",
"9,570\n",
"9,880\n",
"10,200\n",
"10,500\n",
"10,700\n",
"10,900\n",
"11,100\n",
"11,300\n",
"11,600\n",
"11,800\n",
"12,000\n",
"12,200\n",
"12,400\n",
"12,700\n",
"12,900\n",
"13,100\n",
"13,300\n",
"13,500\n",
"13,800\n",
"14,000\n",
"14,200\n",
"14,500\n",
"14,700\n",
"14,900\n",
"15,200\n",
"15,400\n",
"15,700\n",
"15,900\n",
"16,100\n",
"16,400\n",
"16,700\n",
"16,900\n",
"17,200\n",
"17,500\n",
"17,700\n",
"18,000\n",
"18,300\n",
"18,600\n",
"18,800\n",
"19,100\n",
"19,400\n",
"19,700\n",
"20,000\n",
"20,400\n",
"20,700\n",
"21,000\n",
"21,400\n",
"21,700\n",
"22,100\n",
"22,400\n",
"22,800\n",
"23,200\n",
"23,500\n",
"23,900\n",
"24,300\n",
"24,800\n",
"25,200\n",
"25,600\n",
"26,100\n",
"26,500\n",
"27,000\n",
"27,500\n",
"28,100\n",
"28,600\n",
"29,100\n",
"29,700\n",
"30,300\n",
"30,900\n",
"31,500\n",
"32,200\n",
"32,900\n",
"33,600\n",
"34,300\n",
"35,100\n",
"35,900\n",
"36,700\n",
"37,700\n",
"38,700\n",
"39,700\n",
"40,700\n",
"41,800\n",
"42,800\n",
"44,100\n",
"45,600\n",
"47,200\n",
"49,200\n",
"51,500\n",
"54,300\n",
"57,700\n",
"62,000\n",
"67,900\n",
"76,100\n",
"88,000\n",
"106,000\n",
"150,000\n",
"'''.split()\n",
"before_tax_percentiles = [int(s.replace(',', '')) for s in before_tax_percentiles_str]\n",
"print(before_tax_percentiles)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGwNJREFUeJzt3Xu4XVV57/HvL1dgcwkBRCzQDYmhQEEhylXLUtET+yi0\n6lNEVC5aT6sIKIJgj2WfnnPU0hbrpWARpQiCCnI4hqMI0ixKgQKGEMIlEAIEEAkoFyHWXMh7/phj\nJyv7rLUz9tp7rjXX3r/P86wnc4451xhvdrLXu8Ycc46hiMDMzCzHpG4HYGZmvcNJw8zMsjlpmJlZ\nNicNMzPL5qRhZmbZnDTMzCxbaUlD0rclrZS0pMmx0yWtlzSzrPbNzGzsldnTuBiYN7RQ0m7A24EV\nJbZtZmYlKC1pRMTNwPNNDp0HnFlWu2ZmVp6OjmlIOhp4MiLu6WS7ZmY2NqZ0qiFJWwGfo7g0taG4\nU+2bmdnodSxpALOAfmCxJIBdgYWSDoqIZxpPlOQJsczM2hARpX4Z79jlqYhYEhE7R8QeEbEH8CRw\n4NCE0XB+5V/nnHNO12NwnI6zV2N0nGP/6oQyb7m9ArgVmCPpCUknDjnFvQkzsx5T2uWpiDh2M8f3\nLKttMzMrh58IH4VardbtELI4zrHVC3H2QozgOHuROnUdbCQkRRXjMjOrMknEeBkINzOz3uekYWZm\n2Zw0zMwsm5OGmZllc9IwM7NsThpmZpbNScPMzLI5aZiZWTYnDTMzy+akYWZm2Tq5nkZlpPU8mvL0\nJWZmrU3IpFFolhy8kKCZ2XB8ecrMzLI5aZiZWTYnDTMzy+akYWZm2Zw0zMwsm5OGmZllc9IwM7Ns\nThpmZpbNScPMzLKVmjQkfVvSSklLGsr+TtIDkhZLulrSdmXGYGZmY6fsnsbFwLwhZdcD+0bE64CH\ngLNLjsHMzMZIqUkjIm4Gnh9SdkNErE+7twO7lhmDmZmNnW6PaZwE/LjLMZiZWaauzXIr6a+ANRFx\nebPjAwMDG7ZrtRq1Wq0zgZmZ9Yh6vU69Xu9omyp7/QhJ/cD8iNivoewE4M+Bt0XE75q8J8qMq1hP\no/nU6F5Pw8x6lSQiotQ1Hjre05A0DzgDOKJZwjAzs+oqtach6QrgCGBHYCVwDsXdUtOA59Jpt0XE\nx4e8zz0NM7MR6kRPo/TLU+1w0jAzG7lOJI1u3z1lZmY9xEnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmc\nNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyydW1q9LK9+OKLvPLKK90Ow8xsXBm3c0/tu+9cli1b\nxqRJm+bFNWteSPNLNZ97aiSq+LMzs4lrXE6N3imrV8PatQuAuZuU9/X1s2rVimHeOTQRtJ7c0Mxs\novGYhpmZZcvqaUiaDOzceH5EPF5WUGZmVk2bTRqSPkmxeNIzQOPI8n7N32FmZuNVTk/jNGCviPh1\n2cGYmVm15YxpPA78puxAzMys+nJ6Go8CCyT9X2BNKouIOK+8sMzMrIpyksbj6TUtvVrdg2pmZuPc\nZpNGRAwASNom7b9UckxmZlZRmx3TkLSfpEXAfcB9khZK+sPyQzMzs6rJGQi/EPh0ROweEbsDp6cy\nMzObYHKSxlYRsWBwJyLqQN/m3iTp25JWSlrSUDZT0g2SHpJ0vaQZbUVtZmZdkZM0HpX0eUn9kvaQ\n9N+ARzLedzEwb0jZWcANETEHuDHtm5lZj8hJGicBrwKuBn4I7JTKhhURNwPPDyk+CrgkbV8C/El2\npGZm1nU5d089B3xyjNrbOSJWpu2VFPNZmZlZj2iZNCR9JSJOlTS/yeGIiKNG03BEhKSWz3sMDAxs\n2K7VatRqtdE0Z2Y27tTrder1ekfbbLkIk6S5EbFQUq3J4YiImzZbudQPzI+I/dL+UqAWEU9L2gVY\nEBF/0OR9o16EafbsuSxffiGt19NotUZG/noaXoTJzKqkE4swtRzTiIiFafP1EVFvfAEHtNnej4Dj\n0/bxwDVt1mNmZl2QMxB+fJOyEzb3JklXALcCe0l6QtKJwJeAt0t6CHhr2jczsx4x3JjGscAHgD2G\njGtsA2x2mvSIOLbFoSNHFKGZmVXGcHdP3Qr8kuIW279n46LYLwGLS47LzMwqqGXSiIgVwArgkM6F\nY2ZmVZYzYeGhku6U9LKktZLWS/KiTGZmE1DOQPjXKcY2lgFbAB8Bzi8zKDMzq6acpEFELAMmR8Qr\nEdFsTikzM5sAclbuWyVpOrBY0rnA02wcFDczswkkp6fx4XTeycBvgV2B95YZlJmZVVPOhIWPpc3/\nBAbKDMbMzKptuIf7lrQ6RjH31P4lxGNmZhU2XE/j3R2LwszMesJwD/c91sE4zMysB2x2TEPSy2yc\nG3waMBV4OSK2LTMwMzOrnpyB8K0HtyVNoliy1VOLmJlNQFkP9w2KiPURcQ1+uM/MbELKuTzV+EzG\nJIql8P6ztIjMzKyycp4IfzcbxzTWAY8BR5cVkJmZVVfOmMYJHYjDzMx6QM7U6LMkzZf0K0nPSvo/\nkvbsRHBmZlYtOQPhlwM/AHYBXgNcCVxRZlBmZlZNOUljy4i4NCLWptdlFOtqmJnZBJMzEP4TSWez\nsXdxTCqbCRARz5UVnJmZVUtO0jiG4u6pj7Uo9/iGmdkEkXP3VH8H4jAzsx6Q83DfNOAvgT+i6Fnc\nBHwjIta222i63PVBYD2wBDgxIla3W5+ZmXVGzkD4BcCBwD+l7bnpz7ZI6gf+HDgwIvYDJgPvb7c+\nMzPrnJwxjTcOWXDpRkn3jKLN3wBrga0kvQJsBfxiFPWZmVmH5PQ01kmaPbgjaRbFdCJtSXdb/QPw\nOPAU8EJE/Kzd+szMrHNyehpnAP8q6dG03w+c2G6DKemclup5EbhS0nER8d3G8wYGBjZs12o1arVa\nu02WRlLT8ohoWm5mNpbq9Tr1er2jbSrnA07SFsCctPvgaAatJR0DvD0iPpr2PwQcEhGfaDgnRvvB\nO3v2XJYvv5BiCGajvr5+Vq1awcY5GDeJrkl5s7Lhy500zKwbJBERzb/NjpGcu6e2BD4OvIniU/Jm\nSRdExO/abHMp8PlU7++AI4E72qzLzMw6KGdM4zvAPsBXga8D+wKXtttgRCxOdf4cGBxQv7Dd+szM\nrHNyxjT2jYh9Gvb/VdL9o2k0Is4Fzh1NHWZm1nk5PY27JB06uCPpEGBheSGZmVlV5fQ03gDcIukJ\nijGN3YEHJS0BYsgzHGZmNo7lJI15pUdhZmY9IWfCwsc6EIeZmfWAnDENMzMzYJikkR7oMzMz22C4\nnsatAJIu61AsZmZWccONaUyXdBxwmKT3UMybMSgi4upyQzMzs6oZLmn8BXAcsB3w7ibHnTTMzCaY\nlkkjIm6mmGfq5xFxUQdjMjOzisp5TuM7kk6lWO4VoM4ol3s1M7PelJM0Lkjn/RPFuMaHUtlHS4yr\np3mdDTMbr7qx3OsE0Gr9DTOz3tbx5V7NzKx3dXy5VzMz6105c0/dKGkOsBfFdZeHRrFqn5mZ9bCc\nngYpSSwuORYzM6s4T1hoZmbZnDTMzCzbZpOGpEmSPiTpr9P+7pIOKj80MzOrmpyexvnAocAH0v7L\nqczMzCaYnIHwgyPiAEmLACLiOUlTS47LzMwqKKensUbS5MEdSTsB68sLyczMqionaXwN+N/AqyR9\nAbgF+OJoGpU0Q9JVkh6QdL+kQ0ZTn5mZdUbOw32XSVoIvC0VHR0RD4yy3a8AP46I90maAvSNsj4z\nM+uAzSYNSTOBlcDlFLPuhaSp7U6NLmk74M0RcTxARKwDXmynLjMz66ycy1N3Ab8ClgEPpe0Vku6S\nNLeNNvcAnpV0carjm5K2aqMeMzPrsJy7p24AroqInwJIegfwPuBiinU1RvrMxhTgQODkiLhT0j8C\nZwF/3XjSwMDAhu1arUatVhthM9XjdTbMbCzV63Xq9XpH29TmPrAk3RsRfzikbElE7Cfp7oh4/Yga\nlF4N3BYRe6T9NwFnRcS7Gs6J0X6Qzp49l+XLLwQ27Qz19fWzatUKWq95MbS8WdnYljtpmNlYkERE\nlLp4T87lqV9K+qyk35fUL+lMYGW6DXfEt95GxNPAE2nmXIAjgftGWo+ZmXVezuWpDwDnANek/VuA\nY4HJwJ+12e4nge9KmgYsx+tzmJn1hJxbbp8FTm5x+OF2Go2IxcAb23mvmZl1T84tt68CzgT2AbZM\nxRERby0zMDMzq56cMY3vAkuBPYEB4DHg5+WFZGZmVZWTNHaIiIuANRFxU0ScCLiXYWY2AeUMhK9J\nfz4t6V3AU8D25YVkZmZVlZM0/qekGcDpFJMXbgt8qtSozMysknKSxgsR8QLwAlCDDQ/kmZnZBJM7\nNXpOmZmZjXMtexqSDgUOA3aS9GmKeTAAtiEv2ZiZ2Tgz3OWpaRQJYnL6c9BvKCYsNDOzCaZl0oiI\nm4CbJP1LRDzWuZDMzKyqcgbCp0v6JtDfcL6fCDczm4ByksaVFOtmXAS8kso8l/cY8jobZtYrcpLG\n2oi4oPRIJrRW62+YmVVLzl1Q8yV9QtIukmYOvkqPzMzMKienp3ECxVfhzwwp32PMozEzs0rLWU+j\nvwNxmJlZD9js5SlJfZI+n+6gQtJr08SFZmY2weSMaVxMMdPtYWn/KeB/lRaRmZlVVk7SmBURf0ua\nIj0iVpUbkpmZVVVO0lgtaXCZVyTNAlaXF5KZmVVVzt1TA8B1wK6SLgcOp7ijyszMJpicu6eul3QX\ncEgqOiUiflVuWGZmVkU5d0+9B1gXEddGxLXAOkl/Un5oZmZWNTljGueklfsASNsDo21Y0mRJiyTN\nH21dZmbWGTlJo9kkSJPHoO1Tgfvx5IdmZj0jJ2kslHSepFmSZkv6MrBwNI1K2hX4Y4qZcz0zn5lZ\nj8hJGicDa4HvA98Dfgd8YpTtfhk4A1g/ynrMzKyDhr17StIU4NqIeMtYNZimIHkmIhZJqrU6b2Bg\nYMN2rVajVmt56rjldTbMbDj1ep16vd7RNrW5DyBJNwLvbRwMH1WD0heADwHrgC2AbYEfRsSHG86J\n0X4wzp49l+XLLwTmblLe19fPqlUraL2GxdDyZmXdLXfSMLNmJBERpV7yz3m4bxWwRNINaRuK5V5P\naafBiPgc8DkASUcAn2lMGGZmVl05SePq9Br8etvqK3C7/LXZzKxH5DwR/i+StgJ2j4ilY9l4RNwE\n3DSWdZqZWXlyngg/ClhEMf8Ukg6Q9KOyAzMzs+rJueV2ADgYeB4gIhYBe5YYk5mZVVRO0ljb5M4p\nP19hZjYB5QyE3yfpOGCKpNcCpwC3lhuWmZlVUe4T4ftSLLx0BfAb4LQygzIzs2pq2dNIq/X9BTAb\nuAc4NCLWdiowMzOrnuF6GpdQPE69BHgn8PcdicjMzCpruDGNvSNiPwBJFwF3diYkMzOrquF6GusG\nNyJi3TDnmZnZBDFcT2N/SS817G/ZsB8RsW2JcZmZWQW1TBoRMRar85mZ2TiS85yGVUyrdTZGylOs\nm9lIOWn0pLFar8PMbGRyHu4zMzMDnDTMzGwEnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlp\nmJlZNicNMzPL5qRhZmbZupI0JO0maYGk+yTdK+mUbsRhZmYj0625p9YCn4qIuyVtDSyUdENEPNCl\neMzMLENXehoR8XRE3J22XwYeAF7TjVjMzCxf18c0JPUDBwC3dzcSMzPbnK5OjZ4uTV0FnJp6HBsM\nDAxs2K7VatRqtY7GNhGMdF0Or79hVi31ep16vd7RNtWtDwJJU4FrgZ9ExD8OORajjWv27LksX34h\nMHeT8r6+flatWkH+2hPtrFMxPsudNMyqTRIRUepiOd26e0rAt4D7hyYMMzOrrm6NaRwOfBB4i6RF\n6TWvS7GYmVmmroxpRMS/U4FBeDMzGxl/cJuZWTYnDTMzy+akYWZm2Zw0zMwsm5OGmZllc9IwM7Ns\nThpmZpbNScPMzLI5aZiZWTYnDTMzy+akYWZm2bq6nob1lpGuvzEWRjId+3DxNatnpOePlW6120yV\nYhmvxtvP2EnDRmC063K0s7bHSI20nrFqd6S61W4zVYplvBo/P2NfnjIzs2xOGmZmls1Jw8zMsjlp\nmJlZNicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xdSRqS5klaKmmZpM92IwYzMxu5jicNSZOB\nrwPzgH2AYyXt3ek4xka92wFkqnc7gEz1bgeQpV6vdzuEzeqFGMFx9qJu9DQOAh6OiMciYi3wPeDo\nLsQxBurdDiBTvdsBZKp3O4AsvfAB0gsxguPsRd1IGr8HPNGw/2QqMzOziuvGLLcdmQt48mTo6zuN\nyZNnbFL+29+u7ETzZmbjkrowf/8hwEBEzEv7ZwPrI+JvG87pvUnmzcwqICJKnXO9G0ljCvAg8Dbg\nKeAO4NiIeKCjgZiZ2Yh1/PJURKyTdDLwU2Ay8C0nDDOz3tDxnoaZmfWuyj0R3ukH/yTtJmmBpPsk\n3SvplFQ+U9INkh6SdL2kGQ3vOTvFt1TSOxrK50pako59paF8uqTvp/L/kPT7o4h3sqRFkuZXNU5J\nMyRdJekBSfdLOrhqcaY270v1X57q7HqMkr4taaWkJQ1lHYlL0vGpjYckfbiNOP8u/ZsvlnS1pO2q\nGGfDsdMlrZc0s6pxSvpk+pneK6lx3LcrcQLFwuZVeVFcrnoY6AemAncDe5fc5quB16ftrSnGW/YG\nzgXOTOWfBb6UtvdJcU1NcT7Mxh7bHcBBafvHwLy0/XHg/LR9DPC9UcT7aeC7wI/SfuXiBC4BTkrb\nU4DtqhRnaucRYHra/z5wfBViBN4MHAAsaSgrPS5gJrAcmJFey4EZI4zz7cCktP2lqsaZyncDrgMe\nBWZWMU7gLcANwNS0v1O344yIyiWNQ4HrGvbPAs7qcAzXAEcCS4GdU9mrgaVp+2zgsw3nXwccAuwC\nPNBQ/n7gGw3nHJy2pwDPthnbrsDP0n+m+amsUnFSJIhHmpRXJs70i/IgsH16/3yKD7xKxEjxQdD4\n4VF6XMCxwAUN7/kG8P6RxDnk2J8Cl1U1TuBKYH82TRqVihP4AfDWJud1Nc6qXZ7q6oN/kvopsv3t\nFL+kgw91rAR2TtuvSXENGoxxaPkv2Bj7hr9XRKwDXmzsEo/Al4EzgPUNZVWLcw/gWUkXS7pL0jcl\n9VUpzoh4DvgH4HGKO/heiIgbqhTjEGXHtcMwdbXrJIpvupWLU9LRwJMRcc+QQ5WKE3gt8EfpclJd\n0huqEGfVkkZ0q2FJWwM/BE6NiJcaj0WRgrsWG4CkdwHPRMQioOl92FWIk+JbzIEUXeEDgVUUPcYN\nuh2npFnAaRTf7F4DbC3pg43ndDvGVqoaVyNJfwWsiYjLux3LUJK2Aj4HnNNY3KVwNmcKsH1EHELx\nZfEHXY4HqF7S+AXFtcZBu7FpFiyFpKkUCePSiLgmFa+U9Op0fBfgmRYx7ppi/EXaHlo++J7dU11T\ngO3St92ROAw4StKjwBXAWyVdWsE4n6T4Fndn2r+KIok8XaE43wDcGhG/Tt+6rqa4NFqlGBuV/W/8\n6yZ1tfW7J+kE4I+B4xqKqxTnLIovC4vT79KuwEJJO1csTtL5VwOk36f1knbsepzDXbvq9Isisy6n\n+EedRmcGwgV8B/jykPJzSdcNKb4pDx3Um0ZxKWY5GwehbgcOTnUOHYS6oOE6Y9sD4amOI9g4plG5\nOIF/A+ak7YEUY2XiBF4H3Atsmeq+BPhEVWLk/7+2XXpcFOM8j1AMhm4/uD3COOcB9wE7DjmvUnEO\nOdY4plGpOIH/Cvz3tD0HeLwScbb7wVXWC3gnxSDlw8DZHWjvTRRjBHcDi9JrXvph/gx4CLi+8QdJ\n0b19mGKA8r80lM8FlqRjX20on07RtVwG/AfQP8qYj2Dj3VOVi5PiQ/lOYDHFN6XtqhYncCbFB9wS\niqQxtQoxUvQinwLWUFyDPrFTcaW2lqXX8SOM86T0vhVs/D06v0Jxrh78eQ45/ggpaVQtzvR/8tLU\n7kKg1u04I8IP95mZWb6qjWmYmVmFOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSsK6S9HK3\nY2hF0oCk00f4nlNUTAd/6RjH8jpJ7xzLOs3a0fGV+8yGqPKDQu3E9pfA2yLiqZyTJU2JYiqTzTmA\n4sGtn7QRk9mYcU/DKkFSLc3keWVadOayhmNvlHSLpLsl3S6pT9IWaSbde9JsurV07gmSrlGxWNGj\nkk6W9Jl0zm2Stk/nzZL0E0k/l/RvkvZqEdrrJN2aFqj5aENMZ0i6Q8WCQwOp7BvAnsB1kk5TsXjS\nNemc2yTtl84bkHSppH8HLpG0o4pFq+5Ir8OG/GymAX8DHKNiAa4/Sz+TW9Pf6xZJc9K5n5L0rbS9\nn4oFebYYi38jM6B604j4NbFewEvpzxrwAsWsswJupZikcRrF3Dpz03lbUyzWdTpwUSrbi2L6iunA\nCRTTIfQBOwIvAh9L551HMYsxwI3A7LR9MHBjk9gGKKaXmQ7sQDGV+i7AO4B/TudMAq4F3pz2G+cy\n+hrw+bT9FmBRQ713snERqMuBw9P27sD9TWI5nk2nhdgGmJy2jwSuStsCbqJYz+JO4NBu/xv7Nb5e\nvjxlVXJHpMs6ku6mmIztJeCXEbEQICJeTscPB76ayh6UtIJiUrcAFkTEKmCVpBcoFlmCYk6e/dP6\nHocBV0obZsWe1iSeAK6JiNXAakkLgIMoVll7h6RF6bw+YDZw85D3Hw68J8W4QNIOkrZJ9f4o1QvF\nh/7eDbFsI2mriPhtQ11i0ym8ZwDfkTQ71Tc1tRNpptklFBPU3dbk72XWNicNq5LVDduvUPz/HG5c\nodU6CI31rG/YX5/qnAQ8HxEHtBHjYDxfjIgLM85vFePQhHBwRKzJaHfQ/6DoHf2pivWe6w3H5lAk\n244tYGYTh8c0rMqCYsbjXQZXLZO0jaTJFN/qj0tlcygu6yxl+AV1BBDFIluPSnpfer8k7d/i/KMl\nTVexylmNYg3mnwInpR4Lkn5P0k5N3t8YY41iic2XmsR4PXDKhkal1zep6yWKS1KDtqWYFRWKWUoH\n37sd8BWK3tAOkt7bpC6ztjlpWLdFi+2iIGItcAzwtXTJ6qcUYwznA5Mk3QN8j2JK57WpjlZ1Nh47\nDvhIqvNe4KgWsd0DLABuA/4mIp6OYmnYy4HbUvtXUoy1DG1vAJgraTHwBYpxiaFxQJEw3pAGzO8D\nPtYklgXAPoMD4RRrbHxR0l0UYzyD9Z0HfD0iHgY+AnwpLdxjNiY8NbqZmWVzT8PMzLI5aZiZWTYn\nDTMzy+akYWZm2Zw0zMwsm5OGmZllc9IwM7NsThpmZpbt/wHysKHOkPRbWgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc6550fd278>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.hist(before_tax_percentiles, bins=50)\n",
"plt.xlabel(\"Income before tax\")\n",
"plt.ylabel(\"Percentage of population\")\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.4",
"language": "python",
"name": "python3.4"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment