Skip to content

Instantly share code, notes, and snippets.

@hmaarrfk
Last active October 10, 2018 02:34
Show Gist options
  • Save hmaarrfk/a273b3d77cbec6e7b0d1c4f33ea65dd0 to your computer and use it in GitHub Desktop.
Save hmaarrfk/a273b3d77cbec6e7b0d1c4f33ea65dd0 to your computer and use it in GitHub Desktop.
Benchmarking ndindex and nditer
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"# done on linux, conda-forge python 3.6\n",
"import itertools\n",
"N = (100, 100, 100)\n",
"N_tot = int(np.prod(N))\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"16.5 ms ± 342 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"# Baseline test, probably can't go any faster than this\n",
"for i in range(N_tot):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10.5 ms ± 54.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"# This just proves me wrong, why does life not make sense\n",
"for i in range(N[0]):\n",
" for j in range(N[1]):\n",
" for k in range(N[2]):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"401 ms ± 1.92 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"for i in np.ndindex(N):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"26.8 ms ± 140 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"# Not as fast as the range over N_tot, but close enough\n",
"for i in itertools.product(*[range(r) for r in N]):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"a = np.random.random(N)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"27.6 ms ± 393 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"# A pretty good baseline, but we don't get the index\n",
"for a_value in a.flat:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"65.9 ms ± 529 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"# This isn't so bad, I would like performance closer to flat, \n",
"# but hey, pretty good, nditer is quite complex\n",
"for a_value in np.nditer(a):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"66.1 ms ± 485 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"it = np.nditer(a, flags=['multi_index'])\n",
"\n",
"# Adding the multi_index flag has no perceivable effect on speed\n",
"for a_value in it:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"128 ms ± 841 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"it = np.nditer(a, flags=['multi_index'])\n",
"# Accessing the multiindex, slows us down by a factor of 2\n",
"for a_value in it:\n",
" i = it.multi_index"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"164 ms ± 1.39 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"it = np.nditer(a, flags=['multi_index'])\n",
"# Adding an other layer of generators is slightly slower\n",
"for i in (it.multi_index for _ in it):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from numpy.lib.stride_tricks import as_strided"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"136 ms ± 7.56 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"# It doesn't seem to have anything to do with strided\n",
"x = as_strided(np.zeros(1), shape=a.shape, strides=np.zeros_like(a.shape))\n",
"_it = np.nditer(x, flags=['multi_index', 'zerosize_ok'], order='C')\n",
"for _ in _it:\n",
" i = _it.multi_index"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"161 ms ± 1.17 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"# It doesn't seem to have anything to do with strided\n",
"x = as_strided(np.zeros(1), shape=a.shape, strides=np.zeros_like(a.shape))\n",
"_it = np.nditer(x, flags=['multi_index', 'zerosize_ok'], order='C')\n",
"for i in (_it.multi_index for _ in _it):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Conclusion. It seems that python's lack of JIT really hamstrings\n",
"# the creation of a class for iterators.\n",
"# The choice of how you write effectively the same thing drastically affects performance."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment